JP2011257894A - Control device for reactive power compensation device - Google Patents

Control device for reactive power compensation device Download PDF

Info

Publication number
JP2011257894A
JP2011257894A JP2010130603A JP2010130603A JP2011257894A JP 2011257894 A JP2011257894 A JP 2011257894A JP 2010130603 A JP2010130603 A JP 2010130603A JP 2010130603 A JP2010130603 A JP 2010130603A JP 2011257894 A JP2011257894 A JP 2011257894A
Authority
JP
Japan
Prior art keywords
reactive power
gain
load
control device
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010130603A
Other languages
Japanese (ja)
Other versions
JP5545048B2 (en
Inventor
Hiroshi Shinohara
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010130603A priority Critical patent/JP5545048B2/en
Publication of JP2011257894A publication Critical patent/JP2011257894A/en
Application granted granted Critical
Publication of JP5545048B2 publication Critical patent/JP5545048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PROBLEM TO BE SOLVED: To suppress voltage flicker and to compensate reduced power factor.SOLUTION: A control device comprises: a reactive power detection circuit 10; a firing angle control circuit 12; reactive power compensation device models 141-143 and system models 151-153 for generating plural system voltages based on plural firing angles generated from reactive power of a load; a selection circuit 17 that selects an optimum compensation gain K in which flicker voltage is minimum; and a gain multiplier 11 that adjusts the output of the reactive power detection circuit 10 using the gain K. The control device further comprises: a separation calculator 21 that separates the reactive power into a fixed portion and a variable portion; gain multipliers 111-113 that multiply the variable portion by the plural gains; and adders 221-223 that add the fixed portion to the multiplication result. An optimum compensation gain K is calculated based on plural firing angles α-αgenerated from the outputs of the adders 221-223, a multiplication result of the gain K and the variable portion is added to the fixed portion, and the result is input to the firing angle control circuit 12.

Description

この発明は、半導体素子の動作により、アーク炉等の負荷によって発生する電圧フリッカを抑制するための無効電力補償装置の制御装置に関するものである。   The present invention relates to a reactive power compensator control device for suppressing voltage flicker generated by a load such as an arc furnace by operation of a semiconductor element.

図4は、この種の無効電力補償装置の従来技術を示しており、例えば特許文献1に記載されているものである。
図4において、無効電力補償装置1は、系統電源2から系統インピーダンス3を介してアーク炉等の負荷4が接続された系統において、負荷4の手前に接続されており、負荷4によって発生する電圧フリッカを抑制するために設けられている。この無効電力補償装置1は、サイリスタ5と、サイリスタ5に直列接続されたリアクトル6と、これらの直列回路に並列接続されたコンデンサ7とから構成されており、PT(計器用変圧器)8及びCT(変流器)9によって系統電圧V及び負荷電流Iを検出する制御装置13によって制御されるものである。
FIG. 4 shows a conventional technique of this type of reactive power compensator, which is described in Patent Document 1, for example.
In FIG. 4, the reactive power compensator 1 is connected in front of the load 4 in a system in which a load 4 such as an arc furnace is connected from the system power supply 2 through the system impedance 3, and the voltage generated by the load 4 It is provided to suppress flicker. The reactive power compensator 1 includes a thyristor 5, a reactor 6 connected in series to the thyristor 5, and a capacitor 7 connected in parallel to these series circuits. A PT (instrument transformer) 8 and It is controlled by a control device 13 that detects a system voltage V s and a load current If by a CT (current transformer) 9.

無効電力補償装置1の基本的な動作としては、電圧フリッカを抑制するために、負荷4が発生する無効電力を補償する。いま、負荷4が発生する無効電力をQ、無効電力補償装置1が補償する無効電力をQ、系統の無効電力をQとすると、制御装置13によってQ=Qとなるように無効電力補償装置1を制御することで、系統の無効電力Q=0となり、系統電圧Vの変動を防止して電圧フリッカを抑制できることになる。 As a basic operation of the reactive power compensator 1, the reactive power generated by the load 4 is compensated to suppress voltage flicker. Now, assuming that the reactive power generated by the load 4 is Q f , the reactive power compensated by the reactive power compensator 1 is Q t , and the reactive power of the system is Q s , the control device 13 satisfies Q t = Q f. By controlling the reactive power compensator 1, the reactive power Q s of the system becomes 0, and fluctuations in the system voltage V s can be prevented and voltage flicker can be suppressed.

次に、図5は、特許文献1に記載された制御装置13の構成図である。
この制御装置13は、無効電力検出回路10、ゲイン乗算器11及び点弧角制御回路12によって構成されている。無効電力検出回路10は、PT8により検出した系統電圧VとCT9により検出した負荷電流Iとを用いて無効電力Qを演算する。その後、ゲイン乗算器11により無効電力QにゲインKを乗じてK×Qを演算し、点弧角制御回路12が、K×Qに相当した無効電力を出力するための前記サイリスタ5の点弧角αを演算する。この点弧角αに従って図4のサイリスタ5を導通させることにより、負荷4の無効電力Qを補償するための無効電力Qを発生させている。
Next, FIG. 5 is a configuration diagram of the control device 13 described in Patent Document 1. In FIG.
The control device 13 includes a reactive power detection circuit 10, a gain multiplier 11, and an ignition angle control circuit 12. The reactive power detection circuit 10 calculates the reactive power Q using the system voltage V s detected by PT8 and the load current If detected by CT9. Thereafter, the gain multiplier 11 multiplies the reactive power Q by the gain K to calculate K × Q, and the firing angle control circuit 12 fires the thyristor 5 for outputting reactive power corresponding to K × Q. The angle α is calculated. By making the thyristor 5 of FIG. 4 conductive according to the firing angle α, the reactive power Q t for compensating the reactive power Q f of the load 4 is generated.

ここで、無効電力検出回路10は負荷電流I及び系統電圧Vから負荷4の無効電力を予測する回路であるため、アーク炉等による負荷電流Iが急峻かつランダムに変化した場合に予測誤差が生じる。そこで、制御装置13では、予め設定したゲインKをゲイン乗算器11にて無効電力Qに乗じることで、予測誤差の補正を行っている。 Since the reactive power detection circuit 10 is a circuit for predicting the reactive power of the load 4 from the load current I f and system voltage V s, expected if the load current I f by arc furnace or the like is changed sharply and randomly An error occurs. Therefore, the control device 13 corrects the prediction error by multiplying the reactive power Q by the gain multiplier 11 by a preset gain K.

なお、電圧フリッカはΔV10とも呼ばれており、図4に示すように系統に接続されたフリッカメータ18によって測定されている。電圧フリッカΔV10は、電気学会技術報告書II部72号によれば、電圧変動を1分間について周波数分析した結果得られる変動周波数fの電圧変動成分の変動幅をΔVとし、変動周波数fに対応する視感度係数をaとすると、以下の数式1によって定義され、視感度係数aは図6のように定義されている。 The voltage flicker is also called ΔV 10 and is measured by a flicker meter 18 connected to the system as shown in FIG. According to the Institute of Electrical Engineers of Japan Technical Report No. II No. 72, the voltage flicker ΔV 10 is represented by ΔV n as the fluctuation range of the voltage fluctuation component of the fluctuation frequency f n obtained as a result of frequency analysis of the voltage fluctuation for 1 minute, When the luminous coefficient corresponding to n and a n, defined by equation 1 below, luminous coefficient a n are defined as in FIG.

Figure 2011257894
Figure 2011257894

また、予測誤差補正用の前記ゲインKは調整可能となっており、負荷4に応じて無効電力補償装置1の補償効果が最も高くなるように考慮される。具体的には、ゲインKを変えて補償効果を測定し、その結果に応じてゲインKを再度調整する動作を繰り返しているが、これによると、ゲインKの最適調整に多くの時間がかかり、所望の補償効果が得られない場合には、無効電力補償装置1が発生する無効電力Qに余裕を持たせるために装置の容量を大きくしなければならない等の問題がある。 Further, the gain K for prediction error correction can be adjusted, and is considered so that the compensation effect of the reactive power compensator 1 becomes the highest according to the load 4. Specifically, the compensation effect is measured by changing the gain K, and the operation of adjusting the gain K again according to the result is repeated. According to this, however, the optimum adjustment of the gain K takes a lot of time, If the desired compensation effect can not be obtained, there is a problem that reactive power compensator 1 is not necessary to increase the capacity of the device in order to leave a margin in the reactive power Q t occur.

そこで、特許文献2においては、図7に示す構成の制御装置13により、負荷の無効電力Qに複数種類のゲインを乗じた結果に基づいて、電圧フリッカが最小となるような最適補償ゲインを選択している。
すなわち、図7において、111〜113は現状のゲインkを中心とした3種類のゲインk〜k(なお、k=k+ΔG,k=k−ΔGとし、ΔGはゲイン調整幅を示す。)を乗じるゲイン乗算器、121〜123は点弧角制御回路、141〜143はそれぞれ異なる構成の無効電力補償装置モデル、201〜203は加算器、151〜153は系統モデル、161〜163は電圧フリッカ検出回路、17は最小値選択回路であり、その他の構成要素には図5と同一の番号を付してある。なお、電圧フリッカ検出回路161〜163は、図4のフリッカメータ18と同様に電圧フリッカを演算する機能を備えている。
Therefore, in Patent Document 2, the optimal compensation gain that minimizes the voltage flicker is selected based on the result of multiplying the reactive power Q of the load by a plurality of types of gains by the control device 13 having the configuration shown in FIG. is doing.
That is, in FIG. 7, reference numerals 111 to 113 denote three types of gains k 1 to k 3 centered on the current gain k 1 (where k 2 = k 1 + ΔG, k 3 = k 1 −ΔG, and ΔG is a gain. A gain multiplier that multiplies an adjustment range), 121 to 123 are firing angle control circuits, 141 to 143 are reactive power compensator models having different configurations, 201 to 203 are adders, 151 to 153 are system models, Reference numerals 161 to 163 denote voltage flicker detection circuits, and reference numeral 17 denotes a minimum value selection circuit. The other components are denoted by the same reference numerals as in FIG. The voltage flicker detection circuits 161 to 163 have a function of calculating voltage flicker in the same manner as the flicker meter 18 of FIG.

