JP2011235010A - X-ray diagnosis apparatus, image processor and program - Google Patents

X-ray diagnosis apparatus, image processor and program Download PDF

Info

Publication number
JP2011235010A
JP2011235010A JP2010110996A JP2010110996A JP2011235010A JP 2011235010 A JP2011235010 A JP 2011235010A JP 2010110996 A JP2010110996 A JP 2010110996A JP 2010110996 A JP2010110996 A JP 2010110996A JP 2011235010 A JP2011235010 A JP 2011235010A
Authority
JP
Japan
Prior art keywords
image
images
coordinates
region
overlapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010110996A
Other languages
Japanese (ja)
Other versions
JP5634744B2 (en
Inventor
Masaya Katsumata
真弥 勝間田
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2010110996A priority Critical patent/JP5634744B2/en
Publication of JP2011235010A publication Critical patent/JP2011235010A/en
Application granted granted Critical
Publication of JP5634744B2 publication Critical patent/JP5634744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a lengthy image joined with a plurality of images.SOLUTION: This X-ray diagnosis device 10 comprises: an X-ray irradiation unit 1; an X-ray detection unit 2; a joining position-setting unit 32 which sets a position at which the plurality of images are joined by being overlapped with one another at a part of each image; a pixel position correction unit 33 which corrects a pixel position of an overlapped region included in at least one image; and a lengthy-image creation unit 34 which creates the lengthy image which is joined in the overlapped region at which the correction is performed. The lengthy image is outputted to an output device 4 which is composed of a monitor or the like.

Description

本発明は、X線診断装置、画像処理装置及びプログラムに係り、特に長尺撮影の画像接合技術に関する。   The present invention relates to an X-ray diagnostic apparatus, an image processing apparatus, and a program, and particularly to an image joining technique for long imaging.

長尺撮影とは、1つのX線検出器の検出領域を超える連続した被検体を複数の検出器、もしくは1つの検出器によって複数回撮影し接合(又は接続ともいう)する撮影手法を指す。これらの撮影手法のうち、1つの検出器を用いて長尺撮影を行う場合、検出器を複数回移動させ撮影を行い、撮影した複数のX線画像を保存し、保存した複数の画像を接合し、1つの長尺画像を作成する。ここで、複数枚の画像を一枚の画像に接合する手法として、例えば、特許文献1には、画像処理によって脊椎が撮影された領域を抽出し、脊椎領域の相関の高い位置を探索し接合位置を導出する医用画像処理装置が開示されている。   Long-length imaging refers to an imaging technique in which a continuous subject exceeding the detection region of one X-ray detector is imaged a plurality of times by a plurality of detectors or one detector and joined (or also called connection). Of these imaging methods, when performing long imaging using a single detector, the detector is moved multiple times, imaging is performed, a plurality of captured X-ray images are stored, and the stored plurality of images are joined. And create one long image. Here, as a technique for joining a plurality of images into a single image, for example, Patent Document 1 extracts a region where a spine is imaged by image processing, searches for a highly correlated position in the spine region, and joins the images. A medical image processing apparatus for deriving a position is disclosed.

特開2008−067916号公報JP 2008-067916 A

上記特許文献1では、被検体の体の動きがない場合は位置合わせができても、連続する複数の画像の重ね合わせ領域に、例えば被検体の体動に起因する画像の歪みがある場合には、体の動きにより位置ずれが生じた画像領域の位置を合わせることは出来なかった。そのため、被検体の呼吸等の動きによって、重ね合わせ領域において骨や横隔膜等の境界(エッジ)が二重に表示されてしまう問題があり、その結果重ね合わせ領域の診断が行い難い長尺画像(接合画像ともいう)となるという問題があった。   In the above-mentioned Patent Document 1, when there is no movement of the body of the subject, alignment can be performed, but there is an image distortion caused by, for example, body movement of the subject in the overlapping region of a plurality of consecutive images. Could not align the position of the image area that was displaced due to body movement. Therefore, there is a problem that a boundary (edge) such as a bone or a diaphragm is displayed twice in the overlap region due to the movement of the subject's breathing or the like, and as a result, a long image (which is difficult to diagnose the overlap region) There is also a problem that it is also referred to as a bonded image).

本発明は、上記問題に鑑みてなされたものであり、連続する複数の画像の重ね合わせ領域に被検体の体の動きがある場合にも、その重ね合わせ領域において画像が二重に表示されない長尺画像を作成するX線診断装置、画像処理装置及びプログラムを提供することである。   The present invention has been made in view of the above problems, and even when there is a movement of the subject's body in the overlapping region of a plurality of continuous images, the length in which the images are not displayed twice in the overlapping region. An X-ray diagnostic apparatus, an image processing apparatus, and a program for creating a scale image are provided.

上記問題を解決するために、本発明に係るX線診断装置は、X線を照射するX線照射手段と、前記X線照射手段から照射されたX線を検出し電気信号へ変換するX線検出手段と、前記X線検出手段から得られた電気信号に基づく複数の画像を、各画像の一部分を重ね合わせて接合する位置を設定する接合位置設定手段と、少なくとも一方の画像に含まれる重ね合わせ領域の画素位置を修正する画素位置修正手段と、前記複数の画像を、前記修正が行われた重ね合わせ領域において接合した長尺画像を作成する長尺画像作成手段と、を備えることを特徴とする。   In order to solve the above problems, an X-ray diagnostic apparatus according to the present invention includes an X-ray irradiation unit that irradiates X-rays, and an X-ray that detects X-rays emitted from the X-ray irradiation units and converts them into electrical signals. Detection means, joining position setting means for setting positions where a plurality of images based on the electrical signals obtained from the X-ray detection means are joined by overlapping a part of each image, and overlapping included in at least one image A pixel position correcting unit that corrects a pixel position of the alignment region; and a long image generating unit that generates a long image obtained by joining the plurality of images in the corrected overlapping region. And

また、本発明に係る画像処理装置は、医用画像撮像装置により得られた複数の画像を、各画像の一部分を重ね合わせて接合する位置を設定する接合位置設定手段と、少なくとも一方の画像に含まれる重ね合わせ領域の画素位置を修正する画素位置修正手段と、前記複数の画像を、前記修正が行われた重ね合わせ領域において接合した長尺画像を作成する長尺画像作成手段と、を備えることを特徴とする。   The image processing apparatus according to the present invention includes a plurality of images obtained by the medical image pickup apparatus and at least one of the joining position setting means for setting a joining position by overlapping a part of each image. Pixel position correcting means for correcting the pixel position of the superimposed area, and a long image creating means for creating a long image obtained by joining the plurality of images in the corrected overlapping area. It is characterized by.

また、本発明に係る画像処理プログラムは、医用画像撮像装置により得られた複数の画像を、各画像の一部分を重ね合わせて接合する位置を設定するステップと、少なくとも一方の画像に含まれる重ね合わせ領域の画素位置を修正するステップと、前記複数の画像を、前記修正が行われた重ね合わせ領域において接合した長尺画像を作成するステップと、をコンピュータに実行させることを特徴とする。   In addition, the image processing program according to the present invention includes a step of setting a position where a plurality of images obtained by the medical imaging apparatus are joined by overlapping a part of each image, and a superposition included in at least one image A step of correcting the pixel position of the region and a step of creating a long image obtained by joining the plurality of images in the superimposed region where the correction has been performed are performed.

本発明によれば、重ね合わせ領域内の画素位置を修正してから複数の画像を繋ぎ合わせるため、重ね合わせ領域内で被検体、例えば骨等のエッジ部分を一致させることで、被検体が二重に描出されなくなり、長尺画像の画像品質を向上させることができる。   According to the present invention, in order to connect a plurality of images after correcting the pixel position in the overlap region, the subject, for example, an edge portion such as a bone is matched in the overlap region. Thus, the image quality of the long image can be improved.

本実施形態に係るX線診断装置の構成例を示す模式図The schematic diagram which shows the structural example of the X-ray diagnostic apparatus which concerns on this embodiment 本実施形態に係るX線診断装置による長尺画像作成処理の流れを示すフローチャートThe flowchart which shows the flow of the long image creation process by the X-ray diagnostic apparatus which concerns on this embodiment. 本実施形態に係る画素位置修正処理の流れを示すフローチャートThe flowchart which shows the flow of the pixel position correction process which concerns on this embodiment. 重ね合わせ領域の導出処理を示す説明図Explanatory drawing which shows the derivation | leading-out process of an overlapping area | region 小領域を基に、関心点及び関心領域の設定処理を示す説明図Explanatory drawing which shows the setting process of a point of interest and a region of interest based on a small region 走査領域(関心領域の走査方向)を示す説明図Explanatory drawing showing the scanning area (scanning direction of the area of interest) 画素位置修正処理を示す説明図Explanatory drawing which shows pixel position correction processing 射影変換の概念図Conceptual diagram of projective transformation

以下、本発明のX線診断装置の実施の形態について、図面を用いて説明する。なお、以下の説明において、同一の構成要素には同一の符号を付し、重複した説明を省略する。   Hereinafter, embodiments of the X-ray diagnostic apparatus of the present invention will be described with reference to the drawings. In the following description, the same components are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係るX線診断装置10の構成例を示す模式図である。X線診断装置10は、X線を照射するX線発生器1と、X線発生器1から照射されたX線を検出し電気信号へ変換するX線検出器2と、X線検出器2から得られたX線の強度を示す電気信号に基づいて長尺撮影画像を作成する画像処理装置3と、長尺撮影画像を出力(表示)する出力装置4と、を備える。画像処理装置3は、X線検出器2から電気信号を受け取って記憶する画像記憶装置31と、画像記憶装置31に保存した複数枚の画像の接合位置を検出して設定する接合位置設定部32と、接合位置設定部32により設定された接合位置において、接合される複数の画像が重なり合う領域(以下「重ね合わせ領域」という)の画素位置を修正する画素位置修正部33と、画素位置修正後の複数の画像を接合した長尺画像を作成する長尺画像作成部34と、を備える。   FIG. 1 is a schematic diagram illustrating a configuration example of an X-ray diagnostic apparatus 10 according to the present embodiment. The X-ray diagnostic apparatus 10 includes an X-ray generator 1 that emits X-rays, an X-ray detector 2 that detects X-rays emitted from the X-ray generator 1 and converts them into electrical signals, and an X-ray detector 2. The image processing device 3 for creating a long photographic image based on the electrical signal indicating the intensity of the X-rays obtained from the above, and the output device 4 for outputting (displaying) the long photographic image. The image processing device 3 receives an image signal from the X-ray detector 2 and stores it, and a joining position setting unit 32 that detects and sets joining positions of a plurality of images stored in the image storage device 31. A pixel position correcting unit 33 that corrects a pixel position of a region where a plurality of images to be joined overlap (hereinafter referred to as an “overlapping region”) at the joint position set by the joint position setting unit 32; A long image creation unit 34 for creating a long image obtained by joining the plurality of images.

画像記憶装置31は、磁気ディスクや不揮発性、又は揮発性メモリなど、被検体の透過X線の強度に応じた電気信号を一時的又は固定的に記憶する装置により構成される。   The image storage device 31 is configured by a device that temporarily or fixedly stores an electrical signal corresponding to the intensity of transmitted X-rays of a subject, such as a magnetic disk, nonvolatile, or volatile memory.

接合位置設定部32、画素位置修正部33、長尺画像作成部34は、これらの機能を実行する画像処理プログラムと、演算・制御装置(例えばCPU)、記憶装置(例えばメモリ)、及び入出力装置からなるハードウェアと、により構成され、これらが協働することにより、画像処理プログラムの機能が実現される。   The joint position setting unit 32, the pixel position correcting unit 33, and the long image creating unit 34 are an image processing program that executes these functions, an arithmetic / control device (for example, a CPU), a storage device (for example, a memory), and an input / output The functions of the image processing program are realized by cooperating with hardware composed of devices.

次に図2乃至図8に基づいて、本実施形態に係るX線診断装置により長尺画像を作成する処理の流れを説明する。図2は、本実施形態に係るX線診断装置による長尺画像作成処理の流れを示すフローチャートである。図3は、本実施形態に係る画素位置修正処理の流れを示すフローチャートである。図4は、重ね合わせ領域の導出処理を示す説明図である。図5は、小領域を基に、関心点及び関心領域の設定処理を示す説明図である。図6は、走査領域(関心領域の走査方向)を示す説明図である。図7は、画素位置修正処理を示す説明図である。図8は、射影変換の概念図である。   Next, based on FIG. 2 thru | or FIG. 8, the flow of the process which produces a long image with the X-ray diagnostic apparatus which concerns on this embodiment is demonstrated. FIG. 2 is a flowchart showing a flow of long image creation processing by the X-ray diagnostic apparatus according to the present embodiment. FIG. 3 is a flowchart showing the flow of pixel position correction processing according to the present embodiment. FIG. 4 is an explanatory diagram showing the process for deriving the overlapping area. FIG. 5 is an explanatory diagram showing a process for setting a point of interest and a region of interest based on a small region. FIG. 6 is an explanatory diagram showing a scanning region (scanning direction of the region of interest). FIG. 7 is an explanatory diagram illustrating pixel position correction processing. FIG. 8 is a conceptual diagram of projective transformation.

以下の説明では、X線診断装置10が、X線検出器2を被検体に対して重なり部分を持たせながら異なる位置にずらして2枚の画像(図4の画像A、画像B)を撮像し、これら2枚の画像を接合して長尺画像を作成する処理を例に説明する。画像A、画像Bは、被検体の体軸方向に沿って重なり部分を持たせて撮影した画像であり、画像Aの下部領域(足側)と、画像Bの上部領域(頭側)とは、それぞれ被検体の同一部位が撮影された領域が含まれる。この同一部位が撮影された領域を重ね合わせて接合し、長尺画像を作成する。以下、図2のステップに沿って説明する。   In the following description, the X-ray diagnostic apparatus 10 captures two images (image A and image B in FIG. 4) by shifting the X-ray detector 2 to different positions while having an overlapping portion with respect to the subject. Then, a process for joining these two images to create a long image will be described as an example. Image A and image B are images taken with overlapping portions along the body axis direction of the subject. The lower region (foot side) of image A and the upper region (head side) of image B are , Each includes a region where the same part of the subject is imaged. Overlapping and joining the regions where the same part is imaged creates a long image. Hereinafter, it demonstrates along the step of FIG.

(ステップS1)
X線撮像が行なわれる(S1)。X線診断装置10は、X線発生器1とX線検出器2との間に位置する被検体(図示を省略)の同一部位を重複させて、X線発生器1とX線検出器2とを相対移動させて連続撮影を行い、複数の画像(本実施形態では図4の画像Aと画像Bとに相当する)を撮像して電気信号を出力し、画像記憶装置31へ送信する。画像記憶装置31は、その電気信号に基づく画像A、画像Bを保存する。
(Step S1)
X-ray imaging is performed (S1). The X-ray diagnostic apparatus 10 overlaps the same part of a subject (not shown) located between the X-ray generator 1 and the X-ray detector 2 to overlap the X-ray generator 1 and the X-ray detector 2. Are moved relative to each other, and continuous shooting is performed, a plurality of images (corresponding to the images A and B in FIG. 4 in this embodiment) are captured, an electric signal is output, and transmitted to the image storage device 31. The image storage device 31 stores images A and B based on the electrical signal.

(ステップS2)
接合位置設定部32は、画像記憶装置31に格納された画像A、画像Bの接合位置を設定する(S2)。接合位置設定処理は、ユーザから接合位置の入力を求めても良いし、撮影した複数枚の画像A、Bから、画像処理装置30を用いた画像処理によって導出してもよい。この画像処理の一例として、例えば、図4に示すように、画像Aの下部の一部領域からなる領域50と、画像Bの上部にあって、かつ領域50よりも広い面積を有する探索範囲51と、を定義する。そして、領域50を探索範囲51内においてずらしながら、探索範囲51において最も濃度相関値が高い位置を探し、そのときの探索範囲51に対する領域50の位置を確保するように、画像Aと画像Bとを重ね合わせた位置を接合位置として設定し、このとき画像A、画像Bにおいて重なりあう領域を、各画像の重ね合わせ領域50及び重ね合わせ領域52として求める。接合位置検出のアルゴリズムは、上記に限らず、画像Aと画像Bとの凡その接合位置及び重ね合わせ領域が検出できるものであれば、いかなるものを用いてもよい。
(Step S2)
The joining position setting unit 32 sets the joining position of the images A and B stored in the image storage device 31 (S2). The joint position setting process may obtain a joint position input from the user, or may be derived from a plurality of captured images A and B by image processing using the image processing device 30. As an example of this image processing, for example, as shown in FIG. 4, a region 50 consisting of a partial region below the image A, and a search range 51 above the image B and having a larger area than the region 50. And define. Then, while shifting the region 50 within the search range 51, search for a position with the highest density correlation value in the search range 51, and secure the position of the region 50 with respect to the search range 51 at that time, Is set as the joint position, and the overlapping areas in the images A and B at this time are obtained as the overlapping area 50 and the overlapping area 52 of each image. The algorithm for detecting the joint position is not limited to the above, and any algorithm may be used as long as the joint position and the overlapping region between the image A and the image B can be detected.

(ステップS3)
画像位置修正部33は、接合領域検出部32が設定した接合位置における画像Aの重ね合わせ領域50と、画像Bの重ね合わせ領域52との画素位置の修正を行う(S3)。以下の画素位置修正処理では、重ね合わせ領域50を小領域に分割する。一方、重ね合わせ領域52内において、小領域毎に、その小領域と最も相関が高い走査領域を求める。そして、小領域と走査領域の双方を射影変換して画素位置を修正し、重ね合わせ領域50と重ね合わせ領域52とを一致させる。次に図3の順に沿って、画素位置修正部33による画素位置修正処理について説明する。
(Step S3)
The image position correction unit 33 corrects the pixel positions of the overlapping region 50 of the image A and the overlapping region 52 of the image B at the bonding position set by the bonding region detection unit 32 (S3). In the following pixel position correction process, the overlapping area 50 is divided into small areas. On the other hand, in the overlapping area 52, a scanning area having the highest correlation with the small area is obtained for each small area. Then, the pixel position is corrected by projective transformation of both the small area and the scanning area, and the overlapping area 50 and the overlapping area 52 are matched. Next, the pixel position correcting process by the pixel position correcting unit 33 will be described in the order of FIG.

(ステップS301)
画素位置修正部33は、2つの画像の重ね合わせ領域のうち、一方の画像の重ね合わせ領域、例えば画像Aの重ね合わせ領域50を、小領域に分割する小領域分割処理を行う(S301)。この小領域は、後述するステップS303における射影投影を行う単位領域となる。
(Step S301)
The pixel position correcting unit 33 performs a small area dividing process for dividing one of the two image overlapping areas, for example, the overlapping area 50 of the image A, into small areas (S301). This small area is a unit area for performing projection projection in step S303 to be described later.

画素位置修正部33は、まず図4に示すように、重なり合う2つの画像A、Bのそれぞれから、重ね合わせ領域50、52を抜き出す。次に、図5(a)に示すように、どちらか一方の画像領域、例えば重ね合わせ領域50を、一辺の長さがdからなる正方形状の小領域57(図5の右下斜め斜線の領域に相当する)に分割する。図5(a)では、重ね合わせ領域50内に点線で描写した横線53hと縦線53vとをピッチdで複数本設定して、重ね合わせ領域50を複数の小領域57に分割する。なお、このときの一辺の長さdは、重ね合わせ領域50の画像サイズに比例して変更してもよい。 First, as shown in FIG. 4, the pixel position correcting unit 33 extracts overlapping regions 50 and 52 from two overlapping images A and B, respectively. Next, as shown in FIG. 5 (a), one of the image regions, for example the overlay area 50, the lower right diagonal hatched square small areas 57 (FIG. 5 the length of one side is composed of d 1 (Corresponding to the area). In FIG. 5A, a plurality of horizontal lines 53 h and vertical lines 53 v depicted by dotted lines in the overlapping area 50 are set at a pitch d 1 , and the overlapping area 50 is divided into a plurality of small areas 57. Note that the length d 1 of one side at this time may be changed in proportion to the image size of the overlapping region 50.

(ステップS302)
画像位置修正部33は、ステップS301で分割した各小領域の全ての頂点の画素について、もう一方の画像領域、すなわち画像Bの重ね合わせ領域52の画素のうち、最も関連性が高い画素を探索する相関値導出処理を行う(S302)。
(Step S302)
The image position correction unit 33 searches for the pixel having the highest relevance among the pixels of the other image area, that is, the overlapping area 52 of the image B, for all the vertex pixels of each small area divided in step S301. The correlation value deriving process is performed (S302).

画像位置修正部33は、小領域の各頂点、すなわち図5(a)の点線53h、53vの交点の全てを関心点54として設定し、その周辺に一辺の長さがdとなる正方形状の関心領域55を設定する。サイズdは、2×dのサイズでも良いし、計算コストを下げるためにそれ以下にしてもよい。 Image position correction unit 33, the vertices of the small area, i.e. 5 dotted (a) 53h, sets all intersections of 53v as interest point 54, a square shape having a side length of its periphery is d 2 The region of interest 55 is set. The size d 2 may be a size of 2 × d 1 or may be smaller than that in order to reduce the calculation cost.

画素位置修正部33は、関心領域55と同一形状の領域(以下、この領域を「走査領域」という)56を、他方の画像領域、すなわち重ね合わせ領域52に設定する。画素位置修正部33は、図6に示すように、走査領域56を重ね合わせ領域52内で左右方向及び上下方向に走査しながら、各位置において関心領域55と、走査領域56とを比較して相関を求める。このときの相関の高さの基準は、関心領域55及び走査領域56のそれぞれの画素値の偏差でも良いし、それぞれの領域の画素値の平均値や中央値等の特徴量の差が小さいものを使っても良い。   The pixel position correcting unit 33 sets a region 56 having the same shape as the region of interest 55 (hereinafter, this region is referred to as a “scanning region”) as the other image region, that is, the overlapping region 52. As shown in FIG. 6, the pixel position correcting unit 33 compares the region of interest 55 and the scanning region 56 at each position while scanning the scanning region 56 in the horizontal direction and the vertical direction within the overlapping region 52. Find the correlation. The reference for the correlation height at this time may be the deviation of the pixel values of the region of interest 55 and the scanning region 56, or the difference between the feature values such as the average value or median value of the pixel values of each region is small. May be used.

図7は、関心点及び関心領域と、関心領域に最も相関が高い走査領域とその走査領域における関心点との関係を示す説明図である。画像Aの重なり領域50内の関心点をP1(in,jn)と示し、その座標を(x1in,y1jn)とする。なお、(in,jn)は、画素の配列番号を表す。本ステップの処理を図7の4つの関心点P1(1,1)、P1(1,2)、P1(2,1)、P1(2,2)を例に説明する。なお、以下の説明では4つの関心点についてのみ説明するが、全ての小領域の頂点に対して同様の処理を行う。 FIG. 7 is an explanatory diagram showing a relationship between a point of interest and a region of interest, a scanning region having the highest correlation with the region of interest, and a point of interest in the scanning region. The point of interest in the overlapping area 50 of the image A is denoted as P 1 (i n , j n ), and its coordinates are defined as (x1i n , y1j n ). Note that (i n , j n ) represents the pixel array number. The processing in this step will be described by taking four interest points P 1 (1,1), P 1 (1,2), P 1 (2,1), and P 1 (2,2) in FIG. 7 as an example. In the following description, only four points of interest will be described, but the same processing is performed on the vertices of all small regions.

画素位置修正部33は、4つの関心点P1(1,1)、P1(1,2)、P1(2,1)、P1(2,2)のそれぞれに対して、関心領域55a、55b、55c、55dを設定する。そして、各関心領域について最も相関が高い走査領域を求める。図7では、関心領域55a、55b、55c、55dのそれぞれと最も相関が高い走査領域として56a、56b、56c、56dが求められる。 The pixel position correcting unit 33 performs a region of interest for each of the four points of interest P 1 (1,1), P 1 (1,2), P 1 (2,1), and P 1 (2,2). 55a, 55b, 55c, and 55d are set. Then, the scanning region having the highest correlation is obtained for each region of interest. In FIG. 7, 56a, 56b, 56c, and 56d are obtained as scanning regions having the highest correlation with each of the regions of interest 55a, 55b, 55c, and 55d.

(ステップS303)
画素位置修正部33は、各走査領域の中心点、すなわち、各関心領域に対する関心点に相当する点を、関心点に対して最も相関が高い画素P2(in,jn)として求める(S303)。図7では、各走査領域56a、56b、56c、56dの中心点となる画素P2 (1,1)、P2 (1,2)、P2 (2,1)、P2 (2,2)が、各関心点P1(1,1)、P1(1,2)、P1(2,1)、P1(2,2)に対して最も相関が高い画素として求められる。以下、画素P2(in,jn)の座標を(x2in,y2jn)で表す。
(Step S303)
The pixel position correcting unit 33 obtains the center point of each scanning region, that is, the point corresponding to the point of interest for each region of interest as the pixel P 2 (i n , j n ) having the highest correlation with the point of interest ( S303). In FIG. 7, the pixels P 2 (1,1), P 2 (1,2), P 2 (2,1), and P 2 (2,2) that are the center points of the scanning regions 56a, 56b, 56c, and 56d. ) Is determined as the pixel having the highest correlation with respect to each interest point P 1 (1,1), P 1 (1,2), P 1 (2,1), P 1 (2,2). Hereinafter, representative pixel P 2 (i n, j n ) the coordinates of (x2i n, y2j n).

(ステップS304)
画素位置修正部33は、各関心点と、それぞれの関心点に対して相関が最も高い画素と、を一致させるように移動する画素補正処理を施すために、まず、各関心点及びその関心点と最も相関が高い画素の座標を一致させるための修正座標を求める(S304)。
(Step S304)
In order to perform pixel correction processing for moving each interest point and a pixel having the highest correlation with each interest point, first, the pixel position correcting unit 33 first performs each interest point and its interest point. And the corrected coordinates for matching the coordinates of the pixel having the highest correlation (S304).

画素位置修正部33は、それぞれの関心点P1(in,jn)の座標(x1in,y1jn)と、相関値の高い座標(ステップS302で求めた中心点)の座標P2(in,jn)の座標(x2in,y2jn)と、の差SubtractionPoint(in,jn)を、下式(1)により求める。
SubtractionPoint(in,jn)=(x1in-x2in,y1jn-y2jn)・・・(1)
但し、 (x1in,y1jn):関心点P1(in,jn)の座標
(x2in,y2jn):最も相関が高い画素P(in,jn)の座標
Pixel position correcting unit 33, each of the interest point P 1 (i n, j n ) coordinate (x1i n, y1j n) with the coordinates P 2 of high correlation value coordinates (center point obtained in step S302) ( i n, the coordinates (x2i n of j n), and Y2j n), the difference SubtractionPoint (i n, the j n), determined by the following equation (1).
SubtractionPoint (i n , j n ) = (x1i n -x2i n , y1j n -y2j n ) ... (1)
Where (x1i n , y1j n ): coordinates of the point of interest P 1 (i n , j n )
(x2i n , y2j n ): coordinates of pixel P 2 (i n , j n ) with the highest correlation

次に、画素位置修正部33は、関心点P1(in,jn)の座標(x1in,y1jn)に対し、導出した座標の差に重み付けを行って関心点の座標に加えた座標修正後の画素P’1(in,jn)の座標(x’1in,y’1jn)を求める。他方の画像(重ね合わせ領域52)については、関心点P1(in,jn)と最も相関が高い画素P2(in,jn)の座標(x2in,y2jn)に対し、座標の差を符号反転した値に重み付けを行い、画素P2(in,jn)の座標(x2in,y2jn)に加えた座標修正後の画素P’ 2(in,jn)の座標を求める。 Next, the pixel position correcting unit 33 weights the difference of the derived coordinates with respect to the coordinates (x1i n , y1j n ) of the interest point P 1 (i n , j n ) and adds the weighted difference to the coordinates of the interest point. The coordinates (x′1i n , y′1j n ) of the pixel P ′ 1 (i n , j n ) after coordinate correction are obtained. For other image (overlay area 52), with respect to interest point P 1 (i n, j n ) and highest correlation pixels P 2 (i n, j n ) of the coordinate (x2i n, Y2j n), performs weighting the difference coordinates for negating the value, the pixel P 2 (i n, j n) of the coordinate (x2i n, y2j n) pixels P '2 after the coordinate modification made to the (i n, j n) Find the coordinates of.

この時の重み付けは、重ね合わせ領域50(及び重ね合わせ領52)の縦方向マトリクスの半分を中心に、関心点P(in,jn)を設けた画像(画像Aの重ね合わせ領域50)の重み付けを1から0に向けて、他方の画像P2(in,jn)(画像Bの重ね合わせ領域52)を0から1に向けて線形な重み付けを行う。これらの重み付けを行って、画素P1(in,jn)、P2(in,jn)の座標修正後の座標(x2in,y2jn)の式にすると、式(2)(3)の様になる。 The weighting at this time is an image in which the point of interest P 1 (i n , j n ) is provided around the half of the vertical matrix of the overlapping region 50 (and the overlapping region 52) (the overlapping region 50 of the image A). ) Is weighted from 1 to 0, and the other image P 2 (i n , j n ) (superimposed region 52 of image B) is weighted from 0 to 1 to perform linear weighting. Perform these weights, the pixel P 1 (i n, j n ), P 2 (i n, j n) coordinate (x2i n, Y2j n) after coordinate modification when the expression of equation (2) ( It becomes like 3).

(x’1in,y’1jn)=(x1in,y1jn)+A(y)・ SubtractionPoint(in,jn)・・・(2)
(x’2in,y’2jn)=(x2in,y2jn)+(-(1- A(y)))・ SubtractionPoint(in,jn) ・・・(3)
但し、(x’1in,y’1jn):座標修正後の画素P’1(in,jn)の座標
(x’2in,y’2jn):座標修正後の最も相関が高い画素P’(in,jn)の座標
A(y):重み付け係数
(x′1i n , y′1j n ) = (x1 i n , y1j n ) + A (y) · SubtractionPoint (i n , j n ) (2)
(x'2i n , y'2j n ) = (x2i n , y2j n ) + (-(1- A (y))) ・ SubtractionPoint (i n , j n ) (3)
However, (x'1i n , y'1j n ): coordinates of pixel P ' 1 (i n , j n ) after coordinate correction
(x'2i n , y'2j n ): Coordinate of pixel P ' 2 (i n , j n ) with the highest correlation after coordinate correction
A (y): Weighting factor

なお、式(2)(3)では、P1は図1の画像Aの様に重ね合わせ領域50が画像の下部にあるときの画素、P2は、図1の画像Bの様に重ね合わせ領域52が画像の上部にあるときの画素を用いた場合を示している。重ね合わせ領域50、52の位置関係が逆の場合は、SubtractionPoint(in,jn)に掛かる係数A(y)と-(1-A(y))が式(2)と(3)で逆になる。また、重み付け係数は、下式(4)により求める。
A(y)=-1/Height+1・・・(4)
但し、Height:重ね合わせ領域50(または52)のyマトリクスサイズ
y:重ね合わせ領域50(または52)P(i,j)のy成分の最大値を代入する
In Expressions (2) and (3), P 1 is a pixel when the overlapping region 50 is at the bottom of the image as in image A in FIG. 1, and P 2 is superimposed as in image B in FIG. The case where the pixel when the area | region 52 exists in the upper part of an image is used is shown. When the positional relationship between the overlapping regions 50 and 52 is reversed, the coefficients A (y) and-(1-A (y)) applied to SubtractionPoint (i n , j n ) are expressed by equations (2) and (3). Vice versa. Further, the weighting coefficient is obtained by the following equation (4).
A (y) =-1 / Height + 1 (4)
However, Height: y matrix size of the overlapping region 50 (or 52) y: The maximum value of the y component of the overlapping region 50 (or 52) P (i, j) is substituted.

(ステップS305)
画素位置修正部33は、関心点により定義される小領域、及びその小領域の頂点と最も相関が高い画素により定義される領域(以下「比較領域」という)と、を一致させるよう、小領域及び比較領域を射影変換する画素補正処理を施すために、まず、各関心点及びその関心点と最も相関が高い画素の座標を一致させるための修正座標を求める(S305)。
(Step S305)
The pixel position correcting unit 33 matches the small area defined by the point of interest and the area defined by the pixel having the highest correlation with the vertex of the small area (hereinafter referred to as “comparison area”). In order to perform pixel correction processing for projective transformation of the comparison region, first, corrected coordinates for matching the respective interest points and the coordinates of the pixel having the highest correlation with the interest points are obtained (S305).

画素位置修正部33は、P1(in,jn)で囲まれた領域を、同じ対応配列番号で囲まれたP’ 1 (in,jn)に、射影変換を行う。図7では、画像Aの重ね合わせ領域50内にある4つの関心点P1(1,1)、P1(1,2)、P1(2,1)、P1(2,2)により囲まれた正方形状の小領域57を、これらの各関心点P1(1,1)、P1(1,2)、P1(2,1)、P1(2,2)の座標修正後の画素P’1(1,1)、P’1(1,2)、P’1(2,1)、P’1(2,2)で囲まれた領域58に射影変換する。この射影変換により、図8に示すように、小領域57は領域58に射影変換される。 Pixel position correcting unit 33, P 1 (i n, j n) an area surrounded by the same corresponding sequences surrounded by a number P '1 (i n, j n) in, performs projective transformation. In FIG. 7, four points of interest P 1 (1,1), P 1 (1,2), P 1 (2,1), and P 1 (2,2) in the overlapping area 50 of the image A are represented. Coordinate correction of each of these interest points P 1 (1,1), P 1 (1,2), P 1 (2,1), P 1 (2,2) is performed on the enclosed square-shaped small region 57. Projective transformation is performed on a region 58 surrounded by the subsequent pixels P ′ 1 (1,1), P ′ 1 (1,2), P ′ 1 (2,1), and P ′ 1 (2,2). By this projective transformation, the small region 57 is projectively transformed into a region 58 as shown in FIG.

射影変換は、一般的な射影変換の式(5)(6)を使用する。
x’=(a1x+b1y+c1)/(a0x+b0y+1)・・・(5)
y’=(a2x+b2y+c2)/(a0x+b0y+1)・・・(6)
但し、x:x軸の座標
y:y軸の座標
x’:射影変換後のx座標
y’:射影変換後のy座標
The projective transformation uses general formulas (5) and (6) for projective transformation.
x '= (a1x + b1y + c1) / (a0x + b0y + 1) (5)
y '= (a2x + b2y + c2) / (a0x + b0y + 1) (6)
Where x: x-axis coordinate y: y-axis coordinate
x ′: x coordinate after projective transformation y ′: y coordinate after projective transformation

式(5)(6)に含まれる8つの変数a0,a1,a2,b0,b1,b2,c1,c2,は、式(5)(6)のx,yに4つの関心点P1(1,1)、P1(1,2)、P1(2,1)、P1(2,2)の座標(x1in,y1jn)を代入し、x’,y’に座標修正後の座標の4つの点P’1(1,1)、P’1(1,2)、P’1(2,1)、P’1(2,2)の座標(x’1in,y’1jn)を代入して得られる8つの式からなる連立方程式により導出する。 Eight variables a0, a1, a2, b0, b1, b2, c1, c2, which are included in equations (5) and (6), are expressed by four points of interest P 1 (x and y in equations (5) and (6)). 1,1), P 1 (1,2), P 1 (2,1), P 1 (2,2) coordinates (x1i n , y1j n ) are substituted and coordinates are corrected to x ', y' Coordinates of four points P ' 1 (1,1), P' 1 (1,2), P ' 1 (2,1), P' 1 (2,2) (x'1i n , y '1j n ) is derived by simultaneous equations consisting of eight equations obtained by substituting.

同様に、画素位置修正部33は、関心点P1(1,1)、P1(1,2)、P1(2,1)、P1(2,2)に対応する最も相関が高い4つの画素P2(1,1)、P2 (1,2)、P2 (2,1)、P2 (2,2)により囲まれた比較領域59についても、小領域57と同様、座標修正後の画素P’2 (1,1)、P’2 (1,2)、P’2 (2,1)、P’2(2,2)で囲まれた領域58’に射影変換する。この領域58’は、小領域57を射影変換した領域58と一致する。この射影変換により、画像Aの重ね合わせ領域50は、小領域57単位で重ね合わせ領域50’に変換され、画像Bの重ね合わせ領域52は、比較領域59単位で、領域50’と同一の座標系からなる重ね合わせ領域52’に変換される。 Similarly, the pixel position correcting unit 33 has the highest correlation corresponding to the points of interest P 1 (1,1), P 1 (1,2), P 1 (2,1), P 1 (2,2). Similarly to the small region 57, the comparison region 59 surrounded by the four pixels P 2 (1,1), P 2 (1,2), P 2 (2,1), and P 2 (2,2) Projective transformation to a region 58 ′ surrounded by pixels P ′ 2 (1,1), P ′ 2 (1,2), P ′ 2 (2,1), and P ′ 2 (2,2) after coordinate correction To do. This area 58 ′ coincides with the area 58 obtained by projective transformation of the small area 57. By this projective transformation, the overlapping area 50 of the image A is converted into the overlapping area 50 ′ in units of the small area 57, and the overlapping area 52 of the image B is the same coordinate as the area 50 ′ in the comparison area 59 units. It is converted into a superposition region 52 'consisting of a system.

(ステップS4)
長尺画像作成処理部34は、射影変換を行った重ね合わせ領域50’と重ね合わせ領域52’とが重なるように画像A及び画像Bの位置合わせを行い、長尺画像の濃度値を、重ね合わせ領域50’と重ね合わせ領域52’とにおいて一致する画素の画素値の平均値や、座標修正量算出と同様に、式(4)の重み付けを行って和を使用して求める。
(Step S4)
The long image creation processing unit 34 aligns the images A and B so that the overlapping region 50 ′ and the overlapping region 52 ′ that have undergone the projective conversion overlap, and superimposes the density value of the long image. Similar to the calculation of the average pixel value of the matching pixels in the matching region 50 ′ and the overlapping region 52 ′ and the coordinate correction amount calculation, weighting is performed using Expression (4) and the sum is used.

そして、濃度・コントラストを補正した複数枚の画像(画像A、画像B)を接合する(S4)。接合は、公知である手法の様に、重なる接合領域に重みをつけて補正しても良いし、重なる領域を持つ一方の画像を使用しても良い。   Then, a plurality of images (image A and image B) whose density and contrast are corrected are joined (S4). The joining may be corrected by giving a weight to the overlapping joining area as in a known method, or one image having the overlapping area may be used.

(ステップS5)
最後に、長尺画像をD/A変換して表示する(S5)。長尺画像の出力装置は、モニタ、フィルムプリンタ、でも良いし、データとしてサーバーや、記録媒体へ保存してもよい。
(Step S5)
Finally, the long image is D / A converted and displayed (S5). The long image output device may be a monitor or a film printer, or may be stored as data on a server or a recording medium.

本実施形態によれば、複数の画像を接続して長尺画像を作成する場合に、おおよその重ね合わせ位置が判明している各画像の重ね合わせ領域に対し、その重ね合わせ領域に含まれる画像の歪みを各画像において修正してから接続することにより、被検体が二重に表示されるという不具合の発生を防ぐことができる。これにより、長尺画像における重ね合わせ領域の画像品質の向上を図ることができる。   According to the present embodiment, when a long image is created by connecting a plurality of images, an image included in the overlapping area is determined with respect to the overlapping area of each image whose approximate overlapping position is known. By correcting the distortion in each image and then connecting, it is possible to prevent the occurrence of a problem that the subject is displayed twice. Thereby, the image quality of the overlapping region in the long image can be improved.

また、本実施形態のように、接合する各画像の重ね合わせ領域の画素位置を補正することにより、一方の画像の重ね合わせ領域のみの画素位置を修正する場合に比べて、重ね合わせ領域と、それに続く領域との画素位置のずれ量が少なくなるため、長尺画像において重ね合わせ領域(接合領域)とそれに続く領域とが滑らかになる。そのため、長尺画像の画像品質を向上させることができる。   Further, as in this embodiment, by correcting the pixel position of the overlapping region of each image to be joined, compared to the case where the pixel position of only the overlapping region of one image is corrected, Since the shift amount of the pixel position from the subsequent area is reduced, the overlapping area (joining area) and the subsequent area are smoothed in the long image. Therefore, the image quality of the long image can be improved.

なお、本実施形態では、接合する複数の画像の双方について画素位置の修正を行ったが、画素位置のずれが少なく、一方の画像の重なり領域に対してのみ画素位置の修正を行っても、重ね合わせ領域とそれに続く画像領域とが診断に差し障りない程度に滑らかであるときには、どちらか一方の画像の重なり領域に対してのみ画素位置の修正を行ってもよい。   In the present embodiment, the pixel position is corrected for both of the plurality of images to be joined. However, even if the pixel position is corrected only for the overlapping region of one image, the pixel position shift is small. When the overlapping area and the subsequent image area are so smooth that they do not interfere with the diagnosis, the pixel position may be corrected only for the overlapping area of either one of the images.

また、上記実施形態では、重み付けを、重ね合わせ領域のy方向のマトリクスサイズを用いて行ったが、x方向のマトリクスサイズを用いてx方向に線形の重み付けを行ってもよい。また、座標修正量を、x座標に対してはx方向の線形の重みを用い、y座標に対してはy方向の線形の重みを用いてもよい。   In the above-described embodiment, weighting is performed using the matrix size in the y direction of the overlapping region. However, linear weighting may be performed in the x direction using the matrix size in the x direction. The coordinate correction amount may be a linear weight in the x direction for the x coordinate and a linear weight in the y direction for the y coordinate.

1:X線発生器、2:X線検出器、3:画像処理装置、4:出力装置、10:X線診断装置、31:画像記憶装置、32:接合位置設定部、33:画素位置修正部、34:長尺画像作成部 1: X-ray generator, 2: X-ray detector, 3: Image processing device, 4: Output device, 10: X-ray diagnostic device, 31: Image storage device, 32: Junction position setting unit, 33: Pixel position correction Section, 34: long image creation section

Claims (6)

X線を照射するX線照射手段と、
前記X線照射手段から照射されたX線を検出し電気信号へ変換するX線検出手段と、
前記X線検出手段から得られた電気信号に基づく複数の画像を、各画像の一部分を重ね合わせて接合する位置を設定する接合位置設定手段と、
少なくとも一方の画像に含まれる重ね合わせ領域の画素位置を修正する画素位置修正手段と、
前記複数の画像を、前記修正が行われた重ね合わせ領域において接合した長尺画像を作成する長尺画像作成手段と、
を備えることを特徴とするX線診断装置。
X-ray irradiation means for irradiating X-rays;
X-ray detection means for detecting X-rays emitted from the X-ray irradiation means and converting them into electrical signals;
A plurality of images based on the electrical signal obtained from the X-ray detection means, a joining position setting means for setting a position where a part of each image is superimposed and joined;
Pixel position correcting means for correcting the pixel position of the overlapping region included in at least one image;
A long image creating means for creating a long image in which the plurality of images are joined in the corrected overlapping region;
An X-ray diagnostic apparatus comprising:
前記画素位置修正手段は、
前記複数の画像のうちの一方の画像に含まれる重ね合わせ領域を、複数の小領域に分割する手段と、
前記分割した小領域が、前記複数の画像のうちの他方の画像に含まれる重ね合わせ領域のどの領域と最も関連性が高いかを探索する相関値導出手段と、
前記最も関連性の高い領域の座標と前記小領域の座標とが一致するように、前記小領域の座標を変換する座標変換手段と、を備える、
ことを特徴とする請求項1に記載のX線診断装置。
The pixel position correcting means includes
Means for dividing an overlapping region included in one of the plurality of images into a plurality of small regions;
Correlation value deriving means for searching which region of the overlapping region included in the other image of the plurality of images is most relevant to the divided small region;
Coordinate conversion means for converting the coordinates of the small area so that the coordinates of the most relevant area and the coordinates of the small area match.
The X-ray diagnostic apparatus according to claim 1.
前記座標変換手段は、前記一方の画像に含まれる小領域と、前記他方の画像に含まれる最も関連性の高い領域と、の双方に対して座標変換を行い、座標変換後の小領域の座標と座標変換後の最も関連性の高い領域の座標とを一致させる、
ことを特徴とする請求項2に記載のX線診断装置。
The coordinate conversion means performs coordinate conversion on both the small area included in the one image and the most relevant area included in the other image, and coordinates of the small area after the coordinate conversion are performed. And the coordinates of the most relevant area after coordinate transformation,
The X-ray diagnostic apparatus according to claim 2.
前記座標変換手段は、前記小領域の座標と前記最も関連性の高い領域の座標との差分に対し、前記重ね合わせ領域のサイズに基づく重み付け係数を乗算した座標修正量を用いて、前記小領域の座標及び前記最も関連性の高い領域の座標を修正し、その修正後の座標を用いて座標変換処理を行う、
ことを特徴とする請求項3に記載のX線診断装置。
The coordinate conversion means uses the coordinate correction amount obtained by multiplying the difference between the coordinates of the small area and the coordinates of the most relevant area by a weighting coefficient based on the size of the overlapping area. And the coordinates of the most relevant area are corrected, and coordinate conversion processing is performed using the corrected coordinates.
The X-ray diagnostic apparatus according to claim 3.
医用画像撮像装置により得られた複数の画像を、各画像の一部分を重ね合わせて接合する位置を設定する接合位置設定手段と、
少なくとも一方の画像に含まれる重ね合わせ領域の画素位置を修正する画素位置修正手段と、
前記複数の画像を、前記修正が行われた重ね合わせ領域において接合した長尺画像を作成する長尺画像作成手段と、
を備えることを特徴とする画像処理装置。
A joining position setting means for setting a position for joining a plurality of images obtained by the medical imaging apparatus by overlapping a part of each image;
Pixel position correcting means for correcting the pixel position of the overlapping region included in at least one image;
A long image creating means for creating a long image in which the plurality of images are joined in the corrected overlapping region;
An image processing apparatus comprising:
医用画像撮像装置により得られた複数の画像を、各画像の一部分を重ね合わせて接合する位置を設定するステップと、
少なくとも一方の画像に含まれる重ね合わせ領域の画素位置を修正するステップと、
前記複数の画像を、前記修正が行われた重ね合わせ領域において接合した長尺画像を作成するステップと、
をコンピュータに実行させることを特徴とする画像処理プログラム。
Setting a position where a plurality of images obtained by the medical imaging device are joined by overlapping a part of each image; and
Correcting the pixel position of the overlapping region included in at least one of the images;
Creating a long image in which the plurality of images are joined in the corrected overlapping region;
An image processing program for causing a computer to execute.
JP2010110996A 2010-05-13 2010-05-13 X-ray diagnostic apparatus, image processing apparatus, and program Expired - Fee Related JP5634744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110996A JP5634744B2 (en) 2010-05-13 2010-05-13 X-ray diagnostic apparatus, image processing apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110996A JP5634744B2 (en) 2010-05-13 2010-05-13 X-ray diagnostic apparatus, image processing apparatus, and program

Publications (2)

Publication Number Publication Date
JP2011235010A true JP2011235010A (en) 2011-11-24
JP5634744B2 JP5634744B2 (en) 2014-12-03

Family

ID=45323643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110996A Expired - Fee Related JP5634744B2 (en) 2010-05-13 2010-05-13 X-ray diagnostic apparatus, image processing apparatus, and program

Country Status (1)

Country Link
JP (1) JP5634744B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060737A (en) * 2015-06-30 2017-03-30 コニカ ミノルタ ラボラトリー ユー.エス.エー.,インコーポレイテッド Processing for creating transmission image without artificial noises

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417344B (en) 2017-11-28 2024-06-04 佳能医疗系统株式会社 X-ray diagnosis apparatus and X-ray tube holding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017060737A (en) * 2015-06-30 2017-03-30 コニカ ミノルタ ラボラトリー ユー.エス.エー.,インコーポレイテッド Processing for creating transmission image without artificial noises

Also Published As

Publication number Publication date
JP5634744B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP6165809B2 (en) Tomographic image generating apparatus, method and program
JP4371130B2 (en) Method for generating a composite image from a set of images
US20110262015A1 (en) Image processing apparatus, image processing method, and storage medium
CN110604587A (en) Radiation imaging system and radiation imaging method
JP6815818B2 (en) Radiation imaging system and radiography imaging method
JP6518115B2 (en) IMAGE PROCESSING APPARATUS, IMAGING APPARATUS, CONTROL METHOD OF IMAGE PROCESSING APPARATUS, AND PROGRAM
US20180342079A1 (en) Image processing apparatus, image processing method, and computer readable recording medium
JP2013512038A (en) Extraction of patient motion vector from marker position in X-ray image
JP6594170B2 (en) Image processing apparatus, image processing method, image projection system, and program
JP2009136421A (en) Diagnostic x-ray apparatus and x-ray image processing method, and storage medium
WO2013073627A1 (en) Image processing device and method
JP2010246862A (en) Medical image generation apparatus and program
JP2020048991A5 (en)
CN116205954A (en) Method and system for image registration
JP6185023B2 (en) Tomographic image generating apparatus, method and program
JP5634744B2 (en) X-ray diagnostic apparatus, image processing apparatus, and program
WO2014122840A1 (en) Ct image generation device and ct image generation method
US20070206847A1 (en) Correction of vibration-induced and random positioning errors in tomosynthesis
US11298089B2 (en) X-ray examination arrangement and method for operating an x-ray examination arrangement
JP2015100613A (en) Image processing apparatus and method, and ultrasonic diagnostic apparatus
JP2014109832A (en) Image processing apparatus, imaging apparatus, imaging system, image processing method, image processing program, and storage medium
JP2013130529A (en) Inspection device, inspection system, inspection method, program for making computer function as inspection device, program for making computer function as inspection system and computer readable non volatile data recording medium storing the programs
JP5759405B2 (en) Luminance unevenness detection apparatus and method
JP5635389B2 (en) Image processing apparatus, image processing program, and X-ray diagnostic imaging apparatus
JP2009285145A (en) Radiographic image correction device, method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees