JP2011252182A - Surface treated steel sheet and method for manufacturing the same - Google Patents
Surface treated steel sheet and method for manufacturing the same Download PDFInfo
- Publication number
- JP2011252182A JP2011252182A JP2010124622A JP2010124622A JP2011252182A JP 2011252182 A JP2011252182 A JP 2011252182A JP 2010124622 A JP2010124622 A JP 2010124622A JP 2010124622 A JP2010124622 A JP 2010124622A JP 2011252182 A JP2011252182 A JP 2011252182A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- alloy
- steel sheet
- plating
- alloy layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
本発明は、家電製品、その他の用途に使用される、美麗で耐食性の優れた表面処理鋼板及びその製造方法に関する。 The present invention relates to a beautiful and corrosion-resistant surface-treated steel sheet used for home appliances and other applications, and a method for producing the same.
鋼板に亜鉛めっきを施し、亜鉛の犠牲防食作用によって鋼板の耐食性を向上させることは、古くから行われてきた。しかし、亜鉛は、鉄に比べて非常に卑な金属であるために、犠牲防食作用を発揮する際、溶解速度が大きく、寿命が短いという欠点があった。そこで、亜鉛めっき鋼板の寿命を延ばす方法として、亜鉛めっきの厚目付化の他、亜鉛と、鉄、ニッケル等との合金めっきが提案されてきた。 It has been practiced for a long time to galvanize a steel sheet and improve the corrosion resistance of the steel sheet by the sacrificial anticorrosive action of zinc. However, since zinc is a very base metal compared to iron, it has the disadvantages of high dissolution rate and short life when exerting sacrificial anticorrosive action. Therefore, as a method for extending the life of the galvanized steel sheet, alloy plating of zinc and iron, nickel, etc. has been proposed in addition to the thickening of the galvanizing.
Zn−Ni合金めっき鋼板は、特に、未塗装耐食性に優れ、更に、塗装後耐食性や加工性にも優れることから、自動車用防錆鋼板等として実用化された。Zn−Ni合金めっき鋼板の性能を更に向上させるために、第3成分添加による多元合金化、及び、複合めっき等の種々の改良方案が開示されている。 Zn-Ni alloy-plated steel sheets have been put to practical use as rust-proof steel sheets for automobiles and the like because they are particularly excellent in unpainted corrosion resistance and also excellent in post-coating corrosion resistance and workability. In order to further improve the performance of the Zn—Ni alloy-plated steel sheet, various improvement methods such as multi-component alloying by adding a third component and composite plating have been disclosed.
例えば、Zn−Ni合金めっき中に、Ti又はTi化合物を含有させるもの(特許文献1)、Al2O3を含有させるもの(特許文献2)等が挙げられる。また、製造方法に関しては、Zn−Ni合金めっきで生じ易い表面の光沢むらを防止するために、めっき浴中にSrSO4を添加する方法(特許文献3)等が開示されている。 For example, a Zn-Ni alloy plating containing Ti or a Ti compound (Patent Literature 1), an Al 2 O 3 containing material (Patent Literature 2) and the like can be mentioned. As for the production method, a method of adding SrSO 4 to the plating bath (Patent Document 3) or the like is disclosed in order to prevent uneven surface gloss that is likely to occur in Zn—Ni alloy plating.
しかし、特許文献1及び2で開示されためっき鋼板は、耐食性の向上に主眼が置かれて開発されたものであって、外観については、特に考慮されておらず、二元系のZn−Ni合金めっき鋼板と同様に、金属光沢のない灰色の外観であって、美麗とは言えない。 However, the plated steel sheets disclosed in Patent Documents 1 and 2 have been developed with an emphasis on improving corrosion resistance, and the external appearance is not particularly considered, and the binary Zn-Ni is not considered. Like the alloy-plated steel sheet, it has a gray appearance with no metallic luster and is not beautiful.
従って、外観を重視する用途に用いるためには、厚塗り塗装等の、隠蔽性が高く、それ自体が意匠性の高い塗膜を施す必要がある。 Therefore, in order to use it for applications in which appearance is important, it is necessary to apply a coating film having high concealment properties such as thick coating and having high design properties.
特許文献3に開示された方法によって得られるめっき鋼板も、金属光沢と言える外観ではない。 The plated steel sheet obtained by the method disclosed in Patent Document 3 also does not have an appearance that can be said to be metallic luster.
特許文献4には、鋼板側から順に、0.05〜10.0g/m2のNiめっき、0.05〜2.8g/m2のSnめっき、更に、0.02〜1.5g/m2のZnめっきを施した後、200〜800℃の加熱処理によって、該めっき層の少なくとも一部を合金化させることで、表層にZn含有率が5〜80質量%、Ni含有率が40質量%以下で、かつ、全量が0.05〜3.0g/m2のSn−Zn二元合金層、又は、Sn−Zn−Ni三元合金層を形成させたことを特徴とした表面処理鋼板の製造方法が開示されている。 In Patent Document 4, 0.05 to 10.0 g / m 2 of Ni plating, 0.05 to 2.8 g / m 2 of Sn plating, and 0.02 to 1.5 g / m in order from the steel plate side. After the Zn plating of 2 is performed, at least a part of the plating layer is alloyed by heat treatment at 200 to 800 ° C., so that the Zn content is 5 to 80 mass% and the Ni content is 40 mass on the surface layer. %, And a total amount of 0.05 to 3.0 g / m 2 of a Sn—Zn binary alloy layer or a Sn—Zn—Ni ternary alloy layer is formed. A manufacturing method is disclosed.
この方法によれば、最表層にSn−Zn合金層、又は、Sn−Zn−Ni合金層が形成されるため、白色半光沢の比較的美麗な外観が得られる。しかし、耐白錆性については、亜鉛めっき鋼板を凌駕するものの、耐赤錆性については、亜鉛めっき鋼板に及ばない。 According to this method, since the Sn—Zn alloy layer or the Sn—Zn—Ni alloy layer is formed on the outermost layer, a relatively beautiful appearance with white semi-gloss can be obtained. However, the white rust resistance surpasses that of the galvanized steel sheet, but the red rust resistance does not reach that of the galvanized steel sheet.
このように、従来提案されている技術では、美麗な金属光沢外観と、耐白錆性及び耐赤錆性を満足するめっき鋼板は得られていない。 Thus, with the conventionally proposed technology, a plated steel sheet satisfying a beautiful metallic luster appearance, white rust resistance and red rust resistance has not been obtained.
本発明は、上記実情に鑑み、美麗で耐食性の優れた表面処理鋼板及びその製造方法を提供することを目的とする。 An object of this invention is to provide the surface treatment steel plate which was beautiful and excellent in corrosion resistance, and its manufacturing method in view of the said situation.
本発明者らは、上記の課題に対して鋭意検討し、美麗で耐食性の優れた表面処理鋼板及びその製造方法を構築して、本発明に至った。 The inventors of the present invention diligently studied the above-mentioned problems, constructed a surface-treated steel sheet having a beautiful and excellent corrosion resistance and a method for producing the same, and arrived at the present invention.
本発明の主旨は、次のとおりである。 The gist of the present invention is as follows.
(1)鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、Sn層、Sn−Zn合金層からなる表面処理層、又は、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、SnとSn−Zn合金の混合層のからなる表面処理層を有する鋼板であって、該表面処理層中の全Zn量が7〜20g/m2であり、かつ、全Zn量と全Ni量の質量比Zn/Niが4〜10であることを特徴とする表面処理鋼板。 (1) In order from the steel plate side, a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, a Sn layer, a surface treatment layer comprising a Sn—Zn alloy layer, or a Zn—Ni alloy layer, Sn in this order from the steel plate side A steel plate having a surface treatment layer comprising a Zn—Ni alloy layer, a mixed layer of Sn and Sn—Zn alloy, wherein the total Zn content in the surface treatment layer is 7 to 20 g / m 2 , and A surface-treated steel sheet, wherein the mass ratio Zn / Ni between the total Zn content and the total Ni content is 4 to 10.
(2)前記表面処理層中の全Sn量が0.5〜5.6g/m2であることを特徴とする前記(1)に記載の表面処理鋼板。 (2) The surface-treated steel sheet according to (1), wherein the total amount of Sn in the surface-treated layer is 0.5 to 5.6 g / m 2 .
(3)前記表面処理層上に有機化合物を主体とする塗膜を有することを特徴とする前記(1)又は(2)に記載の表面処理鋼板。 (3) The surface-treated steel sheet according to (1) or (2), wherein the surface-treated steel sheet has a coating film mainly composed of an organic compound on the surface-treated layer.
(4)鋼板に、電気Zn−Ni合金めっき、次いで、電気Snめっきを行った後、該めっき後の鋼板を加熱し、Snめっき層の溶融処理と同時に、Zn−Ni合金めっき層とSnめっき層との合金化処理を施し、めっき層を鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、Sn層、Sn−Zn合金層となる積層構造、又は、めっき層を鋼板側から順にZn−Ni合金層、Sn−Zn−Ni合金層、SnとSn−Zn合金の混合層となる積層構造を形成することを特徴とする表面処理鋼板の製造方法。 (4) After carrying out electric Zn-Ni alloy plating and then electric Sn plating on the steel plate, the steel plate after the plating is heated, and simultaneously with the melting treatment of the Sn plating layer, the Zn-Ni alloy plating layer and the Sn plating are performed. A layered structure that becomes a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, a Sn layer, a Sn—Zn alloy layer, or a plating layer as a steel plate A method for producing a surface-treated steel sheet, comprising forming a laminated structure that sequentially becomes a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, and a mixed layer of Sn and Sn—Zn alloy from the side.
(5)前記合金化処理を施した後、得られた表面処理層の上に、有機化合物を主成分とするコーティング剤を塗布、焼き付けて塗膜を形成することを特徴とする前記(4)に記載の表面処理鋼板の製造方法。 (5) The coating film is formed by applying and baking a coating agent mainly composed of an organic compound on the surface treatment layer obtained after the alloying treatment (4) A method for producing a surface-treated steel sheet according to claim 1.
本発明によれば、美麗な外観と良好な耐食性を具備した表面処理鋼板及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a surface-treated steel sheet having a beautiful appearance and good corrosion resistance and a method for producing the same.
本発明の表面処理を施す鋼板は、特に限定されるものではなく、用途によって、適切な鋼種、厚さ、硬度、表面粗さの鋼板を選択すればよい。 The steel plate subjected to the surface treatment of the present invention is not particularly limited, and a steel plate having an appropriate steel type, thickness, hardness, and surface roughness may be selected depending on the application.
鋼板の表面には、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、Sn層、Sn−Zn合金層からなる表面処理層、又は、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、SnとSn−Zn合金の混合層からなる表面処理層を有することが必要である。 On the surface of the steel sheet, in order from the steel sheet side, a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, a Sn layer, a surface treatment layer comprising a Sn—Zn alloy layer, or a Zn—Ni alloy in order from the steel sheet side. It is necessary to have a surface treatment layer composed of a layer, a Sn—Zn—Ni alloy layer, and a mixed layer of Sn and Sn—Zn alloy.
このような層構造は、めっき層断面の元素分布を、EPMAなど公知の手段により分析することで確認できるが、グロー放電発光分光分析(GDS)を用いても、簡便に確認することができる。 Such a layer structure can be confirmed by analyzing the element distribution in the cross section of the plating layer by a known means such as EPMA, but it can also be easily confirmed by using glow discharge emission spectroscopy (GDS).
本発明の表面処理鋼板における、それぞれの層の担う役割は、以下の通りである。 The role which each layer plays in the surface-treated steel sheet of the present invention is as follows.
最下層のZn−Ni合金層は、鋼板に対する犠牲防食作用を有し、赤錆発生を長期にわたって抑制する。Zn−Ni合金層の好ましい厚み範囲は1.0〜3.5μmであり、Niが9〜20質量%であることが望ましい。 The lowermost Zn—Ni alloy layer has a sacrificial anticorrosive action on the steel sheet and suppresses the occurrence of red rust over a long period of time. A preferable thickness range of the Zn—Ni alloy layer is 1.0 to 3.5 μm, and Ni is desirably 9 to 20 mass%.
Sn−Zn−Ni合金層は、Zn−Ni合金層の腐食促進を緩和する。これは、Sn層とZn−Ni合金層が直接接すると、電位差が大きくて、相対的に卑なZn−Ni合金層の腐食が促進してしまうので、Sn層とZn−Ni合金層の中間の電位を有するSn−Zn−Ni合金層でZn−Ni合金層を覆い、その上層に、Sn層を設けて、Zn−Ni合金層の腐食促進を緩和する。 The Sn—Zn—Ni alloy layer relaxes the corrosion promotion of the Zn—Ni alloy layer. This is because when the Sn layer and the Zn—Ni alloy layer are in direct contact with each other, the potential difference is large and the corrosion of the relatively base Zn—Ni alloy layer is promoted. The Sn—Zn—Ni alloy layer having the following potential is covered with the Zn—Ni alloy layer, and an Sn layer is provided thereon to mitigate the promotion of corrosion of the Zn—Ni alloy layer.
Sn−Zn−Ni合金層の好ましい厚みは、0.05〜1.8μmであり、Sn:20〜40質量%、Zn:40〜75質量%、Ni:5〜20質量%が好ましい。 The preferable thickness of the Sn—Zn—Ni alloy layer is 0.05 to 1.8 μm, and Sn: 20 to 40% by mass, Zn: 40 to 75% by mass, and Ni: 5 to 20% by mass are preferable.
Sn−Zn−Ni合金層の上層として形成するSn層により、優れたバリヤー効果が得られ、該効果による耐食性と美麗な外観が発現する。Sn層は、酸性浴からの電気めっきをしたままでは、光沢の少ない白色外観であるが、加熱溶融処理を施して表面を平滑化すると、優れた金属光沢外観を呈する。 The Sn layer formed as the upper layer of the Sn—Zn—Ni alloy layer provides an excellent barrier effect, and exhibits corrosion resistance and a beautiful appearance due to the effect. The Sn layer has a white appearance with less gloss when electroplated from an acidic bath, but exhibits an excellent metallic luster appearance when the surface is smoothed by heating and melting treatment.
上層に設けるSn−Zn合金層は、白色半光沢外観であり、これら二層によって、美麗な白色光沢外観の表面処理鋼板となる。 The Sn—Zn alloy layer provided in the upper layer has a white semi-gloss appearance, and these two layers form a surface-treated steel sheet having a beautiful white gloss appearance.
Sn層の厚みは0.006〜0.8μm、Sn−Zn合金層の厚みは0.03〜0.1μmであることが好ましい。Sn−Zn合金層中のZnは5〜30質量%が好ましい。Sn−Zn合金層は、厚すぎると、光沢不良の原因になり得るが、後述の製造方法で製造する限り、この層を厚く生成させることは困難である。 The thickness of the Sn layer is preferably 0.006 to 0.8 μm, and the thickness of the Sn—Zn alloy layer is preferably 0.03 to 0.1 μm. Zn in the Sn—Zn alloy layer is preferably 5 to 30% by mass. If the Sn—Zn alloy layer is too thick, it may cause poor gloss, but it is difficult to produce a thick layer as long as it is produced by the production method described later.
Sn層の上層に形成されるSn−Zn合金層は、Sn層に対する犠牲防食能を有することで、Snの耐食性を向上させるとともに、塩化物環境でも白錆発生が少ないという作用効果を奏する。 The Sn—Zn alloy layer formed on the upper layer of the Sn layer has the sacrificial anticorrosive ability for the Sn layer, thereby improving the corrosion resistance of Sn and producing the effect of generating less white rust even in a chloride environment.
このように、鋼板の表面に、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、Sn層、Sn−Zn合金層からなる表面処理層を有することで、美麗で耐食性に優れる鋼板となる。 Thus, it has beautiful and corrosion resistance by having the surface treatment layer which consists of a Zn-Ni alloy layer, a Sn-Zn-Ni alloy layer, a Sn layer, and a Sn-Zn alloy layer in order from the steel plate side on the surface of a steel plate. Excellent steel sheet.
また、表面処理層が、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、SnとSn−Zn合金の混合層のからなる場合も、最下層のZn−Ni合金層は、鋼板に対する犠牲防食作用を有し、赤錆発生を長期にわたって抑制する。Zn−Ni合金層の好ましい厚みは1.0〜3.5μmであり、Niは、9〜20質量%であることが望ましい。 Further, when the surface treatment layer is composed of a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, and a mixed layer of Sn and Sn—Zn alloy in this order from the steel plate side, the lowest Zn—Ni alloy layer is It has a sacrificial anticorrosive action on steel plates and suppresses the occurrence of red rust over a long period of time. The preferable thickness of the Zn—Ni alloy layer is 1.0 to 3.5 μm, and Ni is desirably 9 to 20% by mass.
Sn−Zn−Ni合金層は、Zn−Ni合金層の腐食促進を緩和する。これは、SnとSn−Zn合金の混合層とZn−Ni合金層が直接接すると、相対的に電位の卑なZn−Ni合金層の腐食が促進してしまうので、SnとSn−Zn合金の混合層とZn−Ni合金層の中間の電位を有するSn−Zn−Ni合金層でZn−Ni合金層を覆い、その上層に、SnとSn−Zn合金の混合層を設けることで、Zn−Ni合金層の腐食促進を緩和する。 The Sn—Zn—Ni alloy layer relaxes the corrosion promotion of the Zn—Ni alloy layer. This is because, when the mixed layer of Sn and Sn—Zn alloy and the Zn—Ni alloy layer are in direct contact with each other, the corrosion of the relatively low potential Zn—Ni alloy layer is promoted. By covering the Zn-Ni alloy layer with a Sn-Zn-Ni alloy layer having an intermediate potential between the mixed layer of Zn and the Zn-Ni alloy layer, and providing a mixed layer of Sn and Sn-Zn alloy thereon, Zn -Mitigates corrosion promotion of Ni alloy layer.
Sn−Zn−Ni合金層の好ましい厚みは、0.05〜1.8μmであり、Sn:20〜40質量%、Zn:40〜75質量%、Ni:5〜20質量%が好ましい。 The preferable thickness of the Sn—Zn—Ni alloy layer is 0.05 to 1.8 μm, and Sn: 20 to 40% by mass, Zn: 40 to 75% by mass, and Ni: 5 to 20% by mass are preferable.
Sn−Zn−Ni合金層の上層として形成されるSnとSn−Zn合金の混合層により、優れたバリヤー効果による耐食性と美麗な白色光沢外観が発現する。 The mixed layer of Sn and Sn—Zn alloy formed as the upper layer of the Sn—Zn—Ni alloy layer exhibits corrosion resistance due to an excellent barrier effect and a beautiful white gloss appearance.
SnとSn−Zn合金の混合層の厚みは、0.04〜0.9μmが好ましい。Sn−Zn合金層中のZnは、2〜15質量%が好ましい。 The thickness of the mixed layer of Sn and Sn—Zn alloy is preferably 0.04 to 0.9 μm. 2-15 mass% is preferable for Zn in the Sn-Zn alloy layer.
SnとSn−Zn合金の混合層は、ZnやZn−Ni合金と比べて、塩化物環境でも白錆発生が少ないという作用効果を奏する。 The mixed layer of Sn and Sn—Zn alloy has the effect of generating less white rust even in a chloride environment as compared with Zn or Zn—Ni alloy.
このように、鋼板の表面に、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、SnとSn−Zn合金の混合層からなる表面処理層を有することで、美麗で耐食性に優れる鋼板となる。 In this way, the surface of the steel sheet has, in order from the steel sheet side, a surface treatment layer composed of a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, and a mixed layer of Sn and Sn—Zn alloy. It becomes a steel plate with excellent resistance.
表面処理層中の全Zn量が、7〜20g/m2であり、かつ、全Zn量と全Ni量の質量比Zn/Niが、4〜10であることが必要である。 The total Zn amount in the surface treatment layer is 7 to 20 g / m 2 , and the mass ratio Zn / Ni between the total Zn amount and the total Ni amount needs to be 4 to 10.
全Zn量が7g/m2より少ないと、鋼板に対する犠牲防食作用が不十分であり、腐食環境によっては、短期間で赤錆が発生してしまう。一方、20g/m2を超える全Zn量は、考え得る使用環境における耐食性の確保のためには過剰であるとともに、過剰なZnは、外観の劣化をもたらす。 If the total Zn content is less than 7 g / m 2 , the sacrificial anticorrosive action on the steel sheet is insufficient, and depending on the corrosive environment, red rust will occur in a short period of time. On the other hand, the total Zn amount exceeding 20 g / m 2 is excessive for ensuring corrosion resistance in a conceivable use environment, and excessive Zn causes deterioration in appearance.
全Zn量と全Ni量の質量比Zn/Niが4より小さいZn−Ni合金めっき鋼板を得るのは困難であり、また、得られるめっき外観もめっき焼け状の褐色ないし黒色の外観となってしまうので、上層にSn層、Sn−Zn合金層が存在しても、光沢のある外観は得難い。 It is difficult to obtain a Zn-Ni alloy-plated steel sheet having a mass ratio Zn / Ni of less than 4 of the total Zn content and the total Ni content. Therefore, even if a Sn layer and a Sn—Zn alloy layer are present in the upper layer, it is difficult to obtain a glossy appearance.
一方、全Zn量と全Ni量の質量比Zn/Niが10を超える場合、この層は、実質的にZn層と同等の挙動を示し、酸性Snめっき浴への溶解が速く、溶解量が大きいので、所定の付着量を有し、良好な外観を有する表面処理鋼板が得られない。 On the other hand, when the mass ratio Zn / Ni between the total Zn amount and the total Ni amount exceeds 10, this layer exhibits substantially the same behavior as the Zn layer, and is rapidly dissolved in the acidic Sn plating bath. Since it is large, a surface-treated steel sheet having a predetermined adhesion amount and a good appearance cannot be obtained.
表面処理層中の全Sn量は、0.5〜5.6g/m2が望ましい。0.5g/m2より少ないと、Sn及びSn−Zn特有の美麗な光沢外観を得ることが困難である。一方、全Sn量が5.6g/m2を超えると、製造コストが増大するばかりで、外観の向上は認められず、むしろ、Sn−Zn合金層が厚くなりすぎる恐れがある。その場合は、光沢が不十分な白色外観になってしまう。 The total amount of Sn in the surface treatment layer is preferably 0.5 to 5.6 g / m 2 . When it is less than 0.5 g / m 2, it is difficult to obtain a beautiful gloss appearance peculiar to Sn and Sn—Zn. On the other hand, when the total Sn amount exceeds 5.6 g / m 2 , the production cost is increased, and the appearance is not improved, but the Sn—Zn alloy layer may be too thick. In that case, a white appearance with insufficient gloss is obtained.
前述の表面処理鋼板の表面には、無機化合物又は有機化合物の少なくとも1種からなる皮膜を有してもよい。塗料密着性、導電性等、必要とされる特性に適した処理層を付与すればよい。 The surface of the surface-treated steel sheet may have a film made of at least one of an inorganic compound and an organic compound. What is necessary is just to provide the processing layer suitable for the required characteristics, such as paint adhesiveness and electroconductivity.
本発明のめっき鋼板は、前述した必須要件を満足するものであれば、その製造方法を限定する必要はない。例えば、蒸着めっき等の手段により、所定の成分となるめっき層を積層する、又は、蒸着めっき、電気めっき等、公知のめっき方法を組み合わせて、所定の成分となるめっき層を積層するなどの方法で製造することが可能である。 If the plated steel plate of this invention satisfies the essential requirements mentioned above, it is not necessary to limit the manufacturing method. For example, a method of laminating a plating layer which becomes a predetermined component by means such as vapor deposition plating, or a method of laminating a plating layer which becomes a predetermined component by combining known plating methods such as vapor deposition plating and electroplating It is possible to manufacture with.
しかし、これらの方法では大掛かりな設備投資が必要であり、製造設備以外にも、生産性、コスト等を勘案すると、実用的とは言えない。本発明で提案した方法によれば、大きな設備投資の必要はなく、簡便かつ低コストで製造することが可能となる。 However, these methods require large-scale capital investment, and are not practical considering productivity, cost, etc. in addition to manufacturing equipment. According to the method proposed in the present invention, it is not necessary to make a large capital investment, and it is possible to manufacture the device easily and at low cost.
次に、本発明の外観と耐食性に優れた表面処理鋼板を製造する方法について説明する。 Next, a method for producing a surface-treated steel sheet having excellent appearance and corrosion resistance according to the present invention will be described.
まず、鋼板に、電気Zn−Ni合金めっき、次いで、電気Snめっきを施す。その後、鋼板を加熱して、Snを溶融するが、この時、同時に合金化が進行し、最表面にSn−Zn層が生成し、Sn層の下層にSn−Zn−Ni合金層が形成されるか、又は、最表面にSnとSn−Znの混合層が生成し、その下層にSn−Zn−Ni合金層が形成される。 First, an electrical Zn—Ni alloy plating and then an electrical Sn plating are applied to the steel plate. Thereafter, the steel plate is heated to melt Sn. At this time, alloying proceeds simultaneously, an Sn—Zn layer is formed on the outermost surface, and an Sn—Zn—Ni alloy layer is formed below the Sn layer. Alternatively, a mixed layer of Sn and Sn—Zn is formed on the outermost surface, and a Sn—Zn—Ni alloy layer is formed in the lower layer.
電気Zn−Ni合金めっきは、Zn(II)イオン、Ni(II)イオン、硫酸を主たる成分とする硫酸酸性めっき浴からの電解による方法で得られる。液の電導度を高めるため、硫酸ナトリウム等を加えてもよい。Zn(II)0.1〜0.5mol/L、Ni(II)0.3〜1.0mol/L、硫酸0.15〜0.4mol/Lが、良好な電気Zn−Ni合金めっきを得やすい濃度範囲である。めっき液温度は40〜65℃が好ましい。 The electric Zn—Ni alloy plating is obtained by a method of electrolysis from a sulfuric acid acidic plating bath containing Zn (II) ions, Ni (II) ions, and sulfuric acid as main components. Sodium sulfate or the like may be added to increase the conductivity of the liquid. Zn (II) 0.1-0.5 mol / L, Ni (II) 0.3-1.0 mol / L, sulfuric acid 0.15-0.4 mol / L provide good electrical Zn-Ni alloy plating Easy concentration range. The plating solution temperature is preferably 40 to 65 ° C.
上記のめっき液を用い、循環セルで陰極電流密度100〜300A/dm2で、好ましいZn−Niめっきが得られる。めっき量は、電解時間を変えることで調整できる。Zn−Niめっき中のZn量は、7〜20g/m2であり、かつ、Niは、9〜20質量%である。Ni量は、7〜20g/m2が好ましい。 A preferable Zn—Ni plating can be obtained at a cathode current density of 100 to 300 A / dm 2 in a circulation cell using the above plating solution. The amount of plating can be adjusted by changing the electrolysis time. The Zn amount in the Zn—Ni plating is 7 to 20 g / m 2 , and Ni is 9 to 20% by mass. The amount of Ni is preferably 7 to 20 g / m2.
電気Snめっきは、硫酸浴やフェノールスルホン酸浴を代表とする酸性浴で行うのが、良好なSnめっき層を得るうえで好ましい。例えば、Sn(II)0.17mol/L、フェノールスルホン酸0.35mol/L、及び、有機添加剤を含む酸性めっき浴からの電解による方法で得られる。 The electric Sn plating is preferably performed in an acid bath typified by a sulfuric acid bath or a phenolsulfonic acid bath in order to obtain a good Sn plating layer. For example, it is obtained by a method by electrolysis from an acidic plating bath containing Sn (II) 0.17 mol / L, phenolsulfonic acid 0.35 mol / L, and an organic additive.
ただし、Zn−Ni合金めっきを施された鋼板が、酸性Snめっき浴に浸漬されると、速やかにZn−Ni合金層の溶解が起こるので、酸性浴に浸漬すると同時に電解が始まるように、アノードをめっき槽入側に配置するのがよい。 However, when a steel sheet plated with Zn—Ni alloy is immersed in an acidic Sn plating bath, the Zn—Ni alloy layer dissolves quickly. It is good to arrange | position to a plating tank entrance side.
Snめっき付着量は、0.5〜5.6g/m2が好ましく、通電量で制御すればよい。0.5g/m2未満では、めっき量の低下とともに、光沢、色調が優れなくなる傾向がある。また、5.6g/m2を超えても、特に改善される性能はなく、経済的な理由から、避けた方がよい。 The Sn plating adhesion amount is preferably 0.5 to 5.6 g / m 2 and may be controlled by the energization amount. If it is less than 0.5 g / m < 2 >, there exists a tendency for glossiness and a color tone to become excellent with the fall of the amount of plating. Moreover, even if it exceeds 5.6 g / m 2 , there is no particularly improved performance, and it is better to avoid it for economic reasons.
Snの加熱溶融は、通電加熱、誘導加熱、赤外線加熱、熱風加熱等、又は、それらを組み合わせるなどの任意の方法で行うことができる。鋼板の到達温度は240〜260℃が好ましい。この温度範囲が、最も良好な結果をもたらす。 The heating and melting of Sn can be performed by any method such as electric heating, induction heating, infrared heating, hot air heating, or a combination thereof. As for the ultimate temperature of a steel plate, 240-260 degreeC is preferable. This temperature range gives the best results.
Snの加熱溶融直後に、鋼板を水冷するが、水冷直前の錫の溶融状態によって、表面の層構造に違いが生ずる。即ち、Snが溶融状態のまま水冷すると、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、Sn層、Sn−Zn合金層からなる表面処理層が形成され、凝固又は半凝固の状態で水冷すると、鋼板側から順に、Zn−Ni合金層、Sn−Zn−Ni合金層、SnとSn−Zn合金の混合層が形成される。 Immediately after Sn is melted by heating, the steel sheet is water-cooled, but the surface layer structure varies depending on the molten state of tin immediately before water-cooling. That is, when water is cooled in the molten state, a surface treatment layer composed of a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, a Sn layer, and a Sn—Zn alloy layer is formed in this order from the steel plate side. When water-cooled in a solidified state, a Zn—Ni alloy layer, a Sn—Zn—Ni alloy layer, and a mixed layer of Sn and Sn—Zn alloy are formed in this order from the steel plate side.
前述のめっき、加熱処理を施した後、有機化合物を主成分とするコーティング剤を塗布、焼き付けて、塗膜を形成すれば、塩水などの水系腐食液から鋼板の腐食を、よりよく防ぐことができる。例として、水性ポリウレタン樹脂、架橋剤、無機防錆剤を配合して、塗料用分散機を用いて攪拌して調整したコーティング剤をロールコーターで塗布し、熱風乾燥することで、目的に合った塗膜を得ることができる。 After applying the above-mentioned plating and heat treatment, if coating film is formed by applying and baking a coating agent mainly composed of organic compounds, corrosion of steel sheet can be better prevented from aqueous corrosive liquid such as salt water. it can. As an example, a water-based polyurethane resin, a crosslinking agent, and an inorganic rust preventive agent are blended, and a coating agent prepared by stirring using a paint disperser is applied with a roll coater and dried with hot air to meet the purpose. A coating film can be obtained.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
厚さ0.8mmの冷延鋼帯(SPCC)を、通常の方法で、浸漬アルカリ脱脂、希硫酸酸洗し、その後、以下に示す表面処理を施した。 A cold-rolled steel strip (SPCC) having a thickness of 0.8 mm was subjected to immersion alkali degreasing and dilute sulfuric acid pickling in the usual manner, and then subjected to the following surface treatment.
Zn−Ni合金めっき:Zn2+を0.1〜0.5mol/L、Ni2+を0.3〜1.0mol/L、Na+を1.4mol/Lを含む60℃の硫酸酸性めっき浴を用い、横型電解セルで鋼帯とめっき液の相対流速を200m/分にして、陰極電流密度100〜300A/dm2で電解処理を施した。陽極には、白金めっきしたチタンを用いた。 Zn—Ni alloy plating: 60 ° C. sulfuric acid acid plating containing 0.1 to 0.5 mol / L of Zn 2+ , 0.3 to 1.0 mol / L of Ni 2+ and 1.4 mol / L of Na + Using a bath, the electrolytic treatment was performed at a cathode current density of 100 to 300 A / dm 2 at a relative flow rate of the steel strip and the plating solution of 200 m / min in a horizontal electrolytic cell. As the anode, platinum-plated titanium was used.
Snめっき:Sn2+を0.17mol/L、フェノールスルホン酸イオンを0.35mol/L、及び、適量の界面活性剤を含む43℃のフェロスタン浴を用いて、陰極電流密度20A/dm2で陰極電解した。陽極には、白金めっきしたチタンを用いた。Snめっきの付着量は、電解時間で調節した。 Sn plating: Sn 2+ 0.17 mol / L, phenol sulfonate ion 0.35 mol / L, and using a ferrostan bath at 43 ° C. containing an appropriate amount of surfactant at a cathode current density of 20 A / dm 2 Cathodic electrolysis. As the anode, platinum-plated titanium was used. The adhesion amount of Sn plating was adjusted by electrolysis time.
Snめっき後は、水、又は、Snめっき液を10倍希釈した溶液に浸漬し、ゴムロールで液切りをした後、冷風で乾燥し、通電加熱によって、6秒間で250℃まで昇温させて、Snを溶融し、通電を停止した1秒後、又は、0.2秒後に、80℃の水でクエンチした。 After Sn plating, it is immersed in water or a solution obtained by diluting the Sn plating solution 10 times, drained with a rubber roll, dried with cold air, heated to 250 ° C. for 6 seconds by electric heating, Sn was melted and quenched with water at 80 ° C. after 1 second or 0.2 second after stopping energization.
一部のサンプルには、次に記載の塗膜の被覆を施してから、評価試験に供した。 Some samples were subjected to an evaluation test after being coated with the coating film described below.
表面処理塗膜層を形成するためのコーティング剤は、ビスフェノールA型ジオール、ネオペンチルグリコール及びイソフタル酸から得られるポリエステルジオール、2,2ジメチロールプロピオン酸及びイソホロンジイソシアネートを反応させた後、トリエチルアミンで中和し水分散化して調製した水性ポリウレタン樹脂を74質量%、架橋剤としてジブトキシビス(トリエタノールアミナト)チタンを5質量%、無機防錆剤としてコロイダルシリカ(日産化学工業社製スノーテックスN)を20質量%とりん酸水素二アンモニウムを1質量%配合し、塗料用分散機を用いて攪拌することで調製した。 The coating agent for forming the surface-treated coating layer was prepared by reacting polyester diol obtained from bisphenol A-type diol, neopentyl glycol and isophthalic acid, 2,2 dimethylolpropionic acid and isophorone diisocyanate, and then adding it with triethylamine. 74% by mass of an aqueous polyurethane resin prepared by mixing and dispersing in water, 5% by mass of dibutoxybis (triethanolaminato) titanium as a crosslinking agent, and colloidal silica (Snowtex N manufactured by Nissan Chemical Industries, Ltd.) as an inorganic rust inhibitor It was prepared by blending 20% by mass and 1% by mass of diammonium hydrogen phosphate and stirring the mixture using a paint disperser.
これを、ロールコーターにより塗布し、到達板温度が150℃になるように加熱乾燥し、すぐに水冷し、その後、温風を吹きつけて乾燥した。乾燥後の塗膜厚みが1.0μmとなるようにした。 This was applied by a roll coater, heated and dried so that the ultimate plate temperature was 150 ° C., immediately cooled with water, and then dried by blowing warm air. The coating thickness after drying was adjusted to 1.0 μm.
以上の方法で作製した表面処理鋼板を、次に示す(A)、(B)、及び、(C)の評価テストに供し、特性を比較した。 The surface-treated steel sheet produced by the above method was subjected to the following evaluation tests (A), (B), and (C), and the characteristics were compared.
(A)表面処理層の構造
Zn、Ni、及び、Snの付着量は、蛍光X線強度から、予め作成した検量線を使って算出した。また、めっき層の層構造は、グロー放電発光分光分析(GDS)によって確認した。GDSのチャートにおいて、最表面のSnとZnの現れる層をSn−Zn層、次に、Snのみが現れる層をSn層、次に、Sn、Zn、及び、Niが現れる層をSn−Zn−Ni層、そして、Snがなくなり、ZnとNiのみが現れる層をZn−Ni層とした。
(A) Structure of surface treatment layer The adhesion amounts of Zn, Ni, and Sn were calculated from the fluorescent X-ray intensity using a calibration curve prepared in advance. The layer structure of the plating layer was confirmed by glow discharge emission spectroscopy (GDS). In the GDS chart, the Sn-Zn layer is the surface layer where Sn and Zn appear on the outermost surface, the Sn layer is the layer where only Sn appears, and the Sn-Zn-layer is the layer where Sn, Zn and Ni appear next. The Ni layer and the layer in which Sn disappears and only Zn and Ni appear are Zn-Ni layers.
それぞれの層の厚みは、次のようにして求めた。GDS測定によって、エッチングされた部分の深さを触針式の粗度計で測定し、これと測定時間とから、時間と深さの関係を予め求めておき、各層のエッチングにかかる時間を厚みに換算した。また、有機化合物を主体とする塗膜の厚みを、Siの蛍光X線強度から、予め作成した検量線を使って算出した。 The thickness of each layer was determined as follows. The depth of the etched portion is measured with a stylus type roughness meter by GDS measurement, and the relationship between time and depth is obtained in advance from this and the measurement time. Converted into Moreover, the thickness of the coating film mainly composed of an organic compound was calculated from the fluorescent X-ray intensity of Si using a calibration curve prepared in advance.
(B)外観
塗膜被覆処理前及び処理後の表面処理鋼板の外観を、以下の方法で評価した。
(B) Appearance The appearance of the surface-treated steel sheet before and after the coating coating treatment was evaluated by the following method.
(B)−1(光沢)
鋼帯の長手方向の60°鏡面光沢度(Gs60°)を測定した。Gs60°は、300以上を◎、150以上300未満を○、100以上150未満を△、100未満を×とした。
(B) -1 (Glossy)
The 60 ° specular gloss (Gs60 °) in the longitudinal direction of the steel strip was measured. As for Gs60 °, 300 or more was evaluated as ◎, 150 or more and less than 300 as ◯, 100 or more and less than 150 as Δ, and less than 100 as ×.
(B)−2(色調)
分光測色計を用いて、L*a*b*表色系で表わされる供試材の色調を測定した。C*=((a*)2+(b*)2)1/2で表わされる彩度C*が2.0以下であり、かつ、明度L*が55以上を○、彩度C*、明度L*のいずれか一方のみが、前記の基準を外れる場合を△、彩度C*、明度L*のいずれもが、前記基準を外れる場合を×とした。
(B) -2 (color tone)
Using a spectrocolorimeter, the color tone of the test material represented by the L * a * b * color system was measured. C * = ((a * ) 2 + (b * ) 2 ) 1/2 where the saturation C * is 2.0 or less, and the lightness L * is 55 or more, ○, the saturation C * , A case where only one of the lightness L * s deviates from the above-mentioned standard is indicated by Δ, and a case where both the chroma C * and the lightness L * deviate from the above-mentioned standard are indicated by x.
更に、彩度C*が1.5以下であり、かつ、明度L*が60以上である、特に優れた外観を呈する場合を◎とした。 Furthermore, the case where the chroma C * is 1.5 or less and the lightness L * is 60 or more and exhibits a particularly excellent appearance is marked as ◎.
(C)耐食性
塗膜被覆処理前及び処理後の表面処理鋼板を50mm×100mmのサイズに切り出し、エリクセン試験機で7mmの張出し加工を施した。裏面、及び、端面をテープシールして、塩水噴霧試験(JIS−Z−2371)を行った。塩水噴霧試験は、5質量%の塩化ナトリウム水溶液を35℃で120時間噴霧した後の発錆状況を、目視評価した。
(C) Corrosion resistance The surface-treated steel sheet before and after the coating coating treatment was cut into a size of 50 mm × 100 mm and subjected to 7 mm overhanging with an Erichsen tester. The back surface and the end surface were tape-sealed, and a salt spray test (JIS-Z-2371) was performed. The salt spray test visually evaluated the rusting state after spraying a 5 mass% sodium chloride aqueous solution at 35 ° C. for 120 hours.
評価基準は、◎:赤錆、白錆発生なし、〇:赤錆発生極小又は白錆発生小、△:赤錆発生小又は白錆やや大、×:赤錆発生中又は白錆発生大、××:赤錆発生大、とした。 Evaluation criteria are: ◎: no red rust, no white rust, ○: minimal red rust or little white rust, △: little red rust or slightly large white rust, ×: red rust occurring or slightly large white rust, xx: red rust Occurrence was large.
以上の性能評価結果を表1〜4に示す。 The above performance evaluation results are shown in Tables 1-4.
表1〜4に示す性能評価結果において、総合評価を、◎(非常に良好)、○(良好)、△(やや不良)、×(不良)の4段階に分類し、◎、○を合格レベルとした。 In the performance evaluation results shown in Tables 1 to 4, the overall evaluation is classified into four stages: ◎ (very good), ○ (good), △ (slightly bad), and × (bad). It was.
本発明の実施例1〜42は、いずれも、総合評価◎又は○であり、優れた外観と耐食性を兼ね備えていた。 Each of Examples 1 to 42 of the present invention had an overall evaluation ◎ or ◯, and had excellent appearance and corrosion resistance.
比較例1及び32は、Znの付着量が少ない例で、耐食性が劣っていた。比較例2〜5、及び、33〜36は、Znの付着量が少なく、かつ、Zn/Niが低い例である。光沢、色調がともに不十分であり、耐食性が劣っていた。 Comparative Examples 1 and 32 were examples in which the amount of Zn deposited was small, and the corrosion resistance was poor. Comparative Examples 2-5 and 33-36 are examples in which the amount of deposited Zn is small and Zn / Ni is low. Both gloss and color tone were insufficient, and corrosion resistance was inferior.
比較例6、10、13、14、17、18、37、41、44、45、48、及び、49は、Zn/Niが高い例である。Snめっき液によるZn−Ni層の溶解が多く、光沢、色調がともに劣化した。 Comparative Examples 6, 10, 13, 14, 17, 18, 37, 41, 44, 45, 48, and 49 are examples in which Zn / Ni is high. There was much dissolution of the Zn-Ni layer by the Sn plating solution, and both gloss and color tone deteriorated.
比較例7、8、9、11、12、15、16、19、20、38、39、40、42、43、46、47、50、及び、51は、Zn/Niが低い例であり、光沢が不十分だった。色調の劣るものもあった。 Comparative Examples 7, 8, 9, 11, 12, 15, 16, 19, 20, 38, 39, 40, 42, 43, 46, 47, 50, and 51 are examples in which Zn / Ni is low, The gloss was insufficient. Some colors were inferior.
比較例21、22、52、及び、53は、Zn付着量が多く、かつ、Zn/Niが高い例である。Zn付着量過多による光沢不良と、Snめっき液によるZn−Ni層表面の溶解によって、光沢、色調がともに劣化した。 Comparative Examples 21, 22, 52, and 53 are examples in which the Zn deposition amount is large and Zn / Ni is high. Both gloss and color tone deteriorated due to poor gloss due to excessive Zn deposition and dissolution of the Zn-Ni layer surface with Sn plating solution.
比較例23〜25、及び、54〜56は、Zn付着量が多い例であり、光沢が劣っていた。比較例26及び57は、Zn付着量が多く、かつ、Zn/Niが低い例である。光沢、色調が不十分だった。 Comparative Examples 23 to 25 and 54 to 56 are examples in which the amount of Zn deposited is large, and the gloss was inferior. Comparative Examples 26 and 57 are examples in which the Zn deposition amount is large and Zn / Ni is low. The gloss and color were insufficient.
比較例27及び58は、Znの付着量が少なく、かつ、Zn/Niが低い例である。光沢、色調がともに劣っており、塗膜を付与しても、耐食性が不十分であった。比較例28及び59は、Zn/Niが高い例であり、Snめっき液によるZn−Ni層の溶解が多く、光沢、色調が、ともに劣化した。 Comparative Examples 27 and 58 are examples in which the amount of deposited Zn is small and Zn / Ni is low. Both gloss and color tone were inferior, and even when a coating film was applied, the corrosion resistance was insufficient. Comparative Examples 28 and 59 are examples in which Zn / Ni is high, and the Zn—Ni layer was frequently dissolved by the Sn plating solution, and both gloss and color tone were deteriorated.
比較例29及び60は、Zn付着量が多い例であり、光沢が劣っていた。比較例30及び31は、Snめっきを施さない、従って、Sn−Zn−Ni合金層、Sn層、Sn−Zn合金層のない例である。黒みがかった光沢の低い外観で、耐食性が不十分であった。 Comparative Examples 29 and 60 were examples in which the amount of Zn deposited was large and the gloss was inferior. Comparative Examples 30 and 31 are examples in which Sn plating is not performed, and thus there is no Sn—Zn—Ni alloy layer, Sn layer, or Sn—Zn alloy layer. It had a blackish, low gloss appearance and insufficient corrosion resistance.
前述したように、本発明によれば、美麗な外観と良好な耐食性を具備した表面処理鋼板及びその製造方法を提供することができる。よって、本発明は、表面処理鋼板製造及び利用産業において、利用可能性が大きいものである。 As described above, according to the present invention, it is possible to provide a surface-treated steel sheet having a beautiful appearance and good corrosion resistance and a method for producing the same. Therefore, the present invention has great applicability in the production and use industries of surface-treated steel sheets.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010124622A JP5381902B2 (en) | 2010-05-31 | 2010-05-31 | Surface-treated steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010124622A JP5381902B2 (en) | 2010-05-31 | 2010-05-31 | Surface-treated steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011252182A true JP2011252182A (en) | 2011-12-15 |
JP5381902B2 JP5381902B2 (en) | 2014-01-08 |
Family
ID=45416330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010124622A Expired - Fee Related JP5381902B2 (en) | 2010-05-31 | 2010-05-31 | Surface-treated steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5381902B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125887A1 (en) * | 2014-02-20 | 2015-08-27 | 新日鐵住金株式会社 | Plated steel |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5941491A (en) * | 1982-09-01 | 1984-03-07 | Nippon Steel Corp | Can-making surface treated steel plate excellent in painting corrosion resistance and weldability |
JPS60121295A (en) * | 1983-12-01 | 1985-06-28 | Nippon Steel Corp | Rust-proof steel plate for fuel tank |
JPS61195989A (en) * | 1985-02-27 | 1986-08-30 | Nippon Steel Corp | Manufacture of surface treated steel sheet excellent in corrosion resistance and weldability |
JPS62174397A (en) * | 1986-01-28 | 1987-07-31 | Nippon Steel Corp | Thin sn plated steel sheet for container having excellent corrosion resistance and weldability |
JPH0331497A (en) * | 1989-06-29 | 1991-02-12 | Nippon Steel Corp | Production of thinly tin-plated steel sheet excellent in surface luster |
JPH04116192A (en) * | 1990-09-05 | 1992-04-16 | Nkk Corp | Surface-treated steel sheet for uncoated can having superior corrosion resistance and weldability and production thereof |
JPH0533188A (en) * | 1991-07-30 | 1993-02-09 | Nippon Steel Corp | Surface treated steel for vessel excellent in rust resistance and external appearance characteristic |
JP2003253469A (en) * | 2002-03-04 | 2003-09-10 | Jfe Steel Kk | Sn SURFACE TREATED STEEL SHEET HAVING EXCELLENT SOLDER WETTABILITY AND CORROSION RESISTANCE AND PRODUCTION METHOD THEREOF |
-
2010
- 2010-05-31 JP JP2010124622A patent/JP5381902B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5941491A (en) * | 1982-09-01 | 1984-03-07 | Nippon Steel Corp | Can-making surface treated steel plate excellent in painting corrosion resistance and weldability |
JPS60121295A (en) * | 1983-12-01 | 1985-06-28 | Nippon Steel Corp | Rust-proof steel plate for fuel tank |
JPS61195989A (en) * | 1985-02-27 | 1986-08-30 | Nippon Steel Corp | Manufacture of surface treated steel sheet excellent in corrosion resistance and weldability |
JPS62174397A (en) * | 1986-01-28 | 1987-07-31 | Nippon Steel Corp | Thin sn plated steel sheet for container having excellent corrosion resistance and weldability |
JPH0331497A (en) * | 1989-06-29 | 1991-02-12 | Nippon Steel Corp | Production of thinly tin-plated steel sheet excellent in surface luster |
JPH04116192A (en) * | 1990-09-05 | 1992-04-16 | Nkk Corp | Surface-treated steel sheet for uncoated can having superior corrosion resistance and weldability and production thereof |
JPH0533188A (en) * | 1991-07-30 | 1993-02-09 | Nippon Steel Corp | Surface treated steel for vessel excellent in rust resistance and external appearance characteristic |
JP2003253469A (en) * | 2002-03-04 | 2003-09-10 | Jfe Steel Kk | Sn SURFACE TREATED STEEL SHEET HAVING EXCELLENT SOLDER WETTABILITY AND CORROSION RESISTANCE AND PRODUCTION METHOD THEREOF |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015125887A1 (en) * | 2014-02-20 | 2015-08-27 | 新日鐵住金株式会社 | Plated steel |
JP5861806B1 (en) * | 2014-02-20 | 2016-02-16 | 新日鐵住金株式会社 | Plated steel |
Also Published As
Publication number | Publication date |
---|---|
JP5381902B2 (en) | 2014-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5101249B2 (en) | Hot-dip Zn-Al alloy-plated steel sheet and method for producing the same | |
KR101615459B1 (en) | ZnAl MOLTEN ZNAL ALLOYPLATED STEEL SHEET AND MANUFACTURING METHOD THEREOF | |
EP2915904A1 (en) | Hot-pressing steel plate, hot-pressing member and manufacturing method for hot-pressing member | |
TW201326459A (en) | Process for manufacturing cold rolled steel sheets excellent in terms of phosphatability and corrosion resistance under paint films | |
JP2009120947A (en) | Galvanized steel member having excellent corrosion resistance and weldability and coated steel member having excellent corrosion resistance | |
JP2015045086A (en) | Steel sheet excellent in corrosion resistance of cut end face and manufacturing method therefor | |
JP2009120948A (en) | Alloy plated steel member having excellent corrosion resistance and weldability | |
JP5983277B2 (en) | Electrogalvanized steel sheet for high-definition paint base with excellent corrosion resistance and enamel hair resistance after painting and method for producing the same | |
JP5381902B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
JP4739822B2 (en) | High corrosion resistance surface treated steel and painted steel | |
JP2006299351A (en) | Steel sheet having excellent galling resistance and chemical conversion treatability | |
JP6098763B2 (en) | Sn-plated steel sheet, chemical conversion-treated steel sheet, and production methods thereof | |
JP5101250B2 (en) | Resin coated steel sheet | |
JP4862484B2 (en) | Method for producing electrogalvanized steel sheet | |
JP4661627B2 (en) | Surface-treated zinc-based plated metal material and method for producing the same | |
JP7327719B1 (en) | Surface-treated steel sheet and manufacturing method thereof | |
JP2012251247A (en) | Method for producing resin-coated steel sheet | |
JP2014234520A (en) | Method for producing electrogalvanized steel sheet | |
KR102231328B1 (en) | molten aluminium plating bath | |
JP4635638B2 (en) | Phosphate-treated electrogalvanized steel sheet with excellent corrosion resistance and blackening resistance | |
JP6831617B2 (en) | Hot-dip galvanized steel sheets with excellent corrosion resistance and alloyed hot-dip galvanized steel sheets and their manufacturing methods | |
KR100544646B1 (en) | Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof | |
JP4720459B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
JP5505294B2 (en) | Surface-treated steel sheet for fuel tank | |
WO2023195252A1 (en) | Surface-treated steel sheet and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130813 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130916 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5381902 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |