JP2011219929A - Earthquake resisting party wall and method for constructing the same - Google Patents

Earthquake resisting party wall and method for constructing the same Download PDF

Info

Publication number
JP2011219929A
JP2011219929A JP2010087355A JP2010087355A JP2011219929A JP 2011219929 A JP2011219929 A JP 2011219929A JP 2010087355 A JP2010087355 A JP 2010087355A JP 2010087355 A JP2010087355 A JP 2010087355A JP 2011219929 A JP2011219929 A JP 2011219929A
Authority
JP
Japan
Prior art keywords
concrete
column
earthquake
reinforced concrete
pca
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010087355A
Other languages
Japanese (ja)
Other versions
JP5574328B2 (en
Inventor
Masaki Fuchimoto
正樹 淵本
Original Assignee
Shimizu Corp
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp, 清水建設株式会社 filed Critical Shimizu Corp
Priority to JP2010087355A priority Critical patent/JP5574328B2/en
Publication of JP2011219929A publication Critical patent/JP2011219929A/en
Application granted granted Critical
Publication of JP5574328B2 publication Critical patent/JP5574328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To construct an earthquake resisting party wall doing the following: minimize field work, efficiently and highly accurately place molds, and save labor for the field work such as concrete placing.SOLUTION: A precast concrete wall body 12 is erected and fixedly supported between reinforced concrete columns 20 at an intermediate position in a wall extending direction of the earthquake resisting party wall to be constructed. Earthquake resisting bars 6 and 8 are arranged between the precast concrete wall body 12 and the reinforced concrete column 20. A cast-in place concrete wall body 11 is constructed between the precast concrete wall body 12 and the reinforced column 20 in such a way that the earthquake resisting bars 6 and 8 are sandwiched between wall molds 3. The precast concrete wall body 12 and the reinforced concrete column 20 are integrally connected with the cast-in place concrete wall body 11 so as to construct the earthquake resisting party wall.

Description

本発明は戸境耐震壁およびその構築方法に係り、現場作業を最小限に抑え、高精度に型枠を設置でき、コンクリート打設等の現場作業を大幅に省力化して戸境耐震壁を構築できるようにした戸境耐震壁およびその構築方法に関する。   The present invention relates to a boundary earthquake-resistant wall and a construction method thereof, minimizes site work, can install a formwork with high accuracy, and constructs a boundary earthquake-resistant wall by greatly saving labor in concrete work such as placing concrete. The present invention relates to a seismic wall and a construction method thereof.

板状マンションは、住棟の向きが揃っているので住戸への日当たりが均等で良好であるという利点がある。しかし、梁間方向が桁行方向に対して薄い形状となるため、各戸の戸境壁を、単なる間仕切り壁としての機能のみでなく、連層耐震壁として機能させることが建物全体構造の耐震性向上のために重要である。   A plate-shaped condominium has the advantage that the direction of the residential building is aligned and the sunlight to the dwelling unit is even and good. However, since the beam-to-beam direction is thinner than the cross-beam direction, it is possible not only to function as a partition wall, but also to function as a multi-layer earthquake-resistant wall, thereby improving the earthquake resistance of the entire building structure. Is important for.

このため、戸境壁の構造を、超高層マンションで多く採用されているような軽量鉄骨下地、遮音材、仕切り石膏ボード等とからなる乾式構造することはできず、鉄筋コンクリートの壁体として構築する必要がある。   For this reason, it is not possible to build a dry structure consisting of a lightweight steel base, sound insulation, partition gypsum board, etc., which is often used in high-rise apartments, but construct a wall structure of reinforced concrete. There is a need.

戸境壁を鉄筋コンクリート構造とするためには、各戸境において、壁体配筋、型枠組み立て、コンクリート打設等の現場作業による多工種の工程を要する。また、たとえば型枠工において、壁面型枠として在来型枠、システム型枠、アルミニウム桟木等を用いることができるが、いずれの場合にも、熟練作業員によって壁厚等の寸法調整や誤差吸収のための調整板の設置を行う必要があった。顧客からは短工期・ローコストが求められ、また熟練作業員の不足している現状では、現場作業を最小限に抑え、また付加工事による工事コストを低減し、短工期化を図ることが不可欠である。   In order to make the boundary wall a reinforced concrete structure, a multi-step process is required at each door boundary, such as wall reinforcement, formwork assembly, and concrete placement. For example, in a mold work, a conventional formwork, a system formwork, an aluminum pier, etc. can be used as a wall formwork. In any case, dimensional adjustments such as wall thickness and error absorption can be performed by skilled workers. It was necessary to install an adjustment plate for Customers are required to have a short construction period and low cost, and in the current situation where skilled workers are in short supply, it is essential to minimize on-site work, reduce construction costs by additional work, and shorten the construction period. is there.

このような現状を解決するための1つの方策が、プレキャストコンクリート(以下、PCaと略記する。)を用いた構造部材のPCa化である。出願人は、すでに建築物の施工方法の発明として、鉄筋コンクリート造建物における柱、梁、床にPCa製の打ち込み型枠を採用し、それぞれの部位に先組の鉄筋ユニットを配置し、各打ち込み型枠内部及び上部にコンクリートを打設して鉄筋コンクリート柱、梁、床を形成する施工法を開示している(特許文献1)。この施工法では、建築物の主要構造要素のPCa化を図っている。このため、各部の打ち込み型枠の連結に多様な形状のファスナーや補助型枠を必要とする。この結果、全体では短工期化は果たせるが、各型枠の連結作業や多数の取り合い部での寸法調整が必要となる。そこで、今回の場合、構造要素のうち、戸境壁、柱のPCa化の実現可能性について検討した。   One measure for solving such a current situation is to use a precast concrete (hereinafter abbreviated as PCa) for a structural member made of PCa. Applicants have already adopted PCa-made formwork for columns, beams, and floors in reinforced concrete buildings as inventions for construction methods for buildings. A construction method is disclosed in which concrete is placed inside and above the frame to form reinforced concrete columns, beams and floors (Patent Document 1). In this construction method, the main structural elements of the building are made PCa. For this reason, fasteners and auxiliary molds of various shapes are required for connecting the driving molds of each part. As a result, the overall construction period can be shortened, but it is necessary to connect the molds and adjust the dimensions at a large number of joints. Therefore, in this case, we examined the feasibility of using PCa for the boundary walls and pillars among the structural elements.

特開平10−25804号公報Japanese Patent Laid-Open No. 10-25804

検討の結果、上述した板状マンションでは、柱のPCa化については可能であるが、戸境耐震壁については、壁体が長さ12〜13m、壁高3m、壁厚0.25m程度のサイズとなることが多く、この壁体をPCa化すると、部材重量は約25トン程度となる。このため、通常のクレーンでは各階への揚重・取り付けを行うことが困難である。またフルPCa化した壁体の壁鉄筋は、機械式継手により柱と接合する必要があるため、コストアップになるという問題もある。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、現場作業を最小限に抑え、低コストで高精度の型枠設置を可能にした鉄筋コンクリート(以下、RCと略記する。)製の戸境耐震壁を構築できるようにした戸境耐震壁およびその構築方法を提供することにある。   As a result of the examination, the plate-like apartments mentioned above can be made into PCa columns, but the door-side seismic walls are 12 to 13m long, 3m high, and 0.25m thick. When this wall body is made into PCa, the member weight becomes about 25 tons. For this reason, it is difficult to lift and attach to each floor with a normal crane. Moreover, since the wall reinforcement of the wall body made into full PCa needs to be joined to the column by a mechanical joint, there is a problem that the cost increases. Therefore, an object of the present invention is a reinforced concrete (hereinafter abbreviated as RC) that solves the problems of the above-described conventional technology, minimizes field work, and enables high-precision formwork installation at low cost. It is to provide a doorway earthquake-resistant wall and a method for constructing it.

上記目的を達成するために、本発明の戸境耐震壁は鉄筋コンクリート柱間に構築される戸境耐震壁であって、その壁延長方向の中間位置に建て込まれたプレキャストコンクリート壁体と、該プレキャストコンクリート壁体と前記鉄筋コンクリート柱間とに構築された現場打ちコンクリート壁とを壁延長方向に一体化して耐震壁としたことを特徴とする。   In order to achieve the above object, the boundary earthquake-resistant wall of the present invention is a boundary earthquake-resistant wall constructed between reinforced concrete columns, a precast concrete wall built in an intermediate position in the wall extending direction, A precast concrete wall body and a cast-in-place concrete wall constructed between the reinforced concrete columns are integrated in the wall extension direction to form a seismic wall.

その構築方法として、鉄筋コンクリート柱間に構築される戸境耐震壁の壁延長方向の中間位置にプレキャストコンクリート壁体を建て込んで固定支持し、該プレキャストコンクリート壁体と前記鉄筋コンクリート柱間に耐震壁配筋を行い、該耐震壁配筋を挟んで壁面型枠を、前記プレキャストコンクリート壁体と前記鉄筋コンクリート柱との間に組み立て、現場打ちコンクリート壁体を構築し、該現場打ちコンクリート壁体で前記プレキャストコンクリート壁体と前記鉄筋コンクリート柱とを一体接合するようにしたことを特徴とする。   As a construction method, a precast concrete wall is built in and fixedly supported in the middle of the wall extension direction of the boundary earthquake resistant wall constructed between the reinforced concrete columns, and the earthquake resistant wall is arranged between the precast concrete wall and the reinforced concrete columns. A wall formwork is assembled between the precast concrete wall and the reinforced concrete column, and a cast-in-place concrete wall is constructed, and the precast is used with the cast-in-place concrete wall. The concrete wall body and the reinforced concrete column are integrally joined.

また、鉄筋コンクリート柱を現場打ちコンクリート壁体と同時構築する場合、鉄筋コンクリート柱間に構築される戸境耐震壁の壁延長方向の中間位置にプレキャストコンクリート壁体を建て込んで固定支持し、該プレキャストコンクリート壁体の両側に位置する耐震壁体と、前記鉄筋コンクリート柱との配筋を行い、該鉄筋コンクリート柱と耐震壁体の柱型枠と壁面型枠とを組み立て、前記鉄筋コンクリート柱と耐震壁体のコンクリートを打設して、前記鉄筋コンクリート柱と現場打ちコンクリート壁体とを構築し、該現場打ちコンクリート壁体と鉄筋コンクリート柱と、前記プレキャストコンクリート壁体とを一体接合するようにしたことを特徴とする。   In addition, when a reinforced concrete column is built at the same time as a cast-in-place concrete wall, a precast concrete wall is built and fixedly supported at an intermediate position in the wall extension direction of the boundary earthquake resistant wall constructed between the reinforced concrete columns. Reinforcement of the reinforced concrete column located on both sides of the wall and the reinforced concrete column, and assembling the reinforced concrete column, the column form frame and the wall surface form of the seismic wall, and the concrete of the reinforced concrete column and the seismic wall The reinforced concrete column and the in-situ concrete wall are constructed, and the in-situ concrete wall, the reinforced concrete column, and the precast concrete wall are integrally joined.

前記戸境耐震壁および前記プレキャストコンクリート壁体は、床面に立設されたせん断抵抗部材によって位置決め固定することが好ましい。   It is preferable that the door boundary earthquake resistant wall and the precast concrete wall are positioned and fixed by a shear resistance member standing on the floor surface.

構築方法として、前記プレキャストコンクリート壁体は、床面に立設されたせん断抵抗部材によって位置決めされ、その立設状態を支保部材で保持し、前記現場打ちコンクリート壁体と接合させることが好ましい。   As a construction method, it is preferable that the precast concrete wall body is positioned by a shear resistance member standing on the floor surface, and the standing state is held by a support member and joined to the in-situ concrete wall body.

また、前記壁面型枠は、前記プレキャストコンクリート壁体の一部と前記鉄筋コンクリート柱の側面との間に端部が支持されて設置することが好ましい。   Moreover, it is preferable that the wall surface formwork is installed with an end portion supported between a part of the precast concrete wall and a side surface of the reinforced concrete column.

さらに、前記鉄筋コンクリート柱の側面に壁端支持部を形成し、該壁端支持部で前記壁面型枠の一端を支持することが好ましい。   Furthermore, it is preferable that a wall end support portion is formed on a side surface of the reinforced concrete column, and one end of the wall surface formwork is supported by the wall end support portion.

以上の構成によれば、プレキャストコンクリート中間壁を精度良く、耐震壁の構築位置に設置し、これを後に組み立てる壁面型枠の支持部として使用するため、壁面型枠は、従来必要としていた調整板等を用いずに、高精度に組み立てられ、現場打ち壁を構築することができ、現場作業を最小限に抑え、低コストで高精度の鉄筋コンクリート製の戸境耐震壁を構築できるという効果を奏する。   According to the above configuration, the precast concrete intermediate wall is accurately installed at the construction position of the earthquake resistant wall, and this is used as a support for the wall formwork to be assembled later. It can be assembled with high precision without using a wall, etc., and it can be constructed on-site striking walls, minimizing on-site work, and building a high-accuracy reinforced concrete door-to-wall earthquake resistant wall at low cost. .

本発明の戸境耐震壁の全体構成を示した斜視図。The perspective view which showed the whole structure of the doorway earthquake-resistant wall of this invention. 図1に示した戸境耐震壁の施工状態を示した説明図。Explanatory drawing which showed the construction state of the doorway earthquake-resistant wall shown in FIG. PCa中間壁の概略構成を示した斜視図。The perspective view which showed schematic structure of PCa intermediate wall. PCa柱の壁体接合部の概略構成を示した斜視図。The perspective view which showed schematic structure of the wall body junction part of PCa pillar. 戸境耐震壁の構築工程を示した工程説明図(PCa柱)。Process explanatory drawing (PCa pillar) which showed construction process of Tokai earthquake resistant wall. 戸境耐震壁の構築工程を示した工程説明図(在来RC柱:その1)。Process explanatory drawing which showed the construction process of the Tokai seismic wall (conventional RC pillar: Part 1). 戸境耐震壁の構築工程を示した工程説明図(在来RC柱:その2)。Process explanatory drawing which showed the construction process of the Tokai seismic wall (conventional RC pillar: Part 2).

以下、本発明の戸境耐震壁およびその構築方法の実施形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, the following examples will be described with reference to the accompanying drawings as embodiments of the doorway earthquake resistant wall and the construction method thereof according to the present invention.

図1は、本発明の戸境耐震壁の全体構成を示した斜視図である。図1に示した戸境耐震壁10は、2本のフルPCa柱20(以下、柱20と記す場合もある。)間に構築された現場打ちコンクリート耐震壁11(以下、現場打ち壁11と記す。)と、これら現場打ち壁11の間を接合するPCa中間壁12とから構成されている。これらのうち、現場打ち壁11の柱側端辺11aと中間壁側辺11bとは、それぞれ柱20とPCa中間壁12とに継手筋23,13(図2参照)を介して構造的に一体接合されている。   FIG. 1 is a perspective view showing the entire configuration of a doorway earthquake resistant wall according to the present invention. 1 is a site-cast concrete earthquake-resistant wall 11 (hereinafter referred to as a site-casting wall 11) constructed between two full PCa columns 20 (hereinafter also referred to as columns 20). And a PCa intermediate wall 12 that joins between the cast-in walls 11. Of these, the column-side end 11a and the intermediate wall-side 11b of the cast-in wall 11 are structurally integrated with the column 20 and the PCa intermediate wall 12 through joint bars 23 and 13 (see FIG. 2), respectively. It is joined.

現場打ち壁11の底辺11cは、床面1に配筋された継手筋4と機械式継手7(図5(b)参照)により一体接合されている。PCa中間壁12の下辺12cは、位置決め兼用のせん断抵抗部材としてのダボ筋14(図3参照)のみで床面1上の所定位置に載置されている。すなわち、図1に示した戸境耐震壁10では、このPCa中間壁12と床面1との間の隙間(目地)を開口部として設計した耐震壁構造となっている。このため、床面1との間で構造筋としての鉄筋接合はされていない。なお、機械式継手7に代えて重ね継手を用いてもよいことは言うまでもない。   The bottom 11c of the cast-in-place wall 11 is integrally joined by a joint bar 4 arranged on the floor surface 1 and a mechanical joint 7 (see FIG. 5B). The lower side 12c of the PCa intermediate wall 12 is placed at a predetermined position on the floor surface 1 only by a dowel bar 14 (see FIG. 3) serving as a shearing resistance member also serving as a positioning member. 1 has a seismic wall structure designed with the gap (joint) between the PCa intermediate wall 12 and the floor surface 1 as an opening. For this reason, rebar bonding as a structural reinforcement is not performed with the floor surface 1. Needless to say, a lap joint may be used instead of the mechanical joint 7.

図2は、図1に示した戸境耐震壁10を施工する一工程における部材及び資材の配置を示した説明図である。同図には、PCa中間壁12が2本の柱20,20間に構築される現場打ち壁11(2点鎖線表示)の中間位置に立設され、パイプサポート2によってその設置位置が保持された状態が示されている。さらに、このPCa中間壁12と各柱20との間に設置される壁面型枠3が示されている。同図では、説明のために片面のみの型枠3が示されている。この壁面型枠3は、柱20とPCa中間壁12との間の壁面を塞ぐ1枚の板状として概略図示しているが、実際には大版のせき板と、それを支保する各種の支保部材、補剛部材で構成された一体型の型枠からなる。この一体型の型枠は、後述するように、現場打ち壁11となる空間に所定の配筋を行った後に、PCa中間壁12と柱20との間に壁体の両面を覆うように据え付けられる。なお、壁面型枠3としては、複数枚の通常寸法のパネル型枠を、支保部材を用いて連結して用いることもできる。   FIG. 2 is an explanatory diagram showing the arrangement of members and materials in one process of constructing the doorside earthquake resistant wall 10 shown in FIG. In the figure, the PCa intermediate wall 12 is erected at an intermediate position of a spot wall 11 (indicated by a two-dot chain line) constructed between two pillars 20 and 20, and the installation position is held by the pipe support 2. The state is shown. Furthermore, a wall surface mold 3 installed between the PCa intermediate wall 12 and each column 20 is shown. In the figure, the mold 3 of only one side is shown for explanation. The wall surface formwork 3 is schematically shown as a single plate that closes the wall surface between the column 20 and the PCa intermediate wall 12, but in actuality, a large plate and various types of supporting plates are supported. It consists of an integral mold formed of a support member and a stiffening member. As will be described later, this integrated formwork is installed so as to cover both surfaces of the wall body between the PCa intermediate wall 12 and the column 20 after performing predetermined reinforcement in the space to be the site-casting wall 11. It is done. In addition, as the wall surface mold 3, a plurality of normal-sized panel molds can be connected and used using a support member.

なお、PCa中間壁12の壁長は、前述したように中間開口部を有する耐震壁として設計する場合、0.5〜1.0m程度に設定することが好ましい。そのときの柱20、PCa中間壁12間の現場打ち耐震壁の壁長は、柱芯間寸法に合わせて設定されるが、通常、5.5〜6.0m程度とすることが好ましい。壁厚は本実施例では0.25mとしたが、設計上の断面設計により、適正な設計厚に設定すればよい。なお、壁面型枠3は、図3,図4で説明するように、その一方の端辺3aはPCa中間壁12の外面に支持させ、他方(柱側)の端辺3bは、フルPCa柱20の場合には、PCa柱20の壁側面に形成された壁端支持部21に支持させることで所定の壁厚を保持させることができる。   The wall length of the PCa intermediate wall 12 is preferably set to about 0.5 to 1.0 m when designed as a seismic wall having an intermediate opening as described above. The wall length of the in-situ earthquake-resistant wall between the column 20 and the PCa intermediate wall 12 at that time is set in accordance with the dimension between the column cores, but is usually preferably about 5.5 to 6.0 m. Although the wall thickness is 0.25 m in this embodiment, it may be set to an appropriate design thickness by a cross-sectional design. As shown in FIGS. 3 and 4, the wall surface mold 3 has one end 3 a supported on the outer surface of the PCa intermediate wall 12, and the other (column side) end 3 b is a full PCa column. In the case of 20, the predetermined wall thickness can be maintained by supporting the wall end support portion 21 formed on the wall side surface of the PCa column 20.

図3は、PCa中間壁12の概略構成を示した斜視図である。このPCa中間壁12は、戸境耐震壁10の所定中間位置に建て込まれる。建て込まれる床面1にはダボ筋14が立設されており、このダボ筋14を、PCa中間壁12の底面に形成された支持穴15に挿入して所定位置に立設することができる。さらに図2に示したように、パイプサポート2によりその鉛直性を確保する。頂部には、天井面に相当する上層スラブ下面(図示せず)にその位置を固定可能なダボ筋14が立設されている。また、現場打ち壁11との接合面には、継手筋13が所定の配筋間隔で、水平配筋されている。さらに各継手筋13の上下方向の間にはシアコッターとして機能する四角形状の凹部16が形成されている。このPCa中間壁12の側端辺12aには、現場打ち壁11の壁面型枠3(2点鎖線表示)の端辺3aが所定の重なり長を確保して当接される。この壁面型枠3の端辺3aは、図示しない支保部材によりPCa中間壁12の端部にに密着され、さらにコンクリート打設時のコンクリート側圧によっても変位しないように堅固に支持されている。   FIG. 3 is a perspective view showing a schematic configuration of the PCa intermediate wall 12. This PCa intermediate wall 12 is built in a predetermined intermediate position of the doorway seismic wall 10. A dowel bar 14 is erected on the floor surface 1 to be built, and the dowel bar 14 can be inserted into a support hole 15 formed in the bottom surface of the PCa intermediate wall 12 and erected at a predetermined position. . Further, as shown in FIG. 2, the verticality is secured by the pipe support 2. At the top, a dowel bar 14 is erected that can fix its position on the lower surface (not shown) of the upper slab corresponding to the ceiling surface. In addition, joint bars 13 are horizontally arranged at a predetermined arrangement interval on the joint surface with the on-site wall 11. Further, a rectangular recess 16 that functions as a sheacotter is formed between the joint bars 13 in the vertical direction. The side edge 12a of the PCa intermediate wall 12 is brought into contact with the side edge 3a of the wall surface formwork 3 (indicated by a two-dot chain line) of the spot striking wall 11 with a predetermined overlap length. The edge 3a of the wall surface mold 3 is in close contact with the end of the PCa intermediate wall 12 by a support member (not shown), and is firmly supported so as not to be displaced by the concrete side pressure during the concrete placement.

図4各図は、フルPCa柱20の概略構成を示した斜視図である。図1,図2に示した構造体としてのフルPCa柱20は、建築物の柱芯位置に建て込まれ、機械式継手等により下層柱主筋5(図5(a)参照)と連結されるようになっている。なお、図4では、柱頂部の柱主筋の図示は省略している。図4(a)は、壁端支持部21を柱全高にわたって形成した実施例を示している。壁端支持部21は、上述した壁面型枠3の柱側の端辺3bを当接させることで、形成する耐震壁の壁厚を確保するスペーサとしての役割を果たす。また、壁端支持部21の表面にはシアコッターとしての四角形状の凹部22が柱壁接合筋としての継手筋23の配筋間隔の間に形成されている。図4(b)は、シアコッターを壁端支持部21の幅に合わせて凸形状のブロック24とした実施例を示している。図4(a),(b)のいずれの場合にもシアコッターを設けることで現場打ち壁11の壁端と柱20の側面との間のコンクリートの一体化を図ることができる。図4(b)に示したブロック24の場合は、ブロック24自体が壁端支持部21とシアコッターの両機能を果たすことができる。ブロックの大きさ、数は壁厚が確保でき、コッターの機能を果たすものであれば適宜設定することができる。   4 is a perspective view showing a schematic configuration of the full PCa pillar 20. The full PCa column 20 as the structure shown in FIGS. 1 and 2 is built at the column core position of the building and is connected to the lower column column main reinforcement 5 (see FIG. 5A) by a mechanical joint or the like. It is like that. In addition, in FIG. 4, illustration of the column main reinforcement of a column top part is abbreviate | omitted. Fig.4 (a) has shown the Example which formed the wall end support part 21 over the column full height. The wall end support portion 21 plays a role as a spacer for ensuring the wall thickness of the earthquake-resistant wall to be formed by contacting the column-side end 3b of the wall surface mold 3 described above. Further, a rectangular concave portion 22 as a sheacotter is formed on the surface of the wall end support portion 21 between the bar arrangement intervals of the joint bars 23 as column wall joint bars. FIG. 4B shows an embodiment in which a sheer cotter is formed into a convex block 24 in accordance with the width of the wall end support portion 21. In both cases of FIGS. 4A and 4B, the concrete can be integrated between the wall edge of the cast-in-place wall 11 and the side surface of the column 20 by providing a sheacotter. In the case of the block 24 shown in FIG. 4B, the block 24 itself can perform both functions of the wall end support portion 21 and the sheacotter. The size and number of blocks can be appropriately set as long as the wall thickness can be secured and the function of the cotter can be achieved.

図5(a)〜図5(c)は、本発明の戸境耐震壁10の構築手順を示した説明図である。本例では、柱にフルPCa柱20を採用し、合わせて上述したPCa中間壁12を所定の手順で構築対象のフロアに建て込む方法をとっている。図5(a)は、図示しない揚重機によりPCa中間壁12を、床面1から突出しているダボ筋14位置に合わせて吊り込んでいる状態と、フルPCa柱20を、床面1から突出している柱主筋の継手筋位置に位置合わせてして吊り込んでいる状態を、説明のために合わせて示している。このときPCa中間壁12はダボ筋において正確な位置合わせ(壁通り芯、水平度、高さ等)がなされたら、図5(b)に示したように、パイプサポート2でその位置を保持するように確実に支保する。一方、フルPCa柱20については、床面1から突出している下層柱主筋5との接合を行う。本実施例では、下層柱主筋5(図5(a))と柱内の主筋(図示せず)とを、柱20内に収容されたスリーブ内で接合させ、スリーブ内をモルタル充填して一体化させる接合方法をとっているが、主筋継手方法は施工性を考慮して各種の既存の接合方法を採用することができる。   Fig.5 (a)-FIG.5 (c) are explanatory drawings which showed the construction procedure of the door-side earthquake-resistant wall 10 of this invention. In this example, the full PCa column 20 is adopted as a column, and the PCa intermediate wall 12 described above is built in a building target floor in a predetermined procedure. FIG. 5A shows a state in which the PCa intermediate wall 12 is suspended in accordance with the position of the dowel bar 14 protruding from the floor surface 1 by a lifting machine (not shown), and the full PCa column 20 is protruded from the floor surface 1. A state in which the column main bar is suspended in alignment with the joint bar position of the column main bar is also shown for explanation. At this time, when the PCa intermediate wall 12 is accurately aligned at the dowel line (wall core, levelness, height, etc.), the position is held by the pipe support 2 as shown in FIG. Make sure to support it. On the other hand, the full PCa column 20 is joined to the lower layer column main reinforcement 5 protruding from the floor surface 1. In this embodiment, the lower column main reinforcement 5 (FIG. 5 (a)) and the main reinforcement (not shown) in the column are joined in a sleeve accommodated in the column 20, and the inside of the sleeve is integrated by mortar filling. The main reinforcing joint method can adopt various existing joining methods in consideration of workability.

並行作業として図5(b)に示したように、現場打ち壁11の配筋作業を行う。このとき壁主筋6は各種機械式継手7あるいは重ね継手により接合する。横筋8はPCa柱20とPCa中間壁12の側面から突出している継手筋23,13に対して所定の定着長を確保して取り付けて配筋する。次いで、PCa中間壁12の側端部とPCa柱20の壁端支持部21との間に壁面型枠3を建て込む。壁面型枠3は上述したような一体型の型枠とすることで、背面側の支保工組み立て作業を大幅に減らすことができる。また、各壁面型枠3の背面には、図5(c)に示したように、複数本のパイプサポート2を配置して壁面型枠3の支保を施す。その際、必要に応じて横つなぎ材9を用いて並んで配置された各パイプサポート2を一体化させることが好ましい。   As shown in FIG. 5 (b) as the parallel work, the bar placement work for the on-site wall 11 is performed. At this time, the wall main reinforcement 6 is joined by various mechanical joints 7 or lap joints. The horizontal bars 8 are attached and arranged with securing a predetermined fixing length to the joint bars 23 and 13 protruding from the side surfaces of the PCa column 20 and the PCa intermediate wall 12. Next, the wall surface mold 3 is built between the side end portion of the PCa intermediate wall 12 and the wall end support portion 21 of the PCa column 20. By making the wall surface mold 3 an integral mold as described above, the support assembly work on the back side can be greatly reduced. Further, as shown in FIG. 5C, a plurality of pipe supports 2 are arranged on the back surface of each wall surface mold 3 to support the wall surface mold 3. In that case, it is preferable to integrate each pipe support 2 arrange | positioned along with the horizontal connecting material 9 as needed.

図6(a)〜図6(c),図7(d)は、他の実施例における戸境耐震壁10の構築手順を示した説明図である。本例では、柱20を在来工法で施工し、引き続きPCa中間壁12を構築対象のフロアに建て込む方法をとっている。図6(a)は、図示しない揚重機によって、先組みされた柱鉄筋ユニット25を、柱20の設置位置の床面1から突出している下層柱主筋5に機械式継手7によって接合した状態を示している。図6(b)は、図示しない揚重機によりPCa中間壁12を、床面1から突出しているダボ筋14位置に合わせて吊り込んだ状態を示している。このPCa中間壁12は、図5(b)に示した場合と同様に、ダボ筋14によって正確な位置合わせ(壁通り芯、水平度、高さ等)がなされたら、パイプサポート2でその位置を保持する。図6(c)は、現場打ち壁11の配筋状態を示している。この配筋において、柱主筋4,6の接合は、スリーブジョイント等の各種機械式継手7あるいは重ね継手を採用することが好ましい。さらに、現場打ち壁11の横筋8を、柱鉄筋ユニット25のフープ筋とPCa中間壁12の側面から突出している継手筋13に載せるようにして配筋することで作業効率を向上させることができる。   6 (a) to 6 (c) and 7 (d) are explanatory views showing a procedure for constructing the doorway seismic wall 10 in another embodiment. In this example, the column 20 is constructed by a conventional construction method, and the PCa intermediate wall 12 is subsequently built on the construction target floor. FIG. 6A shows a state in which the assembled column rebar unit 25 is joined to the lower column main reinforcing bar 5 protruding from the floor surface 1 at the installation position of the column 20 by a mechanical joint 7 by a lifting machine (not shown). Show. FIG. 6B shows a state in which the PCa intermediate wall 12 is suspended in accordance with the position of the dowel bar 14 protruding from the floor surface 1 by a lifting machine (not shown). As in the case shown in FIG. 5 (b), the PCa intermediate wall 12 is positioned by the pipe support 2 when accurate alignment (wall core, horizontality, height, etc.) is made by the dowel bar 14. Hold. FIG. 6 (c) shows the bar arrangement state of the on-site striking wall 11. In this bar arrangement, it is preferable to employ various mechanical joints 7 such as sleeve joints or lap joints for joining the column main bars 4 and 6. Furthermore, the working efficiency can be improved by arranging the horizontal bars 8 of the striking wall 11 so as to be placed on the hoop bars of the column reinforcing bar unit 25 and the joint bars 13 protruding from the side surfaces of the PCa intermediate wall 12. .

次いで、図7(d)に示したように、一体型の柱型枠26を組み立てるのと同時に、PCa中間壁12の側端部と柱型枠26との間に壁面型枠3を建て込む。柱型枠26は通常のパネル型枠を支保工(図示せず)で囲む支保形式のものでよい。一方、壁面型枠3は一体型の型枠他、所定の大型パネル型枠を使用することができるが、いずれの場合にも、柱型枠26との取り合い部において、耐震壁の通り芯、壁厚を確保する。また、各壁面型枠3の背面には、図7(d)に示したように、図5(c)と同様に、複数本のパイプサポート2を配置して壁面型枠3の支保を施す。   Next, as shown in FIG. 7 (d), the wall surface mold 3 is built between the side end portion of the PCa intermediate wall 12 and the column mold 26 at the same time as assembling the integrated column mold 26. . The column mold 26 may be of a support type in which a normal panel mold is surrounded by a support (not shown). On the other hand, the wall surface mold 3 can use a predetermined large panel mold as well as an integral mold, but in any case, the core of the earthquake resistant wall at the joint with the column mold 26, Ensure wall thickness. Further, as shown in FIG. 7 (d), a plurality of pipe supports 2 are arranged on the back surface of each wall mold 3 to support the wall mold 3 as shown in FIG. 5 (c). .

コンクリート作業工程として、図5(c)、図7(d)のそれぞれにおいて、所定配合の現場打ちコンクリートを打設し、所定の養生期間を経過後、壁面型枠3、柱型枠26の脱型を行う。その後、上層スラブ(図示せず)の型枠を組み立て、所定の支保工で支持して上層スラブコンクリート打設を行う。その際、スラブコンクリートは、ハーフPCaスラブ等を採用することで現場作業の短工期化を図ることができる。   As the concrete work process, in each of FIGS. 5 (c) and 7 (d), a cast-in-place concrete with a predetermined composition is placed, and after the predetermined curing period has elapsed, the wall form 3 and the column form 26 are removed. Do the type. After that, an upper slab (not shown) formwork is assembled and supported by a predetermined support, and upper slab concrete is placed. In that case, the slab concrete can shorten the work period of field work by adopting a half PCa slab or the like.

上層スラブ下面(天井)と耐震壁の上辺とが固定構造となるように設計して柱20、床1、天井の3辺固定版とした耐震壁として設計すれば、PCa中間壁12と現場打ち壁11との鉄筋接合は、所定の定着長が不要となる。その場合には、PCa中間壁12の側方鉄筋としては、現場打ちコンクリート耐震壁の横筋の端部を保持できる程度の長さ(たとえば100〜200mm程度)の補助鉄筋(図示せず)をPCa中間壁の側方から突出させておき、その鉄筋に現場打ち壁11の横筋8の端部を保持させればよい。   If the design is such that the lower surface of the upper slab (ceiling) and the upper side of the seismic wall have a fixed structure and the seismic wall is a fixed side of the pillar 20, floor 1, and ceiling, then the PCa intermediate wall 12 and the cast-in A predetermined fixing length is not necessary for reinforcing bar joining with the wall 11. In that case, as the side reinforcing bars of the PCa intermediate wall 12, auxiliary reinforcing bars (not shown) having a length (for example, about 100 to 200 mm) that can hold the end portions of the horizontal reinforcing bars of the cast-in-place concrete earthquake resistant wall are used. What is necessary is just to make it project from the side of an intermediate wall, and hold | maintain the edge part of the horizontal reinforcement 8 of the spotting wall 11 in the reinforcing bar.

以上に述べたように、PCa中間壁を精度良く、耐震壁の構築位置に設置し、これを後に組み立てる壁面型枠の支持部として使用するため、壁面型枠は、従来必要としていた調整板等を用いずに、高精度に組み立てられ、現場打ち壁を構築することができる。なお、以上の実施例では、PCa中間壁を1カ所のみ配置した耐震壁についてその構成、構築方法を説明したが、PCa中間壁は、耐震壁の全長に対して複数箇所配置してその間を現場打ち壁でつなぐ構造としてよいことは言うまでもない。   As described above, the PCa intermediate wall is accurately installed at the construction position of the seismic wall, and this is used as a support for the wall surface mold to be assembled later. It can be assembled with high precision without using a slab, and a construction wall can be constructed. In the above embodiment, the construction and construction method of the earthquake-resistant wall in which only one PCa intermediate wall is arranged have been described. Needless to say, the structure may be connected by a striking wall.

なお、本発明は上述した実施例に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。   In addition, this invention is not limited to the Example mentioned above, A various change within the range shown to each claim is possible. In other words, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.

1 床
3 壁面型枠
4,6 壁主筋
5 柱主筋
8 横筋
10 耐震壁
11 現場打ちコンクリート耐震壁(現場打ち壁)
12 プレキャストコンクリート中間壁(PCa中間壁)
13,23 継手筋
14 ダボ筋(せん断抵抗部材)
20 プレキャストコンクリート柱(PCa柱)
21 壁端支持部
22 凹部
24 ブロック
DESCRIPTION OF SYMBOLS 1 Floor 3 Wall formwork 4,6 Wall main reinforcement 5 Column main reinforcement 8 Horizontal reinforcement 10 Earthquake-resistant wall 11 Site-cast concrete earthquake-resistant wall (site-placed wall)
12 Precast concrete intermediate wall (PCa intermediate wall)
13, 23 Joint bar 14 Dowel bar (shear resistance member)
20 Precast concrete columns (PCa columns)
21 Wall end support 22 Recess 24 Block

Claims (7)

  1. 鉄筋コンクリート柱間に構築される戸境耐震壁であって、その壁延長方向の中間位置に建て込まれたプレキャストコンクリート壁体と、該プレキャストコンクリート壁体と前記鉄筋コンクリート柱間とに構築された現場打ちコンクリート壁とを壁延長方向に一体化して耐震壁としたことを特徴とする戸境耐震壁。   A seismic wall at the boundary between reinforced concrete columns, precast concrete wall built at an intermediate position in the wall extension direction, and cast-in-place built between the precast concrete wall and the reinforced concrete column A seismic wall at the boundary between the concrete wall and the wall extension direction.
  2. 鉄筋コンクリート柱間に構築される戸境耐震壁の壁延長方向の中間位置にプレキャストコンクリート壁体を建て込んで固定支持し、該プレキャストコンクリート壁体と前記鉄筋コンクリート柱間に耐震壁配筋を行い、該耐震壁配筋を挟んで壁面型枠を、前記プレキャストコンクリート壁体と前記鉄筋コンクリート柱との間に組み立て、現場打ちコンクリート壁体を構築し、該現場打ちコンクリート壁体で前記プレキャストコンクリート壁体と前記鉄筋コンクリート柱とを一体接合するようにしたことを特徴とする戸境耐震壁の構築方法。   A precast concrete wall is built in and fixedly supported at the intermediate position in the wall extension direction of the boundary earthquake resistant wall constructed between the reinforced concrete columns, and the seismic wall is arranged between the precast concrete wall and the reinforced concrete columns, A wall formwork is assembled between the precast concrete wall body and the reinforced concrete column with a seismic wall reinforcement sandwiched between them, and a spot cast concrete wall body is constructed, and the spot cast concrete wall body and the precast concrete wall body and A method for constructing a boundary earthquake-resistant wall characterized by integrally joining a reinforced concrete column.
  3. 鉄筋コンクリート柱間に構築される戸境耐震壁の壁延長方向の中間位置にプレキャストコンクリート壁体を建て込んで固定支持し、該プレキャストコンクリート壁体の両側に位置する耐震壁体と、前記鉄筋コンクリート柱との配筋を行い、該鉄筋コンクリート柱と耐震壁体の柱型枠と壁面型枠とを組み立て、前記鉄筋コンクリート柱と耐震壁体のコンクリートを打設して、前記鉄筋コンクリート柱と現場打ちコンクリート壁体とを構築し、該現場打ちコンクリート壁体と鉄筋コンクリート柱と、前記プレキャストコンクリート壁体とを一体接合するようにしたことを特徴とする戸境耐震壁の構築方法。   A precast concrete wall is built and fixedly supported at an intermediate position in the wall extension direction of the boundary earthquake resistant wall constructed between the reinforced concrete columns, the earthquake resistant walls located on both sides of the precast concrete wall, and the reinforced concrete columns The reinforced concrete column, the column form of the seismic wall and the wall form are assembled, and the concrete of the reinforced concrete column and the seismic wall are placed, and the reinforced concrete column and the in-situ concrete wall Is constructed, and the in-situ concrete wall, the reinforced concrete column, and the precast concrete wall are integrally joined together.
  4. 前記プレキャストコンクリート壁体は、床面に立設されたせん断抵抗部材によって位置決め固定されたことを特徴とする請求項1に記載の戸境耐震壁。   The said precast concrete wall body was positioned and fixed by the shear resistance member erected on the floor surface, The door boundary earthquake-resistant wall of Claim 1 characterized by the above-mentioned.
  5. 前記プレキャストコンクリート壁体は、床面に立設されたせん断抵抗部材によって位置決めされ、その立設状態を支保部材で保持し、前記現場打ちコンクリート壁体と接合させたことを特徴とする請求項2または請求項3に記載の戸境耐震壁の構築方法。   3. The precast concrete wall body is positioned by a shear resistance member erected on a floor surface, the erected state is held by a support member, and is joined to the in-situ concrete wall body. Or the construction method of the door-side earthquake-resistant wall of Claim 3.
  6. 前記壁面型枠は、前記プレキャストコンクリート壁体の一部と前記鉄筋コンクリート柱の側面との間に端部が支持されて設置されたことを特徴とする請求項2に記載の戸境耐震壁の構築方法。   The said wall surface formwork was installed with the edge part supported between a part of said precast concrete wall body, and the side surface of the said reinforced concrete pillar, The construction of the earthquake-resistant wall of a door boundary of Claim 2 characterized by the above-mentioned. Method.
  7. 前記鉄筋コンクリート柱の側面に壁端支持部を形成し、該壁端支持部で前記壁面型枠の一端を支持するようにしたことを特徴とする請求項2または請求項6に記載の戸境耐震壁の構築方法。   The wall boundary support part is formed in the side surface of the said reinforced concrete pillar, The one end of the said wall surface formwork was supported by this wall end support part, The door-area earthquake resistance of Claim 2 or Claim 6 characterized by the above-mentioned. How to build a wall.
JP2010087355A 2010-04-05 2010-04-05 Tokai seismic wall and its construction method Active JP5574328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010087355A JP5574328B2 (en) 2010-04-05 2010-04-05 Tokai seismic wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087355A JP5574328B2 (en) 2010-04-05 2010-04-05 Tokai seismic wall and its construction method

Publications (2)

Publication Number Publication Date
JP2011219929A true JP2011219929A (en) 2011-11-04
JP5574328B2 JP5574328B2 (en) 2014-08-20

Family

ID=45037246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087355A Active JP5574328B2 (en) 2010-04-05 2010-04-05 Tokai seismic wall and its construction method

Country Status (1)

Country Link
JP (1) JP5574328B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088940A (en) * 2013-01-29 2013-05-08 湖南大学 Composite shear wall and construction method thereof
CN105672570A (en) * 2016-03-18 2016-06-15 广西大学 Multi-bundle-shaped ultra-high-performance concrete constraint common concrete T-shaped column and T-shaped short-leg shear wall
KR101753461B1 (en) * 2015-01-06 2017-07-04 한양대학교 산학협력단 Wall structure and construction method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140339A (en) * 1988-11-18 1990-05-30 Mitsui Purekon Kk Structure of composite pc member
JP2000136637A (en) * 1998-10-30 2000-05-16 Tokyu Constr Co Ltd Construction method of increased earthquake resistant wall
JP2000291181A (en) * 1999-04-13 2000-10-17 Taisei Corp Construction method for precast earthquake resistant wall

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140339A (en) * 1988-11-18 1990-05-30 Mitsui Purekon Kk Structure of composite pc member
JP2000136637A (en) * 1998-10-30 2000-05-16 Tokyu Constr Co Ltd Construction method of increased earthquake resistant wall
JP2000291181A (en) * 1999-04-13 2000-10-17 Taisei Corp Construction method for precast earthquake resistant wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088940A (en) * 2013-01-29 2013-05-08 湖南大学 Composite shear wall and construction method thereof
KR101753461B1 (en) * 2015-01-06 2017-07-04 한양대학교 산학협력단 Wall structure and construction method thereof
CN105672570A (en) * 2016-03-18 2016-06-15 广西大学 Multi-bundle-shaped ultra-high-performance concrete constraint common concrete T-shaped column and T-shaped short-leg shear wall

Also Published As

Publication number Publication date
JP5574328B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US9518401B2 (en) Open web composite shear connector construction
KR101379305B1 (en) Wall structure manufacturing method using precast front wall panel and precast back wall panel
KR101552176B1 (en) A Column Structure with the Separative Form
JP2008025125A (en) Column unit and construction method for building using it
US7882665B2 (en) Construction configurations and construction methods of steel houses
KR101050956B1 (en) Rebar prefabricated column method
KR101131679B1 (en) Splicing Method of Embedded type Baseplate with Steel Column
KR101030419B1 (en) Joint structure of vertical member and horizontal member
KR20100106259A (en) The remodeling earthquake resistant connection details by using precast concrete member for old reinforced beam-column building structures and the remodeling construction method using the same
WO2011021151A1 (en) Method and system for in-situ construction of civil structures
KR101295740B1 (en) Joint of Steel Column
JP4318397B2 (en) Architectural panels used for construction of building structures
JP2009249851A (en) Seismic strengthening method for existing building
KR101377327B1 (en) Method for reinforcing seismic capability of existing moment frames buildings of reinforced concrete by section enlargement
SK16092000A3 (en) A method for building construction
CN203475598U (en) Shock-proof prefabricated building of steel bar truss shearing wall composite structure
KR101574253B1 (en) A method for construction using a twin wall structure using a PC panel
CN103397696B (en) Shatter-proof, prefabricated steel bar girder shear wall Temperature Variation In Buildings of Mixed Structures thing
KR101107567B1 (en) For top down methode of rc structure, the connecting devices between beam structure and vertical steel material, the supporting structures of exclusive use, and the construction method using these devices
IES20060907A2 (en) Construction of buildings
CN103388357B (en) Shatter-proof, prefabricated steel tube shear Temperature Variation In Buildings of Mixed Structures thing
JP5193090B2 (en) Reinforcement structure of existing building
CN110409811B (en) Non-dismantling forming column template containing reinforcement cage, template structure and building process
EA029731B1 (en) Method of casting in-situ steel wire mesh cement slab with spliced rack and suspended formwork
KR20070097891A (en) Precast concrete panel with mortar and its method of construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5574328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150