JP2011256373A - Composite and method of manufacturing the same - Google Patents

Composite and method of manufacturing the same Download PDF

Info

Publication number
JP2011256373A
JP2011256373A JP2011104302A JP2011104302A JP2011256373A JP 2011256373 A JP2011256373 A JP 2011256373A JP 2011104302 A JP2011104302 A JP 2011104302A JP 2011104302 A JP2011104302 A JP 2011104302A JP 2011256373 A JP2011256373 A JP 2011256373A
Authority
JP
Japan
Prior art keywords
zinc oxide
rubber
silica
composite
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011104302A
Other languages
Japanese (ja)
Inventor
Yoshihiko Komori
佳彦 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011104302A priority Critical patent/JP2011256373A/en
Publication of JP2011256373A publication Critical patent/JP2011256373A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite (master batch) in which a zinc oxide is uniformly dispersed in a rubber component, and a method of manufacturing the same.SOLUTION: There is disclosed the composite which is obtained by using blended latex mixed with rubber latex and the zinc oxide. There is also disclosed the method of manufacturing the composite including a step (I) for adjusting the blended latex by mixing the rubber latex and the zinc oxide, and a step (II) for coagulating the blended latex obtained in the step (I), and after that, drying it.

Description

本発明は、複合体及びその製造方法に関する。 The present invention relates to a composite and a method for producing the same.

通常、ゴム組成物を製造する場合、加硫反応を促進させる目的で、加硫反応の触媒として機能する酸化亜鉛粒子が配合される。酸化亜鉛を配合する方法としては、固形ゴムと酸化亜鉛をバンバリーミキサー、オープンロール、ニーダーなどを用いて混練する、いわゆる混練法が従来から採用されている。 Usually, when manufacturing a rubber composition, the zinc oxide particle which functions as a catalyst of a vulcanization reaction is mix | blended in order to accelerate | stimulate a vulcanization reaction. As a method of blending zinc oxide, a so-called kneading method in which solid rubber and zinc oxide are kneaded using a Banbury mixer, an open roll, a kneader or the like has been conventionally employed.

しかし、上記混練法では、酸化亜鉛が均一に分散されにくいため、添加した酸化亜鉛の一部しか触媒として機能できないという問題がある。特に、酸化亜鉛微粒子は、比表面積が大きく、凝集し易いため、この問題が顕著となる。これに対し、酸化亜鉛を多量に配合することで問題を解決することが多いが、その一方でコスト面などから、酸化亜鉛の使用量の削減も望まれている。 However, in the above kneading method, since zinc oxide is difficult to be uniformly dispersed, there is a problem that only a part of the added zinc oxide can function as a catalyst. In particular, since zinc oxide fine particles have a large specific surface area and are easily aggregated, this problem becomes remarkable. On the other hand, the problem is often solved by adding a large amount of zinc oxide, but on the other hand, reduction of the amount of zinc oxide used is also desired from the viewpoint of cost.

特許文献1には、ゴムラテックスに水ガラスから製造される微粒子シリカを液体状態で混合し、複合体を製造する方法が開示されているが、ここでは、酸化亜鉛が従来の混練法で配合されているに過ぎず、酸化亜鉛の分散性の向上についてはなんら検討されていない。 Patent Document 1 discloses a method for producing a composite by mixing fine particle silica produced from water glass with rubber latex in a liquid state. Here, zinc oxide is blended by a conventional kneading method. However, no improvement of the dispersibility of zinc oxide has been studied.

特開2009−51955号公報JP 2009-51955 A

本発明は、前記課題を解決し、ゴム成分中に酸化亜鉛が均一に分散した複合体(マスターバッチ)、及びその製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a composite (master batch) in which zinc oxide is uniformly dispersed in a rubber component, and a method for producing the same.

本発明は、ゴムラテックス及び酸化亜鉛を混合した配合ラテックスを用いて得られる複合体に関する。 The present invention relates to a composite obtained by using a compounded latex in which a rubber latex and zinc oxide are mixed.

上記配合ラテックスは、シリカ分散液及び上記酸化亜鉛を混合し、更に上記ゴムラテックスを混合して得られるものであることが好ましい。 The blended latex is preferably obtained by mixing a silica dispersion and the zinc oxide and further mixing the rubber latex.

上記シリカ分散液は、イオン交換樹脂を用いて水ガラス水溶液のpHを調整して製造されるものであることが好ましい。 The silica dispersion is preferably manufactured by adjusting the pH of the aqueous water glass solution using an ion exchange resin.

上記酸化亜鉛の平均一次粒子径が100nm以下であることが好ましい。 The average primary particle diameter of the zinc oxide is preferably 100 nm or less.

本発明はまた、上記ゴムラテックス及び上記酸化亜鉛を混合して上記配合ラテックスを調製する工程(I)、及び上記工程(I)で得られた上記配合ラテックスを凝固した後、乾燥させる工程(II)を含む上記複合体の製造方法に関する。 The present invention also includes a step (I) of preparing the compounded latex by mixing the rubber latex and the zinc oxide, and a step of coagulating and drying the compounded latex obtained in the step (I) (II ) Containing the above composite.

本発明は、ゴムラテックス及び酸化亜鉛を混合した配合ラテックスを用いて得られる複合体であるので、ゴム成分中に酸化亜鉛が均一に分散し、酸化亜鉛の触媒機能を効率良く発揮させることができる。これにより、加硫反応の効率を低下させることなく酸化亜鉛の使用量を削減できる。 Since the present invention is a composite obtained by using a compounded latex in which rubber latex and zinc oxide are mixed, zinc oxide is uniformly dispersed in the rubber component, and the catalytic function of zinc oxide can be efficiently exhibited. . Thereby, the usage-amount of zinc oxide can be reduced, without reducing the efficiency of a vulcanization reaction.

比較例1の複合体のTEM写真を示す。2 shows a TEM photograph of the composite of Comparative Example 1. 実施例1の複合体のTEM写真を示す。2 shows a TEM photograph of the composite of Example 1. 実施例2の複合体のTEM写真を示す。2 shows a TEM photograph of the composite of Example 2. 実施例2の複合体のTEM写真を示す。2 shows a TEM photograph of the composite of Example 2. 比較例2の複合体のTEM写真を示す。3 shows a TEM photograph of the composite of Comparative Example 2. 実施例4の複合体のTEM−EDX写真を示す。The TEM-EDX photograph of the composite_body | complex of Example 4 is shown. キュラスト曲線(酸化亜鉛1.5質量部)を示す。A curast curve (1.5 parts by mass of zinc oxide) is shown. キュラスト曲線(酸化亜鉛3.0質量部)を示す。A curast curve (3.0 parts by mass of zinc oxide) is shown. キュラスト曲線(酸化亜鉛1.5質量部及び3.0質量部)を示す。A curast curve (1.5 parts by mass of zinc oxide and 3.0 parts by mass) is shown.

〈複合体〉
本発明の複合体は、ゴムラテックス及び酸化亜鉛を混合した配合ラテックスを用いて得られる。上記配合ラテックスを用いることで、酸化亜鉛が均一に分散した複合体が得られる。その結果、酸化亜鉛による加硫促進助剤としての機能を効率的に発揮させることが可能となるとともに、酸化亜鉛の使用量を削減することもできる。
<Composite>
The composite of the present invention is obtained using a compounded latex in which a rubber latex and zinc oxide are mixed. By using the blended latex, a composite in which zinc oxide is uniformly dispersed can be obtained. As a result, the function as a vulcanization acceleration aid by zinc oxide can be efficiently exhibited, and the amount of zinc oxide used can be reduced.

本発明の複合体は、例えば、上記ゴムラテックス及び上記酸化亜鉛を混合して上記配合ラテックスを調製する工程(I)、及び上記工程(I)で得られた上記配合ラテックスを凝固した後、乾燥させる工程(II)を含む製法により得られる。 The composite of the present invention is prepared by, for example, mixing the rubber latex and the zinc oxide to prepare the blended latex (I), and coagulating the blended latex obtained in the step (I), followed by drying. It is obtained by a production method including the step (II).

(工程(I))
工程(I)で使用されるゴムラテックスとしては、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、スチレンとブタジエンとの共重合体(SBR)、スチレンとイソプレンとブタジエンとの共重合体(SBIR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)などのゴムラテックスが挙げられる。特に、NRラテックスが好適に使用される。
なお、ゴムラテックスは、ゴム固形分が10〜70質量%のものを使用することが好ましい。
(Process (I))
The rubber latex used in step (I) includes natural rubber (NR), epoxidized natural rubber (ENR), a copolymer of styrene and butadiene (SBR), a copolymer of styrene, isoprene and butadiene ( Examples thereof include rubber latexes such as SBIR), isoprene rubber (IR), butadiene rubber (BR), and chloroprene rubber (CR). In particular, NR latex is preferably used.
The rubber latex preferably has a rubber solid content of 10 to 70% by mass.

工程(I)で使用される酸化亜鉛としては特に限定されず、タイヤ工業において一般的な酸化亜鉛粒子を使用できる。 The zinc oxide used in step (I) is not particularly limited, and zinc oxide particles common in the tire industry can be used.

酸化亜鉛の平均一次粒子径は、好ましくは100nm以下、より好ましくは50nm以下、更に好ましくは30nm以下、特に好ましくは25nm以下である。100nmを超えると、表面積が小さくなり、触媒としての機能が低下する傾向がある。
酸化亜鉛の平均一次粒子径は、好ましくは1nm以上、より好ましくは5nm以上である。1nm未満であると、酸化亜鉛の分散性を充分に向上できないおそれがある。
The average primary particle diameter of zinc oxide is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 30 nm or less, and particularly preferably 25 nm or less. When it exceeds 100 nm, the surface area becomes small and the function as a catalyst tends to be lowered.
The average primary particle diameter of zinc oxide is preferably 1 nm or more, more preferably 5 nm or more. If it is less than 1 nm, the dispersibility of zinc oxide may not be sufficiently improved.

なお、本明細書において、酸化亜鉛の平均一次粒子径の測定方法は、透過型電子顕微鏡(TEM)観察が用いられる。具体的には、酸化亜鉛を透過型電子顕微鏡で写真撮影し、酸化亜鉛の形状が球形の場合には球の直径を粒子径とし、針状又は棒状の場合には短径を粒子径とし、不定型の場合には中心部からの平均粒径を粒子径とし、微粒子100個の粒径の平均値を平均一次粒子径とする。 In this specification, transmission electron microscope (TEM) observation is used as a method for measuring the average primary particle diameter of zinc oxide. Specifically, zinc oxide is photographed with a transmission electron microscope, and the diameter of the sphere is the particle diameter when the shape of the zinc oxide is spherical, and the minor diameter is the particle diameter when it is needle-shaped or rod-shaped, In the case of an indeterminate type, the average particle size from the center is defined as the particle size, and the average value of the particle size of 100 fine particles is defined as the average primary particle size.

工程(I)で酸化亜鉛とゴムラテックスを混合する方法は特に限定されず、公知の方法で行うことができる。 The method of mixing zinc oxide and rubber latex in step (I) is not particularly limited, and can be performed by a known method.

工程(I)において、ゴム100質量部(固形分)に対する酸化亜鉛の配合量は、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.5質量部以上である。0.1質量部未満では、マスターバッチとして使用する場合に、酸化亜鉛の配合量が少なくなるおそれがある。また、該酸化亜鉛の含有量は、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは5質量部以下である。10質量部を超えると、酸化亜鉛を均一分散性が低下する傾向がある。 In the step (I), the compounding amount of zinc oxide with respect to 100 parts by mass (solid content) of the rubber is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and further preferably 0.5 parts by mass or more. It is. If it is less than 0.1 part by mass, the amount of zinc oxide may be reduced when used as a master batch. The zinc oxide content is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and still more preferably 5 parts by mass or less. When it exceeds 10 parts by mass, the uniform dispersibility of zinc oxide tends to decrease.

シリカ配合ゴムにおいて酸化亜鉛の分散性をより向上できるという点から、配合ラテックスは、シリカ分散液及び酸化亜鉛を混合し、更にゴムラテックスを混合して得られるものが好ましい。すなわち、工程(I)において、先ずシリカ分散液及び酸化亜鉛を混合し、次いで得られた混合液に更にゴムラテックスを混合することが好ましい。このような改善効果は、高分散化させたシリカの表面に酸化亜鉛が吸着することで、酸化亜鉛の凝集が抑制されることにより達成されると推測される。 From the viewpoint that the dispersibility of zinc oxide can be further improved in the silica compounded rubber, the compounded latex is preferably obtained by mixing a silica dispersion and zinc oxide and further mixing a rubber latex. That is, in the step (I), it is preferable to first mix the silica dispersion and zinc oxide, and then further mix the rubber latex with the obtained mixture. Such an improvement effect is presumed to be achieved by the fact that zinc oxide is adsorbed on the surface of highly dispersed silica to suppress aggregation of zinc oxide.

シリカ分散液としては、水中にシリカ粒子が分散した分散液などが挙げられる。なかでも、水ガラスから製造される分散液が好ましく、この場合、シリカは、原料の水ガラスをそのまま用いるのではなく、球状微粒子として成長させて使用される。この成長の際、熟成時間を長めにとり、真球状にすることがより好ましい。真球状になると、シリカ粒子同士の接点が最小限となり、凝集力が小さくなり、分散しやすいシリカになりやすい。 Examples of the silica dispersion include a dispersion in which silica particles are dispersed in water. Among these, a dispersion produced from water glass is preferable. In this case, silica is used by growing it as spherical fine particles instead of using the raw water glass as it is. In this growth, it is more preferable to take a long ripening time and to make it spherical. When the spherical shape is obtained, the contact between the silica particles is minimized, the cohesive force is reduced, and the silica is easily dispersed.

水ガラスから製造される分散液としては、水ガラス水溶液のpHを調整して製造されるものが好ましい。例えば、水ガラスの水溶液を作製し、該水溶液のpHを9〜11(好ましくは9.5〜10.5)の範囲に調整することでシリカ分散液を調製できる。 As the dispersion produced from water glass, a dispersion produced by adjusting the pH of the water glass aqueous solution is preferable. For example, a silica dispersion can be prepared by preparing an aqueous solution of water glass and adjusting the pH of the aqueous solution to a range of 9 to 11 (preferably 9.5 to 10.5).

水ガラスは、通常、下記式で示される組成で表される。
NaO・nSiO・mH
上記係数nは、SiO/NaOの分子比で示される値であって、一般にモル比と呼ばれるJIS K 1408−1966に規定の範囲である。この係数nは、特に限定されないが、好ましくは2.1〜3.3であり、より好ましくは3.1〜3.3である。上記係数nが3.1〜3.3であるときは、水ガラス中のシリカ成分(SiO換算量)が多くなることから、ゴムとの複合化処理の効率が向上する。
The water glass is usually represented by a composition represented by the following formula.
Na 2 O · nSiO 2 · mH 2 O
The coefficient n is a value represented by a molecular ratio of SiO 2 / Na 2 O, and is a range defined in JIS K 1408-1966 generally called a molar ratio. Although this coefficient n is not specifically limited, Preferably it is 2.1-3.3, More preferably, it is 3.1-3.3. When the coefficient n is 3.1 to 3.3, the silica component (in terms of SiO 2 ) in the water glass increases, so that the efficiency of the composite treatment with rubber is improved.

なお、一般に、上記係数nが3.1〜3.3である水ガラスは、水ガラス3号として市販されている。本発明に使用可能な水ガラスは、これに限定されるものではなく、例えば、JIS K1408に規定の1〜3号水ガラスや、その他各種のグレード品を使用することができる。 In general, the water glass having the coefficient n of 3.1 to 3.3 is commercially available as Water Glass No. 3. The water glass which can be used for this invention is not limited to this, For example, No. 1-3 water glass prescribed | regulated to JISK1408, and other various grade products can be used.

水ガラス水溶液のpH調整方法としては、酸又はアルカリの添加、イオン交換樹脂の使用などが挙げられるが、なかでも、イオン交換樹脂の使用が好ましい。 Examples of methods for adjusting the pH of the aqueous water glass solution include addition of an acid or alkali, use of an ion exchange resin, and the like. Among these, use of an ion exchange resin is preferable.

最終的にシリカとゴムを複合化する際に、シリカの一次粒径が小さすぎると、表面積が大きくなり、シリカ同士が凝集しやすい傾向がある。したがって、シリカを均一に分散させて、上記改善効果を得るためには、適度なシリカ粒径とする方が望ましいと考えられる。 When the silica and rubber are finally combined, if the primary particle size of the silica is too small, the surface area becomes large and the silica tends to aggregate. Therefore, in order to uniformly disperse silica and obtain the above-described improvement effect, it is considered desirable to have an appropriate silica particle size.

適度なシリカ粒径が得られるという点から、シリカ分散液としては、イオン交換樹脂を用いて水ガラス水溶液1のpHを2〜5に調整し、熟成する工程(a)、及び該工程(a)で得られた熟成液と水ガラス水溶液2を混合した混合液のpHを、イオン交換樹脂を用いて9〜11に調整し、熟成する工程(b−1)又は該工程(a)で得られた熟成液とイオン交換樹脂を用いて水ガラス水溶液2のpHを9〜11に調整した調整液とを混合し、熟成する工程(b−2)から得られるものを好適に使用できる。 From the point that an appropriate silica particle diameter can be obtained, as a silica dispersion, the pH of the water glass aqueous solution 1 is adjusted to 2 to 5 using an ion exchange resin, and the step (a) and the step (a) The pH of the mixed solution obtained by mixing the ripening solution obtained in step 1) and the water glass aqueous solution 2 is adjusted to 9 to 11 using an ion exchange resin, and obtained in the step (b-1) or the step (a) for aging. What is obtained from the process (b-2) which mixes the aging liquid and the adjustment liquid which adjusted pH of the water glass aqueous solution 2 to 9-11 using the ion exchange resin, and can be used suitably can be used.

(工程(a))
工程(a)では、予め水ガラスを純水で希釈する方法などにより、水ガラス水溶液1が作製される。ここで、上記水ガラス水溶液1中に含まれるシリカ成分(SiO)の濃度は、0.5〜7質量%の範囲が好ましい。0.5質量%未満では、効率が悪く、7質量%を超えると、ゲル化の傾向がある。該シリカ成分の濃度は、より好ましくは0.5〜5質量%、更に好ましくは0.5〜3質量%の範囲である。
(Process (a))
In the step (a), the water glass aqueous solution 1 is prepared by a method of diluting water glass with pure water in advance. Here, the concentration of the silica component (SiO 2 ) contained in the water glass aqueous solution 1 is preferably in the range of 0.5 to 7% by mass. If it is less than 0.5% by mass, the efficiency is poor, and if it exceeds 7% by mass, gelation tends to occur. The concentration of the silica component is more preferably in the range of 0.5 to 5% by mass, still more preferably 0.5 to 3% by mass.

工程(a)では、イオン交換樹脂を用いて上記水ガラス水溶液1のpHを所定範囲に調整し、熟成する。pH調整に硫酸などの酸を用いた場合は、熟成により、過度なシリカのネットワークが形成され、ゲル化(固化)する傾向がある。一方、イオン交換樹脂を利用すると、水ガラス水溶液中のナトリウムイオンが除去され、過度なシリカネットワークの形成が抑制されるため、望ましい。また、安定にpH調整が可能である。 In the step (a), the pH of the aqueous water glass solution 1 is adjusted to a predetermined range using an ion exchange resin, and is aged. When an acid such as sulfuric acid is used for pH adjustment, an excessive silica network is formed by aging and tends to gel (solidify). On the other hand, the use of an ion exchange resin is desirable because it removes sodium ions in the aqueous water glass solution and suppresses the formation of an excessive silica network. In addition, the pH can be adjusted stably.

イオン交換樹脂によるpH調整方法としては、例えば、水ガラスの水溶液と陽イオン交換樹脂とを接触させる方法が挙げられる。具体的には、所定濃度に希釈した水ガラスの水溶液を、陽イオン交換樹脂に接触させて脱アルカリし、必要に応じてOH型強塩基性アニオン交換樹脂に接触させて脱アニオンすること、などによって行うことができる。上記接触させる方法としては、水ガラスの水溶液中に陽イオン交換樹脂を直接投入して攪拌、接触させるバッチ方式(水ガラス水溶液1とイオン交換樹脂とを混合してpH調整する方法)、陽イオン交換樹脂を充填したカラムに水ガラスの水溶液を通液する方式(イオン交換樹脂を充填したカラムに水ガラス水溶液1を通液してpH調整する方法)が挙げられる。バッチ方式では、pH調整後、ろ過によりイオン交換樹脂を除去できる。カラムを利用した方式が操作が簡便であり、好ましい。また、pH調整において、バッチ方式ではろ過時にシリカのロスが発生するが、カラムを利用した方式では、pH調整段階でのシリカロスを抑制することができる。 Examples of the pH adjustment method using an ion exchange resin include a method of bringing an aqueous solution of water glass into contact with a cation exchange resin. Specifically, an aqueous solution of water glass diluted to a predetermined concentration is brought into contact with a cation exchange resin to be dealkalized, and if necessary, brought into contact with an OH type strongly basic anion exchange resin to deanion. Can be done by. As the method of contacting, a batch method (a method of adjusting pH by mixing the water glass aqueous solution 1 and the ion exchange resin) in which the cation exchange resin is directly put into the aqueous solution of water glass and stirred and contacted, cation A method of passing an aqueous solution of water glass through a column filled with an exchange resin (a method of adjusting pH by passing an aqueous solution of water glass 1 through a column filled with an ion exchange resin). In the batch method, the ion exchange resin can be removed by filtration after pH adjustment. A method using a column is preferable because the operation is simple. Further, in pH adjustment, silica loss occurs during filtration in the batch method, but silica loss in the pH adjustment stage can be suppressed in a method using a column.

陽イオン交換樹脂としては、H型の強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂などが使用でき、市販品として、オルガノ(株)製のアンバーライトIR120B、IR124、200CT、IRC76、FPC3500が挙げられる。上記の方法により、水ガラス中のナトリウムイオンなどが除去されるとともに、シリカの核が生成されると推察される。 As the cation exchange resin, H-type strong acid cation exchange resin, weak acid cation exchange resin and the like can be used, and as a commercial product, Amberlite IR120B, IR124, 200CT, IRC76, FPC3500 manufactured by Organo Corporation are available. Can be mentioned. It is presumed that sodium ions and the like in water glass are removed and silica nuclei are generated by the above method.

工程(a)では、水ガラス水溶液1のpHが2〜5に調整される。この範囲から外れると、熟成中に固化する傾向がある。該pHは2〜4の範囲が好ましく、2.5〜3.5の範囲がより好ましい。 In the step (a), the pH of the aqueous water glass solution 1 is adjusted to 2-5. Outside this range, there is a tendency to solidify during aging. The pH is preferably in the range of 2-4, more preferably in the range of 2.5-3.5.

工程(a)ではpH調整後に熟成し、熟成液が調製されるが、熟成温度は、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上である。該熟成温度は、好ましくは95℃以下、より好ましくは90℃以下、更に好ましくは85℃以下である。また、熟成時間は、0.5〜24時間が好ましく、2〜10時間がより好ましい。熟成温度や熟成時間が下限未満では、熟成が不十分で、核の発生が十分でないおそれがある。上限を超えると、ゲル化する傾向が高くなる。 In the step (a), aging is performed after pH adjustment, and an aging solution is prepared. The aging temperature is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and further preferably 70 ° C. or higher. The aging temperature is preferably 95 ° C. or lower, more preferably 90 ° C. or lower, and still more preferably 85 ° C. or lower. The aging time is preferably 0.5 to 24 hours, and more preferably 2 to 10 hours. If the aging temperature or aging time is less than the lower limit, the aging is insufficient and the generation of nuclei may not be sufficient. If the upper limit is exceeded, the tendency to gel will increase.

(工程(b−1)、工程(b−2))
工程(a)に続く工程として、「上記工程(a)で得られた熟成液と水ガラス水溶液2とを混合した混合液のpHを、イオン交換樹脂を用いて9〜11に調整し、熟成する工程(b−1)」、又は「上記工程(a)で得られた熟成液と、イオン交換樹脂を用いて水ガラス水溶液2のpHを9〜11に調整した調整液とを混合し、熟成する工程(b−2)」が行われる。これにより、シリカ分散液が調製される。
(Step (b-1), Step (b-2))
As a step subsequent to the step (a), “the pH of the mixed solution obtained by mixing the ripening solution obtained in the step (a) and the aqueous water glass solution 2 is adjusted to 9 to 11 using an ion exchange resin, and ripening is performed. Step (b-1) "or" Aging solution obtained in the above step (a) and an adjustment solution in which the pH of the water glass aqueous solution 2 is adjusted to 9 to 11 using an ion exchange resin, Step (b-2) of aging "is performed. Thereby, a silica dispersion is prepared.

上記水ガラス水溶液2としては、上記水ガラス水溶液1と同様のものを使用できる。
工程(b−1)及び(b−2)において、水ガラス水溶液2中に含まれるシリカ成分(SiO)の濃度は、2〜30質量%の範囲が好ましい。2質量%未満では、効率が悪く、30質量%を超えると、ゲル化する傾向がある。該シリカ成分の濃度は、より好ましくは2〜10質量%、更に好ましくは3〜8質量%の範囲である。
As said water glass aqueous solution 2, the thing similar to the said water glass aqueous solution 1 can be used.
In the steps (b-1) and (b-2), the concentration of the silica component (SiO 2 ) contained in the water glass aqueous solution 2 is preferably in the range of 2 to 30% by mass. If it is less than 2% by mass, the efficiency is poor, and if it exceeds 30% by mass, gelation tends to occur. The concentration of the silica component is more preferably in the range of 2 to 10% by mass, still more preferably 3 to 8% by mass.

工程(b−1)でイオン交換樹脂を用いて混合液のpHを9〜11に調整する方法、及び工程(b−2)で水ガラス水溶液2のpHを9〜11に調整する方法は、工程(a)のpH調整と同様の方法を用いることができる。pHは9.0〜10.0に調整することがより好ましい。このpH調整を上記バッチ式で行う場合においてもろ過時にシリカロスが発生する。そこで、混合順序について、工程(b−1)から工程(b−2)に変更することにより、シリカロスを低減することができ、シリカ収率が高められる。なお、工程(b−1)及び(b−2)での混合は公知の方法により行える。 The method of adjusting the pH of the mixed solution to 9 to 11 using an ion exchange resin in the step (b-1) and the method of adjusting the pH of the water glass aqueous solution 2 to 9 to 11 in the step (b-2) A method similar to the pH adjustment in step (a) can be used. More preferably, the pH is adjusted to 9.0 to 10.0. Even when this pH adjustment is performed by the batch method, silica loss occurs during filtration. Therefore, by changing the mixing order from step (b-1) to step (b-2), silica loss can be reduced and the silica yield is increased. The mixing in the steps (b-1) and (b-2) can be performed by a known method.

pH調整後に熟成されるが、熟成温度は、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上である。該熟成温度は、好ましくは95℃以下、より好ましくは90℃以下、更に好ましくは85℃以下である。また、熟成時間は、4〜50時間が好ましく、8〜35時間がより好ましい。熟成温度や熟成時間が下限未満では、熟成が不十分で、所望の粒径のシリカが生成しないおそれがある。上限を超えると、ゲル化(固化)する可能性が高くなる。 Aging is performed after pH adjustment, and the aging temperature is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and still more preferably 70 ° C. or higher. The aging temperature is preferably 95 ° C. or lower, more preferably 90 ° C. or lower, and still more preferably 85 ° C. or lower. The aging time is preferably 4 to 50 hours, more preferably 8 to 35 hours. If the aging temperature or aging time is less than the lower limit, aging is insufficient and silica having a desired particle size may not be generated. If the upper limit is exceeded, the possibility of gelation (solidification) increases.

上記製法などにより、シリカが分散したシリカ分散液を調製できる。
シリカ分散液中に含まれるシリカの平均一次粒子径は、好ましくは50nm以下、より好ましくは30nm以下、更に好ましくは15nm以下である。また、該平均一次粒子径は、好ましくは5nm以上、より好ましくは6nm以上、更に好ましくは7nm以上である。ここで、平均一次粒子径の大きさは、水ガラス水溶液や上記混合液、調整液のpH、シリカ成分の濃度、熟成温度、熟成時間などにより調整できる。上記範囲内であると、シリカが均一に分散し、酸化亜鉛の分散を促進できる。
なお、シリカの平均一次粒子径は、酸化亜鉛と同様の方法で測定される。
A silica dispersion in which silica is dispersed can be prepared by the above-described production method.
The average primary particle diameter of silica contained in the silica dispersion is preferably 50 nm or less, more preferably 30 nm or less, and still more preferably 15 nm or less. The average primary particle diameter is preferably 5 nm or more, more preferably 6 nm or more, and further preferably 7 nm or more. Here, the size of the average primary particle size can be adjusted by the water glass aqueous solution, the above mixed solution, the pH of the adjusting solution, the concentration of the silica component, the aging temperature, the aging time, and the like. Within the above range, silica is uniformly dispersed, and the dispersion of zinc oxide can be promoted.
In addition, the average primary particle diameter of silica is measured by the same method as that for zinc oxide.

酸化亜鉛とシリカ分散液を混合する方法、更に得られた混合液とゴムラテックスを混合する方法は特に限定されず、公知の方法で行うことができる。 The method of mixing zinc oxide and silica dispersion, and the method of mixing the obtained mixture and rubber latex are not particularly limited, and can be performed by a known method.

工程(I)において、酸化亜鉛とシリカ分散液を混合し、次いでゴムラテックスを混合する場合、ゴム100質量部(固形分)に対して、シリカが5〜150質量部(SiO換算)となるようにシリカ分散液を混合することが好ましい。5質量部未満であると、シリカの配合量が少ないため、シリカによって酸化亜鉛の分散を充分に促進できないおそれがある。150質量部を超えると、ゴムラテックス中でのシリカの均一分散が得られにくくなり、配合ラテックスを凝固した後の複合体中のシリカの均一分散性が低下するため、酸化亜鉛の分散性も低下するおそれがある。より好ましくは5〜120質量部、更に好ましくは10〜100質量部、特に好ましくは12〜50質量部、最も好ましくは15〜40質量部である。 In step (I), when zinc oxide and silica dispersion are mixed and then rubber latex is mixed, silica is 5 to 150 parts by mass (SiO 2 equivalent) with respect to 100 parts by mass (solid content) of rubber. Thus, it is preferable to mix the silica dispersion. If the amount is less than 5 parts by mass, the amount of silica blended is small, so there is a possibility that the dispersion of zinc oxide cannot be promoted sufficiently by silica. If it exceeds 150 parts by mass, it will be difficult to obtain a uniform dispersion of silica in the rubber latex, and the uniform dispersion of silica in the composite after coagulating the compounded latex will be reduced, so that the dispersibility of zinc oxide will also be reduced. There is a risk. More preferably, it is 5-120 mass parts, More preferably, it is 10-100 mass parts, Most preferably, it is 12-50 mass parts, Most preferably, it is 15-40 mass parts.

(工程(II))
工程(II)では、工程(I)で得られた配合ラテックスを凝固した後、乾燥させることで、ゴム中に酸化亜鉛が均一に分散した複合体を生成する。配合ラテックスの凝固は、酸凝固、塩凝固、メタノール凝固などがあるが、酸化亜鉛を均一分散させて凝固するためには、酸凝固、塩凝固又はこれらの併用が好ましい。凝固させるための酸としては、硫酸、塩酸、蟻酸、酢酸などが挙げられる。また、塩としては、例えば、1価〜3価の金属塩(塩化ナトリウム、塩化マグネシウム、硝酸カルシウム、塩化カルシウムなどのカルシウム塩など)が挙げられる。
(Process (II))
In step (II), the compounded latex obtained in step (I) is coagulated and then dried to produce a composite in which zinc oxide is uniformly dispersed in the rubber. There are acid coagulation, salt coagulation, methanol coagulation and the like as coagulation of the compounded latex, but acid coagulation, salt coagulation, or a combination thereof is preferable for uniformly coagulating zinc oxide. Examples of the acid for coagulation include sulfuric acid, hydrochloric acid, formic acid, acetic acid and the like. Examples of the salt include monovalent to trivalent metal salts (such as calcium salts such as sodium chloride, magnesium chloride, calcium nitrate, and calcium chloride).

なかでも、配合ラテックスの凝固は、酸又は塩の添加により配合ラテックスのpHを5〜9(好ましくは6〜8、より好ましくは6.5〜7.5)に調整して固形分を凝固させることで実施されることが好ましい。これにより、酸化亜鉛が微分散した複合体を好適に製造できる。 Especially, coagulation | solidification of mixing | blending latex adjusts the pH of mixing | blending latex to 5-9 (preferably 6-8, more preferably 6.5-7.5) by addition of an acid or a salt, and solidifies solid content. It is preferable to be implemented. Thereby, the composite body in which zinc oxide is finely dispersed can be suitably produced.

凝固させた配合ラテックスは、通常、公知の方法(オーブンなど)で乾燥される。乾燥後、2軸ロール、バンバリーなどでゴム練りを行うと、酸化亜鉛がゴムマトリックスに均一に分散した複合体を得ることができる。
なお、上記複合体は、本発明の効果を阻害しない範囲で他の成分を含んでもよい。
The coagulated compounded latex is usually dried by a known method (such as an oven). When the rubber is kneaded with a biaxial roll or a banbury after drying, a composite in which zinc oxide is uniformly dispersed in the rubber matrix can be obtained.
In addition, the said composite_body | complex may contain another component in the range which does not inhibit the effect of this invention.

本発明で得られた複合体は、マスターバッチとして使用できる。また、他のゴム配合剤などとともに混合して得られるゴム組成物も好適に使用でき、該複合体を含むことにより酸化亜鉛が均一分散したゴム組成物が得られる。ゴム配合剤としては、タイヤ工業において一般的に用いられているカーボンブラック、シランカップリング剤、ステアリン酸、老化防止剤、硫黄、加硫促進剤等が挙げられる。また、上記ゴム組成物は、上記複合体の他に、別途ゴム成分、酸化亜鉛、シリカなどを含んでもよい。 The composite obtained in the present invention can be used as a master batch. Also, a rubber composition obtained by mixing with other rubber compounding agents can be suitably used, and a rubber composition in which zinc oxide is uniformly dispersed can be obtained by including the composite. Examples of the rubber compounding agent include carbon black, silane coupling agent, stearic acid, antiaging agent, sulfur, vulcanization accelerator and the like generally used in the tire industry. The rubber composition may further contain a rubber component, zinc oxide, silica and the like in addition to the composite.

上記ゴム組成物において、全ゴム100質量部(固形分)に対して、全シリカの含有量は5〜150質量部、全酸化亜鉛の含有量は0.1〜10質量部であることが好ましい。また、カーボンブラックなどの他の配合剤の含有量も適宜設定できる。 In the rubber composition, the total silica content is preferably 5 to 150 parts by mass and the total zinc oxide content is 0.1 to 10 parts by mass with respect to 100 parts by mass (solid content) of the total rubber. . The content of other compounding agents such as carbon black can also be set as appropriate.

上記ゴム組成物は、前記各成分をオープンロール、バンバリーミキサー、密閉式混練機などのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。製造時において、酸化亜鉛の触媒作用が効果的に発揮され、加硫効率が高められるため、生産性を向上できる。また、得られるゴム組成物は、低燃費性、耐クラック性、耐摩耗性など、タイヤの要求性能を備えている。そのため、上記ゴム組成物は、タイヤの各部材(トレッド、サイドウォールなど)に好適に使用できる。 The said rubber composition can be manufactured by the method etc. which knead | mixes said each component using rubber | gum kneading apparatuses, such as an open roll, a Banbury mixer, and a closed kneader, and vulcanize | curing after that. At the time of manufacture, the catalytic action of zinc oxide is effectively exhibited, and the vulcanization efficiency is increased, so that productivity can be improved. Further, the obtained rubber composition has required performance of the tire such as low fuel consumption, crack resistance, and wear resistance. Therefore, the rubber composition can be suitably used for each member (tread, sidewall, etc.) of the tire.

空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造できる。すなわち、ゴム組成物を未加硫の段階でトレッド、サイドウォールなどの各タイヤ部材の形状に合わせて押し出し加工し、タイヤ成形機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧してタイヤを製造できる。 A pneumatic tire can be manufactured by a normal method using the rubber composition. That is, the rubber composition is extruded in accordance with the shape of each tire member such as tread and sidewall at an unvulcanized stage, molded by a normal method on a tire molding machine, and pasted together with other tire members. Together, an unvulcanized tire is formed. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce a tire.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下に、実施例で用いた各種薬品について説明する。
天然ゴムラテックス:ハイアンモニアタイプ(ゴム固形分濃度60質量%)
界面活性剤:ハンツマン(株)製のteric 16A29
水ガラス:富士化学(株)製の水ガラス3号(NaO・nSiO・mHO、n=3.2、シリカ成分(SiO換算量)含有量:28質量%)
イオン交換樹脂:アンバーライトIR−120B(H)HG(オルガノ(株)製、陽イオン交換樹脂)
亜鉛華2種(酸化亜鉛1):三井金属鉱業(株)製の亜鉛華2種(平均一次粒子径:500nm)
酸化亜鉛微粒子(酸化亜鉛2):和光純薬工業(株)製の酸化亜鉛(平均一次粒子径:20nm)
カーボンブラック:三菱化学(株)製のダイアブラックI(ISAF)
シランカップリング剤:EVONIK−DEGUSSA社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
アロマオイル:(株)ジャパンエナジー製のプロセスX−140
ステアリン酸:日油(株)製の椿
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤NS:大内新興化学工業(株)製のノクセラ−NS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
The various chemicals used in the examples are described below.
Natural rubber latex: high ammonia type (rubber solid content concentration 60 mass%)
Surfactant: teric 16A29 manufactured by Huntsman
Water glass: Water glass No. 3 manufactured by Fuji Chemical Co., Ltd. (Na 2 O.nSiO 2 .mH 2 O, n = 3.2, silica component (SiO 2 equivalent) content: 28% by mass)
Ion exchange resin: Amberlite IR-120B (H) HG (manufactured by Organo Corporation, cation exchange resin)
2 types of zinc white (Zinc oxide 1): 2 types of zinc white (average primary particle size: 500 nm) manufactured by Mitsui Mining & Smelting Co., Ltd.
Zinc oxide fine particles (zinc oxide 2): Zinc oxide (average primary particle size: 20 nm) manufactured by Wako Pure Chemical Industries, Ltd.
Carbon black: Dia Black I (ISAF) manufactured by Mitsubishi Chemical Corporation
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by EVONIK-DEGUSSA
Aroma oil: Process X-140 manufactured by Japan Energy Co., Ltd.
Stearic acid: Anti-aging agent manufactured by NOF Corporation: NOCRACK 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd. NS: Noxera-NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.

(比較例1〜3)
シリカ成分含有量(シリカ濃度)1.5質量%の水ガラス水溶液を300g作製し、イオン交換樹脂を100g詰めたカラムに45分かけて通水した。得られた調整液はpH3.2となった。これを80℃で3時間熟成した(熟成液A)。一方、シリカ濃度6質量%の水ガラス水溶液46.3gにイオン交換樹脂9.8gを添加し、pH9.5に調整した。ろ過によりイオン交換樹脂を除去し、これを熟成液Aの一部108gに添加し、撹拌、混合した後に、80℃で24時間熟成した。
得られたシリカ分散液に、NRラテックス33g(固形分60質量%)を加え、界面活性剤を加えた後に、1質量%硫酸を添加してpH7に調整し、ろ紙#2を用いて自然ろ過後、40℃のオーブンで乾燥し、シリカ/ゴム複合体を得た。
得られたシリカ/ゴム複合体のシリカ含有量を熱重量分析から求めたところ、ゴム100質量部(固形分)に対して20質量部であった。
上記シリカ/ゴム複合体に、ロールミルにて、ゴム100質量部(固形分)に対して硫黄(1質量部)、加硫促進剤(0.5質量部)、亜鉛華2種(表1に示す配合量:対ゴム100質量部(固形分))を加え、5分程度、ゴム練りをして、未加硫ゴム組成物(複合体)を得た。
(Comparative Examples 1-3)
300 g of a water glass aqueous solution having a silica component content (silica concentration) of 1.5% by mass was prepared, and water was passed through a column packed with 100 g of an ion exchange resin over 45 minutes. The obtained adjustment liquid became pH 3.2. This was aged at 80 ° C. for 3 hours (aging solution A). On the other hand, 9.8 g of an ion exchange resin was added to 46.3 g of a water glass aqueous solution having a silica concentration of 6% by mass to adjust the pH to 9.5. The ion exchange resin was removed by filtration, and this was added to a part 108 g of the aging liquid A, stirred and mixed, and then aged at 80 ° C. for 24 hours.
To the obtained silica dispersion, 33 g of NR latex (solid content 60% by mass) is added, and after adding a surfactant, 1% by mass sulfuric acid is added to adjust to pH 7, and natural filtration is performed using filter paper # 2. Thereafter, it was dried in an oven at 40 ° C. to obtain a silica / rubber composite.
When the silica content of the obtained silica / rubber composite was determined by thermogravimetric analysis, it was 20 parts by mass with respect to 100 parts by mass (solid content) of rubber.
In the silica / rubber composite, in a roll mill, sulfur (1 part by mass), vulcanization accelerator (0.5 part by mass), and two types of zinc white (in Table 1) with respect to 100 parts by mass (solid content) of rubber. The blending amount shown: 100 parts by mass of rubber (solid content)) was added and kneaded for about 5 minutes to obtain an unvulcanized rubber composition (composite).

(実施例1〜4)
80℃24時間後の上記シリカ分散液に亜鉛華2種又は酸化亜鉛微粒子(表1に示す配合量:対ゴム100質量部(固形分))を添加し、1時間程度撹拌した後にNRラテックスを添加した点、及び、ロールミルで亜鉛華2種を添加しなかった点以外は、比較例と同様にして、未加硫ゴム組成物(複合体)を調製した。
(Examples 1-4)
To the above silica dispersion after 24 hours at 80 ° C., two kinds of zinc oxide or zinc oxide fine particles (blending amount shown in Table 1: 100 parts by mass of rubber (solid content)) are added, and after stirring for about 1 hour, NR latex is added. An unvulcanized rubber composition (composite) was prepared in the same manner as in the comparative example except that the added point and the two types of zinc oxide were not added by a roll mill.

得られた複合体について、以下の方法にてTEM観察、トルクの変化を測定し、結果を図1〜9に示した。 About the obtained composite_body | complex, the TEM observation and the change of a torque were measured with the following method, and the result was shown to FIGS.

(TEM観察)
得られた複合体(比較例1〜2、実施例1〜2)を、ミクロトームを用いて、厚さ100nm程度の薄片を切り出し、透過型電子顕微鏡((株)日立製作所製のH−7100)を用いて観察した。
(TEM observation)
Using the obtained composites (Comparative Examples 1 and 2, Examples 1 and 2), a thin piece having a thickness of about 100 nm was cut out using a microtome, and a transmission electron microscope (H-7100 manufactured by Hitachi, Ltd.) was cut. Was observed.

(トルク変化)
JIS K6300に従い、振動式加硫試験機((株)オリエンテック製キュラストメーター)を用い、測定温度150℃で加硫試験を行なって、時間とトルクとをプロットしたキュラスト曲線(加硫速度曲線)を得た。
(Torque change)
In accordance with JIS K6300, a vulcanization test (vulcanization rate curve) in which a vulcanization test was performed at a measurement temperature of 150 ° C. using a vibration vulcanization tester (Orientec Curast Meter Co., Ltd.) and time and torque were plotted. )

TEM観察から、実施例及び比較例で調製した複合体が含有するシリカは、8.5nmの平均一次粒子径を有していることを観察した。
TEM観察から、実施例では、酸化亜鉛が良好に分散し、また、シリカも良好に分散していることがわかった(図2〜4)。特に、酸化亜鉛微粒子を用いた実施例では、該酸化亜鉛微粒子が凝集した大きな塊(100nm程度)は観察されず(図3)、酸化亜鉛微粒子が数個凝集したものが観察されるのみであり(図4)、良好に分散していることがわかった。20nmより小さい酸化亜鉛微粒子も観察されたが、これについては、酸化亜鉛微粒子が溶出して粒径が小さくなった可能性があると推測された。
一方、ロールミルにて亜鉛華2種を添加した比較例(ゴム練り時に添加した例)では、亜鉛華2種が凝集した大きな塊が観察された(図5)。
From TEM observation, it was observed that the silica contained in the composites prepared in Examples and Comparative Examples had an average primary particle size of 8.5 nm.
From the TEM observation, it was found that in the examples, zinc oxide was well dispersed and silica was also well dispersed (FIGS. 2 to 4). In particular, in the example using zinc oxide fine particles, a large lump (about 100 nm) in which the zinc oxide fine particles are aggregated is not observed (FIG. 3), and only a few aggregated zinc oxide fine particles are observed. (FIG. 4), it turned out that it has disperse | distributed favorably. Although zinc oxide fine particles smaller than 20 nm were also observed, it was speculated that there was a possibility that the zinc oxide fine particles were eluted to reduce the particle size.
On the other hand, in the comparative example in which two kinds of zinc white were added by a roll mill (example added at the time of rubber kneading), a large lump in which two kinds of zinc white were aggregated was observed (FIG. 5).

TEM−EDXからシリカ上に酸化亜鉛が存在することが分かった(図6)。 It was found from TEM-EDX that zinc oxide was present on the silica (FIG. 6).

キュラスト測定の結果、酸化亜鉛を1.5質量部配合した場合、酸化亜鉛の分散がよいものほど、トルクが大きくなることが分かった(図7)。また、酸化亜鉛を3質量部配合した場合、トルクに大きな差はなかった(図8)。これは、酸化亜鉛が飽和量であるからだと考えられた。 As a result of curast measurement, it was found that when 1.5 parts by mass of zinc oxide was blended, the better the dispersion of zinc oxide, the greater the torque (FIG. 7). Further, when 3 parts by mass of zinc oxide was blended, there was no significant difference in torque (FIG. 8). This was thought to be because zinc oxide was saturated.

図9が示す通り、酸化亜鉛微粒子を1.5質量部配合した実施例4は、従来のゴム練り時に亜鉛華2種を3質量部配合した比較例2と最大トルクがほぼ同等であった。この結果から、ゴムラテックスと酸化亜鉛微粒子を混合することで、酸化亜鉛の使用量を半分程度に削減できることがわかった。 As shown in FIG. 9, Example 4 in which 1.5 parts by mass of zinc oxide fine particles were blended had substantially the same maximum torque as Comparative Example 2 in which 3 parts by mass of zinc oxide was blended during conventional rubber kneading. From this result, it was found that the amount of zinc oxide used can be reduced to about half by mixing rubber latex and zinc oxide fine particles.

(実施例5、比較例4)
硫黄、加硫促進剤を添加しなかった点以外は、実施例3と同様にして複合体(a)を作製し、また、硫黄、加硫促進剤を添加しなかった点以外は、比較例3と同様にして複合体(b)を作製した。
(Example 5, Comparative Example 4)
A composite (a) was produced in the same manner as in Example 3 except that sulfur and vulcanization accelerator were not added. Also, a comparative example was obtained except that sulfur and vulcanization accelerator were not added. In the same manner as in Example 3, a composite (b) was produced.

次いで、表2に示す配合に従って、1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、ロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を150℃で30分間プレス加硫して加硫物を得た。
得られた未加硫ゴム組成物及び加硫物を下記により評価し、結果を表2に示した。
Next, chemicals other than sulfur and a vulcanization accelerator were kneaded using a 1.7 L Banbury mixer according to the formulation shown in Table 2. Next, using a roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition.
The obtained unvulcanized rubber composition was press vulcanized at 150 ° C. for 30 minutes to obtain a vulcanized product.
The obtained unvulcanized rubber composition and vulcanizate were evaluated as follows, and the results are shown in Table 2.

(キュラスト試験)
JIS K6300に記載されている振動式加硫試験機(キュラストメーター)を用い、測定温度150℃で加硫試験を行ない、時間とトルクとをプロットした加硫速度曲線を得た。そして、加硫速度曲線のトルクの最小値をML、最大値をMH、その差(MH−ML)をMEとしたとき、ML+0.95MEに到達する時間T95(加硫時間(分))を読み取った。なお、T95が小さいほど加硫時間を短縮できる。
(Culast test)
A vulcanization test was performed at a measurement temperature of 150 ° C. using a vibration type vulcanization tester (curast meter) described in JIS K6300, and a vulcanization rate curve in which time and torque were plotted was obtained. Then, when the minimum value of torque on the vulcanization speed curve is ML, the maximum value is MH, and the difference (MH−ML) is ME, time T95 (vulcanization time (minutes)) to reach ML + 0.95ME is read. It was. In addition, vulcanization time can be shortened, so that T95 is small.

(転がり抵抗)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度50℃、初期歪み10%、動歪み2%、周波数10Hzの条件下で各配合(加硫物)のtanδを測定し、比較例4のゴム試験片(基準試験片)のtanδを100として、下記計算式により指数表示した(転がり抵抗指数)。指数が大きいほど転がり抵抗特性(低燃費性)が優れる。
(転がり抵抗指数)=(基準試験片のtanδ)/(各配合のtanδ)×100
(Rolling resistance)
Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), tan δ of each compound (vulcanized product) was measured under the conditions of a temperature of 50 ° C., an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz. The tan δ of the rubber test piece (reference test piece) of Comparative Example 4 was set to 100, and the index was expressed by the following formula (rolling resistance index). The larger the index, the better the rolling resistance characteristics (low fuel consumption).
(Rolling resistance index) = (tan δ of standard test piece) / (tan δ of each formulation) × 100

(摩耗試験)
ランボーン摩耗試験機を用いて、温度20℃、スリップ率20%及び試験時間2分間の条件下でランボーン摩耗量を測定した。更に、測定したランボーン摩耗量から容積損失量を計算し、比較例4のゴム試験片(基準試験片)のランボーン摩耗指数を100とし、下記計算式により、各配合の容積損失量を指数表示した。指数が大きいほど、耐摩耗性に優れることを示す。
(ランボーン摩耗指数)=(基準試験片の容積損失量)/(各配合の容積損失量)×100
(Abrasion test)
Using a Lambourn abrasion tester, the Lambourn abrasion amount was measured under the conditions of a temperature of 20 ° C., a slip ratio of 20% and a test time of 2 minutes. Furthermore, the volume loss amount was calculated from the measured amount of lamborn wear, and the rubber loss index of the rubber test piece (reference test piece) of Comparative Example 4 was set to 100, and the volume loss amount of each formulation was displayed as an index according to the following formula. . It shows that it is excellent in abrasion resistance, so that an index | exponent is large.
(Lambourn wear index) = (Volume loss of standard specimen) / (Volume loss of each formulation) × 100

(破断強度・破断時伸び)
加硫物を用いて3号ダンベル型ゴム試験片を作製し、JIS K6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」に準じて引張試験を行い、破断強度(TB)、破断時伸び(EB)を測定した。比較例4のゴム試験片(基準試験片)のTB指数、EB指数をそれぞれ100とし、下記計算式により、各配合のTB、EBを指数表示した。TB指数が大きいほど補強性に優れ、EB指数が大きいほど耐クラック性に優れることを示す。
(TB指数)=(各配合のTB)/(基準試験片のTB)×100
(EB指数)=(各配合のEB)/(基準試験片のEB)×100
(Breaking strength / elongation at break)
No. 3 dumbbell-shaped rubber test piece was prepared from the vulcanized product, and a tensile test was conducted according to JIS K6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties”. Breaking strength (TB), at break Elongation (EB) was measured. The TB index and EB index of the rubber test piece (reference test piece) of Comparative Example 4 were set to 100, respectively, and the TB and EB of each blend were indicated by an index according to the following formula. It shows that it is excellent in reinforcement property, so that TB index is large, and it is excellent in crack resistance, so that EB index is large.
(TB index) = (TB of each formulation) / (TB of reference specimen) × 100
(EB index) = (EB of each formulation) / (EB of reference specimen) × 100

表2から、ゴムラテックス及び酸化亜鉛を混合した配合ラテックスを用いて作製した複合体(a)を用いた実施例5は、タイヤに要求される低燃費性、耐摩耗性、破断強度、破断時伸びを備えており、加硫特性も優れていた。特に、酸化亜鉛をゴム練り時に添加した複合体(b)を用いた比較例4に比べて、加硫時間が短縮され、効率的に加硫反応が進行し、耐クラック性も優れていた。 From Table 2, Example 5 using the composite (a) produced by using the compounded latex in which rubber latex and zinc oxide are mixed is the fuel efficiency required for the tire, wear resistance, breaking strength, at break Elongation was provided and vulcanization characteristics were excellent. In particular, compared with Comparative Example 4 using the composite (b) in which zinc oxide was added during rubber kneading, the vulcanization time was shortened, the vulcanization reaction proceeded efficiently, and the crack resistance was excellent.

Claims (5)

ゴムラテックス及び酸化亜鉛を混合した配合ラテックスを用いて得られる複合体。 A composite obtained by using a compounded latex in which rubber latex and zinc oxide are mixed. 前記配合ラテックスは、シリカ分散液及び前記酸化亜鉛を混合し、更に前記ゴムラテックスを混合して得られるものである請求項1記載の複合体。 The composite according to claim 1, wherein the compounded latex is obtained by mixing a silica dispersion and the zinc oxide and further mixing the rubber latex. 前記シリカ分散液は、イオン交換樹脂を用いて水ガラス水溶液のpHを調整して製造されるものである請求項2記載の複合体。 The composite according to claim 2, wherein the silica dispersion is produced by adjusting the pH of an aqueous water glass solution using an ion exchange resin. 前記酸化亜鉛の平均一次粒子径が100nm以下である請求項1〜3のいずれかに記載の複合体。 The composite according to any one of claims 1 to 3, wherein the zinc oxide has an average primary particle size of 100 nm or less. 前記ゴムラテックス及び前記酸化亜鉛を混合して前記配合ラテックスを調製する工程(I)、及び前記工程(I)で得られた前記配合ラテックスを凝固した後、乾燥させる工程(II)を含む請求項1〜4のいずれかに記載の複合体の製造方法。 A step (I) of preparing the blended latex by mixing the rubber latex and the zinc oxide, and a step (II) of coagulating and drying the blended latex obtained in the step (I). The manufacturing method of the composite_body | complex in any one of 1-4.
JP2011104302A 2010-05-11 2011-05-09 Composite and method of manufacturing the same Pending JP2011256373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104302A JP2011256373A (en) 2010-05-11 2011-05-09 Composite and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010109573 2010-05-11
JP2010109573 2010-05-11
JP2011104302A JP2011256373A (en) 2010-05-11 2011-05-09 Composite and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015114137A Division JP6091549B2 (en) 2010-05-11 2015-06-04 Composite and production method thereof

Publications (1)

Publication Number Publication Date
JP2011256373A true JP2011256373A (en) 2011-12-22

Family

ID=45472901

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011104302A Pending JP2011256373A (en) 2010-05-11 2011-05-09 Composite and method of manufacturing the same
JP2015114137A Active JP6091549B2 (en) 2010-05-11 2015-06-04 Composite and production method thereof
JP2017000400A Active JP6526072B2 (en) 2010-05-11 2017-01-05 Composite and method for producing the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2015114137A Active JP6091549B2 (en) 2010-05-11 2015-06-04 Composite and production method thereof
JP2017000400A Active JP6526072B2 (en) 2010-05-11 2017-01-05 Composite and method for producing the same

Country Status (1)

Country Link
JP (3) JP2011256373A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627039A (en) * 2013-10-17 2014-03-12 张莉娜 Preparation method of nano MgO/polymer composite master rubber
WO2016125503A1 (en) * 2015-02-05 2016-08-11 株式会社ブリヂストン Rubber composition and method for manufacturing same, crosslinked rubber composition, and tire
JP2019108450A (en) * 2017-12-18 2019-07-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
JP2019108451A (en) * 2017-12-18 2019-07-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
CN110218375A (en) * 2018-03-02 2019-09-10 中国石油化工股份有限公司 Butadiene-styrene rubber/Nano carbon white composite material, vulcanizate and its preparation method and application
CN110218366A (en) * 2018-03-02 2019-09-10 中国石油化工股份有限公司 Isoprene rubber/Nano carbon white composite material, vulcanizate and its preparation method and application
CN111247098A (en) * 2017-10-27 2020-06-05 株式会社普利司通 Silica-based nanomaterials as a substitute for ZnO in rubber compounds and their preparation
JP2022027843A (en) * 2017-10-31 2022-02-14 株式会社ブリヂストン Rubber vulcanization processes employing eutectic mixture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256373A (en) * 2010-05-11 2011-12-22 Sumitomo Rubber Ind Ltd Composite and method of manufacturing the same
CN109749168B (en) * 2017-11-03 2020-02-14 北京化工大学 Nano zinc oxide/rubber composite material and preparation method thereof
CN110028708A (en) * 2019-04-19 2019-07-19 青岛泰联新材料有限公司 A kind of preparation method of wet oxidation zinc predispersed masterbatch

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135742A (en) * 1997-07-10 1999-02-09 Bayer Ag Production of filled rubber mixture
JPH11209523A (en) * 1998-01-21 1999-08-03 Denki Kagaku Kogyo Kk Chloroprene latex composition and adhesive composition
JPH11323028A (en) * 1998-04-24 1999-11-26 Bayer Ag Mixture of rubber with activated and hydrophobic oxide and siliceous filler and its production
JP2000178381A (en) * 1998-12-18 2000-06-27 Pku Pulverkautschuk Union Gmbh Fine rubber powder, its production, and its use
WO2005049725A1 (en) * 2003-11-21 2005-06-02 Zeon Corporation Dip forming composition and dip formed article
JP2005154235A (en) * 2003-11-28 2005-06-16 Oji Paper Co Ltd Silica minute particle dispersion and its manufacturing method
JP2005528495A (en) * 2002-06-04 2005-09-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Aqueous adhesive dispersion
JP2006213791A (en) * 2005-02-02 2006-08-17 Bridgestone Corp Zinc flower-containing wet masterbatch, method for producing the same, and rubber composition and tire each using the same
JP2007231104A (en) * 2006-02-28 2007-09-13 Yokohama Rubber Co Ltd:The Rubber composition
WO2008139762A1 (en) * 2007-05-15 2008-11-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire
JP2009073886A (en) * 2007-09-19 2009-04-09 Sumitomo Rubber Ind Ltd Rubber composition for racing tire and racing tire with tread obtained using the same
JP2012153763A (en) * 2011-01-24 2012-08-16 Sumitomo Rubber Ind Ltd Composite and method of manufacturing the same, rubber composition, and pneumatic tire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627622A (en) * 1985-07-04 1987-01-14 Nissan Chem Ind Ltd Production of silica sol having extremely fine grain diameter
DE3723213A1 (en) * 1987-07-14 1989-01-26 Huels Chemische Werke Ag METHOD FOR THE PRODUCTION OF GRAVABLE, FILLER-CONTAINING RUBBER POWDER
JP3876610B2 (en) * 2000-01-19 2007-02-07 王子製紙株式会社 Silica fine particle dispersion and production method thereof
JP4493320B2 (en) * 2002-12-12 2010-06-30 日揮触媒化成株式会社 Method for producing silica sol and silica sol
JP5594556B2 (en) * 2007-08-28 2014-09-24 住友ゴム工業株式会社 Method for producing masterbatch and rubber composition
JP2011256373A (en) * 2010-05-11 2011-12-22 Sumitomo Rubber Ind Ltd Composite and method of manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135742A (en) * 1997-07-10 1999-02-09 Bayer Ag Production of filled rubber mixture
JPH11209523A (en) * 1998-01-21 1999-08-03 Denki Kagaku Kogyo Kk Chloroprene latex composition and adhesive composition
JPH11323028A (en) * 1998-04-24 1999-11-26 Bayer Ag Mixture of rubber with activated and hydrophobic oxide and siliceous filler and its production
JP2000178381A (en) * 1998-12-18 2000-06-27 Pku Pulverkautschuk Union Gmbh Fine rubber powder, its production, and its use
JP2005528495A (en) * 2002-06-04 2005-09-22 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Aqueous adhesive dispersion
WO2005049725A1 (en) * 2003-11-21 2005-06-02 Zeon Corporation Dip forming composition and dip formed article
JP2005154235A (en) * 2003-11-28 2005-06-16 Oji Paper Co Ltd Silica minute particle dispersion and its manufacturing method
JP2006213791A (en) * 2005-02-02 2006-08-17 Bridgestone Corp Zinc flower-containing wet masterbatch, method for producing the same, and rubber composition and tire each using the same
JP2007231104A (en) * 2006-02-28 2007-09-13 Yokohama Rubber Co Ltd:The Rubber composition
WO2008139762A1 (en) * 2007-05-15 2008-11-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire
JP2009073886A (en) * 2007-09-19 2009-04-09 Sumitomo Rubber Ind Ltd Rubber composition for racing tire and racing tire with tread obtained using the same
JP2012153763A (en) * 2011-01-24 2012-08-16 Sumitomo Rubber Ind Ltd Composite and method of manufacturing the same, rubber composition, and pneumatic tire

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627039A (en) * 2013-10-17 2014-03-12 张莉娜 Preparation method of nano MgO/polymer composite master rubber
WO2016125503A1 (en) * 2015-02-05 2016-08-11 株式会社ブリヂストン Rubber composition and method for manufacturing same, crosslinked rubber composition, and tire
CN107250245A (en) * 2015-02-05 2017-10-13 株式会社普利司通 Rubber composition and its manufacture method, crosslinked rubber composition and tire
JPWO2016125503A1 (en) * 2015-02-05 2017-11-16 株式会社ブリヂストン Rubber composition and method for producing the same, crosslinked rubber composition, and tire
US10336138B2 (en) 2015-02-05 2019-07-02 Bridgestone Corporation Rubber composition and method for producing same, crosslinked rubber composition, and tire
CN111247098A (en) * 2017-10-27 2020-06-05 株式会社普利司通 Silica-based nanomaterials as a substitute for ZnO in rubber compounds and their preparation
JP2021500458A (en) * 2017-10-27 2021-01-07 株式会社ブリヂストン Silica-based nanomaterials as an alternative to ZnO in rubber formulations and their preparation
JP7024074B2 (en) 2017-10-27 2022-02-22 株式会社ブリヂストン Silica-based nanomaterials as an alternative to ZnO in rubber formulations and their preparation
JP2022027843A (en) * 2017-10-31 2022-02-14 株式会社ブリヂストン Rubber vulcanization processes employing eutectic mixture
JP2019108451A (en) * 2017-12-18 2019-07-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
JP2019108450A (en) * 2017-12-18 2019-07-04 住友ゴム工業株式会社 Rubber composition for tire, and pneumatic tire
JP7043828B2 (en) 2017-12-18 2022-03-30 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires
JP7069688B2 (en) 2017-12-18 2022-05-18 住友ゴム工業株式会社 Rubber composition for tires and pneumatic tires
CN110218375A (en) * 2018-03-02 2019-09-10 中国石油化工股份有限公司 Butadiene-styrene rubber/Nano carbon white composite material, vulcanizate and its preparation method and application
CN110218366A (en) * 2018-03-02 2019-09-10 中国石油化工股份有限公司 Isoprene rubber/Nano carbon white composite material, vulcanizate and its preparation method and application

Also Published As

Publication number Publication date
JP2015193845A (en) 2015-11-05
JP6091549B2 (en) 2017-03-08
JP2017066420A (en) 2017-04-06
JP6526072B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6091549B2 (en) Composite and production method thereof
JP5639121B2 (en) Rubber composition for tire and pneumatic tire
JP5394993B2 (en) COMPOSITE MANUFACTURING METHOD, RUBBER COMPOSITION, AND PNEUMATIC TIRE
EP2341099A1 (en) Rubber composition for tire and studless tire
JP2011153221A (en) Rubber composition for sidewall, insulation or breaker cushion, method of producing the same, and pneumatic tire
JP5997283B2 (en) Silica / styrene butadiene rubber composite, method for producing the same, rubber composition, and pneumatic tire
JP5524810B2 (en) Composite, production method thereof, rubber composition and pneumatic tire
JP2013035902A (en) Rubber composition for tire and studless tire
JP5670768B2 (en) Composite, production method thereof, rubber composition and pneumatic tire
EP2754689B1 (en) Composite and method for producing the same, rubber composition, and pneumatic tire
JP5860661B2 (en) Method for producing silica and rubber composition for tire
JP5443453B2 (en) Manufacturing method of composite, composite, rubber composition, and pneumatic tire
JP5860660B2 (en) Silica / natural rubber composite and production method thereof, rubber composition and pneumatic tire
JP2011079912A (en) Composite, rubber composition and pneumatic tire
JP5654409B2 (en) Rubber composition for tire and pneumatic tire
JP5480585B2 (en) Composite, rubber composition and pneumatic tire
JP5702217B2 (en) Rubber composition for tire and pneumatic tire
JP5519306B2 (en) Method for producing rubber / silica composite and rubber / silica composite
JP6068910B2 (en) Silica / styrene butadiene rubber composite, method for producing the same, rubber composition and pneumatic tire
JP5829473B2 (en) Method for producing silica and rubber composition
JP2019167410A (en) Rubber composition for tire
JP3410984B2 (en) Rubber composition
WO2018079312A1 (en) Rubber composition for tire, and pneumatic tire
JP5758195B2 (en) Silica-containing rubber masterbatch and method for producing the same
JP4983206B2 (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331