JP2011220473A - Seismic isolation device and its installation method - Google Patents

Seismic isolation device and its installation method Download PDF

Info

Publication number
JP2011220473A
JP2011220473A JP2010091675A JP2010091675A JP2011220473A JP 2011220473 A JP2011220473 A JP 2011220473A JP 2010091675 A JP2010091675 A JP 2010091675A JP 2010091675 A JP2010091675 A JP 2010091675A JP 2011220473 A JP2011220473 A JP 2011220473A
Authority
JP
Japan
Prior art keywords
friction
force
seismic isolation
elastic force
friction damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010091675A
Other languages
Japanese (ja)
Other versions
JP5577808B2 (en
Inventor
Yoshikazu Uchiumi
良和 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010091675A priority Critical patent/JP5577808B2/en
Publication of JP2011220473A publication Critical patent/JP2011220473A/en
Application granted granted Critical
Publication of JP5577808B2 publication Critical patent/JP5577808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To greatly reduce an adjustment work load at the installation of a friction damper, to easily adjust a pressure-welding force even after the installation, and to reliably generate a damping force as planned.SOLUTION: The friction damper 20 includes: a friction damping force generation unit 21 which is interposed in a gap between vertical directions, and has a friction face 22a and a slide-movement face which slidably moves while being pressure-welded to the friction face; a spring member 30 which is interposed in the gap between the vertical directions in series to the friction damping force generation unit, and generates an resilient force for generating the pressure-welding force at the friction damping force generation unit; a resilient force transmission member 40 which is interposed in the gap between the vertical directions in series to the friction damping force generation unit and the spring member, and vertically transmits the resilient force; and a compression deformation impartment member 50 which is used when setting the resilient force related to the pressure-welding force to the spring member, and can impart and release compression deformation in the vertical directions to the spring member. The resilient force transmission member has an elongation/contraction adjusting mechanism 46 which elongates and contracts the resilient force transmission member to the vertical directions.

Description

本発明は、免震装置、及びその設置方法に関する。   The present invention relates to a seismic isolation device and an installation method thereof.

建物、床、大型装置等を免震支持する免震装置が知られている。図9の概略側断面図に示すように、この免震装置は、積層ゴム等のアイソレータ7と、摩擦ダンパー110とを有する。アイソレータは、上部構造体3と下部構造体1との間の上下方向隙間δに介装され、上部構造体3を免震支持する。摩擦ダンパー110は、同上下方向隙間δにアイソレータ7と並列に介装され、上部構造体3と下部構造体1との間の水平振動を減衰する。   Seismic isolation devices that support buildings, floors, large equipment, etc. are known. As shown in the schematic side sectional view of FIG. 9, the seismic isolation device has an isolator 7 such as laminated rubber and a friction damper 110. The isolator is interposed in a vertical gap δ between the upper structure 3 and the lower structure 1 and supports the upper structure 3 in a seismic isolation manner. The friction damper 110 is interposed in parallel with the isolator 7 in the vertical gap δ, and damps horizontal vibration between the upper structure 3 and the lower structure 1.

かかる摩擦ダンパー110の一例として、特許文献1には、(1)上下方向隙間δに介装され、摩擦面121a及び該摩擦面121aに圧接しつつ滑動する滑動面125aを有する摩擦減衰力生成部120と、(2)同上下方向隙間δに摩擦減衰力生成部120と直列に介装され、摩擦減衰力生成部120の圧接力に供される弾発力を発生する一群の皿ばね130,130…(以下、皿ばね群130Gとも言う)と、(3)同上下方向隙間δに摩擦減衰力生成部120及び皿ばね群130Gと直列に介装され、前記弾発力を上下方向に伝達する弾発力伝達部材140と、(4)皿ばね群130Gの前記弾発力の設定時に使用され、皿ばね群130Gに上下方向の圧縮変形を解除可能に付与する圧縮変形付与部材150と、を有した構成が開示されている。   As an example of such a friction damper 110, Patent Document 1 discloses (1) a friction damping force generation unit having a friction surface 121a and a sliding surface 125a that slides while being in pressure contact with the friction surface 121a. 120, and (2) a group of disc springs 130 that are interposed in series with the friction damping force generation unit 120 in the vertical gap δ and generate a resilient force that is used for the pressure contact force of the friction damping force generation unit 120, 130 (hereinafter also referred to as a disc spring group 130G) and (3) the friction damping force generator 120 and the disc spring group 130G are interposed in series in the vertical gap δ to transmit the elastic force in the vertical direction. An elastic force transmitting member 140 that performs, and (4) a compressive deformation imparting member 150 that is used when setting the elastic force of the disc spring group 130G, and that imparts an upward and downward compressive deformation to the disc spring group 130G. A configuration with To have.

そして、かかる摩擦ダンパー110の前記上下方向隙間δへの設置は、次のようにして行われる。先ず、圧縮変形付与部材150のナット155を締めることによって皿ばね群130Gを圧縮変形させておき、その圧縮の弾発力の大きさが前記圧接力の設計値になるようにする。そして、この摩擦ダンパー110を上下方向隙間δに介装する。そうしたら、摩擦ダンパー110の上面110aと上部構造体3の下面3aとの間の隙間Sに側方からフィラプレート190,190…を差し込み挿入して当該隙間Sを埋め、これにより、上部構造体3及び下部構造体1から皿ばね群130Gの弾発力の反力を取れるようにする。そして、最後に、圧縮変形付与部材150のナット155を緩めることにより、圧縮変形付与部材150による皿ばね群130Gの圧縮変形を解除し、これにより、上部構造体3及び下部構造体1から皿ばね群130Gの弾発力の反力を取りながら、当該弾発力を圧接力として、摩擦減衰力生成部110に設計値の圧接力を付与する。   The friction damper 110 is installed in the vertical gap δ as follows. First, the disc spring group 130G is compressed and deformed by tightening the nut 155 of the compressive deformation imparting member 150 so that the magnitude of the compression elastic force becomes the design value of the pressure contact force. The friction damper 110 is interposed in the vertical gap δ. Then, the filler plates 190, 190... Are inserted and inserted into the gap S between the upper surface 110a of the friction damper 110 and the lower surface 3a of the upper structure 3 from the side to fill the gap S. 3 and the lower structure 1 are allowed to take the reaction force of the elastic force of the disc spring group 130G. Finally, by loosening the nut 155 of the compression deformation imparting member 150, the compression deformation of the disc spring group 130G by the compression deformation imparting member 150 is released, whereby the disc springs are removed from the upper structure 3 and the lower structure 1. While taking the reaction force of the elastic force of the group 130G, the elastic force is applied to the friction damping force generation unit 110 as the pressure force, and the design value pressure force is applied.

特開平10−238164号公報Japanese Patent Laid-Open No. 10-238164

しかしながら、上述のフィラプレート190,190…の挿入は、フィラプレート190,190…の総厚みを上記隙間Sに合った厚みに調整しながら行わねばならず、そのためには、互いに厚みの異なるプレート190,190…を何枚か組み合わせる等の必要があって、甚だ面倒な作業であった。
また、同隙間Sの厚みが、フィラプレート190,190…では補えない程度に大きい場合には、フィラプレート190,190…の挿入後に更にグラウト充填を行うことになるが、その場合には、外周に型枠を組まねばならず、これは、フィラプレート190,190…の挿入以上に手間のかかる作業であった。
However, the above-described filler plates 190, 190... Must be inserted while adjusting the total thickness of the filler plates 190, 190. , 190 ... needing to combine several pieces, etc., was a cumbersome task.
If the thickness of the gap S is too large to be compensated by the filler plates 190, 190..., Further grout filling is performed after insertion of the filler plates 190, 190. It was necessary to assemble a formwork, which was more labor-intensive than inserting the filler plates 190, 190.

他方、上述から明らかなように、この種の摩擦ダンパー110は、上下方向隙間δに介装された状態において、その摩擦ダンパー110の全高(上下方向の全長)が、予め定められた計画値になっている場合に限り、皿ばね群130Gも上述の設計値だけ圧縮変形して所期の弾発力を生じ、その結果、当該弾発力を圧接力として計画通りの大きさの摩擦力を減衰力として発生し得るものである。   On the other hand, as is clear from the above, in this type of friction damper 110, when the friction damper 110 is interposed in the vertical gap δ, the total height (the total length in the vertical direction) of the friction damper 110 is set to a predetermined planned value. Only when the disc spring group 130G is compressed and deformed by the above-mentioned design value to produce the desired elastic force, and as a result, the elastic force is used as a pressure contact force to produce a frictional force of the magnitude as planned. It can be generated as a damping force.

そのため、摩擦ダンパー110の設置後において、前記上下方向隙間δが経時変化した場合には、圧接力の大きさも変化してしまい、その結果、摩擦ダンパー110は所期の減衰能力を発揮しなくなる。よって、その場合には、フィラプレート190,190…の再調整が必要になる。すなわち、上下方向隙間δから摩擦ダンパー110を一旦取り外して、隙間S(δ)の変化分だけ挿入すべきフィラプレート190,190…の量を変更しながら、摩擦ダンパー110を再設置しなければならない。
しかし、かかる摩擦ダンパー110の取り外しや再設置作業も、かなり大掛かりな作業となり、手軽に行えるものではない。
Therefore, when the vertical gap δ changes with time after the friction damper 110 is installed, the magnitude of the pressure contact force also changes, and as a result, the friction damper 110 does not exhibit the desired damping capability. In this case, therefore, it is necessary to readjust the filler plates 190, 190. That is, it is necessary to remove the friction damper 110 from the vertical gap δ and re-install the friction damper 110 while changing the amount of filler plates 190, 190... To be inserted by the change in the gap S (δ). .
However, the removal and re-installation work of the friction damper 110 is a considerably large work and cannot be easily performed.

本発明は、上記のような従来の問題に鑑みなされたものであって、その目的は、摩擦ダンパーの設置時の調整作業負荷を大幅に軽減でき、また、設置後においても圧接力の調整を容易に実施できて、計画通りの減衰力を確実に生じさせることにある。   The present invention has been made in view of the conventional problems as described above, and its purpose is to greatly reduce the adjustment work load at the time of installing the friction damper, and to adjust the pressure contact force even after the installation. It is easy to implement and ensures that the damping force is as planned.

かかる目的を達成するために請求項1に示す発明は、
上部構造体と下部構造体との間の上下方向隙間に介装され、前記上部構造体を免震支持するアイソレータと、
前記上下方向隙間に前記アイソレータと並列に介装され、前記上部構造体と前記下部構造体との間の水平振動を、摩擦力を減衰力として用いて減衰する摩擦ダンパーと、を備えた免震装置であって、
前記摩擦ダンパーは、
前記上下方向隙間に介装され、摩擦面及び該摩擦面に圧接しつつ滑動する滑動面を有する摩擦減衰力生成部と、
前記上下方向隙間に前記摩擦減衰力生成部と直列に介装され、前記摩擦減衰力生成部に圧接力を生じさせるべく弾発力を発生するばね部材と、
前記上下方向隙間に前記摩擦減衰力生成部及び前記ばね部材と直列に介装され、前記弾発力を上下方向に伝達する弾発力伝達部材と、
前記ばね部材に対して前記圧接力に係る前記弾発力を設定する際に使用され、前記ばね部材に上下方向の圧縮変形を付与及び解除可能な圧縮変形付与部材と、を有し、
前記弾発力伝達部材は、該弾発力伝達部材を上下方向に伸縮する伸縮調整機構を有していることを特徴とする。
In order to achieve this object, the invention shown in claim 1
An isolator that is interposed in a vertical gap between the upper structure and the lower structure and that supports the upper structure in a seismic isolation manner;
And a friction damper that is interposed in parallel with the isolator in the vertical gap, and that damps horizontal vibration between the upper structure and the lower structure using a friction force as a damping force. A device,
The friction damper is
A friction damping force generator having a friction surface and a sliding surface that slides while being in pressure contact with the friction surface;
A spring member interposed in series with the friction damping force generation unit in the vertical gap, and generating a spring force to generate a pressure contact force in the friction damping force generation unit;
A resilient force transmission member that is interposed in series with the friction damping force generation unit and the spring member in the vertical gap, and that transmits the resilient force in the vertical direction;
A compression deformation imparting member that is used when setting the elastic force related to the pressure contact force with respect to the spring member, and capable of imparting and releasing compressive deformation in the vertical direction to the spring member;
The elastic force transmitting member has an expansion / contraction adjusting mechanism that expands and contracts the elastic force transmitting member in the vertical direction.

上記請求項1に示す発明によれば、ばね部材と直列配置される弾発力伝達部材は、当該弾発力伝達部材を上下方向に伸縮する伸縮調整機構を有している。
よって、摩擦ダンパーの設置の際に、上下方向隙間の大きさが計画値からずれている場合であっても、当該計画値からのずれに応じて、適宜弾発力伝達部材の上下方向の長さを伸縮調整することにより、このずれを吸収可能である。そして、この伸縮調整後に、圧縮変形付与部材により予めばね部材に付与された圧縮変形を解除すれば、それにより、当該ばね部材に予め付与された弾発力を、圧接力として摩擦減衰力生成部に付与することができる。
According to the first aspect of the present invention, the elastic force transmitting member arranged in series with the spring member has the expansion / contraction adjusting mechanism that expands and contracts the elastic force transmitting member in the vertical direction.
Therefore, even when the size of the vertical gap is deviated from the planned value when the friction damper is installed, the length of the elastic force transmitting member in the vertical direction is appropriately determined according to the deviation from the planned value. This shift can be absorbed by adjusting the length. Then, after the expansion / contraction adjustment, if the compressive deformation previously applied to the spring member by the compressive deformation applying member is released, the elastic force previously applied to the spring member is thereby converted into a frictional damping force generation unit as a pressure contact force. Can be granted.

すなわち、上記構成によれば、上下方向隙間のずれを補うべく当該隙間にフィラプレートの挿入やグラウト充填等を行わずとも、圧縮変形付与部材によりばね部材に予め付与された設計値の弾発力を、圧接力として摩擦減衰力生成部に付与することができ、その結果、計画通りの大きさの摩擦力を減衰力として発生することができる。   That is, according to the above configuration, the elasticity of the design value previously applied to the spring member by the compression deformation applying member without inserting a filler plate or grout filling in the clearance to compensate for the gap in the vertical direction. Can be applied to the frictional damping force generation unit as a pressure contact force, and as a result, a frictional force having a magnitude as planned can be generated as the damping force.

また、摩擦ダンパーの設置後に上下方向隙間の大きさが経時変化した場合についても、伸縮調整機構による弾発力伝達部材の伸縮調整によって、当該隙間の大きさの変化に対応可能である。つまり、当該変化分だけ弾発力伝達部材の上下方向の長さを変更することにより、ばね部材の圧縮変形量を摩擦ダンパーの設置当初の状態に戻すことができる。よって、摩擦ダンパーの設置後も、計画通りの大きさの摩擦力を減衰力として確実に発生させることができる。   Further, even when the size of the gap in the vertical direction changes with time after the friction damper is installed, the change in the size of the gap can be accommodated by the expansion / contraction adjustment of the elastic force transmitting member by the expansion / contraction adjustment mechanism. That is, the amount of compressive deformation of the spring member can be returned to the initial state of installation of the friction damper by changing the vertical length of the elastic force transmitting member by the change. Therefore, even after the friction damper is installed, a friction force having a magnitude as planned can be reliably generated as a damping force.

請求項2に示す発明は、請求項1に記載の免震装置であって、
前記弾発力伝達部材は、上プレートと、その下方に間隔を空けて配される下プレートと、前記上プレートと前記下プレートとを連結する連結部材と、を有し、
前記伸縮調整機構としての前記連結部材によって、前記間隔を変更することにより、前記弾発力伝達部材を上下方向に伸縮調整することを特徴とする。
上記請求項2に示す発明によれば、上プレート、下プレート、及び連結部材という簡単な構成で、伸縮調整機構を有した弾発力伝達部材を実現している。よって、免震装置の設置コストを廉価にできる。
The invention shown in claim 2 is the seismic isolation device according to claim 1,
The elastic force transmission member includes an upper plate, a lower plate disposed below the upper plate, and a connecting member that connects the upper plate and the lower plate,
The elastic force transmission member is adjusted in the vertical direction by changing the distance by the connecting member as the expansion / contraction adjustment mechanism.
According to the second aspect of the present invention, the elastic force transmitting member having the expansion / contraction adjusting mechanism is realized with a simple configuration of the upper plate, the lower plate, and the connecting member. Therefore, the installation cost of the seismic isolation device can be reduced.

請求項3に示す発明は、請求項2に記載の免震装置であって、
前記連結部材は、上下方向に軸方向が向いた棒体を有し、
前記棒体の上端部及び下端部は、螺合構造によって前記上プレート及び前記下プレートに締結固定され、
前記上プレートと前記下プレートとの間に位置する前記棒体の部分の長さを変更することにより、前記間隔を変更することを特徴とする。
上記請求項3に示す発明によれば、上プレートと下プレートとの間に位置する棒体の部分の長さの変更によって、容易に前記間隔を変更することができる。よって、摩擦ダンパーを廉価にしながらも、容易且つ確実に減衰力を計画値に設定可能となる。
The invention shown in claim 3 is the seismic isolation device according to claim 2,
The connecting member has a rod body whose axial direction faces in the vertical direction,
The upper end portion and the lower end portion of the rod body are fastened and fixed to the upper plate and the lower plate by a screwing structure,
The interval is changed by changing the length of the portion of the rod located between the upper plate and the lower plate.
According to the third aspect of the present invention, the distance can be easily changed by changing the length of the portion of the rod located between the upper plate and the lower plate. Therefore, it is possible to easily and reliably set the damping force to the planned value while making the friction damper inexpensive.

請求項4に示す発明は、請求項2に記載の免震装置であって、
前記連結部材は、前記上プレートの下面に一体に固定された上側部材と、前記下プレートの上面に一体に固定された下側部材と、前記上側部材と前記下側部材とを互いの鉛直面同士において重合させて摩擦接合状態で締結固定する高力ボルトと、を有し、
前記上側部材及び前記下側部材に形成される前記高力ボルトのボルト孔は、少なくとも一方が上下方向に長い長孔に形成されていることを特徴とする。
上記請求項4に示す発明によれば、上側部材及び下側部材にボルト孔として形成された長孔によって、容易に前記間隔を変更することができる。よって、摩擦ダンパーを廉価にしながらも、容易且つ確実に減衰力を計画値に設定可能となる。
Invention of Claim 4 is the seismic isolation apparatus of Claim 2, Comprising:
The connecting member includes an upper member that is integrally fixed to the lower surface of the upper plate, a lower member that is integrally fixed to the upper surface of the lower plate, and the upper member and the lower member that are perpendicular to each other. A high-strength bolt that is superposed and fastened in a friction-bonded state,
At least one of the bolt holes of the high-strength bolts formed in the upper member and the lower member is formed as a long hole that is long in the vertical direction.
According to the fourth aspect of the present invention, the interval can be easily changed by the long holes formed as bolt holes in the upper member and the lower member. Therefore, it is possible to easily and reliably set the damping force to the planned value while making the friction damper inexpensive.

また、上側部材と下側部材とを、高力ボルトを用いた強固な摩擦接合で固定する。よって、ばね部材に高い弾発力が設定された場合にも、上側部材と下側部材の断面性能を上げて、高力ボルトの本数を増やすことで、滑ることなく耐えて同弾発力を上下方向に確実に伝達可能である。その結果、大きな減衰力も設定可能となって、つまり、減衰力の大きさの調整範囲を拡大することができる。   Further, the upper member and the lower member are fixed by strong friction bonding using a high-strength bolt. Therefore, even when a high elastic force is set for the spring member, the cross-sectional performance of the upper member and the lower member is increased, and the number of high-strength bolts is increased, so that the elastic force can be endured without slipping. It can be transmitted reliably in the vertical direction. As a result, a large damping force can be set, that is, the adjustment range of the magnitude of the damping force can be expanded.

請求項5に示す発明は、請求項1乃至4の何れかに記載の免震装置の設置方法であって、
前記圧縮変形付与部材によって、前記ばね部材を、前記圧接力の大きさに対応する圧縮変形量まで圧縮変形する圧縮変形工程と、
前記摩擦ダンパーを前記下部構造体上に載置する載置工程と、
前記圧縮変形工程及び前記載置工程の後に、前記下部構造体上に載置された前記摩擦ダンパーの上面と前記上部構造体の下面との間の隙間がなくなるまで、前記伸縮調整機構によって前記弾発力伝達部材を上方に伸長する伸長工程と、
前記伸長工程の後に、前記圧縮変形付与部材による前記ばね部材の圧縮変形を解除する圧縮変形解除工程と、を有することを特徴とする。
上記請求項5に示す発明によれば、摩擦ダンパーの設置の際の上下方向隙間の大きさの計画値からのずれを、弾発力伝達部材の上方への伸長により吸収する。よって、上下方向隙間の計画値からのずれを補うべく、フィラプレート挿入やグラウト充填等を行わずに済み、結果、摩擦ダンパーの設置時の調整作業負荷を大幅に軽減可能となる。
Invention of Claim 5 is the installation method of the seismic isolation apparatus in any one of Claims 1 thru | or 4, Comprising:
A compression deformation step of compressing and deforming the spring member to a compression deformation amount corresponding to the magnitude of the pressure contact force by the compression deformation applying member;
A placing step of placing the friction damper on the lower structure;
After the compression deformation step and the placing step, the elastic adjustment mechanism causes the elastic member until there is no gap between the upper surface of the friction damper placed on the lower structure and the lower surface of the upper structure. An extension step of extending the force transmission member upward;
A compression deformation releasing step of releasing the compression deformation of the spring member by the compression deformation applying member after the extending step.
According to the fifth aspect of the present invention, the deviation from the planned value of the size of the vertical gap when the friction damper is installed is absorbed by the upward extension of the elastic force transmitting member. Therefore, it is not necessary to perform filler plate insertion or grout filling in order to compensate for the deviation of the vertical gap from the planned value, and as a result, the adjustment work load when installing the friction damper can be greatly reduced.

本発明によれば、摩擦ダンパーの設置時の調整作業負荷を大幅に軽減でき、また、設置後においても圧接力の調整を容易に実施できて、計画通りの減衰力を確実に生じさせることができる。   According to the present invention, the adjustment work load at the time of installation of the friction damper can be greatly reduced, and the pressure contact force can be easily adjusted even after the installation, and the damping force can be reliably generated as planned. it can.

第1実施形態の免震装置10の側面図である。It is a side view of the seismic isolation apparatus 10 of 1st Embodiment. 摩擦ダンパー20の概略中心縦断面図である。2 is a schematic center longitudinal sectional view of a friction damper 20. FIG. 摩擦ダンパー20の上面図である。3 is a top view of the friction damper 20. FIG. 摩擦ダンパー20を斜め下方から見た斜視図である。It is the perspective view which looked at the friction damper 20 from diagonally downward. 同分解斜視図である。It is the same exploded perspective view. 第2実施形態に係る摩擦ダンパー20aの側面図である。It is a side view of the friction damper 20a which concerns on 2nd Embodiment. 同摩擦ダンパー20aを斜め下方から見た斜視図である。It is the perspective view which looked at the friction damper 20a from diagonally downward. その他の実施の形態の摩擦ダンパー20bの概略中心縦断面図である。It is a general | schematic center longitudinal cross-sectional view of the friction damper 20b of other embodiment. 従来の免震装置に係る摩擦ダンパー110の概略側断面図である。It is a schematic sectional side view of the friction damper 110 which concerns on the conventional seismic isolation apparatus.

===第1実施形態===
<<<免震装置10>>>
図1乃至図5は、第1実施形態の免震装置10の説明図である。図1は免震装置10の側面図である。図2は摩擦ダンパー20の概略中心縦断面図であり、図3は同上面図である。また、図4は摩擦ダンパー20を斜め下方から見た斜視図であり、図5は同分解斜視図である。なお、以下の説明で用いる図においては、図の錯綜を防ぐべく、図によっては、本来断面線で示すべき断面部位の断面線を適宜省略したり、あるいは、同断面部位をグレーで着色して示したりしている。
=== First Embodiment ===
<<< Seismic isolation device 10 >>>
FIG. 1 thru | or FIG. 5 is explanatory drawing of the seismic isolation apparatus 10 of 1st Embodiment. FIG. 1 is a side view of the seismic isolation device 10. 2 is a schematic longitudinal sectional view of the friction damper 20, and FIG. 3 is a top view thereof. 4 is a perspective view of the friction damper 20 as viewed obliquely from below, and FIG. 5 is an exploded perspective view of the same. In the drawings used in the following description, in order to prevent complication of the drawings, depending on the drawings, the cross-sectional line of the cross-sectional portion that should originally be indicated by the cross-sectional line may be omitted as appropriate, or the cross-sectional portion may be colored in gray. Or show.

図1に示すように、免震装置10は、建物3(上部構造体に相当)と、その下方の基礎コンクリート1(下部構造体に相当)との間の上下方向隙間δに介装されている。そして、これにより、建物3は、地震等の振動から水平免震されて保護される。   As shown in FIG. 1, the seismic isolation device 10 is interposed in a vertical gap δ between a building 3 (corresponding to an upper structure) and a foundation concrete 1 (corresponding to a lower structure) below the building 3. Yes. As a result, the building 3 is horizontally isolated from and protected from vibrations such as earthquakes.

免震装置10は、建物3を免震支持するアイソレータ7と、上下方向隙間δにアイソレータ7と並列に介装され、建物3と基礎コンクリート1との間の水平振動を減衰する摩擦ダンパー20と、を備えている。   The seismic isolation device 10 includes an isolator 7 for isolating and supporting the building 3, and a friction damper 20 interposed in parallel with the isolator 7 in the vertical gap δ to attenuate horizontal vibration between the building 3 and the foundation concrete 1. It is equipped with.

アイソレータ7は、例えば積層ゴムである。そして、積層ゴムの水平方向の剪断弾性変形によって、建物3と基礎コンクリート1との水平方向の相対変位(相対移動)を許容しながら建物3の自重を支持する。なお、このアイソレータとしては、上述の積層ゴム以外に、転がり支承や滑り支承等を適用できる。   The isolator 7 is a laminated rubber, for example. The weight of the building 3 is supported while allowing horizontal relative displacement (relative movement) between the building 3 and the foundation concrete 1 by the shear elastic deformation in the horizontal direction of the laminated rubber. In addition, as this isolator, a rolling bearing, a sliding bearing, etc. are applicable besides the above-mentioned laminated rubber.

図2に示すように、摩擦ダンパー20は、水平振動の減衰力として供される摩擦力を発生する摩擦減衰力生成部21と、摩擦力の垂直抗力となる圧接力に供される弾発力を発生するばね部材としての皿ばね群30Gと、前記弾発力を上下方向に伝達して、上方の建物3から弾発力の反力を取る弾発力伝達部材40とが、この順番で下から上へ直列に重ねて配置されたものを主体とする。そして、この主体に加えて、皿ばね群30Gと並列に相対変位伝達部材60が設けられており、この相対変位伝達部材60により、基礎コンクリート1に対する建物3の水平方向の相対変位が摩擦減衰力生成部21へ伝達されて摩擦減衰力生成部21が滑動し、上記摩擦力を発生する。   As shown in FIG. 2, the friction damper 20 includes a friction damping force generation unit 21 that generates a frictional force that is provided as a damping force of horizontal vibration, and a resilient force that is provided as a pressure contact force that is a vertical drag of the frictional force. A disc spring group 30G serving as a spring member that generates a spring, and a resilient force transmitting member 40 that transmits the resilient force in the vertical direction and takes the reaction force of the resilient force from the upper building 3 in this order. The main thing is that they are arranged in series from bottom to top. In addition to this main body, a relative displacement transmission member 60 is provided in parallel with the disc spring group 30G, and the relative displacement transmission member 60 allows the relative displacement in the horizontal direction of the building 3 relative to the foundation concrete 1 to be a friction damping force. The friction damping force generation unit 21 is transmitted to the generation unit 21 and slides to generate the friction force.

摩擦減衰力生成部21は、摩擦材22と、摩擦材22の下面たる摩擦面22aに圧接しつつ滑動する滑り面24aを有した滑り材24と、摩擦材22の上方に配置され、下面に摩擦材22が固定された平面視正円形状の下フランジ板26と、を有する。
滑り材24は、建物3の基礎コンクリート1の上面に固定される。一方、摩擦材22は、皿ばね群30Gの下に隣接配置された前記下フランジ板26の下面に重ね合わせられてボルト止めされており、この状態で、滑り材24の上面たる滑り面24aに載置されている。よって、これら摩擦材22と滑り材24とが水平方向に相対変位(相対移動)すると、摩擦面22aと滑り面24aとの間に摩擦力が発生する。
The friction damping force generation unit 21 is disposed above the friction material 22, the friction material 22, the sliding material 24 having a sliding surface 24 a that slides while being pressed against the friction surface 22 a that is the lower surface of the friction material 22, and the lower surface. And a lower flange plate 26 having a circular shape in plan view to which the friction material 22 is fixed.
The sliding material 24 is fixed to the upper surface of the foundation concrete 1 of the building 3. On the other hand, the friction material 22 is superposed and bolted to the lower surface of the lower flange plate 26 disposed adjacently under the disc spring group 30G. In this state, the friction material 22 is attached to the sliding surface 24a which is the upper surface of the sliding material 24. It is placed. Therefore, when the friction material 22 and the sliding material 24 are relatively displaced (relative movement) in the horizontal direction, a frictional force is generated between the friction surface 22a and the sliding surface 24a.

この例では、滑り材24としてステンレス板を用い、摩擦材22として超高分子量ポリエチレンを用いているが、これらの素材は、必要な摩擦力の大きさ等に基づいて適宜選定される。また、この摩擦力は、摩擦材22の摩擦面22aと滑り材24の滑り面24aとに付与される垂直抗力たる圧接力に応じて変化するが、この圧接力は、皿ばね群30Gの弾発力によって付与される。   In this example, a stainless steel plate is used as the sliding material 24, and ultrahigh molecular weight polyethylene is used as the friction material 22, but these materials are appropriately selected based on the magnitude of necessary frictional force and the like. Further, this frictional force changes in accordance with the pressure contact force, which is a normal force applied to the friction surface 22a of the friction material 22 and the slide surface 24a of the slide material 24, and this pressure contact force is an elastic force of the disc spring group 30G. Granted by force.

皿ばね群30Gは、複数枚の皿ばね30,30…を上下に積層した皿ばね積層体である。そして、基本的に圧縮変形した際には、その圧縮変形量に応じた大きさの弾発力を摩擦減衰力生成部21に付与し、当該弾発力を圧接力として摩擦減衰力生成部21は滑動時に摩擦力を発生する。但し、後述する圧縮変形付与部材50により付与された圧縮変形(以下、圧縮拘束とも言う)の弾発力については、圧縮変形付与部材50のセットボルト51の軸力と釣り合うので、この弾発力については、圧縮変形付与部材50の圧縮拘束が解除されるまでは、摩擦減衰力生成部21には作用しない。このことは、摩擦減衰力生成部21に設計値の圧接力を設定する際に関係し、このあと摩擦ダンパー20の設置手順のところで述べる。   The disc spring group 30G is a disc spring laminated body in which a plurality of disc springs 30, 30. Basically, when compressive deformation is performed, an elastic force having a magnitude corresponding to the amount of compressive deformation is applied to the friction damping force generation unit 21, and the elastic force is used as a pressing force to the friction damping force generation unit 21. Generates friction during sliding. However, the elastic force of the compressive deformation (hereinafter also referred to as compression restraint) applied by the compressive deformation applying member 50, which will be described later, is balanced with the axial force of the set bolt 51 of the compressive deformation applying member 50. Is not acted on the frictional damping force generation unit 21 until the compression constraint of the compression deformation imparting member 50 is released. This is related to the setting of the press-contact force of the design value in the friction damping force generation unit 21, and will be described later in the installation procedure of the friction damper 20.

図2に示すように、これら皿ばね積層体をなす各皿ばね30,30…の平面中心には互いに同形の貫通孔30hが正円状に形成されており、これら貫通孔30h,30h…の円心は互いに揃っている。よって、これら貫通孔30h,30h…は互いに上下に繋がって、皿ばね群30Gの平面中心の孔部30Ghをなし、当該孔部30Ghに、前述の相対変位伝達部材60をなす円筒シャフト60が上下方向に沿って串刺し状に挿通されている。そして、円筒シャフト60の下端部は、上述の下フランジ板26の上面の嵌合凹部26aに嵌合されつつボルト止めされているとともに、同円筒シャフト60の上端部は、後述する弾発力伝達部材40の上フランジ板42の貫通孔42hに、上下方向の相対移動可能且つ水平方向の相対移動不能に通されている。そして、詳細には後述するが、当該上フランジ板42は、建物3の下面3aに一体に固定されている。よって、当該上フランジ板42を介して、円筒シャフト60は、基礎コンクリート1に対する建物3の水平方向の相対変位を摩擦減衰力生成部21の摩擦材22に伝達する。そして、これにより、摩擦材22は、基礎コンクリート1に固定された滑り材24に対して相対変位し、かかる相対変位と、上述の皿ばね群30Gの弾発力とに基づいて、摩擦減衰力生成部21は摩擦力を発生する。   As shown in FIG. 2, through-holes 30h having the same shape are formed in a circular shape at the center of the plane of each of the disc springs 30, 30 ... constituting the disc spring laminate, and the through-holes 30h, 30h ... The circles are aligned with each other. Accordingly, the through holes 30h, 30h,... Are connected to each other vertically to form a hole 30Gh at the center of the flat surface of the disc spring group 30G, and the cylindrical shaft 60 forming the relative displacement transmission member 60 is vertically moved to the hole 30Gh. It is inserted like a skewer along the direction. The lower end portion of the cylindrical shaft 60 is bolted while being fitted in the fitting recess 26a on the upper surface of the lower flange plate 26 described above, and the upper end portion of the cylindrical shaft 60 is transmitted with an elastic force transmitted later. The upper flange plate 42 of the member 40 is passed through the through-hole 42h so that it can move in the vertical direction and cannot move in the horizontal direction. As will be described in detail later, the upper flange plate 42 is integrally fixed to the lower surface 3 a of the building 3. Therefore, the cylindrical shaft 60 transmits the relative displacement in the horizontal direction of the building 3 with respect to the foundation concrete 1 to the friction material 22 of the friction damping force generation unit 21 via the upper flange plate 42. As a result, the friction material 22 is relatively displaced with respect to the sliding material 24 fixed to the foundation concrete 1, and the friction damping force is based on the relative displacement and the elastic force of the above-described disc spring group 30G. The generation unit 21 generates a frictional force.

弾発力伝達部材40は、図2及び図3に示すように、平面視正円形状の上フランジ板42(上プレートに相当)と、その下方に配置された平面視正円形状の中間フランジ板44(下プレートに相当)と、これらフランジ板42,44同士の間の間隔Gを一定に維持しつつこれらフランジ板42,44同士を連結する連結部材として、フランジ板42,44の外周縁に沿って等ピッチで複数本配置された連結ボルト46,46…(棒体に相当)と、を有する。   As shown in FIGS. 2 and 3, the elastic force transmitting member 40 includes an upper flange plate 42 (corresponding to an upper plate) in a plan view and a middle plan flange in a plan view. As a connecting member for connecting the flange plates 42 and 44 to each other while maintaining a constant gap G between the plate 44 (corresponding to the lower plate) and the flange plates 42 and 44, outer peripheral edges of the flange plates 42 and 44. , And a plurality of connecting bolts 46, 46... (Corresponding to rods) arranged at equal pitches.

上フランジ板42は、建物3の下面3aに接着材やボルト等により相対移動不能に固定されている。また、上フランジ板42は、その平面中心と同芯に上述の貫通孔42hを有し、この貫通孔42hには、前述したように円筒シャフト60の上端部が、上下方向の相対移動可能、且つ水平方向の相対移動不能に係合している。   The upper flange plate 42 is fixed to the lower surface 3 a of the building 3 so as not to be relatively movable by an adhesive, a bolt, or the like. Further, the upper flange plate 42 has the above-described through hole 42h concentric with the center of the plane, and the upper end portion of the cylindrical shaft 60 can be relatively moved in the vertical direction as described above. And it is engaged so that relative movement in the horizontal direction is impossible.

一方、中間フランジ板44も上記貫通孔42hと同芯の貫通孔44hを有し、この貫通孔44hに対しても、前記円筒シャフト60は適宜なクリアランスをもって略非接触に通されている。そして、この中間フランジ板44の下面44aには、前述の皿ばね群30Gの上端が当接し、当該中間フランジ板44とその下方の下フランジ板26との挟み込みによって皿ばね群30Gが圧縮変形した分だけ、皿ばね群30Gは弾発力を生じ、当該弾発力が、前述の摩擦減衰力生成部21の圧接力となる。   On the other hand, the intermediate flange plate 44 also has a through hole 44h concentric with the through hole 42h, and the cylindrical shaft 60 is passed through the through hole 44h in a substantially non-contact manner with an appropriate clearance. The upper end of the aforementioned disc spring group 30G abuts on the lower surface 44a of the intermediate flange plate 44, and the disc spring group 30G is compressed and deformed by being sandwiched between the intermediate flange plate 44 and the lower flange plate 26 below the intermediate flange plate 44. Accordingly, the disc spring group 30G generates an elastic force, and the elastic force becomes the pressure contact force of the friction damping force generation unit 21 described above.

ところで、連結ボルト46は、これに螺合するナット48a,48bと協働することにより、弾発力伝達部材40の上下方向の長さLを伸縮調整する伸縮調整機構としても機能する。すなわち、上フランジ板42の上面42aと中間フランジ板44の下面44aとの間の距離Lを伸縮変更することができる。   By the way, the connection bolt 46 also functions as an expansion / contraction adjustment mechanism that adjusts the length L in the vertical direction of the elastic force transmitting member 40 by cooperating with nuts 48a and 48b that are screwed into the connection bolt 46. That is, the distance L between the upper surface 42a of the upper flange plate 42 and the lower surface 44a of the intermediate flange plate 44 can be changed.

詳しく説明すると、連結ボルト46の上端部の雄ねじ46aは、上フランジ板42に上下に貫通形成された雌ねじ42mに螺着され、更にロックナット47により螺合回転不能に固定されているが、同連結ボルト46の下端部は、中間フランジ板44に上下に貫通形成されたボルト孔44Bhに適宜なクリアランスをもって通されている。そして、同連結ボルト46の下端部の外周面に形成された雄ねじ46bには、中間フランジ板44を上下から挟み込むように一対のナット48a,48bが螺合している。よって、これら一対のナット48a,48bの螺合位置を上下に移動することにより、中間フランジ板44を上フランジ板42に対して相対的に上下方向に移動可能であり、これにより、これらフランジ板42,44を本体とする弾発力伝達部材40の上下方向の長さLを変更することができる。かかる機能は、摩擦ダンパー20を前記上下方向隙間δに設置する際に使用され、また、設置後における弾発力の大きさの再調整においても使用される。これについては後述する。   More specifically, the male screw 46a at the upper end of the connecting bolt 46 is screwed into a female screw 42m that is vertically formed through the upper flange plate 42, and is further fixed by a lock nut 47 so as not to be screwed into rotation. The lower end portion of the connecting bolt 46 is passed through a bolt hole 44Bh formed through the intermediate flange plate 44 in the vertical direction with an appropriate clearance. A pair of nuts 48a and 48b are screwed into the male screw 46b formed on the outer peripheral surface of the lower end portion of the connecting bolt 46 so as to sandwich the intermediate flange plate 44 from above and below. Therefore, the intermediate flange plate 44 can be moved in the vertical direction relative to the upper flange plate 42 by moving the screwing position of the pair of nuts 48a and 48b up and down. The length L in the vertical direction of the elastic force transmitting member 40 having the main bodies 42 and 44 can be changed. Such a function is used when the friction damper 20 is installed in the vertical gap δ, and is also used for readjustment of the magnitude of the elastic force after installation. This will be described later.

圧縮変形付与部材50は、皿ばね群30Gに圧縮変形を解除可能に付与する部材である。そして、基本的には、上述の伸縮調整機構と同様に、上下方向隙間δへの摩擦ダンパー20の設置の際や、同設置後における弾発力の大きさの再調整時において使用され、よって、摩擦ダンパー20の作動状態(水平振動の減衰作用を奏する状態)においては基本的に機能しない。   The compression deformation imparting member 50 is a member that imparts compression deformation to the disc spring group 30G so as to be released. Basically, like the above-described expansion / contraction adjustment mechanism, it is used when the friction damper 20 is installed in the vertical gap δ or when the magnitude of the resilience after the installation is readjusted. In the operating state of the friction damper 20 (a state in which a horizontal vibration damping effect is exerted), the friction damper 20 basically does not function.

すなわち、詳細には後述の「摩擦ダンパー20の設置手順」のところで述べるが、この圧縮変形付与部材50は、摩擦ダンパー20の圧接力を設計値に設定する際に、予めその圧接力の大きさに対応する圧縮変形量まで皿ばね群30Gを圧縮変形しておく作業に使用するものである。そして、かかる目的の圧縮変形付与部材50は、ここでは、中間フランジ板44と下フランジ板26とを連結するセットボルト51及びナット52aとして構成されている。   That is, as will be described in detail in “Installation Procedure of Friction Damper 20”, which will be described later, the compression deformation imparting member 50 is set in advance when the pressure contact force of the friction damper 20 is set to a design value. Is used for the work of compressing and deforming the disc spring group 30G to the amount of compressive deformation corresponding to. And the compression deformation | transformation provision member 50 of this objective is comprised as the set bolt 51 and the nut 52a which connect the intermediate | middle flange board 44 and the lower flange board 26 here.

詳しくは、セットボルト51の下端部は、下フランジ板26に貫通形成された雌ねじ26mに螺着され、更にロックナット54により螺合回転不能に固定されている一方、同セットボルト51の上端部は、中間フランジ板44に貫通形成されたボルト孔44Bh2に適宜なクリアランスをもって通されている。そして、同セットボルト51の上端部の外周面に形成された雄ねじ51aには、中間フランジ板44の位置よりも上方にナット52aが螺合している。よって、当該ナット52aの螺合位置を下方へ移動することにより、セットボルト51の引っ張りの軸力を反力として皿ばね群30Gに圧縮変形を付与することができる一方、上方へ移動すれば、同圧縮変形を解除することができる。   Specifically, the lower end portion of the set bolt 51 is screwed onto a female screw 26m formed through the lower flange plate 26, and is further fixed to be non-rotatable by a lock nut 54, while the upper end portion of the set bolt 51 is fixed. Is passed through a bolt hole 44Bh2 formed through the intermediate flange plate 44 with an appropriate clearance. A nut 52 a is screwed onto the male screw 51 a formed on the outer peripheral surface of the upper end portion of the set bolt 51 above the position of the intermediate flange plate 44. Therefore, by moving the screwing position of the nut 52a downward, compressive deformation can be imparted to the disc spring group 30G by using the axial force of the tension of the set bolt 51 as a reaction force. The compression deformation can be released.

かかるセットボルト51は、図3に示すように、これらフランジ板26,44の外周縁に沿って等ピッチに複数本配置されており、これにより、皿ばね群30Gの全面に亘って均等に圧縮変形を付与することができる。また、中間フランジ板44上においては、前述の連結ボルト46も設けられているので、当該連結ボルト46との平面配置上の干渉を避けるべく、セットボルト51は、中間フランジ板44の円周方向において連結ボルト46と交互に配置されている。ちなみに、図3の例では、中間フランジ板44上においてセットボルト51と連結ボルト46とは互いに同一円周上に配置されているが、これに限るものではない。   As shown in FIG. 3, a plurality of such set bolts 51 are arranged at an equal pitch along the outer peripheral edges of these flange plates 26 and 44, and are thereby compressed evenly over the entire surface of the disc spring group 30G. Deformation can be imparted. Further, since the above-described connecting bolt 46 is also provided on the intermediate flange plate 44, the set bolt 51 is arranged in the circumferential direction of the intermediate flange plate 44 in order to avoid interference with the connecting bolt 46 in the planar arrangement. Are alternately arranged with the connecting bolts 46. Incidentally, in the example of FIG. 3, the set bolt 51 and the connecting bolt 46 are arranged on the same circumference on the intermediate flange plate 44, but the present invention is not limited to this.

<<<摩擦ダンパー20の設置手順>>>
ここで、建物3と基礎コンクリート1との間の上下方向隙間δへの摩擦ダンパー20の設置手順について説明する。なお、以下では、説明の都合上、摩擦ダンパー20から滑り材24を取り外した構成のことも、摩擦ダンパー20と言い、また、摩擦減衰力生成部21から滑り材24を取り外した構成のことも、摩擦減衰力生成部21と言う。
<<< Installation Procedure of Friction Damper 20 >>>
Here, the installation procedure of the friction damper 20 in the vertical gap δ between the building 3 and the foundation concrete 1 will be described. In the following description, for the sake of explanation, the configuration in which the sliding material 24 is removed from the friction damper 20 is also referred to as the friction damper 20, and the configuration in which the sliding material 24 is removed from the friction damping force generation unit 21 is also used. The friction damping force generation unit 21 is referred to.

先ず、図2に示すように、基礎コンクリート1の上面に滑り材24を載置して固定する(第1ステップ)。
次に、適宜な作業場において、ジャッキ等を用いて上フランジ板42の上面42aを加圧することにより、連結ボルト46を介して中間フランジ板44を下方に移動して皿ばね群30Gを圧縮変形し、これにより、皿ばね群30Gを、圧接力の設計値に対応する弾発力が生じた状態にする。そうして、この状態で、摩擦ダンパー20の圧縮変形付与部材50のナット52aを締め込む。
(第2ステップ、圧縮変形工程に相当)。
そうしたら、摩擦ダンパー20の上フランジ板42の上面42aが当接すべき建物3の下面3aに、接着材を塗布する。接着材としては、高流動性モルタルや高流動性セメント等が使用される(第3ステップ)。
First, as shown in FIG. 2, the sliding material 24 is placed and fixed on the upper surface of the foundation concrete 1 (first step).
Next, in an appropriate work place, the upper surface 42a of the upper flange plate 42 is pressurized using a jack or the like, so that the intermediate flange plate 44 is moved downward via the connecting bolt 46 to compress and deform the disc spring group 30G. Thus, the disc spring group 30G is brought into a state in which a resilient force corresponding to the design value of the pressing force is generated. In this state, the nut 52a of the compression deformation imparting member 50 of the friction damper 20 is tightened.
(Second step, equivalent to compression deformation process).
If it does so, an adhesive will be apply | coated to the lower surface 3a of the building 3 with which the upper surface 42a of the upper flange board 42 of the friction damper 20 should contact | abut. As the adhesive, high fluidity mortar, high fluidity cement or the like is used (third step).

次に、摩擦ダンパー20を建物3と基礎コンクリート1との間の上下方向隙間δに介装する。すなわち、摩擦ダンパー20を、既に基礎コンクリート1上に固定した滑り材24の上面24aに載置する(第4ステップ、載置工程に相当)。
そうしたら、弾発力伝達部材40の伸縮調整機構の上下一対のナット48a,48bを螺合回転してこれらナット48a,48bを下方に移動する。すると、これにより、弾発力伝達部材40の中間フランジ板44に対して相対的に上フランジ板42が上方へ移動し、つまり、弾発力伝達部材40が上方に伸長される。そして、この伸長作業を、基礎コンクリート1上に載置された摩擦ダンパー20の上面20u、つまり弾発力伝達部材40の上フランジ板42の上面42aと、建物3の下面3aとの間の隙間が無くなるまで続ける(第5ステップ、伸長工程に相当)。
Next, the friction damper 20 is interposed in the vertical gap δ between the building 3 and the foundation concrete 1. That is, the friction damper 20 is placed on the upper surface 24a of the sliding member 24 already fixed on the foundation concrete 1 (corresponding to the fourth step, placement step).
Then, a pair of upper and lower nuts 48a, 48b of the expansion / contraction adjustment mechanism of the elastic force transmitting member 40 are screwed and rotated to move the nuts 48a, 48b downward. As a result, the upper flange plate 42 moves upward relative to the intermediate flange plate 44 of the elastic force transmitting member 40, that is, the elastic force transmitting member 40 is extended upward. Then, this extension work is performed by the clearance between the upper surface 20 u of the friction damper 20 placed on the foundation concrete 1, that is, the upper surface 42 a of the upper flange plate 42 of the elastic force transmitting member 40 and the lower surface 3 a of the building 3. Continue until there is no more (fifth step, corresponding to the extension step).

そして、当該隙間が無くなって建物3の下面3aに当接したら、弾発力伝達部材40の上フランジ板42を建物3の下面3aにボルト止めし、また、前述の接着材が固化するまで待つ(第6ステップ)。
そして、接着材が固化したら、圧縮変形付与部材50のナット52aを緩めて上方へ移動し、これにより、圧縮変形付与部材50による皿ばね群30Gの圧縮拘束を解除する。つまり、圧縮変形付与部材50のセットボルト51の軸力が完全に解放されるまで、ナット52aを緩める。
And if the said clearance gap disappears and it contacts the lower surface 3a of the building 3, the upper flange board 42 of the elastic force transmission member 40 is bolted to the lower surface 3a of the building 3, and it waits until the above-mentioned adhesive material solidifies. (Sixth step).
When the adhesive is solidified, the nut 52a of the compression deformation imparting member 50 is loosened and moved upward, thereby releasing the compression restraint of the disc spring group 30G by the compression deformation imparting member 50. That is, the nut 52a is loosened until the axial force of the set bolt 51 of the compression deformation imparting member 50 is completely released.

すると、これにより、皿ばね群30Gの弾発力の作用対象が、セットボルト51から弾発力伝達部材40へと移り、つまり、皿ばね群30Gは、弾発力伝達部材40を上方へ押圧し、その反力を建物3から得て、最終的には、摩擦減衰力生成部21の摩擦面22a及び滑り面24aに、皿ばね群30Gの弾発力が圧接力として付与される。ここで、この時には、弾発力の作用対象がセットボルト51から摩擦減衰力生成部21に切り替わっただけであり、当該弾発力の大きさは、第2ステップでセットされた設計値と略同値に維持されている。よって、摩擦減衰力生成部21には略設計値の圧接力が付与されており、もって、水平振動の減衰に必要な計画通りの大きさの摩擦力が、摩擦面22aと滑り面24aとの間に生じることとなる(第7ステップ、圧縮変形解除工程に相当)。
なお、緩めたナット52aは、セットボルト51の上端部に付けておいても良いし、セットボルト51から取り外して別途保管しても良い。
Then, the action target of the elastic force of the disc spring group 30G is moved from the set bolt 51 to the elastic force transmission member 40, that is, the disc spring group 30G presses the elastic force transmission member 40 upward. Then, the reaction force is obtained from the building 3, and finally, the elastic force of the disc spring group 30 </ b> G is applied to the friction surface 22 a and the sliding surface 24 a of the friction damping force generation unit 21 as a pressing force. Here, at this time, the application target of the elastic force is merely switched from the set bolt 51 to the friction damping force generation unit 21, and the magnitude of the elastic force is substantially the same as the design value set in the second step. It is maintained at the same value. Therefore, the friction damping force generation unit 21 is provided with a pressing force having a substantially designed value, so that a frictional force having a magnitude as planned required for damping the horizontal vibration is generated between the friction surface 22a and the sliding surface 24a. (Seventh step, corresponding to the compression deformation releasing step).
The loosened nut 52a may be attached to the upper end of the set bolt 51, or may be removed from the set bolt 51 and stored separately.

そして、以上説明したことから明らかなように、当該第1実施形態に係る摩擦ダンパー20の構成によれば、上下方向隙間δの寸法が、所期の計画値からずれている場合であっても、当該計画値からのずれを、伸縮調整機構による弾発力伝達部材40の上方への伸縮調整によって吸収することができる。よって、フィラプレート挿入やグラウト打設による調整は行わずに済み、結果、調整作業負荷の大幅な軽減を図れる。   As is apparent from the above description, according to the configuration of the friction damper 20 according to the first embodiment, even when the dimension of the vertical gap δ is deviated from the intended planned value. The deviation from the planned value can be absorbed by the upward / downward adjustment of the elastic force transmission member 40 by the expansion / contraction adjustment mechanism. Therefore, it is not necessary to make an adjustment by inserting a filler plate or placing a grout. As a result, the adjustment work load can be greatly reduced.

なお、ここで望ましくは、上述の圧縮変形量の設定値は、皿ばね30の荷重−撓み関係における非線形領域内、つまり、皿ばね30の撓み量(圧縮変形量)の変動に対する弾発力の変動の小さい領域内に設定されるのが好ましい。そして、圧縮変形量の設定値がこの非線形領域内に収まっていれば、アイソレータ7のクリープ現象や気温変動による膨張収縮等の経時変化に起因して上述の上下方向隙間δが変化する場合であっても、皿ばね群30Gの弾発力変動を小さく抑えることができ、その結果、摩擦面22aと滑り面24aとの間の摩擦力をほぼ一定に維持できる。これにより摩擦ダンパー20は、安定した振動減衰作用を発揮することができる。   Here, desirably, the set value of the amount of compressive deformation described above is within a non-linear region in the load-deflection relationship of the disc spring 30, that is, the elastic force with respect to fluctuations in the amount of deflection (compression deformation amount) of the disc spring 30. It is preferable to set in a region where the fluctuation is small. If the set value of the amount of compressive deformation falls within this non-linear region, the above-mentioned vertical gap δ changes due to a change over time such as a creep phenomenon of the isolator 7 and expansion / contraction due to temperature fluctuations. However, the elastic force fluctuation of the disc spring group 30G can be kept small, and as a result, the frictional force between the friction surface 22a and the sliding surface 24a can be maintained substantially constant. Thereby, the friction damper 20 can exhibit a stable vibration damping action.

但し、詳細には後述するが、この第1実施形態の構成によれば、摩擦ダンパー20の設置後の弾発力の調整も容易に行えるので、設置後の上下方向隙間δが経時変化しても、手軽に再調整することができる。よって、必ずしも非線形領域を利用する必要は無い。つまり、場合によっては、皿ばね30に代えてコイルばね等の線形ばねを適用しても良い。   However, as will be described in detail later, according to the configuration of the first embodiment, the elastic force after installation of the friction damper 20 can be easily adjusted, so that the vertical gap δ after installation changes over time. Can be easily readjusted. Therefore, it is not always necessary to use the nonlinear region. That is, in some cases, a linear spring such as a coil spring may be applied instead of the disc spring 30.

また、上述の摩擦ダンパー20の設置手順の説明では、既に構築済みの建物3の下面3aと基礎コンクリート1との間の上下方向隙間δに摩擦ダンパー20を挿入する場合を例に説明したが、摩擦ダンパー20の設置手順は何等これに限るものではない。   Further, in the description of the installation procedure of the friction damper 20 described above, the case where the friction damper 20 is inserted into the vertical gap δ between the lower surface 3a of the already constructed building 3 and the foundation concrete 1 is described as an example. The installation procedure of the friction damper 20 is not limited to this.

例えば、先ず、基礎コンクリート1を構築し、その後、第1ステップ及び第2ステップを行い、次に、建物3の下面3aを構築し、その後、第3ステップから第7ステップを行うようにしても良い。   For example, first, the foundation concrete 1 is constructed, then the first step and the second step are performed, then the lower surface 3a of the building 3 is constructed, and then the third step to the seventh step are performed. good.

<<<摩擦ダンパー20の設置後の圧接力の調整手順>>>
ところで、摩擦ダンパー20の設置後に上下方向隙間δの大きさが経時変化した場合に圧接力が変化する虞があるが、その場合についても、前記伸縮調整機構による弾発力伝達部材40の伸縮調整によって、前記隙間δの大きさの変化に対処可能である。つまり、当該変化分だけ弾発力伝達部材40の上下方向の長さLを伸縮変更することにより、皿ばね群30Gの圧縮変形量を摩擦ダンパー20の設置当初の状態に戻すことができる。これにより、圧接力を速やかに設計値に戻すことができて、その結果、計画通りの大きさの摩擦力を減衰力として発生させることができる。
<<< Adjustment procedure of pressure contact force after installation of friction damper 20 >>>
By the way, when the size of the vertical gap δ changes with time after the friction damper 20 is installed, the pressing force may change. In this case, too, the expansion / contraction adjustment of the elastic force transmitting member 40 by the expansion / contraction adjustment mechanism. Therefore, it is possible to cope with a change in the size of the gap δ. That is, the amount of compressive deformation of the disc spring group 30G can be returned to the initial state of installation of the friction damper 20 by changing the length L in the vertical direction of the elastic force transmitting member 40 by the amount corresponding to the change. As a result, the pressure contact force can be quickly returned to the design value, and as a result, a frictional force having a magnitude as planned can be generated as a damping force.

ここで、図2を参照しつつ、この圧接力の調整手順について詳しく説明する。なお、ここでは、上下方向隙間δが、摩擦ダンパー20の設置時と比べて広がってしまった場合を例に説明する。その場合には、隙間δが広がった分だけ皿ばね群30Gの弾発力が弱くなっているので、この弾発力を大きくすることにより、設計値へと戻すことになる。   Here, the procedure for adjusting the pressure contact force will be described in detail with reference to FIG. Here, an example will be described in which the vertical gap δ has expanded compared to when the friction damper 20 is installed. In this case, since the elastic force of the disc spring group 30G is weakened by the extent that the gap δ is widened, the design value is restored by increasing the elastic force.

先ず、ナット48bを弾発力伝達部材40の調整分だけ下方へ移動する。次に、上フランジ板42と中間フランジ板44との間の間隔Gに、ジャッキ(不図示)を介装する。そして中間フランジ板44がナット48bに押し当たるまで、ジャッキを上下方向に伸長させる。   First, the nut 48 b is moved downward by the adjustment amount of the elastic force transmission member 40. Next, a jack (not shown) is interposed in the gap G between the upper flange plate 42 and the intermediate flange plate 44. Then, the jack is extended in the vertical direction until the intermediate flange plate 44 is pressed against the nut 48b.

次に、中間フランジ板44が下方に移動した分だけ、連結ボルト46のナット48aを螺合回転して下方に移動して当該ナット48aを上方から中間フランジ板44に押し付けた状態にし、これにより、連結ボルト46の軸力で皿ばね群30Gの弾発力を受けられるようにする。   Next, as the intermediate flange plate 44 is moved downward, the nut 48a of the connecting bolt 46 is screwed and rotated to move downward so that the nut 48a is pressed against the intermediate flange plate 44 from above. The elastic force of the disc spring group 30G can be received by the axial force of the connecting bolt 46.

そうしたら、ジャッキを短縮して摩擦ダンパー20から外す。すると、ジャッキに作用していた皿ばね群30Gの弾発力は、弾発力伝達部材40の方に作用して当該弾発力伝達部材40を上方へ押圧し、その反力を建物3から得て、最終的には、摩擦減衰力生成部21の摩擦面22a及び滑り面24aに皿ばね群30Gの弾発力が圧接力として付与される。以上をもって、摩擦ダンパー20の圧接力を設計値へ戻す調整が終了する。   Then, the jack is shortened and removed from the friction damper 20. Then, the elastic force of the disc spring group 30G acting on the jack acts on the elastic force transmitting member 40 to press the elastic force transmitting member 40 upward, and the reaction force is applied from the building 3. In the end, the elastic force of the disc spring group 30G is applied to the friction surface 22a and the sliding surface 24a of the friction damping force generator 21 as a pressure contact force. Thus, the adjustment for returning the pressure contact force of the friction damper 20 to the design value is completed.

なお、上述では、設計値からずれた圧接力を設計値に戻す調整を例示したが、当該調整の目的は何等これに限るものではない。例えば、実際の摩擦係数が想定値と違っていた場合には、圧接力を設計値どおりに設定しても、所期の減衰効果を期待できないが、その場合にも、上述と同じ手順により対応可能である。すなわち、摩擦係数の想定値と実績値との相違分だけ、圧接力を設計値からずらして設定すれば、所期の減衰力を得ることができる。   In the above description, the adjustment for returning the pressure contact force deviated from the design value to the design value is illustrated, but the purpose of the adjustment is not limited to this. For example, if the actual coefficient of friction is different from the expected value, the expected damping effect cannot be expected even if the pressure contact force is set as designed, but this case can also be handled by the same procedure as described above. Is possible. That is, the desired damping force can be obtained by setting the pressure contact force to be shifted from the design value by the difference between the assumed value of the friction coefficient and the actual value.

===第2実施形態===
図6は、第2実施形態に係る摩擦ダンパー20aの側面図であり、図7は、同摩擦ダンパー20aを斜め下方から見た斜視図である。
上述の第1実施形態との相違点は、弾発力伝達部材40(40a)の連結部材46(70)の構成にある。そして、これ以外の点は概ね上述の第1実施形態と同じである。よって、同じ構成については同じ符号を付し、その説明については省略する。
=== Second Embodiment ===
FIG. 6 is a side view of the friction damper 20a according to the second embodiment, and FIG. 7 is a perspective view of the friction damper 20a as viewed obliquely from below.
The difference from the first embodiment described above is the configuration of the connecting member 46 (70) of the elastic force transmitting member 40 (40a). Other points are generally the same as in the first embodiment described above. Therefore, the same components are denoted by the same reference numerals, and the description thereof is omitted.

図6に示すように、この第2実施形態の弾発力伝達部材40aも上フランジ板42と中間フランジ板44とを有している。そして、これらフランジ板42,44同士は、互いの間に間隔Gをもたせつつ、連結部材70によって連結されている。
ここで、第1実施形態と同様に、この第2実施形態に係る連結部材70も、弾発力伝達部材40aを上下方向に伸縮する伸縮調整機構として機能する。
As shown in FIG. 6, the elastic force transmission member 40 a of the second embodiment also has an upper flange plate 42 and an intermediate flange plate 44. The flange plates 42 and 44 are connected to each other by a connecting member 70 with a gap G between them.
Here, like the first embodiment, the connecting member 70 according to the second embodiment also functions as an expansion / contraction adjustment mechanism that expands and contracts the elastic force transmitting member 40a in the vertical direction.

すなわち、連結部材70は、上フランジ板42の下面に溶接等により一体に固定された上側部材71と、中間フランジ板44の上面に溶接等により一体に固定された下側部材72と、これら上側部材71と下側部材72とを互いの鉛直面71a,72a同士において重合させて(面接触させて)摩擦接合状態で締結固定する高力ボルト73a及びナット73bと、を有する。そして、上側部材71及び下側部材72に形成される高力ボルト73aのボルト孔(不図示)は、少なくとも一方が上下方向に長い長孔に形成されている。よって、前記鉛直面71a,72aにおいて上側部材71を下側部材72に対して相対的に上方又は下方にスライド移動させた後に、高力ボルト73a及びナット73bによって相対移動不能な摩擦接合状態に締結固定すれば、上フランジ板42の上面42aと中間フランジ板44の下面44aとの距離Lたる弾発力伝達部材40aの上下方向の長さLを変更することができる。よって、上述の第1実施形態と同様に、摩擦ダンパー20aの設置時の調整作業負荷を大幅に軽減可能となる。   That is, the connecting member 70 includes an upper member 71 that is integrally fixed to the lower surface of the upper flange plate 42 by welding or the like, a lower member 72 that is integrally fixed to the upper surface of the intermediate flange plate 44 by welding or the like, A high-strength bolt 73a and a nut 73b that superpose and fix the member 71 and the lower member 72 on each other in the frictional joining state by overlapping each other on the vertical surfaces 71a and 72a (surface contact) are provided. And the bolt hole (not shown) of the high strength bolt 73a formed in the upper member 71 and the lower member 72 is formed in the long hole at least one long in the up-down direction. Therefore, after the upper member 71 is slid upward or downward relative to the lower member 72 on the vertical surfaces 71a, 72a, it is fastened in a frictionally joined state in which relative movement is impossible by the high strength bolt 73a and nut 73b. If fixed, the vertical length L of the elastic force transmitting member 40a, which is the distance L between the upper surface 42a of the upper flange plate 42 and the lower surface 44a of the intermediate flange plate 44, can be changed. Therefore, as in the first embodiment described above, the adjustment work load when installing the friction damper 20a can be significantly reduced.

また、この第2実施形態の場合には、スライド調整する鉛直面71a,72aの断面性能をあげて、高力ボルト73aの締結によって強固な摩擦接合状態にある。よって、上述の第1実施形態と比べて、弾発力伝達部材40aは、大きな上下方向の圧縮荷重の作用下においても短縮せずに耐えることができ、よって、摩擦力の計画値が大きい場合に好適である。   Further, in the case of the second embodiment, the cross-sectional performance of the vertical surfaces 71a and 72a to be slide-adjusted is increased, and a strong friction joining state is achieved by fastening the high strength bolt 73a. Therefore, as compared with the first embodiment described above, the resilient force transmission member 40a can withstand without being shortened even under the action of a large vertical compressive load, and accordingly, the planned value of the frictional force is large. It is suitable for.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、摩擦ダンパー20の各構成要素のなかで、上下方向隙間δにおいて互いに直列に並ぶ構成要素たる弾発力伝達部材40、皿ばね群30G、及び摩擦減衰力生成部21を、この順番で上から下へと直列に並べた構成を例示したが(図2の概略中心縦断面図を参照)、この並び順は、何等これに限るものではない。例えば、図2の状態の摩擦ダンパー20を上下反転して、上下方向隙間δに介装しても良い。すなわち、図8の摩擦ダンパー20bの概略中心縦断面図に示すように、上から下へと、摩擦減衰力生成部21、皿ばね群30G、及び弾発力伝達部材40の順番で直列に配置しても良い。   In the above-described embodiment, the elastic force transmission member 40, the disc spring group 30G, and the friction damping force generation unit 21 that are components arranged in series in the vertical gap δ among the components of the friction damper 20 are as follows. Although a configuration in which the components are arranged in series from top to bottom in this order is illustrated (see the schematic center longitudinal sectional view of FIG. 2), the arrangement order is not limited to this. For example, the friction damper 20 in the state of FIG. 2 may be turned upside down and interposed in the vertical gap δ. That is, as shown in the schematic longitudinal cross-sectional view of the friction damper 20b in FIG. 8, the friction damping force generation unit 21, the disc spring group 30G, and the elastic force transmission member 40 are arranged in series from top to bottom. You may do it.

上述の実施形態では、免震装置10を建物3と基礎コンクリート1との間の上下方向隙間δに介装したが、何等これに限るものではない。例えば、建物3が多層階からなる場合には、上部構造体としてのN+1階の躯体と、下部構造体としてのN階の躯体との間の上下方向隙間に免震装置10を介装しても良い。また、上部構造体として、嫌振装置である半導体製造設備等を設置する床、あるいは、大型装置等に適用してもよい。   In the above-described embodiment, the seismic isolation device 10 is interposed in the vertical gap δ between the building 3 and the foundation concrete 1, but is not limited to this. For example, when the building 3 is composed of multiple floors, the seismic isolation device 10 is interposed in the vertical gap between the N + 1 floor housing as the upper structure and the N floor housing as the lower structure. Also good. Further, the upper structure may be applied to a floor on which a semiconductor manufacturing facility or the like, which is a vibration isolator, is installed, or a large apparatus.

1 基礎コンクリート(下部構造体)、3 建物(上部構造体)、3a 下面、
7 アイソレータ、
10 免震装置、20 摩擦ダンパー、20a 摩擦ダンパー、
20b 摩擦ダンパー、20u 上面、
21 摩擦減衰力生成部、22 摩擦材、22a 摩擦面、
24 滑り材、24a 滑り面、
26 下フランジ板、26a 嵌合凹部、
30 皿ばね(ばね部材)、30h 貫通孔、
30G 皿ばね群(ばね部材)、30Gh 孔部、
40 弾発力伝達部材、40a 弾発力伝達部材、
42 上フランジ板(上プレート)、42a 上面、42h 貫通孔、
44 中間フランジ板(下プレート)、
44Bh ボルト孔、44Bh2 ボルト孔、
44a 下面、44h 貫通孔、
46 連結ボルト(連結部材)、47 ロックナット、
48a ナット、48b ナット、
50 圧縮変形付与部材、51 セットボルト、52a ナット、
54 ロックナット、
60 円筒シャフト(相対変位伝達部材)、
70 連結部材、71 上側部材、71a 鉛直面、72 下側部材、
72a 鉛直面、73a 高力ボルト、73b ナット、
δ 上下方向隙間
1 foundation concrete (lower structure), 3 building (upper structure), 3a lower surface,
7 Isolator,
10 Seismic isolation device, 20 friction damper, 20a friction damper,
20b friction damper, 20u top surface,
21 friction damping force generation unit, 22 friction material, 22a friction surface,
24 sliding material, 24a sliding surface,
26 Lower flange plate, 26a Fitting recess,
30 disc spring (spring member), 30h through hole,
30G disc spring group (spring member), 30Gh hole,
40 elastic force transmitting member, 40a elastic force transmitting member,
42 upper flange plate (upper plate), 42a upper surface, 42h through hole,
44 Intermediate flange plate (lower plate),
44Bh bolt hole, 44Bh2 bolt hole,
44a bottom surface, 44h through-hole,
46 connection bolt (connection member), 47 lock nut,
48a nut, 48b nut,
50 compression deformation imparting member, 51 set bolt, 52a nut,
54 Lock nut,
60 cylindrical shaft (relative displacement transmission member),
70 connecting member, 71 upper member, 71a vertical surface, 72 lower member,
72a vertical surface, 73a high strength bolt, 73b nut,
δ Vertical gap

Claims (5)

上部構造体と下部構造体との間の上下方向隙間に介装され、前記上部構造体を免震支持するアイソレータと、
前記上下方向隙間に前記アイソレータと並列に介装され、前記上部構造体と前記下部構造体との間の水平振動を、摩擦力を減衰力として用いて減衰する摩擦ダンパーと、を備えた免震装置であって、
前記摩擦ダンパーは、
前記上下方向隙間に介装され、摩擦面及び該摩擦面に圧接しつつ滑動する滑動面を有する摩擦減衰力生成部と、
前記上下方向隙間に前記摩擦減衰力生成部と直列に介装され、前記摩擦減衰力生成部に圧接力を生じさせるべく弾発力を発生するばね部材と、
前記上下方向隙間に前記摩擦減衰力生成部及び前記ばね部材と直列に介装され、前記弾発力を上下方向に伝達する弾発力伝達部材と、
前記ばね部材に対して前記圧接力に係る前記弾発力を設定する際に使用され、前記ばね部材に上下方向の圧縮変形を付与及び解除可能な圧縮変形付与部材と、を有し、
前記弾発力伝達部材は、該弾発力伝達部材を上下方向に伸縮する伸縮調整機構を有していることを特徴とする免震装置。
An isolator that is interposed in a vertical gap between the upper structure and the lower structure and that supports the upper structure in a seismic isolation manner;
And a friction damper that is interposed in parallel with the isolator in the vertical gap, and that damps horizontal vibration between the upper structure and the lower structure using a friction force as a damping force. A device,
The friction damper is
A friction damping force generator having a friction surface and a sliding surface that slides while being in pressure contact with the friction surface;
A spring member interposed in series with the friction damping force generation unit in the vertical gap, and generating a spring force to generate a pressure contact force in the friction damping force generation unit;
A resilient force transmission member that is interposed in series with the friction damping force generation unit and the spring member in the vertical gap, and that transmits the resilient force in the vertical direction;
A compression deformation imparting member that is used when setting the elastic force related to the pressure contact force with respect to the spring member, and capable of imparting and releasing compressive deformation in the vertical direction to the spring member;
The seismic isolation device, wherein the elastic force transmitting member has an expansion / contraction adjusting mechanism that expands and contracts the elastic force transmitting member in the vertical direction.
請求項1に記載の免震装置であって、
前記弾発力伝達部材は、上プレートと、その下方に間隔を空けて配される下プレートと、前記上プレートと前記下プレートとを連結する連結部材と、を有し、
前記伸縮調整機構としての前記連結部材によって、前記間隔を変更することにより、前記弾発力伝達部材を上下方向に伸縮調整することを特徴とする免震装置。
The seismic isolation device according to claim 1,
The elastic force transmission member includes an upper plate, a lower plate disposed below the upper plate, and a connecting member that connects the upper plate and the lower plate,
The seismic isolation device according to claim 1, wherein the elastic force transmitting member is vertically expanded and contracted by changing the distance by the connecting member as the expansion and contraction adjusting mechanism.
請求項2に記載の免震装置であって、
前記連結部材は、上下方向に軸方向が向いた棒体を有し、
前記棒体の上端部及び下端部は、螺合構造によって前記上プレート及び前記下プレートに締結固定され、
前記上プレートと前記下プレートとの間に位置する前記棒体の部分の長さを変更することにより、前記間隔を変更することを特徴とする免震装置。
The seismic isolation device according to claim 2,
The connecting member has a rod body whose axial direction faces in the vertical direction,
The upper end portion and the lower end portion of the rod body are fastened and fixed to the upper plate and the lower plate by a screwing structure,
The seismic isolation device according to claim 1, wherein the distance is changed by changing a length of a portion of the bar located between the upper plate and the lower plate.
請求項2に記載の免震装置であって、
前記連結部材は、前記上プレートの下面に一体に固定された上側部材と、前記下プレートの上面に一体に固定された下側部材と、前記上側部材と前記下側部材とを互いの鉛直面同士において重合させて摩擦接合状態で締結固定する高力ボルトと、を有し、
前記上側部材及び前記下側部材に形成される前記高力ボルトのボルト孔は、少なくとも一方が上下方向に長い長孔に形成されていることを特徴とする免震装置。
The seismic isolation device according to claim 2,
The connecting member includes an upper member that is integrally fixed to the lower surface of the upper plate, a lower member that is integrally fixed to the upper surface of the lower plate, and the upper member and the lower member that are perpendicular to each other. A high-strength bolt that is superposed and fastened in a friction-bonded state,
At least one of the bolt holes of the high-strength bolts formed in the upper member and the lower member is formed as a long hole that is long in the vertical direction.
請求項1乃至4の何れかに記載の免震装置の設置方法であって、
前記圧縮変形付与部材によって、前記ばね部材を、前記圧接力の大きさに対応する圧縮変形量まで圧縮変形する圧縮変形工程と、
前記摩擦ダンパーを前記下部構造体上に載置する載置工程と、
前記圧縮変形工程及び前記載置工程の後に、前記下部構造体上に載置された前記摩擦ダンパーの上面と前記上部構造体の下面との間の隙間がなくなるまで、前記伸縮調整機構によって前記弾発力伝達部材を上方に伸長する伸長工程と、
前記伸長工程の後に、前記圧縮変形付与部材による前記ばね部材の圧縮変形を解除する圧縮変形解除工程と、を有することを特徴とする免震装置の設置方法。
A method for installing the seismic isolation device according to any one of claims 1 to 4,
A compression deformation step of compressing and deforming the spring member to a compression deformation amount corresponding to the magnitude of the pressure contact force by the compression deformation applying member;
A placing step of placing the friction damper on the lower structure;
After the compression deformation step and the placing step, the elastic adjustment mechanism causes the elastic member until there is no gap between the upper surface of the friction damper placed on the lower structure and the lower surface of the upper structure. An extension step of extending the force transmission member upward;
A method of installing a seismic isolation device, comprising: a compressive deformation releasing step of releasing the compressive deformation of the spring member by the compressive deformation applying member after the extending step.
JP2010091675A 2010-04-12 2010-04-12 Seismic isolation device and its installation method Expired - Fee Related JP5577808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091675A JP5577808B2 (en) 2010-04-12 2010-04-12 Seismic isolation device and its installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091675A JP5577808B2 (en) 2010-04-12 2010-04-12 Seismic isolation device and its installation method

Publications (2)

Publication Number Publication Date
JP2011220473A true JP2011220473A (en) 2011-11-04
JP5577808B2 JP5577808B2 (en) 2014-08-27

Family

ID=45037705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091675A Expired - Fee Related JP5577808B2 (en) 2010-04-12 2010-04-12 Seismic isolation device and its installation method

Country Status (1)

Country Link
JP (1) JP5577808B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062929A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062928A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062927A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
KR101232906B1 (en) 2012-10-04 2013-02-13 (주)알티에스 Friction device to decrease vibration and isolator utilizing the same
KR101363071B1 (en) 2013-09-17 2014-02-17 (주)엔지피 Solar power generation system earthquake-proof equipment
JP5657825B1 (en) * 2014-05-28 2015-01-21 薫和 半澤 Friction damping device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191653U (en) * 1975-01-06 1976-07-22
JPS51132477U (en) * 1975-04-16 1976-10-25
JPS6443643A (en) * 1987-08-12 1989-02-15 Tokico Ltd Earthquake damping apparatus
JPH10238164A (en) * 1996-12-26 1998-09-08 Ohbayashi Corp Base isolation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191653U (en) * 1975-01-06 1976-07-22
JPS51132477U (en) * 1975-04-16 1976-10-25
JPS6443643A (en) * 1987-08-12 1989-02-15 Tokico Ltd Earthquake damping apparatus
JPH10238164A (en) * 1996-12-26 1998-09-08 Ohbayashi Corp Base isolation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062929A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062928A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062927A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
KR101232906B1 (en) 2012-10-04 2013-02-13 (주)알티에스 Friction device to decrease vibration and isolator utilizing the same
KR101363071B1 (en) 2013-09-17 2014-02-17 (주)엔지피 Solar power generation system earthquake-proof equipment
JP5657825B1 (en) * 2014-05-28 2015-01-21 薫和 半澤 Friction damping device

Also Published As

Publication number Publication date
JP5577808B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5577808B2 (en) Seismic isolation device and its installation method
JP5678534B2 (en) Seismic isolation device and its installation method
JP6914853B2 (en) Elastic sliding friction joint
JP5406042B2 (en) Wall friction damper
CN103334509B (en) High-frequency tuning mass bumper
JP3185703B2 (en) Vibration isolation device
JP2015511687A (en) Modular insulation system
AU2013201398A1 (en) Wooden member joint structure
TW200918782A (en) Damper equipment
JP2013002599A (en) Spring member
JPH11269984A (en) Damping structure for building frame
JP5326779B2 (en) Seismic isolation device
JP5284915B2 (en) Structure moving method and building
JP5678533B2 (en) Seismic isolation device and its installation method
JP7091190B2 (en) Combined vibration control device
JP5625661B2 (en) Seismic isolation device and its installation method
JP4648786B2 (en) Friction damper device and installation method thereof
JP7213766B2 (en) Fixed structure of seismic isolation device
JP7224101B2 (en) Displacement stopper and seismic isolation building
JP3791132B2 (en) Damping structure using a disc spring friction damper
JP2007071243A (en) Friction damper
JP6002883B2 (en) Seismic isolation building
JP7338121B2 (en) Brace and brace installation method
JP2713086B2 (en) Three-dimensional seismic isolation device and its installation and recovery method
JP5522971B2 (en) Rubber washer, and support and structure using the rubber washer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5577808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees