JP2012017945A - Hot water supply apparatus and hot water supply control method of the same - Google Patents

Hot water supply apparatus and hot water supply control method of the same Download PDF

Info

Publication number
JP2012017945A
JP2012017945A JP2010156740A JP2010156740A JP2012017945A JP 2012017945 A JP2012017945 A JP 2012017945A JP 2010156740 A JP2010156740 A JP 2010156740A JP 2010156740 A JP2010156740 A JP 2010156740A JP 2012017945 A JP2012017945 A JP 2012017945A
Authority
JP
Japan
Prior art keywords
temperature
water
pressure
water supply
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010156740A
Other languages
Japanese (ja)
Other versions
JP5338758B2 (en
Inventor
Naohiro Oya
直弘 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010156740A priority Critical patent/JP5338758B2/en
Priority to DE102011106955A priority patent/DE102011106955A1/en
Publication of JP2012017945A publication Critical patent/JP2012017945A/en
Application granted granted Critical
Publication of JP5338758B2 publication Critical patent/JP5338758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/232Temperature of the refrigerant in heat pump cycles at the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser

Abstract

PROBLEM TO BE SOLVED: To efficiently operate a hot water supply apparatus on boiling water at a high water supply temperature by setting an optimum target pressure on the basis of the water supply temperature and the boiling temperature.SOLUTION: The hot water supply apparatus includes a heat pump including a compressor 10, a water-refrigerant heat exchanger 20, a throttle valve 30 with a controllable opening, and an air-refrigerant heat exchanger 40. A water circulation passage 71 where water to be boiled circulates is connected to a water passage of the water-refrigerant heat exchanger 20. A pressure detector 53 detects a pressure in a high pressure side of the heat pump cycle. A temperature detector 51 detects a water supply temperature in an entrance side of the water passage of the water-refrigerant heat exchanger 20. When the water supply temperature detected by the temperature detector 51 is equal to or higher than a prescribed temperature, a control part 60 sets the higher pressure in a first pressure obtained from the hot water supply temperature and a second pressure obtained from a target boiling temperature and the hot water supply temperature, as a control pressure lower limit, and controls the opening of the throttle valve to maintain a pressure in the high pressure side equal to or higher than the control pressure lower limit.

Description

本発明は、ヒートポンプサイクルを用いる給湯装置およびその給湯制御方法に関する。   The present invention relates to a hot water supply apparatus using a heat pump cycle and a hot water supply control method thereof.

従来から、圧縮機、水冷媒熱交換器の冷媒通路、膨張弁、空気冷媒熱交換器を環状に接続し、水冷媒熱交換器の給水通路を流れる給水を沸き上げる給湯装置が、使用されている。従来の給湯装置にあっては、給水温度の高い水を沸き上げる場合、沸き上げ能力が低下しないように、給水温度に応じて冷媒圧力の下限を決めて、冷媒圧力が下限値より低下しないように制御されている。   Conventionally, a hot water supply apparatus has been used in which a compressor, a refrigerant passage of a water refrigerant heat exchanger, an expansion valve, and an air refrigerant heat exchanger are connected in an annular shape to boil the water flowing through the water supply passage of the water refrigerant heat exchanger. Yes. In a conventional hot water supply device, when boiling water with a high feed water temperature, the lower limit of the refrigerant pressure is determined according to the feed water temperature so that the boiling capacity does not drop, so that the refrigerant pressure does not fall below the lower limit value. Is controlled.

特開2002−206805号公報JP 2002-206805 A

しかしながら、水冷媒熱交換器内の温度分布を冷媒温度が水温より高い状態に保つ必要があり、この場合の圧力下限は、沸き上げ温度によって異なる。したがって、給水温度が高い場合の冷媒圧力を、給水温度から定められる冷媒圧力の下限を目標に制御していると、沸き上げ温度によっては、効率の良い運転すなわち少ない動力で沸き上げることができないことがあった。   However, it is necessary to keep the temperature distribution in the water-refrigerant heat exchanger in a state where the refrigerant temperature is higher than the water temperature. In this case, the lower pressure limit varies depending on the boiling temperature. Therefore, if the refrigerant pressure when the feed water temperature is high is controlled with the lower limit of the refrigerant pressure determined from the feed water temperature as the target, depending on the boiling temperature, efficient operation, that is, boiling with less power cannot be performed. was there.

本発明は、給水温度と沸き上げ温度とに基づいて最適な目標圧力を設定し、給水温度が高い沸き上げ運転時に効率のよい運転を行うことを目的とする。   An object of the present invention is to set an optimum target pressure based on a feed water temperature and a boiling temperature, and to perform an efficient operation during a boiling operation with a high feed water temperature.

上記目的を達成するために、請求項1に係る発明の給湯装置は、
圧縮機(10)と、水冷媒熱交換器(20)と、弁開度が制御可能な絞り弁(30)と、空気冷媒熱交換器(40)とを有するヒートポンプサイクルと、
前記水冷媒熱交換器(20)の水通路に接続された、給水が循環する水循環通路(71)と、
前記ヒートポンプサイクルの高圧側圧力を検出する圧力検出器(53)と、
前記水冷媒熱交換器(20)の水通路入口側の給水温度に相当する温度を検出する温度検出器(51、52)と、
前記温度検出器(51、52)により検出された給水温度が所定温度以上である場合、前記給湯水温度から求められる第1の圧力と、目標沸き上げ温度と前記給湯水温度とから求められる第2の圧力のうち、いずれか高い方の圧力を制御圧力下限として、前記高圧側圧力を前記制御圧力下限以上に維持するように、前記絞り弁の開度を制御する制御部(60)と、
を備える。
これにより、給水温度が高い沸き上げ運転時に効率のよい運転を行うことができる。
In order to achieve the above object, a water heater of the invention according to claim 1 comprises:
A heat pump cycle having a compressor (10), a water refrigerant heat exchanger (20), a throttle valve (30) whose valve opening is controllable, and an air refrigerant heat exchanger (40);
A water circulation passage (71) connected to the water passage of the water-refrigerant heat exchanger (20) and through which water is circulated;
A pressure detector (53) for detecting a high-pressure side pressure of the heat pump cycle;
A temperature detector (51, 52) for detecting a temperature corresponding to a water supply temperature on the water passage inlet side of the water refrigerant heat exchanger (20);
When the feed water temperature detected by the temperature detector (51, 52) is equal to or higher than a predetermined temperature, a first pressure obtained from the hot water temperature, a target boiling temperature, and a first hot water temperature obtained from the target hot water temperature. A control unit (60) for controlling the opening of the throttle valve so that the higher one of the two pressures is a control pressure lower limit, and the high pressure side pressure is maintained at or above the control pressure lower limit;
Is provided.
Thereby, an efficient driving | operation can be performed at the time of boiling operation with high feed water temperature.

請求項2に係る発明による給湯装置では、前記制御圧力下限は、前記目標沸き上げ温度と前記給湯水温度とから予め決定された圧力マップとして記憶される。これにより、制御圧力下限を決定する処理を速めることができる。   In the hot water supply apparatus according to the second aspect of the invention, the control pressure lower limit is stored as a pressure map determined in advance from the target boiling temperature and the hot water temperature. Thereby, the process which determines a control pressure minimum can be accelerated.

請求項3に係る発明による給湯装置では、前記温度検出器(52)は、前記水冷媒熱交換器(20)の冷媒出口側温度を検出する冷媒温度検出器である。   In the hot water supply apparatus according to the invention of claim 3, the temperature detector (52) is a refrigerant temperature detector that detects a refrigerant outlet side temperature of the water-refrigerant heat exchanger (20).

請求項4に係る発明による給湯装置では、
前記温度検出器(51、52)により検出された給水温度が所定温度より低い場合、前記水冷媒熱交換器(20)の冷媒出口側温度と前記水冷媒熱交換器(20)の水通路入口側の給水温度との温度差が目標温度差となるように、膨張弁の開度を制御する。
これにより、給水温度が低い沸き上げ運転のときに効率のよい運転を行うことができる。
In the hot water supply apparatus according to the invention according to claim 4,
When the feed water temperature detected by the temperature detector (51, 52) is lower than a predetermined temperature, the refrigerant outlet side temperature of the water refrigerant heat exchanger (20) and the water passage inlet of the water refrigerant heat exchanger (20) The opening degree of the expansion valve is controlled so that the temperature difference from the supply water temperature on the side becomes the target temperature difference.
Thereby, an efficient driving | operation can be performed at the time of the boiling operation with low feed water temperature.

請求項5に係る発明による給湯装置では、前記絞り弁(30、33)は、膨張弁(30)である。   In the hot water supply apparatus according to the invention of claim 5, the throttle valves (30, 33) are expansion valves (30).

請求項6に係る発明による給湯装置では、前記絞り弁(30、33)は、エジェクタ(33)である。   In the hot water supply device according to the invention of claim 6, the throttle valves (30, 33) are ejectors (33).

請求項7に係る発明による給湯制御方法では、
圧縮機(10)と、水冷媒熱交換器(20)と、弁開度が制御可能な絞り弁(30、33)と、空気冷媒熱交換器(40)とを有するヒートポンプサイクルと、
前記水冷媒熱交換器(20)の水通路に接続された、給水が循環する水循環通路(71)と、
前記ヒートポンプサイクルの高圧側圧力を検出する圧力検出器(53)と、
前記水冷媒熱交換器(20)の水通路入口側の給水温度に相当する温度を検出する温度検出器(51、52)と、
を備える給湯装置における給湯制御方法であって、
前記温度検出器(51、52)により検出された給水温度が所定温度以上である場合、前記給湯水温度から求められる第1の圧力と、目標沸き上げ温度と前記給湯水温度とから求められる第2の圧力のうち、いずれか高い方の圧力を制御圧力下限とし、
前記高圧側圧力を前記制御圧力下限以上に維持するように、前記絞り弁(30、33)の開度を制御する。
これにより、給水温度が高い沸き上げ運転時に効率のよい運転を行う制御が実行できる。
In the hot water supply control method according to the invention of claim 7,
A heat pump cycle having a compressor (10), a water refrigerant heat exchanger (20), throttle valves (30, 33) whose valve opening degree can be controlled, and an air refrigerant heat exchanger (40);
A water circulation passage (71) connected to the water passage of the water-refrigerant heat exchanger (20) and through which water is circulated;
A pressure detector (53) for detecting a high-pressure side pressure of the heat pump cycle;
A temperature detector (51, 52) for detecting a temperature corresponding to a water supply temperature on the water passage inlet side of the water refrigerant heat exchanger (20);
A hot water supply control method in a hot water supply apparatus comprising:
When the feed water temperature detected by the temperature detector (51, 52) is equal to or higher than a predetermined temperature, a first pressure obtained from the hot water temperature, a target boiling temperature, and a first hot water temperature obtained from the target hot water temperature. The higher pressure of the two pressures is taken as the control pressure lower limit,
The opening degree of the throttle valves (30, 33) is controlled so as to maintain the high-pressure side pressure at or above the control pressure lower limit.
Thereby, the control which performs efficient operation at the time of boiling operation with high feed water temperature can be performed.

請求項8に係る発明による給湯制御方法では、
前記温度検出器(51、52)により検出された給水温度が所定温度より低い場合、前記水冷媒熱交換器(20)の冷媒出口側温度と前記水冷媒熱交換器(20)の水通路入口側の給水温度との温度差が目標温度差となるように、前記絞り弁(30、33)の開度を制御する。
これにより、給水温度が低い沸き上げ運転時に効率のよい運転を行う制御が実行できる。
In the hot water supply control method according to the invention according to claim 8,
When the feed water temperature detected by the temperature detector (51, 52) is lower than a predetermined temperature, the refrigerant outlet side temperature of the water refrigerant heat exchanger (20) and the water passage inlet of the water refrigerant heat exchanger (20) The opening degree of the throttle valves (30, 33) is controlled so that the temperature difference with the side water supply temperature becomes the target temperature difference.
Thereby, the control which performs an efficient driving | operation at the time of the boiling operation with low feed water temperature can be performed.

本発明の一実施形態によるヒートポンプ式給湯装置の一例を示す図である。It is a figure which shows an example of the heat pump type hot water supply apparatus by one Embodiment of this invention. (a)(b)は、給水温度から決まる最適高圧を説明する図であり、(a)は、P−h曲線上に、給水温度40℃の冷凍サイクルを記載した図、(b)は、(a)の冷凍サイクルについて、COP(A/B)と高圧Pとの関係を示す図である。(a) (b) is a figure explaining the optimal high voltage | pressure determined from feed water temperature, (a) is the figure which described the refrigerating cycle of feed water temperature 40 degreeC on Ph curve, (b), It is a figure which shows the relationship between COP (A / B) and the high voltage | pressure P about the refrigerating cycle of (a). 沸き上げ温度65℃のときの冷媒温度と給水温度の関係を示すT−h線図である。It is a Th diagram which shows the relationship between the refrigerant | coolant temperature at the time of boiling temperature of 65 degreeC, and feed water temperature. 沸き上げ温度80℃のときの冷媒温度と給水温度の関係を示すT−h線図である。It is a Th diagram which shows the relationship between the refrigerant | coolant temperature at the time of boiling temperature of 80 degreeC, and feed water temperature. 本実施形態の給湯装置の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the hot water supply apparatus of this embodiment. (a)(b)は、沸き上げ温度が異なる場合の目標圧力下限の一例を示す図である。(A) (b) is a figure which shows an example of the target pressure minimum in case boiling temperature differs. (a)(b)は、本発明の他の実施形態で使用されるエジェクタを有するヒートポンプサイクルを示す図である。(A) (b) is a figure which shows the heat pump cycle which has an ejector used by other embodiment of this invention.

以下、図面を参照して、本発明の実施形態を説明する。図1は、本実施形態によるヒートポンプ式給湯装置の一例を示す図である。貯湯タンク70内の給湯水は、貯湯タンク70の水出口と水冷媒熱交換器20の水入口との間に配置された電動ポンプ72により、水循環通路71を循環する。給湯水は、水循環通路71に配置された水冷媒交換器20内の水通路を通過する際に熱交換により加熱される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an example of a heat pump type hot water supply apparatus according to the present embodiment. Hot water in the hot water storage tank 70 circulates in the water circulation passage 71 by an electric pump 72 disposed between the water outlet of the hot water storage tank 70 and the water inlet of the water refrigerant heat exchanger 20. The hot water is heated by heat exchange when passing through the water passage in the water refrigerant exchanger 20 disposed in the water circulation passage 71.

ヒートポンプ式給湯装置は、圧縮機10と、水冷媒熱交換器20と、膨張弁30と、空気冷媒熱交換器40とを有する環状の回路からなるヒートポンプサイクルを備える。ヒートポンプサイクル内では、冷媒が圧縮機1により吸入、吐出されて、回路内を循環する。ヒートポンプ式給湯装置は、外気からの吸熱量および圧縮機1の圧縮仕事量に相当する熱量を、水冷媒熱交換器20を介して給水に与えることで給水を沸き上げるものである。本実施形態で使用する冷媒は、例えば二酸化炭素を主成分とする冷媒を用いることができる。本実施形態のヒートポンプサイクルでは、膨張弁30を使用しているが、同様の機能をもつ減圧弁あるいはエジェクタを使用することもできる。   The heat pump hot water supply apparatus includes a heat pump cycle including an annular circuit having a compressor 10, a water refrigerant heat exchanger 20, an expansion valve 30, and an air refrigerant heat exchanger 40. In the heat pump cycle, the refrigerant is sucked and discharged by the compressor 1 and circulates in the circuit. The heat pump hot water supply device heats up the water supply by supplying heat supply to the water supply via the water / refrigerant heat exchanger 20 with an amount of heat absorbed from the outside air and the amount of compression work of the compressor 1. As the refrigerant used in the present embodiment, for example, a refrigerant mainly composed of carbon dioxide can be used. In the heat pump cycle of the present embodiment, the expansion valve 30 is used, but a pressure reducing valve or an ejector having a similar function can also be used.

水冷媒熱交換器20は、圧縮機10から吐出された高温冷媒と水循環通路を流れる給湯水との間で熱交換して給湯水を加熱する高圧側熱交換器である。   The water refrigerant heat exchanger 20 is a high-pressure heat exchanger that heats hot water by exchanging heat between the high-temperature refrigerant discharged from the compressor 10 and hot water flowing through the water circulation passage.

膨張弁30は、水冷媒交換器20から流出した液相冷媒等を等エンタルピ的に減圧して膨張させる。本実施形態の膨張弁30は電子膨張弁であって、開度を調節することにより冷媒量を調節することができる。   The expansion valve 30 expands the liquid-phase refrigerant or the like flowing out from the water refrigerant exchanger 20 by decompressing it in an enthalpy manner. The expansion valve 30 of the present embodiment is an electronic expansion valve, and the amount of refrigerant can be adjusted by adjusting the opening degree.

空気冷媒熱交換器40は、送風機(図示せず)により送風される外気から吸熱して膨張弁30から流出した低圧冷媒を蒸発させる。なお、空気冷媒熱交換器40から流出した冷媒を液相冷媒と気相冷媒とに分離して余剰冷媒を蓄え、気相冷媒を圧縮機10に供給する気液分離器を備えるようにしてもよい。   The air refrigerant heat exchanger 40 evaporates the low-pressure refrigerant that has absorbed heat from the outside air blown by a blower (not shown) and has flowed out of the expansion valve 30. Note that a gas-liquid separator that separates the refrigerant flowing out from the air refrigerant heat exchanger 40 into a liquid-phase refrigerant and a gas-phase refrigerant, stores excess refrigerant, and supplies the gas-phase refrigerant to the compressor 10 may be provided. Good.

給湯装置を制御する制御部60は、プロセッサ(CPU)、メモリ(RAM)、不揮発性メモリ(ROM)等を含むコンピュータ制御回路を有する。本実施形態における沸き上げ制御のために、各種センサ51〜53が配置されている。温度センサ51は、水冷媒熱交換装置20の給水通路の入口側に配置され、給水温度を検出する。温度センサ52は、水冷媒熱交換装置20の冷媒出口側に配置され、冷媒の温度を検出する。圧力センサ53は、水冷媒熱交換装置20の冷媒出口側に配置され、高圧側圧力を検出する。高圧側圧力を検出する圧力センサ53の配置場所は、水冷媒熱交換装置20の冷媒出口側に限定されない。圧縮機10の吐出側から膨張弁30の入口側までの範囲のいずれかに配置することができる。   The control unit 60 that controls the hot water supply apparatus includes a computer control circuit including a processor (CPU), a memory (RAM), a nonvolatile memory (ROM), and the like. Various sensors 51 to 53 are arranged for boiling control in the present embodiment. The temperature sensor 51 is disposed on the inlet side of the water supply passage of the water-refrigerant heat exchanger 20 and detects the water supply temperature. The temperature sensor 52 is disposed on the refrigerant outlet side of the water-refrigerant heat exchanger 20 and detects the temperature of the refrigerant. The pressure sensor 53 is disposed on the refrigerant outlet side of the water-refrigerant heat exchanger 20 and detects the high-pressure side pressure. The location of the pressure sensor 53 that detects the high-pressure side pressure is not limited to the refrigerant outlet side of the water-refrigerant heat exchange device 20. It can be disposed anywhere in the range from the discharge side of the compressor 10 to the inlet side of the expansion valve 30.

図2〜4は、高温の給水を沸き上げるための本実施形態の制御を説明するための図であり、図2(a)(b)は、給水温度から決まる最適高圧を示す図であり、図3、4は、給水温度と沸き上げ温度から決まる高圧を示す図である。   FIGS. 2-4 is a figure for demonstrating the control of this embodiment for boiling high temperature feed water, FIG. 2 (a) (b) is a figure which shows the optimal high pressure determined from feed water temperature, 3 and 4 are diagrams showing a high pressure determined from the feed water temperature and the boiling temperature.

図2(a)には、高圧とエンタルピの関係を図示するP−h曲線上に、給水温度40℃の冷凍サイクルが記載されている。図2(a)において、Aは、給水を沸き上げる加熱能力を示し、Bは、圧縮機動力あるいは圧縮機の消費電力を示す。効率あるいは性能を示すCOPは、A/Bで表され、COPを高めるためには、加熱能力Aを大きくするか、あるいは消費電力Bを小さくすればよい。   FIG. 2A shows a refrigeration cycle having a feed water temperature of 40 ° C. on a Ph curve illustrating the relationship between high pressure and enthalpy. In Fig.2 (a), A shows the heating capability which boils feed water, B shows compressor power or the power consumption of a compressor. The COP indicating the efficiency or performance is represented by A / B. In order to increase the COP, the heating capacity A may be increased or the power consumption B may be decreased.

図2(a)では、サイクル(1)について、加熱能力Aと消費電力Bを示している。サイクル(2)(3)についても、同様に加熱能力Aと消費電力Bを示すことができる。図2(a)から分かるように、サイクル(1)のように、高圧を高くすると、高圧側エンタルピの差で表される加熱能力Aを大きくすることができる。しかし、圧縮機の消費電力Bも大きくなる。また、サイクル(3)のように、高圧を低くすると、圧縮機の消費電力Bは小さくなるが、高圧側エンタルピの差で表される加熱能力Aも小さくなる。COPがA/Bで与えられ、40℃の等温線の勾配を考慮すれば、サイクル(2)が給水温度に応じて最大の効率を与える圧力すなわち最適圧力を与えることがわかる。   In Fig.2 (a), the heating capability A and the power consumption B are shown about the cycle (1). Regarding cycles (2) and (3), the heating capacity A and the power consumption B can be similarly shown. As can be seen from FIG. 2A, when the high pressure is increased as in the cycle (1), the heating ability A represented by the difference in the high pressure side enthalpy can be increased. However, the power consumption B of the compressor also increases. Further, when the high pressure is lowered as in the cycle (3), the power consumption B of the compressor is reduced, but the heating capacity A represented by the difference in the high pressure side enthalpy is also reduced. If COP is given by A / B and considering the slope of the 40 ° C. isotherm, it can be seen that cycle (2) gives the pressure that gives the maximum efficiency, ie the optimum pressure, depending on the feed water temperature.

図2(b)には、図2(a)のサイクル(1)〜(3)について、COP(A/B)と高圧Pとの関係が示されている。給水温度40℃のとき、(2)で示される点の高圧が、COPが最高となる圧力である。したがって、冷凍サイクルの高圧を図2(b)の(2)で示される値に制御することが最も効率がよい運転であると考えられる。   FIG. 2B shows the relationship between COP (A / B) and high pressure P for cycles (1) to (3) in FIG. When the feed water temperature is 40 ° C., the high pressure at the point indicated by (2) is the pressure at which the COP is maximum. Therefore, it is considered that the most efficient operation is to control the high pressure of the refrigeration cycle to the value indicated by (2) in FIG.

ところで、水冷媒熱交換器内では冷媒温度を給水温度以上に保たなければ熱交換が行われないので、所定圧力以上の高圧が必要である。図3は、給水温度40℃で沸き上げ温度65℃まで沸き上げる場合の水冷媒熱交換器内の冷媒と給水の関係を示すT−h線図である。図3では、給水温度を実線で表し、冷媒温度は破線で表している。図3から分かるように、高圧を10MPaにすると、給水温度40℃から65℃まで沸き上げる場合、常に冷媒温度≧給水温度を維持できる。したがって、給水温度40℃から65℃まで沸き上げる場合の最低圧力は10MPaであるということができる。   By the way, in the water-refrigerant heat exchanger, heat exchange is not performed unless the refrigerant temperature is kept equal to or higher than the feed water temperature, so a high pressure equal to or higher than a predetermined pressure is required. FIG. 3 is a Th diagram showing the relationship between the refrigerant and the feed water in the water-refrigerant heat exchanger when the feed water temperature is 40 ° C. and the boiling temperature is 65 ° C. In FIG. 3, the feed water temperature is represented by a solid line, and the refrigerant temperature is represented by a broken line. As can be seen from FIG. 3, when the high pressure is set to 10 MPa, the refrigerant temperature ≧ the feed water temperature can always be maintained when the feed water temperature is raised from 40 ° C. to 65 ° C. Therefore, it can be said that the minimum pressure when boiling from a feed water temperature of 40 ° C. to 65 ° C. is 10 MPa.

しかしながら、圧力を10Mpaに保ったまま、沸き上げ温度を80度に上昇すると、給水温度は、図3の一点鎖線で示すように上昇することが求められるが、冷媒温度の上昇は高圧によって決まるので、冷媒温度が給水温度を下回る領域があることがわかる。実際には、この領域では、水冷媒熱交換器内では冷媒温度と給水温度が等しくなる。したがって、この領域では水冷媒熱交換の性能が発揮できない。   However, if the boiling temperature is raised to 80 degrees with the pressure kept at 10 MPa, the feed water temperature is required to rise as shown by the one-dot chain line in FIG. 3, but the rise in the refrigerant temperature is determined by the high pressure. It can be seen that there is a region where the refrigerant temperature is lower than the feed water temperature. Actually, in this region, the refrigerant temperature and the feed water temperature are equal in the water refrigerant heat exchanger. Accordingly, the water refrigerant heat exchange performance cannot be exhibited in this region.

図4は、高圧を12MPaとして、給水温度40℃から沸き上げ温度80℃まで沸き上げる場合の水冷媒熱交換器内の冷媒と水の関係を示すT−h線図である。図4では、40℃から80℃まで、冷媒の温度は常に給水の温度以上である。このように、給水温度40℃から沸き上げ温度80℃まで沸き上げるためには、高圧の下限値は12MPaであるということができる。   FIG. 4 is a Th diagram showing the relationship between the refrigerant and water in the water-refrigerant heat exchanger when the high pressure is 12 MPa and the water is heated from 40 ° C. to the boiling temperature of 80 ° C. In FIG. 4, from 40 ° C. to 80 ° C., the temperature of the refrigerant is always higher than the temperature of the feed water. Thus, in order to boil from the feed water temperature of 40 ° C. to the boiling temperature of 80 ° C., it can be said that the lower limit value of the high pressure is 12 MPa.

以上のように、高温の給水を所望の沸き上げ温度まで効率よく沸き上げるためには、給水温度で決まる高圧の最適値と沸き上げ温度で決まる高圧の下限値のいずれか大きいほうで高圧を制御することが必要となる。   As described above, in order to efficiently boil high-temperature feed water to the desired boiling temperature, the high pressure is controlled by the larger of the optimum value of the high pressure determined by the feed water temperature and the lower limit of the high pressure determined by the boiling temperature. It is necessary to do.

図5は、本実施形態の給湯装置の制御フローの一例を示す図である。給湯装置の沸き上げ運転が開始されると、ステップS1では従来と同様の通常の制御が行われる。ステップS1の通常制御は、給水温度が、例えば30℃のような所定温度より低い温度であるときに行われる制御であり、水冷媒熱交換器20の冷媒出口側の冷媒温度と水冷媒熱交換器20の水入口側の給水温度との温度差が所定の目標値になるように、膨張弁(30)の開度が制御される。この制御により低温の給水の場合の運転効率が上昇する。水冷媒熱交換装置20の冷媒出口側の冷媒温度は、温度センサ52により検出され、水冷媒熱交換装置20の給水通路の給水温度は、給水温度センサ51により検出される。   FIG. 5 is a diagram illustrating an example of a control flow of the hot water supply apparatus of the present embodiment. When the boiling operation of the hot water supply apparatus is started, normal control similar to the conventional one is performed in step S1. The normal control in step S1 is control performed when the feed water temperature is lower than a predetermined temperature such as 30 ° C., for example, and the refrigerant temperature on the refrigerant outlet side of the water refrigerant heat exchanger 20 and water refrigerant heat exchange. The opening degree of the expansion valve (30) is controlled so that the temperature difference from the water supply temperature on the water inlet side of the vessel 20 becomes a predetermined target value. This control increases the operating efficiency in the case of low temperature water supply. The refrigerant temperature on the refrigerant outlet side of the water-refrigerant heat exchange device 20 is detected by the temperature sensor 52, and the water supply temperature in the water supply passage of the water-refrigerant heat exchange device 20 is detected by the water supply temperature sensor 51.

ステップS2では、水冷媒熱交換装置20の給水通路の入口側に配置された給水温度センサ51からの信号に基づいて、給水温度が30℃以上であるか否かが判断される。なお、給水温度は、水冷媒熱交換装置20の冷媒出口側に配置された、冷媒温度を検出する温度センサ52からの信号によっても得ることができる。   In step S <b> 2, it is determined whether or not the feed water temperature is 30 ° C. or higher based on a signal from a feed water temperature sensor 51 disposed on the inlet side of the feed water passage of the water / refrigerant heat exchange device 20. The feed water temperature can also be obtained by a signal from a temperature sensor 52 that is disposed on the refrigerant outlet side of the water refrigerant heat exchange device 20 and detects the refrigerant temperature.

ステップS2で、給水温度センサ51からの信号に基づいて、給水温度が30℃未満であれば、ステップS1に戻り通常制御を続行する。ステップS2で、給水温度が30℃以上であると判断されると、ステップS3とステップS4とが実行される。ステップS3では、例えば図2に示すようなP−h線図に基づいて、給水温度から決まる最適圧力すなわち目標圧力の第1の下限Pmin1を求める。ステップS4では、例えば図3、4に示すT−h線図に基づいて、給水温度と目標沸き上げ温度から決まる目標圧力の第2の下限Pmin2を求める。給水温度から決まる最適圧力および給水温度と目標沸き上げ温度から決まる目標圧力は、いずれも制御部60のメモリにテーブルあるいはマップとして記憶しておくことができる。   In step S2, based on the signal from the feed water temperature sensor 51, if the feed water temperature is less than 30 ° C., the process returns to step S1 and normal control is continued. If it is determined in step S2 that the feed water temperature is 30 ° C. or higher, steps S3 and S4 are executed. In Step S3, for example, based on a Ph diagram as shown in FIG. In step S4, for example, a second lower limit Pmin2 of the target pressure determined from the feed water temperature and the target boiling temperature is obtained based on the Th diagram shown in FIGS. The optimum pressure determined from the feed water temperature and the target pressure determined from the feed water temperature and the target boiling temperature can all be stored in the memory of the control unit 60 as a table or a map.

次に、ステップS5では、第1の下限Pmin1と第2の下限Pmin2と比較して、大きい値Max(Pmin1,Pmin2)を目標圧力下限Pminとする。目標圧力下限Pminは、給水温度と目標沸き上げ温度から予め算出して、圧力マップとして制御部60のメモリに記憶しておくこともできる。   Next, in step S5, a larger value Max (Pmin1, Pmin2) is set as the target pressure lower limit Pmin compared to the first lower limit Pmin1 and the second lower limit Pmin2. The target pressure lower limit Pmin can be calculated in advance from the feed water temperature and the target boiling temperature and stored in the memory of the control unit 60 as a pressure map.

図6(a)(b)は、沸き上げ温度が異なる場合の目標圧力下限の例を示す図であり、ステップS5の処理結果の一例を示す。図6(a)(b)では、給水温度は40℃であり、(i)は、P−h線図から決まる最適圧力を示し、(ii)は、T−h線図から決まる最低圧力を示す。ここで、(ii)(80℃)は、沸き上げ温度80℃のときのT−h線図から決まる最低圧力であり、(ii)(65℃)は、沸き上げ温度65℃のときのT−h線図から決まる最低圧力である。(ii)(80℃)と(ii)(65℃)は、傾きがほぼ一定の二直線として表される。   6A and 6B are diagrams showing examples of the target pressure lower limit when the boiling temperatures are different, and show an example of the processing result of step S5. 6 (a) and 6 (b), the feed water temperature is 40 ° C., (i) shows the optimum pressure determined from the Ph diagram, and (ii) shows the minimum pressure determined from the Th diagram. Show. Here, (ii) (80 ° C.) is the minimum pressure determined from the Th diagram when the boiling temperature is 80 ° C., and (ii) (65 ° C.) is the T pressure when the boiling temperature is 65 ° C. -Minimum pressure determined from the h diagram. (Ii) (80 ° C.) and (ii) (65 ° C.) are represented as two straight lines having a substantially constant slope.

図6(a)は、目標とする沸き上げ温度が65℃のときの最低圧力を示すラインを実線で示している。P−h線図から決まる最適圧力(i)と、T−h線図から決まる最低圧力(ii)(65℃)を比較して、大きくなる方を目標圧力として採用する。ある温度までは第1の下限Pmin1を目標圧力とし、その温度を超えると第2の下限Pmin2が目標圧力となる。   FIG. 6A shows a line indicating the minimum pressure when the target boiling temperature is 65 ° C. by a solid line. The optimum pressure (i) determined from the Ph diagram and the minimum pressure (ii) (65 ° C.) determined from the Th diagram are compared, and the larger pressure is adopted as the target pressure. Up to a certain temperature, the first lower limit Pmin1 is the target pressure, and when the temperature is exceeded, the second lower limit Pmin2 is the target pressure.

図6(b)は、目標とする沸き上げ温度が80℃のときの最低圧力を示すラインを実線で示している。P−h線図から決まる最適圧力(i)と、T−h線図から決まる最低圧力(ii)(80℃)を比較して、大きくなる方を目標圧力として採用する。ある温度までは第1の下限Pmin1を目標圧力とし、その温度を超えると第2の下限Pmin2が目標圧力となる。   FIG. 6B shows a line indicating the minimum pressure when the target boiling temperature is 80 ° C. by a solid line. The optimum pressure (i) determined from the Ph diagram and the minimum pressure (ii) (80 ° C.) determined from the Th diagram are compared, and the larger pressure is adopted as the target pressure. Up to a certain temperature, the first lower limit Pmin1 is the target pressure, and when the temperature is exceeded, the second lower limit Pmin2 is the target pressure.

図5のフローに戻り、ステップS5で、目標圧力下限Pminが決定すると、ステップS6で、冷凍サイクルの目標圧力が目標圧力下限Pminと比較される。目標圧力が目標圧力下限Pmin未満であれば、ステップS7で、目標圧力下限Pminを目標圧力として、ステップS8で、膨張弁30の開度を目標圧力下限Pminを目標圧力として決定する。そして、膨張弁30の開度が決定された開度になるように、膨張弁30の開度を制御する。   Returning to the flow of FIG. 5, when the target pressure lower limit Pmin is determined in step S5, the target pressure of the refrigeration cycle is compared with the target pressure lower limit Pmin in step S6. If the target pressure is less than the target pressure lower limit Pmin, the target pressure lower limit Pmin is set as the target pressure in step S7, and the opening of the expansion valve 30 is determined in step S8 as the target pressure lower limit Pmin. And the opening degree of the expansion valve 30 is controlled so that the opening degree of the expansion valve 30 becomes the determined opening degree.

ステップS6で、目標圧力が目標圧力下限Pmin以上であれば、目標圧力を変更することなく、ステップS8で、この目標圧力に対して膨張弁30の開度を決定する。そして、膨張弁30の開度が決定された開度になるように、膨張弁30の開度を制御する。   If the target pressure is greater than or equal to the target pressure lower limit Pmin in step S6, the opening of the expansion valve 30 is determined for this target pressure in step S8 without changing the target pressure. And the opening degree of the expansion valve 30 is controlled so that the opening degree of the expansion valve 30 becomes the determined opening degree.

上述の実施形態では、膨張弁を備えるヒートポンプサイクルを使用しているが、本発明は、エジェクタを使用するヒートポンプサイクルにおいても適用できる。   In the above-described embodiment, a heat pump cycle including an expansion valve is used, but the present invention can also be applied to a heat pump cycle using an ejector.

図7(a)(b)は、本発明の他の実施形態で使用されるエジェクタを有するヒートポンプサイクルを示す図である。   FIGS. 7A and 7B are views showing a heat pump cycle having an ejector used in another embodiment of the present invention.

図7(a)のヒートポンプサイクルは、圧縮機10と、水冷媒熱交換器20と、エジェクタ33と、気液分離器80を循環する回路と、空気冷媒熱交換器41、エジェクタ33、気液分離器80を循環する回路を備える。エジェクタ33は、空気冷媒熱交換器41を循環するガス状冷媒を吸引する機能と、圧縮機10の吸入圧力を上昇させる機能をもつ。すなわち、エジェクタ33がポンプとして働き、圧縮機10の動力を低減することができる。気液分離器80は、気相と液相を分離し、液状冷媒のみ空気冷媒熱交換器41に流す。   7A includes a compressor 10, a water refrigerant heat exchanger 20, an ejector 33, a circuit that circulates the gas-liquid separator 80, an air refrigerant heat exchanger 41, an ejector 33, and a gas-liquid. A circuit for circulating the separator 80 is provided. The ejector 33 has a function of sucking the gaseous refrigerant circulating in the air refrigerant heat exchanger 41 and a function of increasing the suction pressure of the compressor 10. That is, the ejector 33 works as a pump, and the power of the compressor 10 can be reduced. The gas-liquid separator 80 separates the gas phase and the liquid phase, and flows only the liquid refrigerant to the air refrigerant heat exchanger 41.

エジェクタ33のノズルは、ノズル開度が調節できる可変ノズルであり、ノズル開度すなわちエジェクタ開度を調整することができる。本発明を適用する場合、目標圧力に応じてエジェクタ開度を調整する。   The nozzle of the ejector 33 is a variable nozzle that can adjust the nozzle opening, and can adjust the nozzle opening, that is, the ejector opening. When the present invention is applied, the ejector opening is adjusted according to the target pressure.

図7(b)のヒートポンプサイクルは、水冷媒熱交換器20の出口側から分岐して、エジェクタ33の駆動側へ至る分岐通路と、固定絞りあるいは膨張弁35を介して、エジェクタ33の吸引側の空気冷媒熱交換器43の入口側へ至る分岐通路を有する。エジェクタ33の流出側に空気冷媒熱交換器45が配置され、空気冷媒熱交換器45と空気冷媒熱交換器43とで、2段の空気冷媒熱交換器が構成される。図7(b)のヒートポンプサイクルにおいても、本発明を適用する場合、目標圧力に応じてエジェクタ開度を調整する。   The heat pump cycle shown in FIG. 7B is branched from the outlet side of the water-refrigerant heat exchanger 20 to the drive side of the ejector 33, and the suction side of the ejector 33 via the fixed throttle or the expansion valve 35. The air refrigerant heat exchanger 43 has a branch passage leading to the inlet side. An air refrigerant heat exchanger 45 is disposed on the outflow side of the ejector 33, and the air refrigerant heat exchanger 45 and the air refrigerant heat exchanger 43 constitute a two-stage air refrigerant heat exchanger. Also in the heat pump cycle of FIG.7 (b), when applying this invention, an ejector opening degree is adjusted according to target pressure.

10 圧縮機
20 水冷媒熱交換器
30 膨張弁
33 エジェクタ
40 空気冷媒熱交換器
41 (吸引側)空気冷媒熱交換器
43 (吸引側)空気冷媒熱交換器
45 (流出側)空気冷媒熱交換器
51、52 温度センサ
53 圧力センサ
60 制御部
70 貯湯タンク
71 水循環通路
72 電動ポンプ
80 気液分離器
DESCRIPTION OF SYMBOLS 10 Compressor 20 Water refrigerant heat exchanger 30 Expansion valve 33 Ejector 40 Air refrigerant heat exchanger 41 (Suction side) Air refrigerant heat exchanger 43 (Suction side) Air refrigerant heat exchanger 45 (Outflow side) Air refrigerant heat exchanger 51, 52 Temperature sensor 53 Pressure sensor 60 Control unit 70 Hot water storage tank 71 Water circulation passage 72 Electric pump 80 Gas-liquid separator

Claims (8)

圧縮機(10)と、水冷媒熱交換器(20)と、弁開度が制御可能な絞り弁(30)と、空気冷媒熱交換器(40)とを有するヒートポンプサイクルと、
前記水冷媒熱交換器(20)の水通路に接続された、給水が循環する水循環通路(71)と、
前記ヒートポンプサイクルの高圧側圧力を検出する圧力検出器(53)と、
前記水冷媒熱交換器(20)の水通路入口側の給水温度に相当する温度を検出する温度検出器(51、52)と、
前記温度検出器(51、52)により検出された給水温度が所定温度以上である場合、前記給湯水温度から求められる第1の圧力と、目標沸き上げ温度と前記給湯水温度とから求められる第2の圧力のうち、いずれか高い方の圧力を制御圧力下限として、前記高圧側圧力を前記制御圧力下限以上に維持するように、前記絞り弁の開度を制御する制御部(60)と、
を備える給湯装置。
A heat pump cycle having a compressor (10), a water refrigerant heat exchanger (20), a throttle valve (30) whose valve opening is controllable, and an air refrigerant heat exchanger (40);
A water circulation passage (71) connected to the water passage of the water-refrigerant heat exchanger (20) and through which water is circulated;
A pressure detector (53) for detecting a high-pressure side pressure of the heat pump cycle;
A temperature detector (51, 52) for detecting a temperature corresponding to a water supply temperature on the water passage inlet side of the water refrigerant heat exchanger (20);
When the feed water temperature detected by the temperature detector (51, 52) is equal to or higher than a predetermined temperature, a first pressure obtained from the hot water temperature, a target boiling temperature, and a first hot water temperature obtained from the target hot water temperature. A control unit (60) for controlling the opening of the throttle valve so that the higher one of the two pressures is a control pressure lower limit, and the high pressure side pressure is maintained at or above the control pressure lower limit;
A hot water supply device comprising:
前記制御圧力下限は、前記目標沸き上げ温度と前記給湯水温度とから予め決定された圧力マップとして記憶される請求項1に記載の給湯装置。   The hot water supply apparatus according to claim 1, wherein the control pressure lower limit is stored as a pressure map determined in advance from the target boiling temperature and the hot water temperature. 前記温度検出器(52)は、前記水冷媒熱交換器(20)の冷媒出口側温度を検出する冷媒温度検出器である請求項1または請求項2に記載の給湯装置。   The hot water supply apparatus according to claim 1 or 2, wherein the temperature detector (52) is a refrigerant temperature detector that detects a refrigerant outlet side temperature of the water-refrigerant heat exchanger (20). 前記温度検出器(51、52)により検出された給水温度が所定温度より低い場合、前記水冷媒熱交換器(20)の冷媒出口側温度と前記水冷媒熱交換器(20)の水通路入口側の給水温度との温度差が目標温度差となるように、膨張弁の開度を制御する請求項1または請求項2に記載の給湯装置。   When the feed water temperature detected by the temperature detector (51, 52) is lower than a predetermined temperature, the refrigerant outlet side temperature of the water refrigerant heat exchanger (20) and the water passage inlet of the water refrigerant heat exchanger (20) The hot-water supply apparatus of Claim 1 or Claim 2 which controls the opening degree of an expansion valve so that a temperature difference with the water supply temperature of a side turns into a target temperature difference. 前記絞り弁(30、33)は、膨張弁(30)である請求項1〜4のいずれか1項に記載の給湯装置。   The hot water supply device according to any one of claims 1 to 4, wherein the throttle valve (30, 33) is an expansion valve (30). 前記絞り弁(30、33)は、エジェクタ(33)である請求項1〜4のいずれか1項に記載の給湯装置。   The hot water supply device according to any one of claims 1 to 4, wherein the throttle valve (30, 33) is an ejector (33). 圧縮機(10)と、水冷媒熱交換器(20)と、弁開度が制御可能な絞り弁(30、33)と、空気冷媒熱交換器(40)とを有するヒートポンプサイクルと、
前記水冷媒熱交換器(20)の水通路に接続された、給水が循環する水循環通路(71)と、
前記ヒートポンプサイクルの高圧側圧力を検出する圧力検出器(53)と、
前記水冷媒熱交換器(20)の水通路入口側の給水温度に相当する温度を検出する温度検出器(51、52)と、
を備える給湯装置における給湯制御方法であって、
前記温度検出器(51、52)により検出された給水温度が所定温度以上である場合、前記給湯水温度から求められる第1の圧力と、目標沸き上げ温度と前記給湯水温度とから求められる第2の圧力のうち、いずれか高い方の圧力を制御圧力下限とし、
前記高圧側圧力を前記制御圧力下限以上に維持するように、前記絞り弁(30、33)の開度を制御する、給湯制御方法。
A heat pump cycle having a compressor (10), a water refrigerant heat exchanger (20), throttle valves (30, 33) whose valve opening degree can be controlled, and an air refrigerant heat exchanger (40);
A water circulation passage (71) connected to the water passage of the water-refrigerant heat exchanger (20) and through which water is circulated;
A pressure detector (53) for detecting a high-pressure side pressure of the heat pump cycle;
A temperature detector (51, 52) for detecting a temperature corresponding to a water supply temperature on the water passage inlet side of the water refrigerant heat exchanger (20);
A hot water supply control method in a hot water supply apparatus comprising:
When the feed water temperature detected by the temperature detector (51, 52) is equal to or higher than a predetermined temperature, a first pressure obtained from the hot water temperature, a target boiling temperature, and a first hot water temperature obtained from the target hot water temperature. The higher pressure of the two pressures is taken as the control pressure lower limit,
A hot water supply control method for controlling an opening degree of the throttle valve (30, 33) so as to maintain the high-pressure side pressure at or above the lower limit of the control pressure.
前記温度検出器(51、52)により検出された給水温度が所定温度より低い場合、前記水冷媒熱交換器(20)の冷媒出口側温度と前記水冷媒熱交換器(20)の水通路入口側の給水温度との温度差が目標温度差となるように、前記絞り弁(30、33)の開度を制御する、請求項7に記載の給湯制御方法。   When the feed water temperature detected by the temperature detector (51, 52) is lower than a predetermined temperature, the refrigerant outlet side temperature of the water refrigerant heat exchanger (20) and the water passage inlet of the water refrigerant heat exchanger (20) The hot water supply control method according to claim 7, wherein the opening degree of the throttle valve (30, 33) is controlled so that a temperature difference with a side water supply temperature becomes a target temperature difference.
JP2010156740A 2010-07-09 2010-07-09 Hot water supply apparatus and hot water control method thereof Expired - Fee Related JP5338758B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010156740A JP5338758B2 (en) 2010-07-09 2010-07-09 Hot water supply apparatus and hot water control method thereof
DE102011106955A DE102011106955A1 (en) 2010-07-09 2011-07-08 Water heating and method of controlling water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156740A JP5338758B2 (en) 2010-07-09 2010-07-09 Hot water supply apparatus and hot water control method thereof

Publications (2)

Publication Number Publication Date
JP2012017945A true JP2012017945A (en) 2012-01-26
JP5338758B2 JP5338758B2 (en) 2013-11-13

Family

ID=45557503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156740A Expired - Fee Related JP5338758B2 (en) 2010-07-09 2010-07-09 Hot water supply apparatus and hot water control method thereof

Country Status (2)

Country Link
JP (1) JP5338758B2 (en)
DE (1) DE102011106955A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160485A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat pump type liquid heating device
CN103884095A (en) * 2014-03-04 2014-06-25 江门菲普森电器制造有限公司 Self-regulation safety air energy water heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2007107756A (en) * 2005-10-11 2007-04-26 Denso Corp Heat pump water heater
JP2007139393A (en) * 2005-11-22 2007-06-07 Denso Corp Heat pump hot water supply system
JP2009250537A (en) * 2008-04-07 2009-10-29 Denso Corp Heat pump type water heater
JP2010025517A (en) * 2008-07-24 2010-02-04 Denso Corp Heat pump type water heater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737381B2 (en) 2000-06-05 2006-01-18 株式会社デンソー Water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315558A (en) * 2004-03-29 2005-11-10 Mitsubishi Electric Corp Heat pump water heater
JP2007107756A (en) * 2005-10-11 2007-04-26 Denso Corp Heat pump water heater
JP2007139393A (en) * 2005-11-22 2007-06-07 Denso Corp Heat pump hot water supply system
JP2009250537A (en) * 2008-04-07 2009-10-29 Denso Corp Heat pump type water heater
JP2010025517A (en) * 2008-07-24 2010-02-04 Denso Corp Heat pump type water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160485A (en) * 2012-02-08 2013-08-19 Hitachi Appliances Inc Heat pump type liquid heating device
CN103884095A (en) * 2014-03-04 2014-06-25 江门菲普森电器制造有限公司 Self-regulation safety air energy water heater
CN103884095B (en) * 2014-03-04 2016-12-07 江门菲普森电器制造有限公司 A kind of safety air-source water heater of Self-controlled

Also Published As

Publication number Publication date
DE102011106955A1 (en) 2012-02-23
JP5338758B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4337880B2 (en) Heat pump water heater
JP5524571B2 (en) Heat pump equipment
JP2006234375A (en) Heat pump type water heater
EP3273176B1 (en) Heat pump water heater
JP2007198630A (en) Hot water storage type water heater
EP2857761B1 (en) Water heater
JP2008039353A (en) Heat pump type water heater
JP4552836B2 (en) Heat pump type water heater
JP2006118820A (en) Heat pump type water heater
JP2009092258A (en) Refrigerating cycle device
JP2013104624A (en) Refrigeration cycle apparatus and hot water producing apparatus
JP5558937B2 (en) Heat pump type water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP2007113897A (en) Heat pump type water heater
JP2002340400A (en) Heat pump hot water supply apparatus
JP4950004B2 (en) Heat pump type water heater
JP2005140439A (en) Heat pump water heater
JP2007113896A (en) Heat pump type water heater
JP2008261557A (en) Heat pump water heater
JP2005188923A (en) Heat pump water heater
JP2006132888A (en) Heat pump hot water supply apparatus
JP2004340419A (en) Heat pump type water-heater
JP2006194537A (en) Heat pump device
JP2010133598A (en) Heat pump type water heater
JP5703849B2 (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5338758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees