JP2012023236A - Thin film solar cell - Google Patents

Thin film solar cell Download PDF

Info

Publication number
JP2012023236A
JP2012023236A JP2010160586A JP2010160586A JP2012023236A JP 2012023236 A JP2012023236 A JP 2012023236A JP 2010160586 A JP2010160586 A JP 2010160586A JP 2010160586 A JP2010160586 A JP 2010160586A JP 2012023236 A JP2012023236 A JP 2012023236A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
conversion layer
solar cell
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010160586A
Other languages
Japanese (ja)
Inventor
Yutaka Terao
豊 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010160586A priority Critical patent/JP2012023236A/en
Publication of JP2012023236A publication Critical patent/JP2012023236A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film solar cell which has a high light confinement effect, and in which microcrystalline silicon-based photoelectric conversion layers with excellent film quality are laminated.SOLUTION: In a thin film solar cell, on a substrate 1, a light reflective first electrode layer 2, at least one photoelectric conversion layer 4, and a light transmissive second electrode layer 5 are laminated in series, and on a surface 2 of the photoelectric conversion layer side of the first electrode layer 2, irregularity for irregularly reflecting incident light is formed. At least one of the photoelectric conversion layer 4 is a microcrystalline silicon-based photoelectric conversion layer. Between the first electrode layer 2 and the photoelectric conversion layer 4, a flattening layer 3 consisting of transmissive conductive polymer material is disposed. The surface of the photoelectric conversion layer side of the flattening layer 3 has higher smoothness than that of the surface of the photoelectric conversion layer side of the first electrode layer 2.

Description

本発明は、裏面側の電極層表面に、入射光を乱反射させるための凹凸が形成された薄膜太陽電池に関する。   The present invention relates to a thin film solar cell in which irregularities for irregularly reflecting incident light are formed on the surface of an electrode layer on the back side.

太陽電池は、光エネルギーを電力に変換する発電装置であって、発電効率を向上させるには、入射光の利用効率を高める必要がある。このため、例えば、下記特許文献1に記載されるように、光反射性の下部電極層(裏面電極層)の表面に凹凸状の表面テクスチャー構造を形成し、光電変換層で吸収されずに下部電極層まで到達した太陽光を、下部電極層と光電変換層との接合界面等で乱反射させて太陽電池内部に光を閉じ込め、光の利用効率を高める試みがなされている。   A solar cell is a power generation device that converts light energy into electric power, and in order to improve power generation efficiency, it is necessary to increase the utilization efficiency of incident light. For this reason, for example, as described in Patent Document 1 below, an uneven surface texture structure is formed on the surface of the light-reflective lower electrode layer (back electrode layer), and the lower part is not absorbed by the photoelectric conversion layer. Attempts have been made to increase the light utilization efficiency by confining light inside the solar cell by diffusely reflecting sunlight reaching the electrode layer at the junction interface between the lower electrode layer and the photoelectric conversion layer.

また、最近の太陽電池は、その特性を向上させるために、吸収波長帯域が異なる光電変換層を複数積層した多接合型構造としたものが実用化されている。例えば、微結晶シリコンを材料とする半導体膜を用いた光電変換層(以下、微結晶シリコン系光電変換層という)は、アモルファスシリコンを材料とする半導体膜を用いた光電変換層(以下、アモルファスシリコン系光電変換層という)に比べて長波長光に対する感度が高く、アモルファスシリコン系光電変換層では吸収できない長波長光を発電に利用できる。このため、光入射側にアモルファスシリコン系光電変換層が配置されるように、微結晶シリコン系太光電変換層とアモルファスシリコン系光電変換層とを積層して多接合型構造とすることで、発電効率をより向上させることが行われている。   In order to improve the characteristics of recent solar cells, a solar cell having a multi-junction structure in which a plurality of photoelectric conversion layers having different absorption wavelength bands are stacked has been put into practical use. For example, a photoelectric conversion layer using a semiconductor film made of microcrystalline silicon (hereinafter referred to as a microcrystalline silicon-based photoelectric conversion layer) is a photoelectric conversion layer using a semiconductor film made of amorphous silicon (hereinafter referred to as amorphous silicon). Sensitivity to long wavelength light is higher than that of the system photoelectric conversion layer), and long wavelength light that cannot be absorbed by the amorphous silicon photoelectric conversion layer can be used for power generation. For this reason, the microcrystalline silicon thick photoelectric conversion layer and the amorphous silicon photoelectric conversion layer are laminated to form a multi-junction structure so that the amorphous silicon photoelectric conversion layer is disposed on the light incident side. Improvements in efficiency have been made.

しかしながら、凹凸構造に加工された電極層上に微結晶シリコン膜を形成すると、微結晶シリコンの膜成長方向が多数発生し、配向性の異なる巨視的結晶粒同士が膜成長の過程で衝突して欠陥が発生し、そのように膜質が悪化することによって光電変換特性が悪化する問題があった。このため、凹凸構造が形成された電極上に微結晶シリコン系光電変換層を形成する場合においては、電極層の凹凸構造をある程度小さくする必要があり、十分な光閉じ込め効果が得られなかった。   However, when a microcrystalline silicon film is formed on an electrode layer processed into a concavo-convex structure, a large number of microcrystalline silicon film growth directions occur, and macroscopic crystal grains having different orientations collide with each other during the film growth process. There was a problem that defects occurred and the photoelectric conversion characteristics deteriorated due to the deterioration of the film quality. For this reason, when the microcrystalline silicon photoelectric conversion layer is formed on the electrode having the concavo-convex structure, it is necessary to reduce the concavo-convex structure of the electrode layer to some extent, and a sufficient light confinement effect cannot be obtained.

一方、下記特許文献2には、固体撮像素子において、電極層上に凹凸がある場合や、ゴミ等が付着していた場合、その上に光電変換層を積層すると、凹凸部分で光電変換層の膜厚が薄くなって、クラックなどが発生する恐れがあることから、電極膜上に、ポリアニリン、ボリチオフェン、ポリピロール、ポリカルバゾールなどの有機系高分子材料からなる下引き膜を形成して、凹凸を緩和することが記載されている。   On the other hand, in Patent Document 2 below, in the solid-state imaging device, when there are irregularities on the electrode layer, or when dust or the like is attached, if a photoelectric conversion layer is stacked on the electrode layer, Since the film thickness may be reduced and cracks may occur, an undercoating film made of an organic polymer material such as polyaniline, polythiophene, polypyrrole, or polycarbazole is formed on the electrode film. It is described to alleviate.

しかしながら、引用文献2における電極層上の凹凸は、ゴミなどが付着して形成されるものであって、電極層と光電変換層との接合界面等で乱反射させて、太陽電池内部に光を閉じ込めることを目的として形成したものではない。また、光電変換層として、微結晶シリコン系光電変換層を用いたものではなく、凹凸構造が形成された電極上に微結晶シリコン系光電変換層を形成する場合における、上述した問題については何ら検討されていない。   However, the unevenness on the electrode layer in the cited document 2 is formed by adhering dust and the like, and is irregularly reflected at the junction interface between the electrode layer and the photoelectric conversion layer to confine light inside the solar cell. It was not formed for the purpose. In addition, a microcrystalline silicon-based photoelectric conversion layer is not used as the photoelectric conversion layer, and no consideration is given to the above-described problems when a microcrystalline silicon-based photoelectric conversion layer is formed on an electrode having an uneven structure. It has not been.

特開平8−288529号公報JP-A-8-288529 特開2007−80936号公報(段落番号0059)JP 2007-80936 A (paragraph number 0059)

よって、本発明の目的は、光の閉じ込め効果が高く、膜質の良好な微結晶シリコン系光電変換層が積層された薄膜太陽電池を提供することにある。   Accordingly, an object of the present invention is to provide a thin film solar cell in which a microcrystalline silicon photoelectric conversion layer having a high light confinement effect and a good film quality is laminated.

上記目的を達成するため、本発明の薄膜太陽電池は、基板上に、光反射性の第1電極層と、少なくとも一つの光電変換層と、光透過性の第2電極層とが順次積層され、前記第1電極層の前記光電変換層側の表面に、入射光を乱反射させるための凹凸が形成された薄膜太陽電池において、前記光電変換層の少なくとも一つが、微結晶シリコン系光電変換層であり、前記第1電極層と前記光電変換層との間に、透明導電性高分子材料からなる平坦化層が配置され、該平坦化層の前記光電変換層側の表面が、前記第1電極層の前記光電変換層側の表面よりも平滑にされていることを特徴とする。   In order to achieve the above object, a thin-film solar cell of the present invention includes a light-reflective first electrode layer, at least one photoelectric conversion layer, and a light-transmissive second electrode layer that are sequentially stacked on a substrate. In the thin film solar cell in which irregularities for irregularly reflecting incident light are formed on the surface of the first electrode layer on the photoelectric conversion layer side, at least one of the photoelectric conversion layers is a microcrystalline silicon photoelectric conversion layer. And a planarization layer made of a transparent conductive polymer material is disposed between the first electrode layer and the photoelectric conversion layer, and the surface of the planarization layer on the photoelectric conversion layer side is the first electrode. It is characterized by being smoother than the surface of the layer on the photoelectric conversion layer side.

本発明の薄膜太陽電池は、凹凸構造に加工された第1電極層上に平坦化層が形成されて、平坦化層の光電変換層側の表面が第1電極層の光電変換層側の表面よりも平滑にされているので、平坦化層上に膜質の良好な微結晶シリコン膜を製膜できる。このため、第1電極層上の凹凸の起伏幅を大きくするなどして、光がより乱反射し易くして光閉じ込め効果を高めつつ、膜質の良好な微結晶シリコン系光電変換層を第1電極層上に積層でき、薄膜太陽電池の発電効率を高めることできる。更には、光閉じ込め効果をより高いレベルで利用できるため、光電変換層の膜厚をより薄くでき、その結果、光電変換層の製膜に要する時間を短縮して薄膜太陽電池の生産性を向上でき、低コストで薄膜太陽電池を提供することが可能となる。   In the thin film solar cell of the present invention, the planarization layer is formed on the first electrode layer processed into the uneven structure, and the surface of the planarization layer on the photoelectric conversion layer side is the surface of the first electrode layer on the photoelectric conversion layer side. Therefore, a microcrystalline silicon film with good film quality can be formed on the planarization layer. For this reason, the microcrystalline silicon-based photoelectric conversion layer having a good film quality can be formed while increasing the light confinement effect by increasing the undulation width of the unevenness on the first electrode layer, thereby enhancing the light confinement effect. The power generation efficiency of the thin-film solar cell can be increased. Furthermore, since the light confinement effect can be utilized at a higher level, the film thickness of the photoelectric conversion layer can be made thinner, and as a result, the time required to form the photoelectric conversion layer is shortened and the productivity of the thin film solar cell is improved. And a thin film solar cell can be provided at low cost.

本発明の薄膜太陽電池は、前記第1電極層の前記光電変換層側の平均表面粗さRaが25nm以上とされ、前記平坦化層の前記光電変換層側の平均表面粗さRaが25nm未満とされていることが好ましい。この態様によれば、光の散乱効率に優れ、太陽電池内に入射された光の利用効率を高めることができる。   In the thin film solar cell of the present invention, the average surface roughness Ra on the photoelectric conversion layer side of the first electrode layer is 25 nm or more, and the average surface roughness Ra on the photoelectric conversion layer side of the planarization layer is less than 25 nm. It is preferable that According to this aspect, the light scattering efficiency is excellent, and the utilization efficiency of the light incident in the solar cell can be increased.

本発明の薄膜太陽電池は、前記第1電極層と前記平坦化層との間に、透明導電性酸化物層が配置されていることが好ましい。この態様によれば、平坦化層を形成する際における第1電極層の腐食を防止できる。   In the thin-film solar cell of the present invention, it is preferable that a transparent conductive oxide layer is disposed between the first electrode layer and the planarization layer. According to this aspect, it is possible to prevent corrosion of the first electrode layer when the planarizing layer is formed.

本発明の薄膜太陽電池は、前記平坦化層と前記光電変換層との間に、透明導電性酸化物層が配置されていることが好ましい。この態様によれば、光電変換層の形成時に、平坦化層を構成する材料からガスが発生しても、平坦化層と光電変換層との間に透明導電性酸化物層が配置されていることによって、脱ガスによる影響を防止でき、光電変換層の膜質を良好にできる。   In the thin film solar cell of the present invention, it is preferable that a transparent conductive oxide layer is disposed between the planarization layer and the photoelectric conversion layer. According to this aspect, even when gas is generated from the material constituting the planarization layer when the photoelectric conversion layer is formed, the transparent conductive oxide layer is disposed between the planarization layer and the photoelectric conversion layer. Thus, the influence of degassing can be prevented, and the film quality of the photoelectric conversion layer can be improved.

本発明によれば、光の閉じ込め効果が高く、膜質の良好な微結晶シリコン系光電変換層を用いた薄膜太陽電池を提供することができる。   According to the present invention, a thin film solar cell using a microcrystalline silicon photoelectric conversion layer having a high light confinement effect and a good film quality can be provided.

本発明の薄膜太陽電池の概略構成図である。It is a schematic block diagram of the thin film solar cell of this invention.

本発明の薄膜太陽電池について、図1に示す太陽電池を例に挙げて説明する。   The thin film solar cell of this invention is demonstrated taking the solar cell shown in FIG. 1 as an example.

図1に示す薄膜太陽電池は、基板1上に、表面に凹凸が形成された光反射性の裏面電極2、平坦化層3、光電変換層4、透明電極5の順にそれぞれ積層されている。図1に示す薄膜太陽電池は、サブストレート型太陽電池であって、裏面電極2が、本発明における「第1電極」に相当し、透明電極5は、本発明における「第2電極」に相当する。   The thin film solar cell shown in FIG. 1 is laminated on a substrate 1 in the order of a light-reflecting back electrode 2 having a surface with irregularities, a planarization layer 3, a photoelectric conversion layer 4, and a transparent electrode 5. The thin film solar cell shown in FIG. 1 is a substrate type solar cell, and the back electrode 2 corresponds to the “first electrode” in the present invention, and the transparent electrode 5 corresponds to the “second electrode” in the present invention. To do.

基板1としては、特に限定されない。例えば、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフレタートフィルム、ポリエーテルスルホンフィルム、アクリルフィルム、アラミドフィルム等の絶縁性プラスチックフィルム基板や、ガラス基板、ステンレス基板などを用いることができる。   The substrate 1 is not particularly limited. For example, an insulating plastic film substrate such as a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethersulfone film, an acrylic film, or an aramid film, a glass substrate, a stainless steel substrate, or the like can be used.

裏面電極2を構成する金属材料としては、特に限定はない。光電変換層4が吸収しうる波長域の光反射率が、60%以上である金属材料が好ましく、80%以上である金属材料がより好ましい。具体的には、Al、Ag、Ta、Zn、Mo、W、Ni、Crなどの単体材料あるいは、これらを主成分とした合金材料が好ましく用いることができる。より好ましくは、Ag、Alまたはこれらを主成分とした合金である。これらの金属材料を、蒸着法、スパッタ法、鍍金など当該技術において知られている任意の製膜方法で製膜して形成できる。   There is no limitation in particular as a metal material which comprises the back surface electrode 2. FIG. A metal material having a light reflectance in a wavelength region that can be absorbed by the photoelectric conversion layer 4 is preferably 60% or more, and more preferably a metal material having 80% or more. Specifically, simple materials such as Al, Ag, Ta, Zn, Mo, W, Ni, and Cr, or alloy materials containing these as main components can be preferably used. More preferred is Ag, Al, or an alloy containing these as a main component. These metal materials can be formed by film formation by any film formation method known in the art, such as vapor deposition, sputtering, and plating.

裏面電極2の光電変換層側の表面には、入射光を乱反射させるための凹凸が形成されている。該表面は、平均表面粗さRaが25nm以上であることが好ましく、25〜300nmであることがより好ましく、40〜200nmであることが特に好ましい。平均表面粗さRaが25nm未満であると、光の閉じ込め効果が十分でないことがある。また、平均表面粗さRaが300nmを超えると、その上に形成する平坦化層を厚くしないと平坦化の効果を十分発揮できない場合が想定される。この様な場合は、平坦化層を複数回に分けて製膜することで平坦性を確保できるが、平坦化のために、平坦化層の厚い部分と薄い部分で、膜厚が10倍以上異なるようになる。このように、局所的に膜厚方向の抵抗が10倍以上高い領域ができると、その抵抗による電力損失によって太陽電池の変換効率が下がる場合があるので、上限は300nmが好ましい。本発明において、平均表面粗さRaは、触針式表面形状測定器(プロファイラー)による表面測定で求めた凹凸データから求めた値を意味する。中でも走査型プローブ顕微鏡(SPM)、特に原子間力顕微鏡(AFM)による表面形状測定で求めた値を用いるのが好ましい。   Irregularities for irregularly reflecting incident light are formed on the surface of the back electrode 2 on the photoelectric conversion layer side. The surface preferably has an average surface roughness Ra of 25 nm or more, more preferably 25 to 300 nm, and particularly preferably 40 to 200 nm. If the average surface roughness Ra is less than 25 nm, the light confinement effect may not be sufficient. Moreover, when average surface roughness Ra exceeds 300 nm, the case where the planarization effect cannot fully be exhibited unless the planarization layer formed on it is thickened is assumed. In such a case, the flatness can be ensured by forming the flattening layer in a plurality of times, but the film thickness is 10 times or more at the thick and thin portions of the flattening layer for flattening. To be different. Thus, if a region having a resistance 10 times or more higher in the film thickness direction is locally formed, the conversion efficiency of the solar cell may be lowered due to power loss due to the resistance, and therefore the upper limit is preferably 300 nm. In this invention, average surface roughness Ra means the value calculated | required from the uneven | corrugated data calculated | required by the surface measurement by a stylus type surface shape measuring device (profiler). Among them, it is preferable to use a value obtained by surface shape measurement using a scanning probe microscope (SPM), particularly an atomic force microscope (AFM).

裏面電極2の表面に凹凸を形成するには、例えば、裏面電極2を形成する際の製膜条件を適当に選ぶこと、例えば、銀(Ag)にアルミニウム(Al)を0.3原子%添加した合金ターゲットを用いたスパッタリング法によって形成することができる。具体的には、基板加熱温度を約300℃、放電ガスにはAr/O(流量比Ar/O=90/10〜95/5)、放電圧力0.5Pa程度の放電条件によるスパッタリング法によって形成することができる。また、製膜後に、プラズマ処理やエッチング処理などを施して形成してもよい。また、予め基板1の製膜面に凹凸構造を形成し、凹凸構造が形成された基板上に裏面電極2を形成することでも、裏面電極2の表面に凹凸を形成できる。 In order to form irregularities on the surface of the back electrode 2, for example, an appropriate film forming condition for forming the back electrode 2 is selected, for example, 0.3 atomic% of aluminum (Al) is added to silver (Ag) It can be formed by a sputtering method using the alloy target. Specifically, a sputtering method under a discharge condition of about 300 ° C., Ar / O 2 as a discharge gas (flow rate ratio Ar / O 2 = 90/10 to 95/5), and a discharge pressure of about 0.5 Pa. Can be formed. Further, after film formation, plasma treatment or etching treatment may be performed. Further, by forming an uneven structure on the film forming surface of the substrate 1 in advance and forming the back electrode 2 on the substrate on which the uneven structure is formed, the unevenness can be formed on the surface of the back electrode 2.

裏面電極2と光電変換層4との間には、平坦化層3が配置されて、平坦化層3の光電変換層側の表面が、裏面電極2の光電変換層側の表面よりも平滑にされている。該表面は、平均表面粗さRaが25nm未満であることが好ましく、20nm未満であることがより好ましく、15nm未満であることが特に好ましい。平均表面粗さRaが25nmを超えると、微結晶シリコン膜のボイド生成等、膜質が損なわれ易いので、裏面電極2上に膜質の良好な微結晶シリコン系光電変換層を形成できないことがある。   A planarization layer 3 is disposed between the back electrode 2 and the photoelectric conversion layer 4, and the surface of the planarization layer 3 on the photoelectric conversion layer side is smoother than the surface of the back electrode 2 on the photoelectric conversion layer side. Has been. The surface preferably has an average surface roughness Ra of less than 25 nm, more preferably less than 20 nm, and particularly preferably less than 15 nm. When the average surface roughness Ra exceeds 25 nm, the film quality such as void generation of the microcrystalline silicon film is likely to be impaired, so that the microcrystalline silicon photoelectric conversion layer having a good film quality may not be formed on the back electrode 2 in some cases.

平坦化層3の光電変換層側の表面を、裏面電極2の光電変換層側の表面よりも平滑にするには、導電性高分子材料を溶媒に溶かした溶液、または液体中に導電性高分子材料を分散した分散液を、スピンコーター、バーコーター、スクリーン印刷機等を用いて塗布、加熱乾燥する。   In order to make the surface of the planarization layer 3 on the photoelectric conversion layer side smoother than the surface of the back electrode 2 on the photoelectric conversion layer side, a conductive polymer material in a solution or liquid in which a conductive polymer material is dissolved is used. The dispersion liquid in which the molecular material is dispersed is applied using a spin coater, bar coater, screen printer or the like, and dried by heating.

液体状の導電性高分子を凹凸構造を持った裏面電極の表面の上に塗布する際、凹部により多くの材料が入り込むことによって、ミクロに見ると凹部、凸部で平坦化層の膜厚が異なる(凹部で厚く、凸部で薄くなる)様に形成され、この状態で加熱乾燥するため、結果として裏面電極2の光電変換層側の表面の凹凸よりも、平坦化層3の光電変換層側の表面の凹凸は緩和される。   When a liquid conductive polymer is applied on the surface of the back electrode having a concavo-convex structure, a large amount of material enters the concave portions, so that when viewed microscopically, the thickness of the flattening layer at the concave portions and convex portions is reduced. Since it is formed so as to be different (thick at the concave portion and thin at the convex portion) and is heated and dried in this state, as a result, the photoelectric conversion layer of the planarization layer 3 is more rough than the unevenness of the surface of the back electrode 2 on the photoelectric conversion layer side. The unevenness on the side surface is alleviated.

平坦化層3は、高い導電性を有し、少なくとも光電変換層4が吸収しうる波長域の光に対する透過率の高い材料からなる透明導電性高分子材料で形成される。このような透明性導電性高分子材料としては、ポリチオフェン、ポリアニリンなどに、ポリ(スチレンスルホネート)、樟脳スルホン酸、ドデシルベンゼンスルホン酸などの酸化剤をドープしたものなどが挙げられる。具体的には、ポリ(3,4−エチレンジオキシチオフェン)に、ポリ(スチレンスルホネート)をドープした材料(PEDOT:PSS)、ポリアニリンに樟脳スルホン酸をドープした材料(PANI:CSA)、ポリアニリンにドデシルベンゼンスルホン酸をドープした材料(PANI:DBSA)等が挙げられる。これらの材料の分散液あるいは溶液を用いて、スピンコート法、インクジェット法、印刷など当該技術で知られている任意の方法で製膜して形成できる。   The planarization layer 3 is formed of a transparent conductive polymer material made of a material having high conductivity and having a high transmittance for light in a wavelength region that can be absorbed by at least the photoelectric conversion layer 4. Examples of such transparent conductive polymer materials include polythiophene, polyaniline and the like doped with an oxidizing agent such as poly (styrene sulfonate), camphor sulfonic acid, dodecylbenzene sulfonic acid, and the like. Specifically, poly (3,4-ethylenedioxythiophene) doped with poly (styrenesulfonate) (PEDOT: PSS), polyaniline doped with camphorsulfonic acid (PANI: CSA), polyaniline Examples thereof include a material doped with dodecylbenzenesulfonic acid (PANI: DBSA). Using a dispersion or solution of these materials, a film can be formed by any method known in the art such as spin coating, ink jet, or printing.

平坦化層3の導電率は、1S/cm以上が好ましく、100S/cm以上がより好ましい。平坦化層3の導電率は高いほどキャリア輸送抵抗を小さくできるので、光電変換特性を良好にでき、曲線因子(FF)の低下を抑制できる。   The conductivity of the planarizing layer 3 is preferably 1 S / cm or more, and more preferably 100 S / cm or more. Since the carrier transport resistance can be reduced as the conductivity of the flattening layer 3 is higher, the photoelectric conversion characteristics can be improved, and the decrease in the fill factor (FF) can be suppressed.

平坦化層3は、波長300〜1100nmの光の透過率が50%以上であることが好ましく、80%以上がより好ましい。   The planarization layer 3 preferably has a light transmittance of 50% or more, more preferably 80% or more, for light having a wavelength of 300 to 1100 nm.

平坦化層3は、表面が平滑な基板上に形成した場合に、50nm以上の膜厚となるような条件で製膜されたものであることが好ましく、100nm以上の膜厚となるような条件で製膜されたものであることがより好ましい。   The flattening layer 3 is preferably formed under conditions such that when formed on a substrate having a smooth surface, the film thickness is 50 nm or more, and the film thickness is 100 nm or more. It is more preferable that the film is formed by.

光電変換層4は、n型シリコン層、i型シリコン層、p型シリコン層で構成される。本発明においては、光電変換層4として、i型シリコン層が微結晶シリコン膜で構成される、微結晶シリコン系光電変換層を備える。また、光電変換層4は、2層以上積層させて多接合型構造としてもよい。多接合型構造とする場合は、透明電極側に、i型シリコン層がアモルファスシリコン膜で構成される、アモルファスシリコン系光電変換層を配置し、裏面電極側に、微結晶シリコン系光電変換層を配置して積層することが好ましい。このように積層することにより、アモルファスシリコン系光電変換層では吸収できない長波長光を、微結晶シリコン系光電変換層で発電に利用できるので、発電効率をより高めることができる。   The photoelectric conversion layer 4 includes an n-type silicon layer, an i-type silicon layer, and a p-type silicon layer. In the present invention, the photoelectric conversion layer 4 includes a microcrystalline silicon-based photoelectric conversion layer in which an i-type silicon layer is formed of a microcrystalline silicon film. Further, the photoelectric conversion layer 4 may have a multi-junction structure by stacking two or more layers. In the case of a multi-junction structure, an amorphous silicon photoelectric conversion layer in which an i-type silicon layer is formed of an amorphous silicon film is disposed on the transparent electrode side, and a microcrystalline silicon photoelectric conversion layer is disposed on the back electrode side. It is preferable to arrange and laminate. By laminating in this way, long-wavelength light that cannot be absorbed by the amorphous silicon-based photoelectric conversion layer can be used for power generation by the microcrystalline silicon-based photoelectric conversion layer, so that power generation efficiency can be further improved.

透明電極5は、ITO(酸化インジウム+酸化スズ)、Al(アルミニウム)またはGa(ガリウム)添加ZnO、Nb(ニオブ)添加TiO、F(フッ素)添加SnO、IZO(酸化インジウム+酸化亜鉛)などの透明導電性酸化物で構成されている。 The transparent electrode 5 is made of ITO (indium oxide + tin oxide), Al (aluminum) or Ga (gallium) added ZnO, Nb (niobium) added TiO 2 , F (fluorine) added SnO 2 , IZO (indium oxide + zinc oxide). It is comprised with transparent conductive oxides, such as.

前述したように、凹凸構造に加工された電極層上に微結晶シリコン膜を形成すると、微結晶シリコンの膜成長方向が多数発生し、配向性の異なる巨視的結晶粒同士が膜成長の過程で衝突して欠陥が発生し、膜質が悪化する問題があった。   As described above, when a microcrystalline silicon film is formed on an electrode layer that has been processed into a concavo-convex structure, a number of microcrystalline silicon film growth directions occur, and macroscopic crystal grains having different orientations form during film growth. There was a problem that defects occurred due to collision and the film quality deteriorated.

本発明に太陽電池は、裏面電極2と光電変換層4との間に平坦化層3が配置されて、平坦化層3によって裏面電極の表面凹凸が緩和されているので、裏面電極の凹凸の起伏を高めても微結晶シリコン膜の膜質が損なわれにくい。このため、光の閉じ込め効果を高めつつ、膜質の良好な微結晶シリコン系光電変換層を備えた、光電変換効率の高い薄膜太陽電池を得ることができる。また、裏面電極の表面凹凸の起伏を高めて光の閉じ込め効果を高めることができるので、光電変換層の薄膜化が可能である。   In the solar cell according to the present invention, since the planarization layer 3 is disposed between the back electrode 2 and the photoelectric conversion layer 4, and the surface unevenness of the back electrode is relaxed by the planarization layer 3, Even if the undulation is increased, the film quality of the microcrystalline silicon film is not easily impaired. For this reason, it is possible to obtain a thin film solar cell having a high photoelectric conversion efficiency and having a microcrystalline silicon-based photoelectric conversion layer with good film quality while enhancing the light confinement effect. Moreover, since the unevenness | corrugation of the surface of a back surface electrode can be raised and the light confinement effect can be heightened, the thin film of a photoelectric converting layer is possible.

なお、この実施形態では、裏面電極2上に平坦化層3が直接形成されているが、裏面電極2と平坦化層3との間に、ITO(インジウム−スズ酸化物)、IZO(インジウム−亜鉛酸化物)、IWO(インジウム−タングステン酸化物)、AZO(Alドープ亜鉛酸化物)、GZO(Gaドープ亜鉛酸化物)などの透明導電性酸化物材料で形成された第1の透明導電性酸化物層が配置されていてもよい。裏面電極2上に平坦化層3を直接形成した場合、裏面電極2の材質によっては、平坦化層3を形成する透明導電性高分子材料によって裏面電極2が腐食することがあるが、裏面電極2と平坦化層3との間に、第1の透明導電性酸化物層が配置されることにより、裏面電極2の腐食を抑制できる。   In this embodiment, the planarization layer 3 is directly formed on the back electrode 2, but between the back electrode 2 and the planarization layer 3, ITO (indium-tin oxide), IZO (indium— First transparent conductive oxide formed of transparent conductive oxide material such as zinc oxide), IWO (indium-tungsten oxide), AZO (Al-doped zinc oxide), GZO (Ga-doped zinc oxide) A physical layer may be arranged. When the planarizing layer 3 is directly formed on the back electrode 2, depending on the material of the back electrode 2, the back electrode 2 may be corroded by the transparent conductive polymer material forming the planarizing layer 3. Corrosion of the back electrode 2 can be suppressed by disposing the first transparent conductive oxide layer between 2 and the planarizing layer 3.

上記第1の透明導電性酸化物層は、表面が平滑な基板上に形成した場合に、10〜1000nmの膜厚となるような条件で製膜されたものであることが好ましく、20〜200nmの膜厚となるような条件で製膜されたものであることがより好ましい。第1の透明導電性酸化物層の膜厚が薄すぎると、上記した効果が十分得られないことがある。また、厚すぎると製膜に時間を要することによる量産性の低下や、透明導伝酸化物層での光吸収増加、膜厚方向への抵抗増加によるFF低下等による光電変換特性低下の可能性がある。   The first transparent conductive oxide layer is preferably formed on the condition that the film thickness is 10 to 1000 nm when formed on a substrate having a smooth surface. It is more preferable that the film is formed under such a condition that the film thickness is as follows. If the film thickness of the first transparent conductive oxide layer is too thin, the above effects may not be sufficiently obtained. In addition, if it is too thick, there is a possibility of deterioration in photoelectric conversion characteristics due to decrease in mass productivity due to the time required for film formation, increase in light absorption in the transparent conductive oxide layer, decrease in FF due to increase in resistance in the film thickness direction, etc. There is.

また、この実施形態では、平坦化層3上に光電変換層4が直接形成されているが、平坦化層3と光電変換層4との間に、ITO(インジウム−スズ酸化物)、IZO(インジウム−亜鉛酸化物)、IWO(インジウム−タングステン酸化物)、AZO(Alドープ亜鉛酸化物)、GZO(Gaドープ亜鉛酸化物)などの透明導電性酸化物材料で形成された第2の透明導電性酸化物層が配置されていてもよい。   In this embodiment, the photoelectric conversion layer 4 is directly formed on the planarization layer 3. However, between the planarization layer 3 and the photoelectric conversion layer 4, ITO (indium-tin oxide), IZO ( Second transparent conductive material formed of a transparent conductive oxide material such as indium-zinc oxide), IWO (indium-tungsten oxide), AZO (Al-doped zinc oxide), GZO (Ga-doped zinc oxide) A conductive oxide layer may be disposed.

平坦化層3上に光電変換層4を直接形成した場合、平坦化層3の形成に用いた透明導電性高分子材料の種類によっては、光電変換層4の形成時に平坦化層3からの脱ガスによって、光電変換層4の膜質が損なわれることがあるが、平坦化層3と光電変換層4との間に、第2の透明導電性酸化物層が配置されることにより、平坦化層3からの脱ガスによる光電変換層4の膜質悪化を防止できる。   When the photoelectric conversion layer 4 is directly formed on the planarization layer 3, the photoelectric conversion layer 4 may be removed from the planarization layer 3 when the photoelectric conversion layer 4 is formed depending on the type of the transparent conductive polymer material used for the formation of the planarization layer 3. Although the film quality of the photoelectric conversion layer 4 may be impaired by the gas, the second transparent conductive oxide layer is disposed between the flattening layer 3 and the photoelectric conversion layer 4, so that the flattening layer Deterioration of the film quality of the photoelectric conversion layer 4 due to degassing from 3 can be prevented.

上記第2の透明導電性酸化物層は、表面が平滑な基板上に形成した場合に、10〜1000nmの膜厚となるような条件で製膜されたものであることが好ましく、20〜200nmの膜厚となるような条件で製膜されたものであることがより好ましい。第2の透明導電性酸化物層の膜厚が薄すぎると、上記した効果が十分得られないことがある。また、厚すぎると製膜に時間を要することによる量産性の低下や、透明導伝酸化物層での光吸収増加、膜厚方向への抵抗増加によるFF低下等による光電変換特性低下の可能性がある。   The second transparent conductive oxide layer is preferably formed on the condition that the film thickness is 10 to 1000 nm when formed on a substrate having a smooth surface. It is more preferable that the film is formed under such a condition that the film thickness is as follows. If the thickness of the second transparent conductive oxide layer is too thin, the above effects may not be sufficiently obtained. In addition, if it is too thick, there is a possibility of deterioration in photoelectric conversion characteristics due to decrease in mass productivity due to the time required for film formation, increase in light absorption in the transparent conductive oxide layer, decrease in FF due to increase in resistance in the film thickness direction, etc. There is.

(実施例1)
ガラス基板(商品名「1737ガラス板」、コーニング社製)を真空チャンバに導入し、Ar雰囲気、圧力0.67Paとし、0.3原子%(以下at%と記す)のAlを含むAg−Al合金をターゲット材とし用い、製膜速度は0.56nm/s、製膜温度250℃の条件で、DCマグネトロンスパッタリング法により、平滑な基板上に製膜した場合、200nmの膜厚となる条件で製膜し、ガラス基板上に平均表面粗さRa45nmの裏面電極を形成した。
次に、真空チャンバ内を、Ar−O雰囲気、圧力0.67Paとし、ZnO+2wt%Alターゲットをターゲット材とし用い、製膜速度は0.11nm/s、製膜温度250℃の条件で、DCマグネトロンスパッタリング法により、平滑な基板上に製膜した場合、30nmの膜厚となる条件で製膜し、裏面電極上に第1の透明導電性酸化物層を形成した。この第1の透明導電性酸化物層の平均表面粗さRaは、44nmであった。
次に、ポリ(3,4−エチレンジオキシチオフェン)に、ポリ(スチレンスルホネート)をドープした水分散液(商品名「CLEVIOS PH500」、H.C.Starck社製)に、ジメチルスルホキシドを5重量%添加した液体材料を、基板上の非製膜部を予めカプトンテープでマスキングして、材料滴下後2000rpm×30sでスピンコートした。次いで130℃に設定したホットプレート上で15分間加熱し、その後カプトンテープを剥がして、第1の透明導電性酸化物層上に平坦化層を形成した。この平坦化層の製膜条件は、平滑な基板上で行うと約100nmの膜厚となる条件である。また、この平坦化層の平均表面粗さRaは7nmであった。
次に、平坦化層上に、厚さ30nmのアモルファスシリコン膜からなるn型シリコン層、厚さ2000nmの微結晶シリコン膜からなるi型シリコン層、厚さ30nmのアモルファスシリコン膜からなるp型シリコン層を、CVD法で順次製膜して微結晶シリコン系光電変換層を形成した。
次に、光電変換層上に、ITOターゲット(東ソー製)を用い、放電ガスにAr+1%Oを用い、放電圧力0.7PaのDCマグネトロンスパッタ法で厚さ70nmのITO膜からなる透明電極を形成して、薄膜太陽電池を製造した。
Example 1
A glass substrate (trade name “1737 glass plate”, manufactured by Corning) is introduced into a vacuum chamber, an Ar atmosphere, a pressure of 0.67 Pa, and Ag-Al containing 0.3 atomic% (hereinafter referred to as “at%”) of Al. When an alloy is used as a target material, the film forming speed is 0.56 nm / s, the film forming temperature is 250 ° C., and the film is formed on a smooth substrate by the DC magnetron sputtering method. A film was formed, and a back electrode having an average surface roughness Ra of 45 nm was formed on a glass substrate.
Next, the inside of the vacuum chamber is an Ar—O 2 atmosphere, the pressure is 0.67 Pa, a ZnO + 2 wt% Al 2 O 3 target is used as a target material, a film forming speed is 0.11 nm / s, and a film forming temperature is 250 ° C. Then, when a film was formed on a smooth substrate by a DC magnetron sputtering method, the film was formed under the condition of a film thickness of 30 nm, and a first transparent conductive oxide layer was formed on the back electrode. The average surface roughness Ra of the first transparent conductive oxide layer was 44 nm.
Next, 5 weight of dimethyl sulfoxide is added to an aqueous dispersion (trade name “CLEVIOS PH500”, manufactured by HC Starck) of poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonate). The non-film-formation portion on the substrate was previously masked with Kapton tape, and spin coated at 2000 rpm × 30 s after the material was dropped. Subsequently, it heated for 15 minutes on the hotplate set to 130 degreeC, and the Kapton tape was peeled after that, and the planarization layer was formed on the 1st transparent conductive oxide layer. The film forming condition of the planarizing layer is a condition that results in a film thickness of about 100 nm when performed on a smooth substrate. Moreover, the average surface roughness Ra of this planarization layer was 7 nm.
Next, an n-type silicon layer made of an amorphous silicon film with a thickness of 30 nm, an i-type silicon layer made of a microcrystalline silicon film with a thickness of 2000 nm, and a p-type silicon made of an amorphous silicon film with a thickness of 30 nm on the planarizing layer. The layers were sequentially formed by a CVD method to form a microcrystalline silicon-based photoelectric conversion layer.
Next, an ITO target (manufactured by Tosoh) is used on the photoelectric conversion layer, Ar + 1% O 2 is used as a discharge gas, and a transparent electrode made of an ITO film having a thickness of 70 nm is formed by a DC magnetron sputtering method with a discharge pressure of 0.7 Pa. Formed to produce a thin film solar cell.

この薄膜太陽電池の開放電圧、短絡電流密度、曲線因子(FF)、光電変換効率をソーラーシミュレータを用い、AM(エアマス)1.5相当、照度100mW/cm、25℃の光照射条件で測定した。結果を表1に記す。 The open-circuit voltage, short-circuit current density, fill factor (FF), and photoelectric conversion efficiency of this thin-film solar cell were measured using a solar simulator under AM (air mass) 1.5 equivalent, illumination intensity of 100 mW / cm 2 , and light irradiation conditions of 25 ° C. did. The results are shown in Table 1.

(比較例1)
実施例1において、平坦化層を形成しないこと以外は、実施例1と同様にして薄膜太陽電池を製造して、セル特性を測定した。結果を表1に記す。
(Comparative Example 1)
In Example 1, a thin-film solar cell was manufactured in the same manner as in Example 1 except that no planarization layer was formed, and cell characteristics were measured. The results are shown in Table 1.

表1に示すように、平坦化層を設けたことによって、微結晶シリコン光電変換層の膜質が良好となり、光電変換効率の向上が図られた。   As shown in Table 1, by providing the planarization layer, the film quality of the microcrystalline silicon photoelectric conversion layer was improved, and the photoelectric conversion efficiency was improved.

1:基板
2:裏面電極
3:平坦化層
4:光電変換層
5:透明電極
1: Substrate 2: Back electrode 3: Planarization layer 4: Photoelectric conversion layer 5: Transparent electrode

Claims (4)

基板上に、光反射性の第1電極層と、少なくとも一つの光電変換層と、光透過性の第2電極層とが順次積層され、前記第1電極層の前記光電変換層側の表面に、入射光を乱反射させるための凹凸が形成された薄膜太陽電池において、
前記光電変換層の少なくとも一つが、微結晶シリコン系光電変換層であり、
前記第1電極層と前記光電変換層との間に、透明導電性高分子材料からなる平坦化層が配置され、該平坦化層の前記光電変換層側の表面が、前記第1電極層の前記光電変換層側の表面よりも平滑にされていることを特徴とする薄膜太陽電池。
A light-reflective first electrode layer, at least one photoelectric conversion layer, and a light-transmissive second electrode layer are sequentially stacked on the substrate, and the photoelectric conversion layer side surface of the first electrode layer is formed on the surface. In a thin film solar cell in which irregularities for irregularly reflecting incident light are formed,
At least one of the photoelectric conversion layers is a microcrystalline silicon photoelectric conversion layer,
A planarization layer made of a transparent conductive polymer material is disposed between the first electrode layer and the photoelectric conversion layer, and the surface of the planarization layer on the photoelectric conversion layer side of the first electrode layer A thin-film solar cell, which is smoother than the surface on the photoelectric conversion layer side.
前記第1電極層の前記光電変換層側の平均表面粗さRaが25nm以上とされ、前記平坦化層の前記光電変換層側の平均表面粗さRaが25nm未満とされている請求項1記載の薄膜太陽電池。   The average surface roughness Ra on the photoelectric conversion layer side of the first electrode layer is 25 nm or more, and the average surface roughness Ra on the photoelectric conversion layer side of the planarization layer is less than 25 nm. Thin film solar cell. 前記第1電極層と前記平坦化層との間に、透明導電性酸化物層が配置されている、請求項1又は2に記載の薄膜太陽電池。   The thin film solar cell according to claim 1, wherein a transparent conductive oxide layer is disposed between the first electrode layer and the planarizing layer. 前記平坦化層と前記光電変換層との間に、透明導電性酸化物層が配置されている、請求項1〜3のいずれか1項に記載の薄膜太陽電池。   The thin film solar cell of any one of Claims 1-3 by which the transparent conductive oxide layer is arrange | positioned between the said planarization layer and the said photoelectric converting layer.
JP2010160586A 2010-07-15 2010-07-15 Thin film solar cell Pending JP2012023236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160586A JP2012023236A (en) 2010-07-15 2010-07-15 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160586A JP2012023236A (en) 2010-07-15 2010-07-15 Thin film solar cell

Publications (1)

Publication Number Publication Date
JP2012023236A true JP2012023236A (en) 2012-02-02

Family

ID=45777242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160586A Pending JP2012023236A (en) 2010-07-15 2010-07-15 Thin film solar cell

Country Status (1)

Country Link
JP (1) JP2012023236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089080A1 (en) * 2012-12-06 2014-06-12 Thinsilicon Corporation Semiconductor device and method for manufacturing a semiconductor device having an undulating reflective surface of an electrode
JP2019102337A (en) * 2017-12-05 2019-06-24 キヤノン株式会社 Organic el element and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058892A (en) * 1998-06-01 2000-02-25 Kanegafuchi Chem Ind Co Ltd Silicon based thin film photoelectric converter
JP2000252500A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric conversion device
JP2002222975A (en) * 2001-01-29 2002-08-09 Kyocera Corp THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD
JP2007080936A (en) * 2005-09-12 2007-03-29 Fujifilm Corp Photoelectric conversion element and solid state imaging element
JP2009200268A (en) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd Solar battery module
JP2010034539A (en) * 2008-06-26 2010-02-12 Semiconductor Energy Lab Co Ltd Photoelectric conversion module and manufacturing method of the photoelectric conversion device module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058892A (en) * 1998-06-01 2000-02-25 Kanegafuchi Chem Ind Co Ltd Silicon based thin film photoelectric converter
JP2000252500A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric conversion device
JP2002222975A (en) * 2001-01-29 2002-08-09 Kyocera Corp THIN FILM CRYSTALLINE Si SOLAR BATTERY AND ITS MANUFACTURING METHOD
JP2007080936A (en) * 2005-09-12 2007-03-29 Fujifilm Corp Photoelectric conversion element and solid state imaging element
JP2009200268A (en) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd Solar battery module
JP2010034539A (en) * 2008-06-26 2010-02-12 Semiconductor Energy Lab Co Ltd Photoelectric conversion module and manufacturing method of the photoelectric conversion device module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089080A1 (en) * 2012-12-06 2014-06-12 Thinsilicon Corporation Semiconductor device and method for manufacturing a semiconductor device having an undulating reflective surface of an electrode
JP2019102337A (en) * 2017-12-05 2019-06-24 キヤノン株式会社 Organic el element and manufacturing method thereof
JP7013218B2 (en) 2017-12-05 2022-01-31 キヤノン株式会社 Organic EL element, manufacturing method of organic EL element, organic EL device

Similar Documents

Publication Publication Date Title
CN109196678B (en) Laminated photoelectric conversion device and method for manufacturing same
Liu et al. Transparent conducting oxides for electrode applications in light emitting and absorbing devices
US20090194165A1 (en) Ultra-high current density cadmium telluride photovoltaic modules
JP2003347572A (en) Tandem type thin film photoelectric converter and method of manufacturing the same
JP2018190928A (en) Perovskite solar battery and manufacturing method therefor
WO2017057646A1 (en) Multi-junction photoelectric conversion device and photoelectric conversion module
US20110146794A1 (en) Thin-film solar cell and manufacture method thereof
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
WO2009157447A1 (en) Substrate provided with transparent conductive film, thin film photoelectric conversion device and method for manufacturing the substrate
Park et al. Indium-free, acid-resistant anatase Nb-doped TiO2 electrodes activated by rapid-thermal annealing for cost-effective organic photovoltaics
US8710357B2 (en) Transparent conductive structure
JP2007005620A (en) Organic thin film solar cell
KR101178496B1 (en) Bilayered transparent conductive film and fabrication method of the same
KR20110015999A (en) Solar cell and method for manufacturing the same
Bhattacharya et al. Blue photon management by inhouse grown ZnO: Al cathode for enhanced photostability in polymer solar cells
JP4889623B2 (en) Transparent conductive film and solar cell using transparent conductive film
Jang et al. Three dimensional a-Si: H thin-film solar cells with silver nano-rod back electrodes
CN102082190B (en) Solar battery and manufacturing method thereof
Kim et al. Optimization of transparent conductor-embedding front electrodes for efficient light management
He et al. Antireflection effect of high haze FTO for improving short circuit current density of perovskite solar cells
JP5870722B2 (en) Organic photoelectric conversion element and solar cell
JP2008305945A (en) Substrate for thin film solar cell and manufacturing method of the same, and manufacturing method of thin film solar cell
JP2012023236A (en) Thin film solar cell
Lee et al. Enhanced optical and electrical properties of ITO/Ag/AZO transparent conductors for photoelectric applications
Varnamkhasti et al. Design and fabrication of nanometric TiO2/Ag/TiO2/Ag/TiO2 transparent conductive electrode for inverted organic photovoltaic cells application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008