JP2011204457A - Cable - Google Patents

Cable Download PDF

Info

Publication number
JP2011204457A
JP2011204457A JP2010070402A JP2010070402A JP2011204457A JP 2011204457 A JP2011204457 A JP 2011204457A JP 2010070402 A JP2010070402 A JP 2010070402A JP 2010070402 A JP2010070402 A JP 2010070402A JP 2011204457 A JP2011204457 A JP 2011204457A
Authority
JP
Japan
Prior art keywords
cable
channel
length
circuit boards
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070402A
Other languages
Japanese (ja)
Other versions
JP5494099B2 (en
Inventor
Tomoki Sekiguchi
知樹 関口
Mitsuaki Tamura
充章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010070402A priority Critical patent/JP5494099B2/en
Publication of JP2011204457A publication Critical patent/JP2011204457A/en
Application granted granted Critical
Publication of JP5494099B2 publication Critical patent/JP5494099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cable capable of controlling the difference in the transmission time of each channel.SOLUTION: The cable 11, which transmits multi-channelled signals is provided with a plurality of optical fibers 21 installed for each channel, circuit boards 13A, 13B installed at both ends of the optical fibers 21; a plurality of terminal parts 31 which are installed for every channel and are arranged in the circuit boards 13A, 13B; and conduction patterns 41 which are installed in the circuit boards 13A, 13B and conduct between each optical fiber 21 and each terminal part 31. The conduction pattern 41 in respective circuit boards 13A, 13B has a different length for each channel, and the total length of line of the conduction pattern 41 connected at both ends of the respective optical fibers 21 has identical length for each channel.

Description

本発明は、多チャンネル化された信号を並列伝送するケーブルに関する。   The present invention relates to a cable for transmitting multi-channel signals in parallel.

コンピュータ、情報処理、ディスプレイ、プリンタなどの電子機器内でのボード間、ボードと内蔵装置間あるいは各電子機器間などを接続するケーブルとして、外部との間で脱着可能な電気コネクタ部と、光信号を伝送可能な光伝送手段と、光電変換するための光素子を備えたものが知られている(例えば、特許文献1参照)。   An electrical connector that can be attached to and removed from the outside as a cable that connects boards between electronic devices such as computers, information processing, displays, printers, between boards and built-in devices, or between each electronic device, and optical signals There is known an optical transmission means capable of transmitting the light and an optical element for photoelectric conversion (for example, see Patent Document 1).

光素子は、電気コネクタ部の導電部で接続された電気信号により変調される発光素子及び光伝送手段で伝送された光信号を電気コネクタ部の導電部に接続するための電気信号に変換する受光素子の少なくとも一方から成って集積化されており、光伝送手段と光結合するように光素子はアライメントされて固定されている。   The optical element is a light emitting element that is modulated by an electrical signal connected at the conductive portion of the electrical connector section, and a light receiving device that converts the optical signal transmitted by the optical transmission means into an electrical signal for connection to the conductive section of the electrical connector section. At least one of the elements is integrated and the optical element is aligned and fixed so as to be optically coupled to the optical transmission means.

特開2001−42170号公報JP 2001-42170 A

上記のようなケーブルにおいては、大容量伝送を実現するために、信号を多チャンネル化して並列に伝送させるように構成することが行われている。このようなケーブルでは、その両端に設けられた回路基板には、レセプタクル等に接続される電気インターフェース側に各チャンネルに対応した複数の端子部を有し、光ファイバの接続側に小型の光電気変換部を有しており、各端子部と光電気変換部とが回路パターンにて導通されている。   In the cable as described above, in order to realize large-capacity transmission, a configuration is adopted in which signals are multi-channeled and transmitted in parallel. In such a cable, the circuit boards provided at both ends of the cable have a plurality of terminal portions corresponding to each channel on the electrical interface side connected to the receptacle or the like, and a small photoelectric device on the connection side of the optical fiber. A conversion unit is included, and each terminal unit and the photoelectric conversion unit are electrically connected by a circuit pattern.

小型で幅寸法が小さい光電気変換部に対して、端子部が配列された電気インターフェース側は、その幅寸法が大きくなる。このため、端子部毎に、光電気変換部との距離に差が生じ、これらの端子部と光電気変換部とを導通させる複数の回路パターンの長さに差が生じてしまい、各チャンネルに伝送時間差(スキュー)が発生してしまう。   The width dimension of the electrical interface side on which the terminal portions are arranged is larger than that of the photoelectric conversion unit that is small and has a small width dimension. For this reason, there is a difference in the distance from the photoelectric conversion unit for each terminal unit, and there is a difference in the length of a plurality of circuit patterns that conduct the terminal unit and the photoelectric conversion unit. A transmission time difference (skew) occurs.

本発明の目的は、各チャンネルの伝送時間差を極力抑えることができるケーブルを提供することにある。   The objective of this invention is providing the cable which can suppress the transmission time difference of each channel as much as possible.

上記課題を解決することのできる本発明のケーブルは、多チャンネル化された信号を伝送するケーブルであって、
チャンネル毎に設けられた複数本の信号線と、
前記信号線の両端に設けられた接続部材と、
チャンネル毎に設けられて前記接続部材に一列に配列された複数の端子部と、
前記接続部材に設けられて各前記信号線と各前記端子部とをそれぞれ導通させる導通路とを備え、
それぞれの前記接続部材における前記導通路は、チャンネル毎に異なる長さを有し、
それぞれの前記信号線の両端に接続された前記導通路の合計線長が、チャンネル毎に同一の長さを有することを特徴とする。
The cable of the present invention capable of solving the above problems is a cable for transmitting a multi-channel signal,
A plurality of signal lines provided for each channel;
Connecting members provided at both ends of the signal line;
A plurality of terminal portions provided for each channel and arranged in a row on the connection member;
A conductive path provided in the connecting member and electrically connecting each signal line and each terminal portion;
The conduction path in each of the connection members has a different length for each channel,
The total line length of the conducting paths connected to both ends of each signal line has the same length for each channel.

本発明のケーブルにおいて、前記信号線は光ファイバを含み、前記接続部材には光電気変換器が設けられ、前記光電気変換器には、前記光ファイバと前記導通路とが接続されていることが好ましい。   In the cable of the present invention, the signal line includes an optical fiber, the connection member is provided with a photoelectric converter, and the optical fiber and the conduction path are connected to the photoelectric converter. Is preferred.

本発明のケーブルにおいて、それぞれの前記接続部材は、前記導通路の配列がケーブル中心を基準に互いに点対称に配置され、
前記導通路は、それぞれの前記接続部材において、前記端子部の配列の一端側から他端側へ向かって次第に長く形成されていることが好ましい。
In the cable of the present invention, each of the connection members is arranged in point symmetry with respect to the center of the cable in the arrangement of the conduction paths.
It is preferable that each of the connection members is formed so as to be gradually longer from one end side to the other end side of the terminal portion array in each connection member.

本発明のケーブルにおいて、前記導通路は直線形状に形成されていることが好ましい。   In the cable of the present invention, it is preferable that the conduction path is formed in a linear shape.

本発明のケーブルによれば、それぞれの接続部材における導通路がチャンネル毎に異なる長さを有するが、それぞれの信号線の両端に接続された導通路の合計線長が、チャンネル毎に同一の長さとされている。つまり、端子部間で信号が伝送される各チャンネルの伝送経路においては、その経路長が同一長となるように調整されているので、信号を多チャンネル化して並列伝送させた際の伝送時間差を極力抑えることができる。
また、接続部材にスキュー調整部を設ける必要がないので、接続部材の外形を小さくすることができ、ケーブルの端末部分の小型化を図ることができる。
According to the cable of the present invention, the conductive path in each connection member has a different length for each channel, but the total line length of the conductive paths connected to both ends of each signal line is the same length for each channel. It is said. In other words, the transmission path of each channel through which signals are transmitted between the terminal sections is adjusted so that the path length is the same, so the transmission time difference when signals are multi-channeled and transmitted in parallel is reduced. It can be suppressed as much as possible.
Moreover, since it is not necessary to provide a skew adjustment part in a connection member, the external shape of a connection member can be made small and size reduction of the terminal part of a cable can be achieved.

本発明の実施形態に係るケーブルの構造を示す概略構成図である。It is a schematic block diagram which shows the structure of the cable which concerns on embodiment of this invention. 本発明の実施形態に係るケーブルの伝送経路を示す概略配線図である。It is a schematic wiring diagram which shows the transmission path | route of the cable which concerns on embodiment of this invention. 多チャンネル化した信号の伝送に用いられるアクティブ光ケーブルの参考例を示す概略構成図である。It is a schematic block diagram which shows the reference example of the active optical cable used for transmission of the signal made multi-channel.

以下、本発明に係るケーブルの実施の形態の例を、図面を参照して説明する。
図1及び図2に示すように、ケーブル11は、多心光ケーブル部12と、この多芯光ケーブル部12の両端に設けられた回路基板(接続部材)13A,13Bとを有したもので、多チャンネル化した信号を伝送するアクティブ光ケーブルの形態を有する。
Hereinafter, an example of an embodiment of a cable according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the cable 11 includes a multi-core optical cable portion 12 and circuit boards (connection members) 13A and 13B provided at both ends of the multi-core optical cable portion 12. It has the form of an active optical cable that transmits a channelized signal.

多心光ケーブル部12は、チャンネル毎に設けられた複数本の光ファイバ21を束ねたものであり、これらの光ファイバ21が信号線として機能する。光ファイバ21は、コアとクラッドからなるガラスファイバを樹脂で被覆したものである。なお、多心光ケーブル部12に信号線や電力線として利用される金属の導電線が含まれていても良い。   The multi-core optical cable unit 12 is a bundle of a plurality of optical fibers 21 provided for each channel, and these optical fibers 21 function as signal lines. The optical fiber 21 is obtained by coating a glass fiber composed of a core and a clad with a resin. The multi-core optical cable portion 12 may include a metal conductive line used as a signal line or a power line.

回路基板13A,13Bは、例えば、フレキシブルプリント基板(FPC)などからなるものであり、基材の表面に回路パターンが形成されている。それぞれの回路基板13A,13Bは、チャンネル毎に設けられた複数の端子部31を有しており、これらの端子部31が、回路基板13A,13Bの一辺側に配列されている。これらの端子部31が設けられた一辺側が、レセプタクル(図示省略)等に接続される電気インターフェース部32A,32Bとして構成されている。   The circuit boards 13A and 13B are made of, for example, a flexible printed circuit board (FPC), and a circuit pattern is formed on the surface of the base material. Each circuit board 13A, 13B has a plurality of terminal portions 31 provided for each channel, and these terminal portions 31 are arranged on one side of the circuit boards 13A, 13B. One side where these terminal portions 31 are provided is configured as electrical interface portions 32A and 32B connected to a receptacle (not shown) or the like.

また、回路基板13A,13Bには、他辺側に、光電気変換器34A,34Bが実装されており、これらの光電気変換器34A,34Bに、多心光ケーブル部12の光ファイバ21が接続されている。光電気変換器34A,34Bは、それぞれの回路基板13A,13Bにおいて、回路基板13A,13Bの一側部側(回路基板13Aでは下側、回路基板13Bでは上側)に配置されている。   The circuit boards 13A and 13B are mounted with photoelectric converters 34A and 34B on the other side, and the optical fibers 21 of the multi-core optical cable section 12 are connected to the photoelectric converters 34A and 34B. Has been. The photoelectric converters 34A and 34B are arranged on one side of the circuit boards 13A and 13B (the lower side in the circuit board 13A and the upper side in the circuit board 13B) in each of the circuit boards 13A and 13B.

光電気変換器34A,34Bは、その光電変換素子が、例えば、複数の電極が一体成型された構造のフェルールにバンプによって導通接続された構造を有している。そして、この光電気変換器34A,34Bのフェルールに光ファイバ21を接続することにより、光ファイバ21と光電気変換器34A,34Bの光電変換素子との間で光信号の送受信が可能となる。送信側の光電気変換器34Aでは、光電変換素子として電気信号を光信号に変換するためのVCSEL(Vertical Cavity Surface Emitting Laser)が用いられる。受信側の光電気変換器34Bでは、光電変換素子として光信号を電気信号に変換するためのPD(Photodiode)が用いられる。また、送信側の光電気変換器34AはVCSELを駆動させるドライバICを備え、受信側の光電気変換器34BはPDからの信号を増幅させるトランスインピーダンスアンプ(TIA)を備えている。   The photoelectric converters 34A and 34B have a structure in which the photoelectric conversion elements are conductively connected by bumps to a ferrule having a structure in which a plurality of electrodes are integrally formed, for example. By connecting the optical fiber 21 to the ferrules of the photoelectric converters 34A and 34B, optical signals can be transmitted and received between the optical fiber 21 and the photoelectric conversion elements of the photoelectric converters 34A and 34B. In the photoelectric converter 34A on the transmission side, a VCSEL (Vertical Cavity Surface Emitting Laser) for converting an electrical signal into an optical signal is used as a photoelectric conversion element. In the photoelectric converter 34B on the receiving side, a PD (Photodiode) for converting an optical signal into an electrical signal is used as a photoelectric conversion element. The transmitting-side photoelectric converter 34A includes a driver IC that drives the VCSEL, and the receiving-side photoelectric converter 34B includes a transimpedance amplifier (TIA) that amplifies a signal from the PD.

回路基板13A,13Bには、チャンネル毎に導通パターン(導通路)41が設けられている。これらの導通パターン41は、回路基板13A,13Bに形成された回路パターンからなるものであり、それぞれ直線形状に形成されている。そして、これらの導通パターン41によって、電気インターフェース部32A,32Bの端子部31と光ファイバ21が接続された光電気変換器34A,34Bとが導通接続されている。   The circuit boards 13A and 13B are provided with a conduction pattern (conduction path) 41 for each channel. These conductive patterns 41 are formed of circuit patterns formed on the circuit boards 13A and 13B, and are each formed in a linear shape. And by these conduction patterns 41, the terminal portions 31 of the electrical interface portions 32A and 32B and the photoelectric converters 34A and 34B to which the optical fiber 21 is connected are conductively connected.

それぞれの回路基板13A,13Bにおいて、各導通パターン41は、光電気変換器34A,34Bが配置された図中上下方向の一側部側から他側部側へ向かって次第に長さが長くなるように形成されている。
すなわち、回路基板13Aにおいて、各導通パターン41は、端子部31の配列の一端側(下側)から他端側(上側)へ向かって次第に長さが長くなるように形成され、回路基板13Bにおいて、各導通パターン41は、端子部31の配列の一端側(上側)から他端側(下側)へ向かって次第に長さが長くなるように形成されている。これにより、各導通パターン41は、それぞれの回路基板13A,13Bにおいてチャンネル毎に異なる長さ、つまり非等長とされている。
In each circuit board 13A, 13B, each conductive pattern 41 gradually increases in length from one side to the other side in the vertical direction in the figure where the photoelectric converters 34A, 34B are arranged. Is formed.
That is, in the circuit board 13A, each conductive pattern 41 is formed so that the length gradually increases from one end side (lower side) to the other end side (upper side) of the arrangement of the terminal portions 31. Each conductive pattern 41 is formed such that its length gradually increases from one end side (upper side) to the other end side (lower side) of the arrangement of the terminal portions 31. As a result, each conductive pattern 41 has a different length for each channel in each of the circuit boards 13A and 13B, that is, an unequal length.

また、各回路基板13A,13Bにおいて、光電気変換器34の配置及び互いに長さが異なる導通パターン41の配列は逆向きとされている。つまり、それぞれの回路基板13は、導通パターン41が、ケーブル中心Oを基準に互いに点対称の位置に配列されている。これにより、上記のケーブル11では、各光ファイバ21の両端に光電気変換器34を介して接続された導通パターン41の合計線長が、チャンネル毎に同一の長さを有するように構成されている。   Further, in each of the circuit boards 13A and 13B, the arrangement of the photoelectric converters 34 and the arrangement of the conductive patterns 41 having different lengths are reversed. That is, in each circuit board 13, the conductive pattern 41 is arranged at a point-symmetrical position with respect to the cable center O. Accordingly, in the cable 11 described above, the total line length of the conductive pattern 41 connected to both ends of each optical fiber 21 via the photoelectric converter 34 is configured to have the same length for each channel. Yes.

具体的には、一方の回路基板13Aにおける導通パターン41の長さを、短い方から順にL1a,L1b,L1c,L1d,…,L1nとし、他方の回路基板13Bにおける導通パターン41の長さを、長い方からL2a,L2b,L2c,L2d,…,L2nとした場合、チャンネル毎の光ファイバ21を介して接続される導通パターン41の合計長さは次式のような関係を有する。
L1a+L2a=L1b+L2b=L1c+L2c=L1d+L2d=…=L1n+L2n
Specifically, the length of the conductive pattern 41 on one circuit board 13A is L1a, L1b, L1c, L1d,..., L1n in order from the shortest, and the length of the conductive pattern 41 on the other circuit board 13B is In the case of L2a, L2b, L2c, L2d,..., L2n from the longest side, the total length of the conductive pattern 41 connected through the optical fiber 21 for each channel has a relationship as shown in the following equation.
L1a + L2a = L1b + L2b = L1c + L2c = L1d + L2d = ... = L1n + L2n

上記構成のケーブル11では、一方の回路基板13Aの各端子部31から入力された電気信号が、回路基板13Aの各導通パターン41を通って光電気変換器34Aへ送信され、この光電気変換器34Aによって電気信号が光信号に変換され、その光信号が光ファイバ21へ入力される。光ファイバ21に入力された光信号は、他方の回路基板13Bの光電気変換器34Bによって電気信号に変換され、この電気信号が回路基板13Bの各導通パターン41を通って各端子部31から出力される。これにより、このケーブル11によれば、信号を多チャンネル化して光ファイバ21によって並列に伝送し、大容量の伝送が可能である。   In the cable 11 having the above-described configuration, an electric signal input from each terminal portion 31 of one circuit board 13A is transmitted to the photoelectric converter 34A through each conduction pattern 41 of the circuit board 13A. The electrical signal is converted into an optical signal by 34 A, and the optical signal is input to the optical fiber 21. The optical signal input to the optical fiber 21 is converted into an electrical signal by the photoelectric converter 34B of the other circuit board 13B, and this electrical signal is output from each terminal portion 31 through each conduction pattern 41 of the circuit board 13B. Is done. As a result, according to the cable 11, signals can be multi-channeled and transmitted in parallel by the optical fiber 21, and large capacity transmission is possible.

このように信号を多チャンネル化して並列伝送させる場合、各チャンネルで伝送時間差(スキュー)を極力抑えることが必要である。この伝送時間差の抑制は、特に、高速伝送レートになるほど厳密となる。例えば、InfiniBand仕様では、QDR(Quad Data Rate)信号(伝送速度10Gbps)の場合、伝送時間差を125ps以下に抑えることが要求されている。   In this way, when signals are multi-channeled and transmitted in parallel, it is necessary to suppress the transmission time difference (skew) as much as possible in each channel. The suppression of the transmission time difference becomes particularly strict as the transmission rate becomes higher. For example, in the InfiniBand specification, in the case of a QDR (Quad Data Rate) signal (transmission rate 10 Gbps), it is required to suppress the transmission time difference to 125 ps or less.

多チャンネルで信号伝送するアクティブ光ケーブルでは、小型で幅寸法が小さい光電気変換部に対して、端子部が配列された電気インターフェース部側は、その幅寸法が大きくなる。このため、各端子部と光電気変換部の距離がチャンネル毎に異なってしまい、これらの端子部と光電気変換部とを直線状の導通パターンによって接続すると、一方の端子部から他方の端子部までの配線経路長がチャンネル毎に非等長となり、伝送時間差を抑えることができない。   In an active optical cable that transmits signals using multiple channels, the width of the electrical interface section on which the terminal sections are arranged is larger than that of a small-sized photoelectric conversion section having a small width dimension. For this reason, the distance between each terminal unit and the photoelectric conversion unit differs for each channel, and when these terminal units and the photoelectric conversion unit are connected by a linear conductive pattern, one terminal unit to the other terminal unit The length of the wiring path up to this becomes unequal for each channel, and the transmission time difference cannot be suppressed.

ここで、図3に示すケーブル50のように、各配線基板53A,53Bによって導通パターン51を等長とするために、光電気変換部34A,34Bに対して比較的距離が近い端子部31につなぐ導通パターン51に、線路を屈曲させたスキュー調整部Sを設けることで、他の導通パターン51と長さが等しくなるように調整することが考えられる。   Here, as in the case of the cable 50 shown in FIG. 3, in order to make the conductive pattern 51 have the same length by the respective wiring boards 53A and 53B, the terminal portion 31 is relatively close to the photoelectric conversion portions 34A and 34B. It is conceivable to adjust the length of the conductive pattern 51 to be equal to that of the other conductive pattern 51 by providing a skew adjusting portion S in which the line is bent in the conductive pattern 51 to be connected.

しかし、この場合、導通パターン51にスキュー調整部Sを設けることにより伝送損失が増大し、他の導通パターン51に対してインピーダンスが変化してしまい、電気反射による信号品質の悪化を招いてしまう。
また、導通パターン51にスキュー調整部Sを設けると、このスキュー調整部Sの配置スペースを要するため、回路基板53A,53Bの大型化を招いてしまう。
However, in this case, the transmission loss is increased by providing the skew adjusting portion S in the conductive pattern 51, the impedance is changed with respect to the other conductive patterns 51, and the signal quality is deteriorated due to the electric reflection.
Further, when the skew adjusting portion S is provided in the conductive pattern 51, an arrangement space for the skew adjusting portion S is required, which leads to an increase in the size of the circuit boards 53A and 53B.

本実施形態のケーブル11によれば、それぞれの回路基板13A,13Bにおける導通パターン41がチャンネル毎に異なる長さに形成されているが、それぞれの光ファイバ21の両端に接続された導通パターン41の合計線長が、チャンネル毎に同一の長さとなる。つまり、ケーブル11の電気インターフェース部32A,32B間で信号が伝送される端子部31間の伝送経路においては、その経路長が同一長さとなるように調整されているので、信号を多チャンネル化して並列伝送させた際の伝送時間差を極力抑えることができる。   According to the cable 11 of the present embodiment, the conductive patterns 41 in the respective circuit boards 13A and 13B are formed in different lengths for each channel, but the conductive patterns 41 connected to both ends of the respective optical fibers 21 The total line length is the same for each channel. That is, the transmission path between the terminal sections 31 through which signals are transmitted between the electrical interface sections 32A and 32B of the cable 11 is adjusted so that the path length is the same length. The transmission time difference when parallel transmission is performed can be suppressed as much as possible.

また、回路基板13A,13Bにスキュー調整部Sを設ける必要がないので、回路基板13A,13Bの外形を小さくすることができ、ケーブル11の端末部分の小型化を図ることができる。例えば、図3のケーブル50と比較して回路基板13A,13Bの配線方向の寸法を10mm程度小さくすることができる。
また、回路基板13A,13Bの導通パターン41が、ケーブル中心Oを基準に互いに点対称に配置され、それぞれの回路基板13A,13Bにおいて、導通パターン41の配列の一端側から他端側へ向かって導通パターン41の長さを次第に長くした構造であるので、各回路基板13A,13Bにおける回路パターンの設計の容易化及びスキュー調整の容易化を図ることができる。
Further, since it is not necessary to provide the skew adjusting portion S on the circuit boards 13A and 13B, the outer shape of the circuit boards 13A and 13B can be reduced, and the terminal portion of the cable 11 can be reduced in size. For example, the dimension in the wiring direction of the circuit boards 13A and 13B can be reduced by about 10 mm as compared with the cable 50 of FIG.
Further, the conductive patterns 41 of the circuit boards 13A and 13B are arranged symmetrically with respect to each other with respect to the cable center O. In each of the circuit boards 13A and 13B, from one end side to the other end side of the arrangement of the conductive patterns 41. Since the length of the conductive pattern 41 is gradually increased, it is possible to facilitate the design of circuit patterns and the ease of skew adjustment on the circuit boards 13A and 13B.

また、導通パターン41にスキュー調整部としての屈曲部を形成することなく、導通パターン41を直線形状としたまま、経路長を調整しているので、導通パターン41を屈曲させることによる信号品質の悪化を生じさせることなく伝送時間差を抑えることができる。   In addition, since the path length is adjusted while the conductive pattern 41 is kept in a linear shape without forming a bent portion as a skew adjusting portion in the conductive pattern 41, signal quality is deteriorated by bending the conductive pattern 41. It is possible to suppress the transmission time difference without causing the.

なお、上記実施形態では、回路基板13A,13B同士を、複数本の光ファイバ21によって接続したアクティブ光ケーブルを例示して説明したが、回路基板13A,13B同士を複数本の電線によって接続して入力側から出力側へ電気信号を多チャンネルにて伝送するケーブルであっても良く、この場合も、各チャンネルにおける配線経路長を同一にして伝送時間差を抑えることができる。
また、回路基板13としては、フレキシブルプリント基板に限らず、硬質の印刷基板等でも良い。
In the above-described embodiment, the active optical cable in which the circuit boards 13A and 13B are connected to each other by the plurality of optical fibers 21 is described as an example. However, the circuit boards 13A and 13B are connected to each other by a plurality of electric wires. A cable for transmitting electrical signals from the side to the output side in multiple channels may be used. In this case as well, the wiring path length in each channel can be made the same to suppress the transmission time difference.
Further, the circuit board 13 is not limited to a flexible printed board but may be a hard printed board or the like.

11:ケーブル、21:光ファイバ(信号線)、13:回路基板、31:端子部、41:導通路(導通パターン)、34:光電気変換器、O:ケーブル中心 11: Cable, 21: Optical fiber (signal line), 13: Circuit board, 31: Terminal part, 41: Conducting path (conducting pattern), 34: Photoelectric converter, O: Cable center

Claims (4)

多チャンネル化された信号を伝送するケーブルであって、
チャンネル毎に設けられた複数本の信号線と、
前記信号線の両端に設けられた接続部材と、
チャンネル毎に設けられて前記接続部材に一列に配列された複数の端子部と、
前記接続部材に設けられて各前記信号線と各前記端子部とをそれぞれ導通させる導通路とを備え、
それぞれの前記接続部材における前記導通路は、チャンネル毎に異なる長さを有し、
それぞれの前記信号線の両端に接続された前記導通路の合計線長が、チャンネル毎に同一の長さを有することを特徴とするケーブル。
A cable for transmitting multi-channel signals,
A plurality of signal lines provided for each channel;
Connecting members provided at both ends of the signal line;
A plurality of terminal portions provided for each channel and arranged in a row on the connection member;
A conductive path provided in the connecting member and electrically connecting each signal line and each terminal portion;
The conduction path in each of the connection members has a different length for each channel,
A cable characterized in that a total line length of the conduction paths connected to both ends of each signal line has the same length for each channel.
請求項1に記載のケーブルであって、
前記信号線は光ファイバを含み、前記接続部材には光電気変換器が設けられ、前記光電気変換器には、前記光ファイバと前記導通路とが接続されていることを特徴とするケーブル。
The cable according to claim 1,
The signal line includes an optical fiber, the connection member is provided with a photoelectric converter, and the optical fiber and the conducting path are connected to the photoelectric converter.
請求項1または2に記載のケーブルであって、
それぞれの前記接続部材は、前記導通路の配列がケーブル中心を基準に互いに点対称に配置され、
前記導通路は、それぞれの前記接続部材において、前記端子部の配列の一端側から他端側へ向かって次第に長く形成されていることを特徴とするケーブル。
The cable according to claim 1 or 2,
Each of the connection members is arranged such that the arrangement of the conduction paths is point-symmetric with respect to the center of the cable,
The cable is characterized in that the conduction path is formed so as to be gradually longer from one end side to the other end side of the arrangement of the terminal portions in each of the connection members.
請求項1から3の何れか一項に記載のケーブルであって、
前記導通路は直線形状に形成されていることを特徴とするケーブル。
The cable according to any one of claims 1 to 3,
The cable is characterized in that the conduction path is formed in a straight line shape.
JP2010070402A 2010-03-25 2010-03-25 cable Active JP5494099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070402A JP5494099B2 (en) 2010-03-25 2010-03-25 cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070402A JP5494099B2 (en) 2010-03-25 2010-03-25 cable

Publications (2)

Publication Number Publication Date
JP2011204457A true JP2011204457A (en) 2011-10-13
JP5494099B2 JP5494099B2 (en) 2014-05-14

Family

ID=44880914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070402A Active JP5494099B2 (en) 2010-03-25 2010-03-25 cable

Country Status (1)

Country Link
JP (1) JP5494099B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130272664A1 (en) * 2012-04-13 2013-10-17 Sumitomo Electric Industries, Ltd. Optical connector module
JP2013221967A (en) * 2012-04-13 2013-10-28 Sumitomo Electric Ind Ltd Optical connector module
JP2013221968A (en) * 2012-04-13 2013-10-28 Sumitomo Electric Ind Ltd Optical connector module
CN105188259A (en) * 2015-10-23 2015-12-23 重庆京东方光电科技有限公司 Printed circuit board, display panel and wiring method for printed circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118444A (en) * 1997-06-13 1999-01-12 Oki Electric Ind Co Ltd High-frequency electric wiring board
JP2002057419A (en) * 2000-08-14 2002-02-22 Fujitsu Ltd Information processor
JP2002261420A (en) * 2001-02-27 2002-09-13 Hewlett Packard Co <Hp> Interconnecting device
JP2005294479A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Electronics Devices Inc Circuit board
JP2010074095A (en) * 2008-09-22 2010-04-02 Toshiba Corp Electric circuit device
WO2010116469A1 (en) * 2009-03-30 2010-10-14 富士通株式会社 Differential path replacement component, printed board, and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118444A (en) * 1997-06-13 1999-01-12 Oki Electric Ind Co Ltd High-frequency electric wiring board
JP2002057419A (en) * 2000-08-14 2002-02-22 Fujitsu Ltd Information processor
JP2002261420A (en) * 2001-02-27 2002-09-13 Hewlett Packard Co <Hp> Interconnecting device
JP2005294479A (en) * 2004-03-31 2005-10-20 Sumitomo Metal Electronics Devices Inc Circuit board
JP2010074095A (en) * 2008-09-22 2010-04-02 Toshiba Corp Electric circuit device
WO2010116469A1 (en) * 2009-03-30 2010-10-14 富士通株式会社 Differential path replacement component, printed board, and electronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130272664A1 (en) * 2012-04-13 2013-10-17 Sumitomo Electric Industries, Ltd. Optical connector module
JP2013221967A (en) * 2012-04-13 2013-10-28 Sumitomo Electric Ind Ltd Optical connector module
JP2013221968A (en) * 2012-04-13 2013-10-28 Sumitomo Electric Ind Ltd Optical connector module
CN103376518A (en) * 2012-04-13 2013-10-30 住友电气工业株式会社 Optical connector module
CN103376518B (en) * 2012-04-13 2015-05-13 住友电气工业株式会社 Optical connector module
US9033592B2 (en) 2012-04-13 2015-05-19 Sumitomo Electric Industries, Ltd. Optical connector module
CN105188259A (en) * 2015-10-23 2015-12-23 重庆京东方光电科技有限公司 Printed circuit board, display panel and wiring method for printed circuit board
WO2017067308A1 (en) * 2015-10-23 2017-04-27 京东方科技集团股份有限公司 Printed circuit board, display panel, and wiring method for printed circuit board
US9888590B2 (en) 2015-10-23 2018-02-06 Boe Technology Group Co., Ltd. Printed circuit board, display panel and wiring method for printed circuit board

Also Published As

Publication number Publication date
JP5494099B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5790769B2 (en) Optical module
JP4238187B2 (en) Photoelectric composite connector and board using the same
JP6191348B2 (en) Optical receiver module
JP2011248243A (en) Photoelectric conversion module and photoelectric conversion device
JP2006091241A (en) Optoelectronic composite wiring component and electronic equipment using the same
US9033592B2 (en) Optical connector module
JP2010237640A (en) Optical module and cable with the module
JP5494099B2 (en) cable
JP2009092690A (en) Optical module
JP5460554B2 (en) Photoelectric composite connector and cable with connector
JP2009069501A (en) Optoelectronic circuit board and optical transmission device
JP5330846B2 (en) Parallel transmission module
JP4837633B2 (en) Optical module
JP2013072939A (en) Optical module and cable with optical module
JP2021118210A (en) Optical communication module
JP5234059B2 (en) Optical transceiver module
JP2016522438A (en) Device for coupling and / or decoupling optical signals
JP2013073100A (en) Cable with connector and method of manufacturing cable with connector
JP2013080059A (en) Cable with connector, and method for manufacturing cable with connector
JP5234058B2 (en) Optical transceiver module
JP7078488B2 (en) Optical subassemblies and optical modules
JP2016225242A (en) Photoelectric converter and connecting device
JP5416269B2 (en) Parallel optical transmission equipment
US9762328B2 (en) Optical communication module
JP2011112905A (en) Cable with relay connector

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250