JP2011238866A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2011238866A
JP2011238866A JP2010110838A JP2010110838A JP2011238866A JP 2011238866 A JP2011238866 A JP 2011238866A JP 2010110838 A JP2010110838 A JP 2010110838A JP 2010110838 A JP2010110838 A JP 2010110838A JP 2011238866 A JP2011238866 A JP 2011238866A
Authority
JP
Japan
Prior art keywords
metal layer
layer
metal
nitride semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010110838A
Other languages
English (en)
Inventor
Akifumi Imai
章文 今井
Toshiyuki Oishi
敏之 大石
Muneyoshi Suita
宗義 吹田
Takuma Nanjo
拓真 南條
Yuji Abe
雄次 阿部
Eiji Yagyu
栄治 柳生
Shinichi Miyakuni
晋一 宮國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010110838A priority Critical patent/JP2011238866A/ja
Publication of JP2011238866A publication Critical patent/JP2011238866A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

【課題】半導体装置において低抵抗なオーミック性を有し、酸・アルカリによる腐食に対し高い耐性を持つ電極を得ることを目的とする。
【解決手段】本発明に係る第1の半導体装置は、窒化物半導体層1と、窒化物半導体層上に設けられた電極とを備え、窒化物半導体層1は電極下に、それ以外の部分よりも高濃度にn型不純物を含む高濃度不純物領域2を備え、電極は、窒化物半導体層1上に設けられた第一金属層3と、第一金属層3上に設けられた第二金属層4と、第二金属層4上に設けられた第三金属層5と、を備え、第一金属層3は第二金属層4よりも窒化物半導体層1との高い密着性を有する金属を含み、第三金属層5は水素よりもイオン化傾向の小さい金属を含む。
【選択図】図1

Description

この発明は、高電子移動度トランジスタ(High Electron Mobility Transistor : HEMT)、レーザーダイオードなどの半導体装置に関するものであり、特にn型窒化物半導体層への接触抵抗の低いオーミック性電極であって、酸・アルカリに対する腐食に耐性のある電極を安定的に形成する技術に関する。
III族窒化物半導体を用いたHEMTを高出力、高周波で動作させるための重要な課題の一つは、ソース・ドレイン電極のコンタクト抵抗を十分に低下させることである。コンタクト抵抗が大きいと寄生抵抗が増大し、その結果トランスコンダクタンスが低くなり、出力電圧、動作周波数が低下するからである。
n型III族窒化物半導体層に対して良好なオーミックコンタクトを得る手段として、特許文献1では、SiドープGaN層にTiとAlが含まれる合金、又はTiとAlとが積層された多層膜を形成する方法が知られている。
特開平7−221103号公報(第2〜5頁)
しかし、接触抵抗を低くするためにAlを含む構造にすると、形成工程におけるエッチングで電極が損傷するために安定して形成することが困難である。
又、電極が酸やアルカリで腐食することにより、特性が低下したり半導体層から剥離するという問題もある。
そこで、本発明は上述の問題点に鑑み、半導体装置において低抵抗なオーミック性を有し、酸・アルカリによる腐食に対し高い耐性を持つ電極を得ることを目的とする。
本発明に係る第1の半導体装置は、窒化物半導体層と、窒化物半導体層上に設けられた電極とを備え、窒化物半導体層は電極下に、それ以外の部分よりも高濃度にn型不純物を含む高濃度不純物領域を備え、電極は、窒化物半導体層上に設けられた第一金属層と、第一金属層上に設けられた第二金属層と、第二金属層上に設けられた第三金属層と、を備え、第一金属層は第二金属層よりも窒化物半導体層との高い密着性を有する金属を含み、第三金属層は水素よりもイオン化傾向の小さい金属を含む。
本発明に係る第2の半導体装置は、窒化物半導体層と、窒化物半導体層上に設けられた電極とを備え、窒化物半導体層は少なくとも電極下においてn型不純物を1×1019cm-3以上含み、電極は、窒化物半導体層上に設けられた第一金属層と、第一金属層上に設けられた第二金属層と、第二金属層上に設けられた第三金属層と、を備え、第一金属層は第二金属層よりも窒化物半導体層との高い密着性を有する金属を含み、第三金属層は水素よりもイオン化傾向の小さい金属を含む。
また、本発明に係る半導体装置の製造方法は、(a)窒化物半導体層を準備する工程と、(b)窒化物半導体層上に電極を形成する工程とを備え、工程(a)は、少なくとも電極下となるべき所定領域に不純物としてSiイオンを1×1015cm-2以上の注入濃度で注入することにより、所定領域の不純物濃度が1×1019cm-3以上の窒化物半導体層を準備する工程であり、工程(b)は、(b1)窒化物半導体層上に第一金属層を形成する工程と、(b2)第一金属層上に第二金属層を形成する工程と、(b3)第二金属層上に第三金属層を形成する工程とを備え、工程(b1)は、第二金属層よりも窒化物半導体層との高い密着性を有する金属を用いて第一金属層を形成する工程であり、工程(b3)は、水素よりもイオン化傾向の小さい金属を用いて第三金属層を形成する工程である。
本発明に係る第1の半導体装置において、窒化物半導体層は電極下に、それ以外の部分よりも高濃度にn型不純物を含む高濃度不純物領域を備える。また、第一金属層は第二金属層よりも窒化物半導体層との高い密着性を有する金属を含み、第三金属層は水素よりもイオン化傾向の小さい金属を含む。高濃度不純物領域によって、金属と半導体の界面に生じるエネルギー障壁の幅が狭くなり、トンネル効果によってオーミック接触が実現する。さらに、窒化物半導体層との密着性が良い第一金属層によって電極は窒化物半導体層から剥離しにくく安定的である。また、第三金属層によって電極は酸・アルカリによる腐食に対し高い耐性を持つ。
また、本発明に係る第2の半導体装置において、窒化物半導体層は少なくとも電極下においてn型不純物を1×1019cm-3以上含み、第一金属層は第二金属層よりも窒化物半導体層との高い密着性を有する金属を含み、第三金属層は水素よりもイオン化傾向の小さい金属を含む。窒化物半導体層がn型不純物を高濃度に含むことによって、金属と半導体の界面に生じるエネルギー障壁の幅が狭くなり、トンネル効果によってオーミック接触が実現する。さらに、窒化物半導体層との密着性が良い第一金属層によって電極は窒化物半導体層から剥離しにくく安定的である。また、第三金属層によって電極は酸・アルカリによる腐食に対し高い耐性を持つ。
また、本発明に係る半導体装置の製造方法では、工程(a)において、少なくとも電極下となるべき所定領域に不純物としてSiイオンを1×1015cm-2以上の注入濃度で注入することにより、所定領域の不純物濃度が1×1019cm-3以上の窒化物半導体層を準備することにより、その上に形成される積層電極との間に良好なオーミック接触を得ることが出来る。そして、工程(b1)において、第二金属層よりも窒化物半導体層との高い密着性を有する金属を用いて第一金属層を第二金属層上に形成することにより、窒化物半導体層から剥離しにくい安定的な電極構造となる。また、工程(b3)において、水素よりもイオン化傾向の小さい金属を用いて第三金属層を第二金属層上に形成することにより、腐食に耐性のある電極構造となる。
実施の形態1の電極構造を示す断面模式図である。 Si添加の有無による電極の通電特性の違いを示す図である。 半導体層の深さ方向の不純物濃度分布を示す図である。 実施の形態1の電極を構成する各金属層の厚さを示した図である。 実施の形態1の電極の接触抵抗値のTi膜厚依存性を示した図である。 実施の形態1の電極の接触抵抗値のNb膜厚依存性を示した図である。 実施の形態2のHEMTの構造を示す断面模式図である。
(実施の形態1)
<構成>
図1は、実施の形態1に係る電極構造を示した断面図である。実施の形態1の電極構造は、図示しないSiC基板の上に形成されたAlGaN層(窒化物半導体層)1のうち、高濃度にn型不純物を添加された高濃度不純物領域2を備え、高濃度にn型不純物を含むAlGaN層2の上に電極層として順に形成された第一金属層3、第二金属層4、第三金属層5を備えている。
高濃度にn型不純物を含む窒化物半導体層2は、キャリア濃度を増大させることでオーミック電極と接触する領域のコンタクト抵抗を低減するためのものである。ここでは、n型不純物はSiとする。Siを1×1020cm-3で注入し、活性化率を10%とすると不純物濃度は1×1019cm-3である。この場合に図2に示すようにオーミック接触を得た。
図2は、AlGaN層1中にn型不純物としてSiを添加した場合と、添加していない場合の通電特性を示したグラフである。横軸が印加電圧、縦軸が流れた電流である。これによると、Siを添加した場合には、印加電圧の大きさに比例して電流値が増大しており、良好なオーミック性を確認できるが、Siを添加していない場合には印加電圧によらず、ほとんど電流が流れないことがわかる。発明者の実験によれば、少なくとも電極下の領域において、少なくとも上記濃度でn型不純物(例えばSi)を注入することにより、下記の第一〜第三金属層3〜5よりなる電極と窒化物半導体層1との間で良好なオーミック接触が得られる。
第一金属層3は、AlGaN層1中の窒素と結合し、オーミック電極のAlGaN層1への付着力を高めるためのものである。ここでは、Tiとする。膜厚は20nmとする。
第二金属層4は第一金属層3よりもAlGaN層1の電子親和力に近い仕事関数を有する。例えばNbが用いられる。膜厚は50nmとする。
第三金属層5は、酸・アルカリによる腐食に耐性を持つことを主目的とし、ドライエッチングにも耐性のあることが望ましい。このような観点から、水素よりもイオン化傾向の小さな金属とする。ここでは、Auとする。膜厚は55nmとする。
このように、本実施の形態の半導体装置は、窒化物半導体層1と、窒化物半導体層上に設けられた電極とを備え、窒化物半導体層1は電極下に、それ以外の部分よりも高濃度にn型不純物を含む高濃度不純物領域2を備える。高濃度不純物領域2は例えばn型不純物としてSiを含み、その不純物濃度は1×1019cm-3以上である。言い換えれば、窒化物半導体層1は少なくとも電極下において、Siなどのn型不純物を1×1019cm-3以上含む。電極は、窒化物半導体層1上に設けられた第一金属層3と、第一金属層3上に設けられた第二金属層4と、第二金属層4上に設けられた第三金属層5とを備える。第一金属層3は第二金属層4よりも窒化物半導体層1との高い密着性を有する金属を含み、第三金属層5は水素よりもイオン化傾向の小さい金属を含む。こうした構成により、耐腐食性を有し、且つ安定的なオーミック電極となる。
窒化物半導体層1にn型不純物が高濃度に添加されることと、窒化物半導体層1上に積層電極構造3,4,5が形成されることは、本発明の課題の解決に必須の要件である。一般に金属と半導体を接合した場合、熱平衡状態においてこれら二つの物質のフェルミ準位が一致しなければならないことから、金属と半導体の界面には理想的には金属の仕事関数と半導体の電子親和力の差分に相当するエネルギー障壁が存在することになる。
例えばイオン注入によって窒化物半導体層1中に高濃度のn型不純物が添加されることにより、金属・半導体接触によるエネルギーバンドは変調を受け、n型不純物が添加された界面近傍の伝導帯エネルギーは引き下げられることになる。その結果、前述のエネルギー障壁は高さを変えないまま薄くなる。従って、エネルギー障壁を電子がトンネルする確率が上昇するためオーミック接触となり、コンタクト抵抗を低減する効果が得られる。
次に第一金属層3は、窒化物半導体層1中の窒素と結合し窒化物を形成することによって、電極の安定化を図り剥離が発生することを抑制している。また窒化物半導体層1中から窒素が抜けて生じる窒素空孔はn型不純物として作用するため、前述の通りエネルギー障壁を薄くしてコンタクト抵抗を低減する効果も奏する。第一金属層3の材料としてはTi、Ta、Ni等が考えられるが、窒化物を形成しやすいTiやTaがより望ましい。
第一金属層3の選定主旨が窒化物形成の容易さであったことから、コンタクト抵抗が考慮されていない点を補う目的で第二金属層4が必要となる。前述の通り、金属・半導体接触界面に存在するエネルギー障壁の高さは金属の仕事関数と半導体の電子親和力の差分に相当する。従って、第二金属層4には仕事関数が半導体の電子親和力と近い金属を用いることでエネルギー障壁の高さを低くすることができ、電子のトンネル確率が上昇するためコンタクト抵抗を低減する。例えばNbを用いる。但し、第二金属層4が窒化物半導体層1と接触するためには、第一金属層3と相互拡散する必要があることから、電極形成後の熱処理は必須であり、また第一金属層3が厚すぎてはコンタクト抵抗が増大するため、第一金属層1の膜厚には上限が存在する。ここで参考までに金属の仕事関数及び半導体の電子親和力について示すと、Ti(4.33eV)、Ta(4.25eV)、Ni(5.15eV)、Al(4.28eV)、Nb(4.3eV)、GaN(4.1eV)、AlN(0.6eV)である。
次に、第三金属層5に化学的安定度の高い貴金属を用いることで酸・アルカリへの腐食耐性が劣化することを抑制できる。貴金属としては、水素イオンよりもイオン化傾向が小さければ良い。例えばSb,Bi,Cu,Ag,Pd,Au,Pt,Irなどが用いられる。但し、自然酸化などによる電極材料の変成に伴い酸・アルカリへの腐食耐性が劣化することも防止するという観点からは、AuかPtのように酸化しにくい金属が好ましい。
以上の構成により、腐食耐性を有し、且つ安定的な(剥離しにくい)オーミック電極となる。
<製造工程>
次に、実施の形態1の電極構造の製造工程について説明する。
まず、SiC基板(図示せず)上に有機金属気相成長(Metal Organic Chemical Vapor Deposition : MOCVD)法によりAlxGa1-xN(0≦x≦1)層(AlGaN層1)をエピタキシャル成長させる。
図3は、Siイオンを加速エネルギー30〜200KeV、注入濃度1×1015cm-2でAlGaN層1に注入したときの、AlGaN層1中のSi濃度の深さ依存性をモンテカルロ計算で求めたグラフである。図3から、50KeVの加速エネルギーで1×1015cm-2の注入濃度のSiイオンを注入した場合のAlGaN層1の表面におけるSi濃度は1×1019cm-3以上になることが分かる。
上記の結果に基づき、AlGaN層1にSiイオンを1×1015cm-2の注入濃度、50KeVの加速エネルギーで注入し、Si濃度を1×1019cm-3とする。なお、Siイオン注入を実施しなくとも安定的な電極の形成自体に問題はないが、図2に示すようにコンタクト抵抗のオーミック性を良好に得るために実施しておく必要がある。
次に、AlGaN層1に1100〜1200℃の温度で短時間の急速加熱処理(RTA)を行なう。
そして、上記の通りSiを添加したAlGaN層1の上に以下の方法で電極を形成する。
まず、電極を形成する場所以外にレジストパターン(図示せず)を形成し、その上に第一金属層3、第二金属層4、第三金属層5を順に蒸着する。第一金属層3の厚さは20nm、第二金属層4の厚さは50nmとし、第三金属層5の厚さは第一金属層3の厚さおよび第二金属層4の厚さと合わせて125nmになるように設計する。
次にレジストパターンを除去し、400〜700℃の温度で短時間のRTA処理を行なう。この熱処理効果により、電極の各金属は相互に熱拡散することが分かっている。従って、第一金属層3が十分に薄ければ、相互拡散の結果、第二金属層4が窒化物半導体層1と接触することができ、第二金属層4は第一金属層3よりも仕事関数が低いため、電極金属と半導体の間のエネルギー障壁の高さを下げ、コンタクト抵抗の低い良好なオーミック電極が得られる。
すなわち、本実施の形態の半導体装置の製造方法は、(a)窒化物半導体層1を準備する工程と、(b)窒化物半導体層1上に電極を形成する工程とを備える。工程(a)は、少なくとも電極下となるべき所定領域に不純物としてSiイオンを1×1015cm-2以上の注入濃度で注入することにより、所定領域の不純物濃度が1×1019cm-3以上の窒化物半導体層を準備する工程である。工程(b)は、(b1)窒化物半導体層1上に第一金属層3を形成する工程と、(b2)第一金属層3上に第二金属層4を形成する工程と、(b3)第二金属層4上に第三金属層5を形成する工程と、を備える。工程(b1)は、第二金属層よりも窒化物半導体層との高い密着性を有する金属を用いて第一金属層を形成する工程であり、工程(b3)は、水素よりもイオン化傾向の小さい金属を用いて第三金属層を形成する工程である。このような製造工程により、半導体装置において低抵抗なオーミック性を有し、酸・アルカリによる腐食に対し高い耐性を持つ電極を得ることが出来る。
さらに、工程(b2)は、窒化物半導体層に対して第一金属層3よりも窒化物半導体層の電子親和力に近い仕事関数を有する金属を用いて第二金属層4を形成する工程である。これにより、電極と窒化物半導体層1の接触界面に存在するエネルギー障壁の高さを低くすることができ、電子のトンネル確率が上昇するためコンタクト抵抗を低減する。
<各金属層の厚さ>
上記の説明では、第一金属層3の厚さを20nm、第二金属層4の厚さを50nm、第三金属層5の厚さを55nmとしたが、必ずしもこの厚さである必要はない。金属層の厚さの限界を調べるために、各金属層の厚さの組み合わせを変えて評価を実施した。
図4に、各金属層の厚みの組み合わせを示す。Nb(第二金属層4)は50nmで一定とし、Ti(第一金属層3)を10nm,15nm,20nm,25nmと変化させ、それに伴いAu(第三金属層5)を65nm,60nm,55nm,50nmと変化させて各金属層の厚さの合計を125nmとしている。
図4に示した組み合わせの金属層からなるオーミック電極のコンタクト抵抗ρcをTLM(Transfer Length Method)法により求めた値を図5に示す。横軸がTi膜厚、縦軸がコンタクト抵抗である。これによると、Ti膜厚が15nm以下になると急激にコンタクト抵抗が増大する傾向が得られた。よって、第一金属層3の厚さは15nm以上必要であることが分かる。
第一金属層3の厚さの上限についても考慮する。第一金属層3の効果は、窒化物半導体層1中の窒素と結合してオーミック電極の半導体上への付着力を高める点にあり、低いコンタクト抵抗を得るための仕事関数やウェットエッチング耐性については考慮しない。したがって、第一金属層3をあまりに厚く形成してしまうと、第二金属層4の熱拡散による窒化物半導体層1との接触を妨げ、コンタクト抵抗の増加を招くばかりか課題としている酸・アルカリに対する腐食耐性を欠く結果となる。経験的には、第一金属層3は25nm以下で形成すると良い。以上のことから、第一金属層3は15nm〜25nmにすることが望ましい。
次に、第二金属層4の厚さについて考慮する。図6は、コンタクト抵抗のNb(第二金属層4)膜厚依存性を示したグラフである。横軸がNbの膜厚であり、縦軸はコンタクト抵抗ρcである。第一金属層3はTiとし、その膜厚が20nm,25nmのそれぞれについてNbの膜厚を変化させたときのコンタクト抵抗ρcを調べた。
図6において、コンタクト抵抗はNbの厚さが40nm以下においては一定して1×10-5Ωcm2以上を示しているのに対して、Nbを50nmにすると1×10-5Ωcm2以下の低いコンタクト抵抗が得られた。この傾向に関しては、Ti(第一金属層3)の膜厚が20nmのものと25nmのものとで差は見られない。以上の結果より、窒化物半導体層1と電極のコンタクト抵抗値を急激に低減するためには、Nb(第二金属層4)の厚さは45nm以上必要であるといえる。
これらのことから、最も薄く電極層を形成するならば第一金属層3を15nm、第二金属層4を45nm、第三金属層を10nmとし、電極層は70nmとなる。
なお、上記の説明では窒化物半導体層1としてn型AlxGa1-xN(0≦x≦1)層を用いたが、これに限らず、例えばn型AlxInyGa1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)を用いても良い。
又、窒化物半導体層1はMOCVD法で形成することとしたが、MBE(Molecular Beam Epitaxy)法などのほかのエピタキシャル成長法を用いて形成しても良い。
さらに、基板はSiC基板としたが、GaN基板、AlN基板、Si基板、サファイア基板であっても同様の効果を得ることが可能である。
<効果>
本実施の形態の半導体装置によれば、以下の効果を奏する。すなわち、本実施の形態の半導体装置は、窒化物半導体層1と、窒化物半導体層1上に設けられた電極とを備え、窒化物半導体層1は電極下に、それ以外の部分よりも高濃度にn型不純物を含む高濃度不純物領域2を備え、電極は、窒化物半導体層1上に設けられた第一金属層3と、第一金属層3上に設けられた第二金属層4と、第二金属層4上に設けられた第三金属層5と、を備え、第一金属層3は第二金属層4よりも窒化物半導体層1との高い密着性を有する金属を含み、第三金属層5は水素よりもイオン化傾向の小さい金属を含むことを特徴とする。高濃度不純物領域2によって、金属と半導体の界面に生じるエネルギー障壁の幅が狭くなり、トンネル効果によってオーミック接触が実現する。さらに、窒化物半導体層1との密着性が良い第一金属層3によって電極は窒化物半導体層1から剥離しにくく安定的である。また、第三金属層5によって電極は酸・アルカリによる腐食に対し高い耐性を持つ。
また、高濃度不純物領域2はn型不純物としてSiを含み、その不純物濃度は1×1019cm-3以上であることを特徴とする。高濃度のSiにより、金属と半導体の界面に生じるエネルギー障壁の幅が狭くなり、トンネル効果によってオーミック接触が実現する。
あるいは、本実施の形態の半導体装置は、窒化物半導体層1と、窒化物半導体層1上に設けられた電極とを備え、窒化物半導体層1は少なくとも電極下においてn型不純物を1×1019cm-3以上含み、電極は、窒化物半導体層1上に設けられた第一金属層3と、第一金属層3上に設けられた第二金属層4と、第二金属層4上に設けられた第三金属層5とを備え、第一金属層3は第二金属層4よりも窒化物半導体1層との高い密着性を有する金属を含み、第三金属層5は水素よりもイオン化傾向の小さい金属を含む。窒化物半導体層1がn型不純物を高濃度に含むことによって、金属と半導体の界面に生じるエネルギー障壁の幅が狭くなり、トンネル効果によってオーミック接触が実現する。さらに、窒化物半導体層1との密着性が良い第一金属層3によって電極は窒化物半導体層1から剥離しにくく安定的である。また、第三金属層5によって電極は酸・アルカリによる腐食に対し高い耐性を持つ。
また、n型不純物としてSiを用いても、上述の効果を奏する。
さらに、第二金属層4は窒化物半導体層1に対して第一金属層3よりも窒化物半導体層1の電子親和力に近い仕事関数を有する金属を含む。これにより、窒化物半導体層1と電極の界面でのエネルギー障壁の高さを低くすることができ、電子のトンネル確率が上昇するためコンタクト抵抗が低減する。
また、第一金属層3は、Ti,Ta,Niのいずれかを主成分とすることにより、窒化物半導体層1との密着性を高めることが出来る。
さらに、第二金属層4は、Nbを主成分とすることにより、コンタクト抵抗を低減することが出来る。
また、第三金属層5は、Sb,Bi,Cu,Ag,Pd,Au,Pt,Irのいずれかを主成分とすることにより、腐食に対して高い耐性を有する電極構造となる。
さらに、第一金属層3の厚さが15nm〜25nmとすることにより、コンタクト抵抗を低減し、且つ熱拡散による第二金属層4と窒化物半導体層1の接触を確保する。
また、第二金属層4の厚さを45nm以上とすることにより、コンタクト抵抗を低減する。
さらに、窒化物半導体層1は、AlxGa1-xN(0≦x≦1)又はAlxInyGa1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)のいずれかとすることにより、電極との組み合わせで本発明の効果を奏する。
また、本実施の形態の半導体装置の製造方法によれば、以下の効果を奏する。すなわち、本実施の形態の半導体装置の製造方法は、(a)窒化物半導体層1を準備する工程と、(b)窒化物半導体層1上に電極を形成する工程とを備え、工程(a)は、少なくとも電極下となるべき所定領域に不純物としてSiイオンを1×1015cm-2以上の注入濃度で注入することにより、所定領域の不純物濃度が1×1019cm-3以上の窒化物半導体層1を準備する工程であり、工程(b)は、(b1)窒化物半導体層1上に第一金属層3を形成する工程と、(b2)第一金属層3上に第二金属層4を形成する工程と、(b3)第二金属層4上に第三金属層5を形成する工程とを備え、工程(b1)は、第二金属層4よりも窒化物半導体層1との高い密着性を有する金属を用いて第一金属層3を形成する工程であり、工程(b3)は、水素よりもイオン化傾向の小さい金属を用いて第三金属層5を形成する工程である。このような製造工程により、半導体装置において低抵抗なオーミック性を有し、酸・アルカリによる腐食に対し高い耐性を持つ電極を得ることが出来る。
また、工程(b2)では、窒化物半導体層1に対して第一金属層3よりも窒化物半導体層1の電子親和力に近い仕事関数を有する金属を用いて第二金属層4を形成する。そのため、窒化物半導体層1と電極の界面でのエネルギー障壁の高さが低くなり、電子のトンネル確率が上昇するためコンタクト抵抗が低減する。
さらに、工程(b1)では、Ti,Ta,Niのいずれかを主成分として第一金属層3を形成することにより、窒化物半導体層1との密着性を高めることが出来る。
また、工程(b2)では、Nbを主成分として第二金属層4を形成することにより、コンタクト抵抗を低減することが出来る。
さらに、工程(b3)では、Sb,Bi,Cu,Ag,Pd,Au,Pt,Irのいずれかを主成分として第三金属層5を形成することにより、腐食に対して高い耐性を有する電極構造となる。
また、工程(b1)では、厚さ15nm〜25nmの第一金属層3を形成することにより、コンタクト抵抗を低減し、且つ熱拡散による第二金属層4と窒化物半導体層1の接触を確保する。
さらに、工程(b2)では、厚さ45nm以上の第二金属層4を形成することにより、コンタクト抵抗を低減する。
また、工程(a)では、窒化物半導体層1として、AlxGa1-xN(0≦x≦1)又はAlxInyGa1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)層のいずれかを準備することにより、電極との組み合わせで本発明の効果を奏する。
(実施の形態2)
<構成>
図7は実施の形態2に係るHEMTの断面模式図である。実施の形態2に係るHEMTは実施の形態1で示した電極構造を有しており、実施の形態1と同様の構成要素には同一の番号を付している。
実施の形態2に係るHEMTは、基板7と、基板7の上に順に形成されたバッファ層8、チャネル層9、バリア層10(実施の形態1の半導体層に対応)と、を備え、さらにバリア層10の表面からチャネル層9にかけて、ソース・ドレイン領域としてSi濃度が1×1019cm-3のSiを高濃度に含む高濃度不純物領域2を備える。
又、実施の形態2に係るHEMTは、高濃度不純物領域2上にソース・ドレイン電極として順に形成される、第一金属層3、第二金属層4、第三金属層5を備え、バリア層10の上部にゲート電極6を備える。
<製造工程>
実施の形態2に係るHEMTの製造工程について説明する。
まず、基板7上に、バッファ層8、チャネル層9、バリア層10を順に形成する。
さらに、ソース・ドレイン領域となる場所にのみ、実施の形態1で述べた方法によりSiイオンを加速エネルギー50KeV、注入濃度1×1015cm-2で注入し、Siを高濃度に含む領域2を形成する。
次に、ソース・ドレイン電極として、Siを高濃度に含む領域2上に第一金属層3、第二金属層4、第三金属層5を順に形成する。この際、電極金属のパターニングは、予め電極を形成しない場所にレジストによるパターンを形成した上で電極金属を堆積し、電極を形成しない場所に堆積した金属をレジストごと剥離するリフトオフ法によって行う。又、ゲート電極6もリフトオフ法により形成する。
上記の通り作成したHEMTはソース・ドレイン電極のコンタクト抵抗値が低いため、高電圧・高周波で動作させることが出来る。
なお、上記の説明ではプレーナ型のトランジスタについてのみ言及したが、選択エッチングや選択成長により、ゲートリセス構造を適用した場合についても本実施形態と同様の効果が得られる。
1 窒化物半導体層、2 高濃度不純物領域、3 第一金属層、4 第二金属層、5 第三金属層、6 ゲート電極、7 基板、8 バッファ層、9 チャネル層、10 バリア層。

Claims (19)

  1. 窒化物半導体層と、
    前記窒化物半導体層上に設けられた電極と、を備え、
    前記窒化物半導体層は前記電極下に、それ以外の部分よりも高濃度にn型不純物を含む高濃度不純物領域を備え、
    前記電極は、
    前記窒化物半導体層上に設けられた第一金属層と、
    前記第一金属層上に設けられた第二金属層と、
    前記第二金属層上に設けられた第三金属層と、を備え、
    前記第一金属層は前記第二金属層よりも前記窒化物半導体層との高い密着性を有する金属を含み、
    前記第三金属層は水素よりもイオン化傾向の小さい金属を含むことを特徴とする、半導体装置。
  2. 前記高濃度不純物領域は前記n型不純物としてSiを含み、その不純物濃度は1×1019cm-3以上であることを特徴とする、請求項1に記載の半導体装置。
  3. 窒化物半導体層と、
    前記窒化物半導体層上に設けられた電極と、を備え、
    前記窒化物半導体層は少なくとも前記電極下においてn型不純物を1×1019cm-3以上含み、
    前記電極は、
    前記窒化物半導体層上に設けられた第一金属層と、
    前記第一金属層上に設けられた第二金属層と、
    前記第二金属層上に設けられた第三金属層と、を備え、
    前記第一金属層は前記第二金属層よりも前記窒化物半導体層との高い密着性を有する金属を含み、
    前記第三金属層は水素よりもイオン化傾向の小さい金属を含むことを特徴とする、半導体装置。
  4. 前記n型不純物はSiであることを特徴とする、請求項3に記載の半導体装置。
  5. 前記第二金属層は前記窒化物半導体層に対して前記第一金属層よりも前記窒化物半導体層の電子親和力に近い仕事関数を有する金属を含むことを特徴とする、請求項1〜4のいずれかに記載の半導体装置。
  6. 前記第一金属層は、Ti,Ta,Niのいずれかを主成分とすることを特徴とする、請求項1〜5のいずれかに記載の半導体装置。
  7. 前記第二金属層は、Nbを主成分とすることを特徴とする、請求項5又は6に記載の半導体装置。
  8. 前記第三金属層は、Sb,Bi,Cu,Ag,Pd,Au,Pt,Irのいずれかを主成分とすることを特徴とする、請求項1〜7のいずれかに記載の半導体装置。
  9. 前記第一金属層の厚さが15nm〜25nmであることを特徴とする、請求項1〜8のいずれかに記載の半導体装置。
  10. 前記第二金属層の厚さが45nm以上であることを特徴とする、請求項1〜9のいずれかに記載の半導体装置。
  11. 前記窒化物半導体層は、AlxGa1-xN(0≦x≦1)又はAlxInyGa1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)のいずれかであることを特徴とする、請求項1〜10のいずれかに記載の半導体装置。
  12. (a)窒化物半導体層を準備する工程と、
    (b)前記窒化物半導体層上に電極を形成する工程と、を備え、
    前記工程(a)は、少なくとも前記電極下となるべき所定領域に不純物としてSiイオンを1×1015cm-2以上の注入濃度で注入することにより、前記所定領域の不純物濃度が1×1019cm-3以上の前記窒化物半導体層を準備する工程であり、
    前記工程(b)は、
    (b1)前記窒化物半導体層上に第一金属層を形成する工程と、
    (b2)前記第一金属層上に第二金属層を形成する工程と、
    (b3)前記第二金属層上に第三金属層を形成する工程と、を備え、
    前記工程(b1)は、前記第二金属層よりも前記窒化物半導体層との高い密着性を有する金属を用いて前記第一金属層を形成する工程であり、
    前記工程(b3)は、水素よりもイオン化傾向の小さい金属を用いて前記第三金属層を形成する工程である、半導体装置の製造方法。
  13. 前記工程(b2)は、前記窒化物半導体層に対して前記第一金属層よりも前記窒化物半導体層の電子親和力に近い仕事関数を有する金属を用いて前記第二金属層を形成する工程である、請求項12に記載の半導体装置の製造方法。
  14. 前記工程(b1)は、Ti,Ta,Niのいずれかを主成分として前記第一金属層を形成する工程である、請求項12又は13に記載の半導体装置の製造方法。
  15. 前記工程(b2)は、Nbを主成分として前記第二金属層を形成する工程である、請求項12〜14のいずれかに記載の半導体装置の製造方法。
  16. 前記工程(b3)は、Sb,Bi,Cu,Ag,Pd,Au,Pt,Irのいずれかを主成分として前記第三金属層を形成する工程である、請求項12〜15のいずれかに記載の半導体装置の製造方法。
  17. 前記工程(b1)は、厚さ15nm〜25nmの前記第一金属層を形成する工程である、請求項12〜16のいずれかに記載の半導体装置の製造方法。
  18. 前記工程(b2)は、厚さ45nm以上の前記第二金属層を形成する工程である、請求項12〜17のいずれかに記載の半導体装置の製造方法。
  19. 前記工程(a)は、前記窒化物半導体層として、AlxGa1-xN(0≦x≦1)又はAlxInyGa1-x-yN(0≦x≦1、0≦y≦1、x+y≦1)層のいずれかを準備する工程である、請求項12〜18のいずれかに記載の半導体装置の製造方法。
JP2010110838A 2010-05-13 2010-05-13 半導体装置及びその製造方法 Pending JP2011238866A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110838A JP2011238866A (ja) 2010-05-13 2010-05-13 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110838A JP2011238866A (ja) 2010-05-13 2010-05-13 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2011238866A true JP2011238866A (ja) 2011-11-24

Family

ID=45326494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110838A Pending JP2011238866A (ja) 2010-05-13 2010-05-13 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2011238866A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015204332A (ja) * 2014-04-11 2015-11-16 豊田合成株式会社 半導体装置、半導体装置の製造方法
JP2015204331A (ja) * 2014-04-11 2015-11-16 豊田合成株式会社 半導体装置、半導体装置の製造方法
US9437525B2 (en) 2013-04-30 2016-09-06 Toyoda Gosei Co., Ltd. Semiconductor device and manufacturing method thereof
US9653564B2 (en) 2015-03-26 2017-05-16 Toyoda Gosei Co., Ltd. Semiconductor device and method of manufacturing the same
JP2020113625A (ja) * 2019-01-10 2020-07-27 富士通株式会社 半導体装置、半導体装置の製造方法及び増幅器
JP2021048260A (ja) * 2019-09-18 2021-03-25 国立大学法人東海国立大学機構 半導体装置及びその製造方法
EP4246593A4 (en) * 2020-11-13 2024-07-17 Korea Atomic Energy Res METHOD FOR PRODUCING AN OHMIC CONTACT OF A GAN-BASED ELECTRONIC DEVICE AND OHMIC CONTACT OF A GAN-BASED ELECTRONIC DEVICE PRODUCED THEREFOR

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098407A (ja) * 1995-06-20 1997-01-10 Nichia Chem Ind Ltd n型窒化物半導体層の電極
JPH10303407A (ja) * 1997-04-22 1998-11-13 Matsushita Electric Ind Co Ltd 半導体装置
JP2009164526A (ja) * 2008-01-10 2009-07-23 Mitsubishi Electric Corp 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098407A (ja) * 1995-06-20 1997-01-10 Nichia Chem Ind Ltd n型窒化物半導体層の電極
JPH10303407A (ja) * 1997-04-22 1998-11-13 Matsushita Electric Ind Co Ltd 半導体装置
JP2009164526A (ja) * 2008-01-10 2009-07-23 Mitsubishi Electric Corp 半導体装置およびその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437525B2 (en) 2013-04-30 2016-09-06 Toyoda Gosei Co., Ltd. Semiconductor device and manufacturing method thereof
JP2015204332A (ja) * 2014-04-11 2015-11-16 豊田合成株式会社 半導体装置、半導体装置の製造方法
JP2015204331A (ja) * 2014-04-11 2015-11-16 豊田合成株式会社 半導体装置、半導体装置の製造方法
US9711661B2 (en) 2014-04-11 2017-07-18 Toyoda Gosei Co., Ltd. Semiconductor device and manufacturing method thereof
US9653564B2 (en) 2015-03-26 2017-05-16 Toyoda Gosei Co., Ltd. Semiconductor device and method of manufacturing the same
JP2020113625A (ja) * 2019-01-10 2020-07-27 富士通株式会社 半導体装置、半導体装置の製造方法及び増幅器
JP2021048260A (ja) * 2019-09-18 2021-03-25 国立大学法人東海国立大学機構 半導体装置及びその製造方法
WO2021054321A1 (ja) * 2019-09-18 2021-03-25 国立大学法人東海国立大学機構 半導体装置及びその製造方法
JP7387106B2 (ja) 2019-09-18 2023-11-28 国立大学法人東海国立大学機構 半導体装置及びその製造方法
EP4246593A4 (en) * 2020-11-13 2024-07-17 Korea Atomic Energy Res METHOD FOR PRODUCING AN OHMIC CONTACT OF A GAN-BASED ELECTRONIC DEVICE AND OHMIC CONTACT OF A GAN-BASED ELECTRONIC DEVICE PRODUCED THEREFOR

Similar Documents

Publication Publication Date Title
CN109037323B (zh) 具有选择性生成的2deg沟道的常关型hemt晶体管及其制造方法
JP4221697B2 (ja) 半導体装置
CN102576729A (zh) 用于基于氮化镓或其它氮化物的功率装置的含有锗的低欧姆触点
JP2011238866A (ja) 半導体装置及びその製造方法
JP2006196764A (ja) 化合物半導体装置
JP4023121B2 (ja) n型電極、III族窒化物系化合物半導体素子、n型電極の製造方法、及びIII族窒化物系化合物半導体素子の製造方法
JP5202897B2 (ja) 電界効果トランジスタおよびその製造方法
US20120007049A1 (en) Nitride-based semiconductor device and method for manufacturing the same
JP2010171416A (ja) 半導体装置、半導体装置の製造方法および半導体装置のリーク電流低減方法
CN220065702U (zh) 一种增强型hemt器件
JP6242678B2 (ja) 窒化物半導体素子及びその製造方法
JP2010212406A (ja) 半導体装置及びその製造方法
Keogh et al. High current gain InGaN/GaN HBTs with 300° C operating temperature
JP5871785B2 (ja) ヘテロ接合電界効果トランジスタ及びその製造方法
US7238970B2 (en) Semiconductor device and method for fabricating the same
JP2014099523A (ja) ヘテロ接合電界効果型トランジスタおよびその製造方法
TWI225311B (en) Method for producing group III nitride compound semiconductor device
JP2010114219A (ja) 半導体装置及びその製造方法
JP2012164718A (ja) 半導体デバイスおよび半導体デバイス製造方法
JP5113375B2 (ja) 窒化物半導体装置
JP2015073002A (ja) 化合物半導体装置及びその製造方法
JP2009238956A (ja) 半導体装置および半導体装置の製造方法
JP2012209297A (ja) 半導体装置およびその製造方法
JP5877967B2 (ja) 化合物半導体装置
JP5431756B2 (ja) Iii族窒化物半導体からなる半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701