この従来技術では、ゲイン乗算器111〜113において、負荷の無効電力Qに3種類のゲインk〜kを乗じ、これらの乗算結果に対応する点弧角α〜αを点弧角制御回路121〜123によりそれぞれ求めている。更に、無効電力補償装置モデル141〜143により、点弧角α〜αに応じた補償電流It1〜It3を求めるとともに、補償電流It1〜It3と負荷電流Iとを加算器201〜203によりそれぞれ加算した電流を系統モデル151〜153に入力して電圧V〜Vを求め、これらの電圧V〜Vを電圧フリッカ検出回路161〜163に入力して演算したフリッカ電圧の中の最小値に対応するゲイン(k〜kのいずれか)を最小値選択回路17により選択し、このゲインをゲイン乗算器11における最適補償ゲインKとして設定する。
なお、ゲイン乗算器111における現状のゲインk(従って、k〜kのすべて)は、所定周期で逐次更新されており、その都度、フリッカ電圧が最小値になるようなゲインを選択してこれを最適補償ゲインKとして設定するものである。従って、最適補償ゲインKは所定周期で逐次更新され、この最適補償ゲインKによって無効電力補償装置が逐次制御されることになる。
In this prior art, the gain multiplier 111 to 113, the reactive power Q by multiplying the three gains k 1 to k 3 to a load, firing angle firing angle alpha 1 to? 3 points corresponding to these multiplication results These are obtained by the control circuits 121 to 123, respectively. Further, the reactive power compensator model 141-143, with obtaining the compensation current I t1 ~I t3 corresponding to the firing angle alpha 1 to? 3, adders and the compensation current I t1 ~I t3 and load current I f Flickers obtained by inputting the currents added by 201 to 203 to the system models 151 to 153 to obtain the voltages V 1 to V 3 and inputting these voltages V 1 to V 3 to the voltage flicker detection circuits 161 to 163 for calculation. A gain (any one of k 1 to k 3 ) corresponding to the minimum value in the voltage is selected by the minimum value selection circuit 17, and this gain is set as the optimum compensation gain K in the gain multiplier 11.
Note that the current gain k 1 (hence, all of k 1 to k 3 ) in the gain multiplier 111 is sequentially updated at a predetermined cycle , and each time a gain is selected so that the flicker voltage becomes the minimum value. This is set as the optimum compensation gain K. Therefore, the optimum compensation gain K is sequentially updated at a predetermined period, and the reactive power compensator is sequentially controlled by the optimum compensation gain K.

特公平7−104739号公報(第1頁右欄第7行〜第2頁左欄第39行、第5図、第6図等)Japanese Examined Patent Publication No. 7-104739 (page 1, right column, line 7 to page 2, left column, line 39, FIG. 5, FIG. 6, etc.) 特開2004−336948号公報(段落[0008]〜[0011]、図1等)JP 2004-336948 A (paragraphs [0008] to [0011], FIG. 1 etc.)

さて、無効電力補償装置1は、負荷の無効電力の変動分に起因した電圧フリッカを抑制する以外に、無効電力の固定分に起因した力率の低下を補償することも目的としている。
このため、図7に示したように、フリッカ電圧のみに基づいて最適補償ゲインKを決定する場合には、無効電力の固定分による力率低下を補償できないという問題がある。
The reactive power compensator 1 is also intended to compensate for a decrease in power factor caused by a fixed amount of reactive power, in addition to suppressing voltage flicker caused by a change in reactive power of the load.
For this reason, as shown in FIG. 7, when the optimum compensation gain K is determined based only on the flicker voltage, there is a problem that the power factor decrease due to the fixed reactive power cannot be compensated.

上記の問題を、図8を参照しつつ説明する。
図8(a)は、図7のゲイン乗算器11の前段の無効電力Q、図8(b)はゲイン乗算器11の後段の無効電力Qの波形図である。ここで、無効電力Qは無効電力固定分Q1aと無効電力変動分Q1bとに分離することができ、無効電力固定分Q1aは力率低下を、無効電力変動分Q1bは電圧フリッカを引き起こすことになる。
The above problem will be described with reference to FIG.
FIG. 8A is a waveform diagram of the reactive power Q 1 in the preceding stage of the gain multiplier 11 in FIG. 7, and FIG. 8B is a waveform diagram of the reactive power Q 2 in the subsequent stage of the gain multiplier 11. Here, the reactive power Q 1 is able to separate the reactive power fixed frequency Q 1a and the reactive power fluctuation Q 1b, the reactive power fixed frequency Q 1a is decreased power factor, reactive power fluctuation Q 1b voltage flicker Will cause.

このとき、図7に示した従来技術により、電圧フリッカを抑制するための最適補償ゲインKが0.5になったとすると、無効電力Qは無効電力Qの半分の値となる。つまり、無効電力固定分Q2aは無効電力固定分Q1aの半分の値になり、無効電力変動分Q2bも無効電力変動分Q1bの半分の値になる。この結果、電圧フリッカは抑制できたとしても、無効電力固定分が半減されて点弧角制御に反映される結果、力率低下は半分程度しか補償できなくなってしまう。
そこで、本発明の解決課題は、電圧フリッカの抑制だけでなく力率低下の補償をも可能にした無効電力補償装置の制御装置を提供することにある。
At this time, if the optimum compensation gain K for suppressing voltage flicker is 0.5 according to the prior art shown in FIG. 7, the reactive power Q 2 is half the value of the reactive power Q 1 . That is, the reactive power fixed amount Q 2a is half the value of the reactive power fixed amount Q 1a , and the reactive power fluctuation portion Q 2b is also a half value of the reactive power fluctuation portion Q 1b . As a result, even if the voltage flicker can be suppressed, the fixed reactive power is reduced by half and reflected in the ignition angle control, so that the power factor decrease can be compensated only about half.
SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for a reactive power compensator that enables not only suppression of voltage flicker but also compensation for power factor reduction.

上記課題を解決するため、請求項1に係る発明は、電力系統に連系され、電力系統に接続される負荷の無効電力によって発生する電圧フリッカを抑制するための無効電力補償装置の制御装置であって、
前記負荷の無効電力を検出する無効電力検出手段と、前記負荷の無効電力に基づいて前記無効電力補償装置の点弧角を制御する点弧角制御手段と、前記負荷の無効電力から生成した複数の点弧角を無効電力補償装置モデル及び系統モデルに順次入力して複数の系統電圧を生成し、これらの系統電圧に含まれるフリッカ電圧が最小となるような最適補償ゲインを選択する手段と、前記最適補償ゲインを用いて前記無効電力検出手段の出力を調整する手段と、を備えた制御装置において、
前記無効電力検出手段により検出した負荷の無効電力を無効電力固定分と無効電力変動分とに分離する分離演算手段と、
前記無効電力変動分に複数のゲインをそれぞれ乗じるゲイン乗算手段と、これらのゲイン乗算手段による乗算結果に前記無効電力固定分をそれぞれ加算する加算手段と、を備え、
前記加算手段の出力から生成した複数の点弧角に基づいて前記最適補償ゲインを求め、この最適補償ゲインと前記無効電力変動分との乗算結果を前記無効電力固定分に加算して前記点弧角制御手段に入力するものである。
In order to solve the above-mentioned problem, the invention according to claim 1 is a control device for a reactive power compensator for suppressing voltage flicker generated by reactive power of a load connected to the power system and connected to the power system. There,
Reactive power detection means for detecting reactive power of the load, ignition angle control means for controlling the firing angle of the reactive power compensator based on the reactive power of the load, and a plurality of generated from the reactive power of the load Are sequentially input to the reactive power compensator model and the system model to generate a plurality of system voltages, and a means for selecting an optimum compensation gain that minimizes the flicker voltage included in these system voltages; Means for adjusting the output of the reactive power detection means using the optimum compensation gain,
Separation calculation means for separating the reactive power of the load detected by the reactive power detection means into a reactive power fixed component and a reactive power fluctuation component;
Gain multiplying means for multiplying the reactive power variation by a plurality of gains; and addition means for adding the fixed reactive power to the multiplication results by these gain multiplying means,
The optimum compensation gain is obtained based on a plurality of firing angles generated from the output of the adding means, and the result of multiplying the optimum compensation gain and the reactive power fluctuation is added to the reactive power fixed part and the firing is performed. This is input to the angle control means.

また、請求項2に係る発明は、前記ゲイン乗算手段において前記無効電力変動分に乗じられる複数のゲインを所定周期で逐次更新するものである。   According to a second aspect of the present invention, a plurality of gains multiplied by the reactive power fluctuation are sequentially updated in a predetermined cycle in the gain multiplication means.

本発明によれば、負荷の無効電力を分離して得た無効電力変動分のみに複数のゲインを乗じてこれらと無効電力固定分との加算結果から複数の点弧角を演算し、これらの点弧角に基づいて求めた最適補償ゲインと無効電力変動分との乗算結果を無効電力固定分に加算してその加算結果から無効電力補償装置に対する点弧角を演算しているため、最適補償ゲインを無効電力変動分のみに反映させて電圧フリッカを抑制する一方で、無効電力固定分の補償により力率低下を補償することができる。
また、前記複数のゲインを所定周期で更新してその中から電圧フリッカを最小とするような最適補償ゲインを選択することにより、負荷変動に応じた最適補償ゲインを逐次更新することができ、この最適補償ゲインを用いて無効電力補償装置を逐次制御することが可能である。
According to the present invention, only the reactive power fluctuations obtained by separating the reactive power of the load are multiplied by a plurality of gains, and a plurality of firing angles are calculated from the addition result of these and the fixed reactive power. Since the result of multiplying the optimum compensation gain obtained based on the firing angle by the reactive power fluctuation is added to the fixed reactive power and the firing angle for the reactive power compensator is calculated from the addition result, the optimum compensation is obtained. While suppressing the voltage flicker by reflecting the gain only to the reactive power fluctuation, it is possible to compensate for the power factor decrease by compensating the fixed reactive power.
In addition, by updating the plurality of gains at a predetermined cycle and selecting an optimum compensation gain that minimizes voltage flicker, the optimum compensation gain according to load fluctuation can be sequentially updated. It is possible to sequentially control the reactive power compensator using the optimum compensation gain.

本発明の実施形態を示す制御装置の構成図である。It is a block diagram of the control apparatus which shows embodiment of this invention. 本発明の実施形態の動作を示す無効電力の波形図である。It is a waveform diagram of reactive power showing the operation of the embodiment of the present invention. 図1における分離演算器の構成図である。It is a block diagram of the isolation | separation computing unit in FIG. 特許文献1に記載された無効電力補償装置を示す構成図である。It is a block diagram which shows the reactive power compensation apparatus described in patent document 1. 図4における制御装置の構成図である。It is a block diagram of the control apparatus in FIG. 視感度係数の説明図である。It is explanatory drawing of a visibility coefficient. 特許文献2に記載された制御装置の構成図である。It is a block diagram of the control apparatus described in patent document 2. 特許文献2に記載された従来技術の問題点を説明するための無効電力の波形図である。It is a wave form diagram of the reactive power for demonstrating the problem of the prior art described in patent document 2. FIG.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係る制御装置13Aの構成図であり、図7と同一の機能を有する構成要素には同一の番号を付して説明を省略し、以下では図7と異なる部分を中心に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a control device 13A according to this embodiment. Components having the same functions as those in FIG. 7 are denoted by the same reference numerals and description thereof is omitted. Hereinafter, parts different from those in FIG. The explanation is centered.

図1において、負荷電流I及び系統電圧Vを用いて無効電力検出回路10により演算された負荷の無効電力Qは、分離演算器21により無効電力固定分Qと無効電力変動分Qとに分離される。ここで、分離演算器21は、図3に示すように、無効電力Qを一次遅れフィルタ22に通した結果を無効電力固定分Qとして出力し、また、減算器23において無効電力Qから無効電力固定分Qを減算した結果を無効電力変動分Qとして出力するように構成されている。 In FIG. 1, the reactive power Q of the load calculated by the reactive power detection circuit 10 using the load current If and the system voltage V s is fixed to the reactive power Q a and the reactive power fluctuation Q b by the separation calculator 21. And separated. Here, as shown in FIG. 3, the separation calculator 21 outputs the result of passing the reactive power Q through the first-order lag filter 22 as a fixed reactive power Q a , and the subtractor 23 disables the reactive power Q from the reactive power Q. and it is configured to output a result of subtracting the power fixed frequency Q a as a reactive power fluctuation Q b.

図1に示すように、分離演算器21により分離された無効電力変動分Qに対してゲイン乗算器11により最適補償ゲインKを乗算し、その出力と無効電力固定分Qとを加算器24により加算した結果を点弧角制御回路12に入力することにより、例えば図4に示した無効電力補償装置1のサイリスタ5の点弧角αを演算する。
一方、無効電力変動分Qには、ゲイン乗算器111〜113により3種類のゲインk〜k(従来と同様に、k=k+ΔG,k=k−ΔGとする。ここで、ΔGはゲイン調整幅を示す。)が乗算される。そして、ゲイン乗算器111〜113の出力と無効電力固定分Qとが加算器221〜223においてそれぞれ加算され、その加算結果が点弧角制御回路121〜123に入力される。
As shown in FIG. 1, the separation calculator 21 by multiplying the optimum compensation gain K by the gain multiplier 11 with respect to the reactive power fluctuation Q b separated, adders and disabling its output power fixed frequency Q a By inputting the result of addition by 24 to the firing angle control circuit 12, for example, the firing angle α of the thyristor 5 of the reactive power compensator 1 shown in FIG. 4 is calculated.
On the other hand, the reactive power fluctuation Q b, similarly to the gain multiplier 111 to 113 three gains k 1 to k 3 (conventional, k 2 = k 1 + ΔG , and k 3 = k 1 -ΔG. Here, ΔG indicates a gain adjustment range. Then, the outputs of the gain multipliers 111 to 113 and the fixed reactive power Q a are added in the adders 221 to 223, respectively, and the addition result is input to the firing angle control circuits 121 to 123.

点弧角制御回路121〜123以降の構成、動作は図7と同様であり、互いに異なる構成の無効電力補償装置モデル141〜143が点弧角α〜αに対応した補償電流It1〜It3を求め、これらの補償電流It1〜It3と負荷電流Iとを加算器201〜203においてそれぞれ加算する。そして、加算器201〜203の出力を系統モデル151〜153に入力して電圧V〜Vを求め、これらの電圧V〜Vから電圧フリッカ検出回路161〜163が演算したフリッカ電圧の中の最小値を最小値選択回路17により選択し、この最小値に対応するゲイン(k〜kのいずれか)をゲイン乗算器11における最適補償ゲインKとして設定する。この最適補償ゲインKは、無効電力変動分Qのみに乗算され、その乗算結果が無効電力固定分Qと加算されて点弧角制御回路12に入力されることになる。
なお、この実施形態では、従来技術と同様に、ゲイン乗算器111〜113のゲインk〜kが所定周期で逐次更新されており、これらのゲインk〜kと無効電力変動分Qとの乗算結果に基づいてフリッカ電圧が最小となる最適補償ゲインKが逐次選択されるため、負荷変動時にも最適な補償が可能である。
The configuration and operation after the firing angle control circuits 121 to 123 are the same as those in FIG. 7, and the reactive power compensator models 141 to 143 having different configurations correspond to the compensation currents I t1 to i 3 corresponding to the firing angles α 1 to α 3. seeking I t3, it adds respective the adders 201 to 203 and these compensation current I t1 ~I t3 the load current I f. The outputs of the adders 201 to 203 are input to the system models 151 to 153 to obtain the voltages V 1 to V 3 , and the flicker voltages calculated by the voltage flicker detection circuits 161 to 163 are calculated from these voltages V 1 to V 3 . The minimum value is selected by the minimum value selection circuit 17, and a gain (any one of k 1 to k 3 ) corresponding to the minimum value is set as the optimum compensation gain K in the gain multiplier 11. This optimal compensation gain K is multiplied only reactive power fluctuation Q b, so that the multiplication result is input is summed with reactive power fixed frequency Q a to the firing angle control circuit 12.
In this embodiment, as in the prior art, the gains k 1 to k 3 of the gain multipliers 111 to 113 are sequentially updated in a predetermined cycle, and these gains k 1 to k 3 and the reactive power fluctuation Q Since the optimum compensation gain K that minimizes the flicker voltage is sequentially selected based on the result of multiplication with b , optimum compensation is possible even when the load fluctuates.

ここで、図2(a),(b)は前述した従来技術の図8(a),(b)に対応する無効電力の波形図であり、図2(a)は、図1のゲイン乗算器11の前段の無効電力Q、図2(b)はゲイン乗算器11の後段の無効電力Qの波形図である。なお、無効電力Qは、分離演算器21によって無効電力固定分Q1aと無効電力変動分Q1bとに分離される。 Here, FIGS. 2A and 2B are waveform diagrams of reactive power corresponding to FIGS. 8A and 8B of the prior art described above, and FIG. 2A is a gain multiplication of FIG. front of the reactive power to Q 1 vessel 11, FIG. 2 (b) is a waveform diagram of the reactive power Q 2 in the subsequent stage of the gain multiplier 11. Incidentally, the reactive power Q 1 is, is separated into a reactive power fixed frequency Q 1a and the reactive power fluctuation Q 1b by the separating operation unit 21.

本実施形態によれば、図1の構成により電圧フリッカを抑制するための最適補償ゲインKが0.5になると、図2(a),(b)に示すように、無効電力変動分Q2bは無効電力変動分Q1bの1/2の値になるが、図1に示した如く最適補償ゲインKは無効電力固定分Q(言い換えればQ1a)に直接作用しないので、無効電力固定分Q2aは無効電力固定分Q1aに等しい値となる。
この結果、図1の点弧角制御回路12は、最適補償ゲインKにより大きさが調整された無効電力変動分Q2bと、最適補償ゲインKに影響されない無効電力固定分Q2aとの和を入力としてサイリスタの点弧角αを演算して無効電力補償装置1を制御することになる。これにより、系統電圧の電圧フリッカを最適補償ゲインKによって抑制する一方で、力率の低下についても充分に補償することが可能になる。
According to the present embodiment, when the optimum compensation gain K for suppressing the voltage flicker becomes 0.5 by the configuration of FIG. 1, as shown in FIGS. 2A and 2B, the reactive power fluctuation Q 2b Is a half value of the reactive power fluctuation Q 1b , but as shown in FIG. 1, the optimum compensation gain K does not directly affect the reactive power fixed quantity Q a (in other words, Q 1a ). Q 2a is equal to the fixed reactive power Q 1a .
As a result, the firing angle control circuit 12 in FIG. 1 calculates the sum of the reactive power fluctuation portion Q 2b whose magnitude is adjusted by the optimum compensation gain K and the reactive power fixed portion Q 2a that is not affected by the optimum compensation gain K. The reactive power compensator 1 is controlled by calculating the firing angle α of the thyristor as an input. As a result, the voltage flicker of the system voltage can be suppressed by the optimum compensation gain K, and the power factor can be sufficiently compensated for the decrease in power factor.

1 無効電力補償装置
2 系統電源
3 系統インピーダンス
4 負荷
5 サイリスタ
6 リアクトル
7 コンデンサ
8 PT
9 CT
10 無効電力検出回路
11 ゲイン乗算器
12 点弧角制御回路
13,13A 制御装置
17 最小値選択回路
18 フリッカメータ
111〜113 ゲイン乗算器
121〜123 点弧角制御回路
141〜143 無効電力補償装置モデル
151〜153 系統モデル
161〜163 電圧フリッカ検出回路
201〜203,221〜223 加算器
21 分離演算器
22 一次遅れフィルタ
23,24 加算器
1 Reactive Power Compensator 2 System Power Supply 3 System Impedance 4 Load 5 Thyristor 6 Reactor 7 Capacitor 8 PT
9 CT
DESCRIPTION OF SYMBOLS 10 Reactive power detection circuit 11 Gain multiplier 12 Firing angle control circuit 13, 13A Control device 17 Minimum value selection circuit 18 Flicker meter 111-113 Gain multiplier 121-123 Firing angle control circuit 141-143 Reactive power compensator model 151-153 System model 161-163 Voltage flicker detection circuit 201-203, 221-223 Adder 21 Separation calculator 22 First-order lag filter 23, 24 Adder

Claims (2)

電力系統に連系され、電力系統に接続される負荷の無効電力によって発生する電圧フリッカを抑制するための無効電力補償装置の制御装置であって、
前記負荷の無効電力を検出する無効電力検出手段と、前記負荷の無効電力に基づいて前記無効電力補償装置の点弧角を制御する点弧角制御手段と、前記負荷の無効電力から生成した複数の点弧角を無効電力補償装置モデル及び系統モデルに順次入力して複数の系統電圧を生成し、これらの系統電圧に含まれるフリッカ電圧が最小となるような最適補償ゲインを選択する手段と、前記最適補償ゲインを用いて前記無効電力検出手段の出力を調整する手段と、を備えた制御装置において、
前記無効電力検出手段により検出した負荷の無効電力を無効電力固定分と無効電力変動分とに分離する分離演算手段と、
前記無効電力変動分に複数のゲインをそれぞれ乗じるゲイン乗算手段と、これらのゲイン乗算手段による乗算結果に前記無効電力固定分をそれぞれ加算する加算手段と、を備え、
前記加算手段の出力から生成した複数の点弧角に基づいて前記最適補償ゲインを求め、この最適補償ゲインと前記無効電力変動分との乗算結果を前記無効電力固定分に加算して前記点弧角制御手段に入力することを特徴とする無効電力補償装置の制御装置。
A control device for a reactive power compensator for suppressing voltage flicker generated by reactive power of a load connected to the power system and connected to the power system,
Reactive power detection means for detecting reactive power of the load, ignition angle control means for controlling the firing angle of the reactive power compensator based on the reactive power of the load, and a plurality of generated from the reactive power of the load Are sequentially input to the reactive power compensator model and the system model to generate a plurality of system voltages, and a means for selecting an optimum compensation gain that minimizes the flicker voltage included in these system voltages; Means for adjusting the output of the reactive power detection means using the optimum compensation gain,
Separation calculation means for separating the reactive power of the load detected by the reactive power detection means into a reactive power fixed component and a reactive power fluctuation component;
Gain multiplying means for multiplying the reactive power variation by a plurality of gains; and addition means for adding the fixed reactive power to the multiplication results by these gain multiplying means,
The optimum compensation gain is obtained based on a plurality of firing angles generated from the output of the adding means, and the result of multiplying the optimum compensation gain and the reactive power fluctuation is added to the reactive power fixed part and the firing is performed. A control device for a reactive power compensator, which is inputted to an angle control means.
請求項1に記載した無効電力補償装置の制御装置において、
前記ゲイン乗算手段において前記無効電力変動分に乗じられる複数のゲインを所定周期で逐次更新することを特徴とする無効電力補償装置の制御装置。
In the control device of the reactive power compensator according to claim 1,
The reactive power compensator control device, wherein the gain multiplication means sequentially updates a plurality of gains multiplied by the reactive power fluctuations at a predetermined period.
JP2010130603A 2010-06-08 2010-06-08 Control device for reactive power compensator Active JP5545048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010130603A JP5545048B2 (en) 2010-06-08 2010-06-08 Control device for reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130603A JP5545048B2 (en) 2010-06-08 2010-06-08 Control device for reactive power compensator

Publications (2)

Publication Number Publication Date
JP2011257894A true JP2011257894A (en) 2011-12-22
JP5545048B2 JP5545048B2 (en) 2014-07-09

Family

ID=45474029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130603A Active JP5545048B2 (en) 2010-06-08 2010-06-08 Control device for reactive power compensator

Country Status (1)

Country Link
JP (1) JP5545048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012828A1 (en) * 2013-07-25 2015-01-29 General Electric Company Systems and methods for reactive power compensation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725014A (en) * 1980-07-22 1982-02-09 Toshiba Corp Control system of reactive power compensating device
JPS58151832A (en) * 1982-03-01 1983-09-09 日新電機株式会社 Reactive power compensator
JPS60148341A (en) * 1984-01-11 1985-08-05 東洋電機製造株式会社 Instantaneous power compensator
JPS61264417A (en) * 1985-05-20 1986-11-22 Mitsubishi Electric Corp Control system for reactive power compensating device
JPH02253318A (en) * 1989-03-27 1990-10-12 Nissin Electric Co Ltd Control system for reactive power compensating device
JPH0511870A (en) * 1991-06-28 1993-01-22 Mitsubishi Electric Corp Flicker compensation device
JPH07104739B2 (en) * 1985-05-20 1995-11-13 三菱電機株式会社 Controller for reactive power compensator
JP2004336948A (en) * 2003-05-12 2004-11-25 Fuji Electric Systems Co Ltd Reactive power compensation device
JP2005080368A (en) * 2003-08-29 2005-03-24 Fuji Electric Systems Co Ltd Control circuit of reactive power compensator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725014A (en) * 1980-07-22 1982-02-09 Toshiba Corp Control system of reactive power compensating device
JPS58151832A (en) * 1982-03-01 1983-09-09 日新電機株式会社 Reactive power compensator
JPS60148341A (en) * 1984-01-11 1985-08-05 東洋電機製造株式会社 Instantaneous power compensator
JPS61264417A (en) * 1985-05-20 1986-11-22 Mitsubishi Electric Corp Control system for reactive power compensating device
JPH07104739B2 (en) * 1985-05-20 1995-11-13 三菱電機株式会社 Controller for reactive power compensator
JPH02253318A (en) * 1989-03-27 1990-10-12 Nissin Electric Co Ltd Control system for reactive power compensating device
JPH0511870A (en) * 1991-06-28 1993-01-22 Mitsubishi Electric Corp Flicker compensation device
JP2004336948A (en) * 2003-05-12 2004-11-25 Fuji Electric Systems Co Ltd Reactive power compensation device
JP2005080368A (en) * 2003-08-29 2005-03-24 Fuji Electric Systems Co Ltd Control circuit of reactive power compensator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012828A1 (en) * 2013-07-25 2015-01-29 General Electric Company Systems and methods for reactive power compensation
US10283962B2 (en) 2013-07-25 2019-05-07 General Electric Company Systems and methods for reactive power compensation

Also Published As

Publication number Publication date
JP5545048B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
RU2446536C1 (en) Device to compensate high harmonics and correct grid power ratio
KR20190023956A (en) Dc-dc converter driving device and method for driving dc-dc converter using the same
WO2011074027A1 (en) Power supply device
JP5716961B2 (en) Control device for reactive power compensator
JP5545048B2 (en) Control device for reactive power compensator
WO2018211949A1 (en) Power conversion device
JP2014054093A (en) Contraction model creation device, creation method, and creation program for power system
JP4531636B2 (en) Flicker suppression effect simulation device
JP2018137841A (en) Power factor improvement circuit and charger
WO2012099022A1 (en) Transient recovery voltage measuring device, transient recovery voltage measuring method, and transient recovery voltage measuring program
JP2004336948A (en) Reactive power compensation device
KR20120065533A (en) Control device and method for making unbalanced three phase voltage at ac power source
JP6536073B2 (en) Characteristic stabilization device for DC power supply system
JP2013013217A (en) Reactive power compensation device and compensation effect verification device
JP2005176427A (en) Inverter
JP4003501B2 (en) Three-phase PWM rectifier controller
JP5678844B2 (en) Control device for power converter
JP2012244776A (en) Power system analyzer
JP5281983B2 (en) Creep error compensation device and creep error compensation method
US20200259422A1 (en) Generator systems and controllers
JP2007322145A (en) Ac signal measuring instrument and its offset adjustment method
JP7069257B2 (en) Control circuit of static VAR compensator
JP7017778B2 (en) Constant voltage power supply
JP7139905B2 (en) Controller and reactive power compensator
KR101916947B1 (en) Apparatus for measuring a three-phase root mean square output in a power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5545048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250