JP2011181839A - Wire bonding method - Google Patents

Wire bonding method Download PDF

Info

Publication number
JP2011181839A
JP2011181839A JP2010046935A JP2010046935A JP2011181839A JP 2011181839 A JP2011181839 A JP 2011181839A JP 2010046935 A JP2010046935 A JP 2010046935A JP 2010046935 A JP2010046935 A JP 2010046935A JP 2011181839 A JP2011181839 A JP 2011181839A
Authority
JP
Japan
Prior art keywords
wire
electrode
unevenness
ball
bonding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010046935A
Other languages
Japanese (ja)
Other versions
JP5381816B2 (en
Inventor
Junji Fujino
純司 藤野
Hiroaki Ichinohe
洋暁 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010046935A priority Critical patent/JP5381816B2/en
Publication of JP2011181839A publication Critical patent/JP2011181839A/en
Application granted granted Critical
Publication of JP5381816B2 publication Critical patent/JP5381816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05557Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Wire Bonding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve bondability of wire bonding used for a mounting substrate for a semiconductor package and electronic components. <P>SOLUTION: Striped first unevenness 16 is formed by irradiating a top surface of a ball 14 formed atop of a wire 12 with femtosecond laser. Then the ball 14 is brought into contact with a first electrode 20 and then crushed while ultrasonic vibration is applied, thereby bonding the wire 12 to the first electrode 20. Here, a direction wherein the first unevenness 16 extends is orthogonal to an amplitude direction of ultrasonic vibration. Consequently, crystal of a bonding interface is made fine, so that plastic deformation is easily caused even with a low load and the metal diffusion bonding is facilitated to improve bondability. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体パッケージや電子部品の基板実装で用いられるワイヤボンディング方法に関し、特に接合性を向上することができるワイヤボンディング方法に関する。   The present invention relates to a wire bonding method used for mounting a semiconductor package or an electronic component on a substrate, and more particularly to a wire bonding method capable of improving bondability.

従来のワイヤボンディングでは、まず、キャピラリから導出されたワイヤの先端をアーク放電や火炎によって溶融させてボールを形成する。次に、ボールを第1の電極に接触させてキャピラリにより超音波振動を印加しながら押し潰して、ワイヤを第1の電極にボンディングする。次に、キャピラリにより加重及び超音波振動を印加することにより、ワイヤを第2の電極にボンディングする。この際に、第1の電極と第2の電極との間においてワイヤが屈曲部を有するループ状になる。   In conventional wire bonding, first, the tip of the wire led out from the capillary is melted by arc discharge or flame to form a ball. Next, the ball is brought into contact with the first electrode and squeezed while applying ultrasonic vibration with a capillary to bond the wire to the first electrode. Next, the wire is bonded to the second electrode by applying a load and ultrasonic vibration with a capillary. At this time, the wire has a loop shape having a bent portion between the first electrode and the second electrode.

なお、機械部品等の密着面の密着性を向上させるために、フェムト秒レーザを用いて密着面に微細周期構造を形成する方法が開示されている(例えば、特許文献1参照)。しかし、ワイヤと電極との接合性を向上させることについては何ら開示されていない。   In addition, a method of forming a fine periodic structure on a close contact surface using a femtosecond laser is disclosed in order to improve the close contact property of a mechanical part or the like (see, for example, Patent Document 1). However, nothing is disclosed about improving the bondability between the wire and the electrode.

特許4092256号公報Japanese Patent No. 40922256

ワイヤボンドのボールは、溶融した後に大気中への自然放熱によって融点以下まで冷却されて凝固する。これは緩やかな凝固のため、結晶の寸法は数十μmにおよぶ場合が多い。結晶寸法が大きいと、荷重によるズレが生じやすい結晶粒界が少ないため、塑性変形しにくい。さらに、金属拡散速度の大きい粒界が少ないため、金属接合しにくい。   After being melted, the wire bond ball is cooled to below the melting point by natural heat dissipation to the atmosphere and solidifies. This is a slow solidification, and the crystal size often reaches several tens of μm. When the crystal size is large, there are few crystal grain boundaries that are likely to be displaced due to load, and therefore, plastic deformation is difficult. Furthermore, since there are few grain boundaries with a high metal diffusion rate, metal bonding is difficult.

特に、高密度実装を実現しようとするとワイヤボンドの狭ピッチ化が必要となり、ボールサイズが小さくなると、ボールに含まれる結晶の数が少なくなり、この傾向が顕在化する恐れがある。また、高密度実装の目的で半導体チップを積層する場合、チップが薄くなるため、チップ破壊を防止するために低荷重での接合が重要となり、塑性変形のしやすさが必須となる。   In particular, to achieve high-density mounting, it is necessary to reduce the pitch of wire bonds. When the ball size is reduced, the number of crystals contained in the ball is reduced, and this tendency may become apparent. Further, when stacking semiconductor chips for the purpose of high-density mounting, since the chips are thinned, bonding with a low load is important to prevent chip breakage, and ease of plastic deformation is essential.

また、半導体素子やプリント基板の電極は、めっきや蒸着により数μm以下の薄さで形成される。このため、電極の結晶寸法は1μm程度となることが多い。Au線をワイヤとして用いる場合、電極がAuであれば比較的良好な接合性が期待できる。しかし、ボールと電極で結晶寸法が大きく違う場合には、相互拡散が遅くなり、接合性が低下する可能性がある。   Further, the electrodes of the semiconductor element and the printed circuit board are formed with a thickness of several μm or less by plating or vapor deposition. For this reason, the crystal size of the electrode is often about 1 μm. When using an Au wire as a wire, relatively good bonding properties can be expected if the electrode is Au. However, when the crystal dimensions of the ball and the electrode are greatly different, the interdiffusion is slowed and the bonding property may be lowered.

本発明は、上述のような課題を解決するためになされたもので、その目的は、接合性を向上することができるワイヤボンディング方法を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a wire bonding method capable of improving bondability.

本発明は、ワイヤの先端に形成されたボールの表面にフェムト秒レーザを照射して縞状の第1の凹凸を形成する工程と、前記ボールを第1の電極に接触させて超音波振動を印加しながら押し潰すことにより、前記ワイヤを前記第1の電極にボンディングする工程とを備え、前記第1の凹凸が延びる方向は、前記超音波振動の振幅方向に直交することを特徴とするワイヤボンディング方法である。   The present invention includes a step of irradiating a surface of a ball formed at the tip of a wire with a femtosecond laser to form first striped irregularities, and contacting the ball with a first electrode to cause ultrasonic vibration. A step of bonding the wire to the first electrode by crushing while applying, and a direction in which the first unevenness extends is perpendicular to an amplitude direction of the ultrasonic vibration. It is a bonding method.

本発明により、接合性を向上することができる。   According to the present invention, the bondability can be improved.

本発明の実施の形態に係るワイヤボンディング方法を説明するための断面図である。It is sectional drawing for demonstrating the wire bonding method which concerns on embodiment of this invention. 本発明の実施の形態に係るワイヤボンディング方法を説明するための断面図である。It is sectional drawing for demonstrating the wire bonding method which concerns on embodiment of this invention. 本発明の実施の形態に係るワイヤボンディング方法を説明するための断面図である。It is sectional drawing for demonstrating the wire bonding method which concerns on embodiment of this invention. 本発明の実施の形態に係るワイヤボンディング方法を説明するための断面図である。It is sectional drawing for demonstrating the wire bonding method which concerns on embodiment of this invention. 本発明の実施の形態に係るワイヤボンディング方法を説明するための断面図である。It is sectional drawing for demonstrating the wire bonding method which concerns on embodiment of this invention. 本発明の実施の形態に係るワイヤボンディング方法を説明するための断面図である。It is sectional drawing for demonstrating the wire bonding method which concerns on embodiment of this invention.

本発明の実施の形態に係るワイヤボンディング方法について図面を参照しながら説明する。図1〜6は、本発明の実施の形態に係るワイヤボンディング方法を説明するための断面図である。   A wire bonding method according to an embodiment of the present invention will be described with reference to the drawings. 1 to 6 are cross-sectional views for explaining a wire bonding method according to an embodiment of the present invention.

まず、図1に示すように、キャピラリ10から導出されたワイヤ12の先端に、照射出力を大きくしたフェムト秒レーザを照射して溶融させて、ボール14を形成する。   First, as shown in FIG. 1, the tip of the wire 12 led out from the capillary 10 is irradiated with a femtosecond laser with an increased irradiation output to be melted to form a ball 14.

次に、図2に示すように、ワイヤ12の先端に形成されたボール14の下半分の表面にフェムト秒レーザを照射する。ここで、例えばフェムト秒レーザの波長を800nm、パルスエネルギーを1mJ、繰り返しを1kHz、パルス幅を200fsとする。これにより、ボール14の表面に、1μm以下の縞状の第1の凹凸16が形成される。この凹凸は、ボール14の表面に形成されたリップル又はナノ周期構造である。   Next, as shown in FIG. 2, a femtosecond laser is irradiated on the surface of the lower half of the ball 14 formed at the tip of the wire 12. Here, for example, the wavelength of the femtosecond laser is 800 nm, the pulse energy is 1 mJ, the repetition is 1 kHz, and the pulse width is 200 fs. As a result, striped first irregularities 16 of 1 μm or less are formed on the surface of the ball 14. This unevenness is a ripple or nano-periodic structure formed on the surface of the ball 14.

この際に、レーザ光の出力を制御することで、ボール14の溶融状態から一旦冷却されて固体化する前に表面に第1の凹凸16を形成する。これにより、凝固に伴う残留応力を低減させ、信頼性の高いワイヤボンド部を形成することができる。   At this time, by controlling the output of the laser beam, the first unevenness 16 is formed on the surface before the ball 14 is once cooled from the molten state and solidified. Thereby, the residual stress accompanying solidification can be reduced, and a highly reliable wire bond portion can be formed.

次に、図3に示すように、半導体チップ18上に形成された第1の電極20の表面に、フェムト秒レーザを照射して縞状の第2の凹凸22を形成する。この際に、第1の凹凸16の形成時とレーザの波長を同じにし、更に好ましくは第1の電極20の構造、材質、厚み、及びメタライズの製法などに応じてレーザの波長及び出力を調整して、第1の凹凸16と第2の凹凸22をほぼ等しい寸法(周期)にする。   Next, as shown in FIG. 3, the surface of the first electrode 20 formed on the semiconductor chip 18 is irradiated with a femtosecond laser to form second striped irregularities 22. At this time, the wavelength of the laser is made the same as that at the time of forming the first unevenness 16, and more preferably, the wavelength and output of the laser are adjusted according to the structure, material, thickness, metallization manufacturing method, etc. of the first electrode 20. Then, the first unevenness 16 and the second unevenness 22 are made to have substantially the same size (period).

次に、図4に示すように、ボール14を第1の電極20に接触させてキャピラリ10により超音波振動を印加しながら押し潰す。これにより、ワイヤ12を第1の電極20にボンディングする。ここで、第1の凹凸16及び第2の凹凸22が延びる方向は、超音波振動の振幅方向に直交する。これにより、低荷重でも良好な接合性を得ることができる。なお、半導体チップ18はプリント基板24上に搭載されている。プリント基板24上には第2の電極26が形成されている。   Next, as shown in FIG. 4, the ball 14 is brought into contact with the first electrode 20 and crushed while applying ultrasonic vibration by the capillary 10. Thereby, the wire 12 is bonded to the first electrode 20. Here, the direction in which the first unevenness 16 and the second unevenness 22 extend is orthogonal to the amplitude direction of the ultrasonic vibration. Thereby, good bondability can be obtained even with a low load. The semiconductor chip 18 is mounted on the printed board 24. A second electrode 26 is formed on the printed circuit board 24.

次に、図5に示すように、ワイヤ12の屈曲部(後述)となる部分にフェムト秒レーザを照射して屈曲方向に直交する縞状の第3の凹凸28を形成する。また、1回目のワイヤボンディングと同様に、ワイヤ12のボンディング部分及び第2の電極26の表面にフェムト秒レーザを照射して、超音波振動の振幅方向に直交する縞状の凹凸を形成する。   Next, as shown in FIG. 5, a portion that becomes a bent portion (described later) of the wire 12 is irradiated with a femtosecond laser to form a striped third unevenness 28 orthogonal to the bending direction. Similarly to the first wire bonding, the bonding portion of the wire 12 and the surface of the second electrode 26 are irradiated with a femtosecond laser to form striped irregularities orthogonal to the amplitude direction of the ultrasonic vibration.

次に、図6に示すように、キャピラリ10により加重及び超音波振動を印加することにより、第2の電極26にワイヤ12をボンディングする。この際に、第1の電極20と第2の電極26との間においてワイヤ12が屈曲部30を有するループ状になる。なお、プリント基板24はホットプレート上に置かれ、加熱された状態である。   Next, as shown in FIG. 6, the wire 12 is bonded to the second electrode 26 by applying a load and ultrasonic vibration by the capillary 10. At this time, the wire 12 has a loop shape having a bent portion 30 between the first electrode 20 and the second electrode 26. The printed circuit board 24 is placed on a hot plate and heated.

以上説明したように、本実施の形態では、ボールの表面にフェムト秒レーザを照射して、超音波振動の振幅方向に直交する縞状の凹凸を形成する。これにより、接合界面の結晶が微細化されるため、低荷重でも塑性変形がしやすく、金属拡散接合しやすくなり、接合性が向上する。   As described above, in this embodiment, the surface of the ball is irradiated with a femtosecond laser to form striped irregularities orthogonal to the amplitude direction of the ultrasonic vibration. Thereby, since the crystal | crystallization of a joining interface is refined | miniaturized, it becomes easy to carry out plastic deformation | transformation by a low load, becomes easy to carry out metal diffusion joining, and joinability improves.

また、レーザを照射して接合部のワイヤや電極の温度を上昇させることで、塑性変形しやすくなり、接合性を高めることができる。さらに、塑性変形に伴う残留応力を低減することもできる。   Further, by raising the temperature of the wire or electrode at the joint by irradiating with a laser, plastic deformation is likely to occur, and the bondability can be improved. Furthermore, the residual stress accompanying plastic deformation can also be reduced.

また、ワイヤボンドする電極の表面にもレーザを照射することにより、ボールの表面と結晶寸法を揃えて接合性を高めることができる。さらに、第1の電極の構造及び材質などに応じてレーザの波長及び出力を調整することで、第1の凹凸と第2の凹凸をほぼ等しい寸法にすることができる。   Further, by irradiating the surface of the electrode to be wire-bonded with a laser, it is possible to align the crystal dimensions with the surface of the ball and to improve the bondability. Furthermore, by adjusting the wavelength and output of the laser according to the structure and material of the first electrode, the first unevenness and the second unevenness can be made to have substantially the same size.

また、ボールの形成と凹凸の形成を同じレーザによって行うことで、生産性を改善することができる。   Further, productivity can be improved by forming the ball and the unevenness with the same laser.

また、ループ状のワイヤの屈曲部にもレーザを照射することで、塑性変形に伴う粒界を起点としたクラックの発生を抑制することができる。   In addition, by irradiating the bent portion of the loop-shaped wire with laser, it is possible to suppress the generation of cracks starting from the grain boundary accompanying plastic deformation.

なお、フェムト秒レーザの光源として、例えばCyber Laser社製の光源を用いる。ただし、リップル形成可能なレーザであれば他の波長・出力のレーザでも同様の効果が得られる。また、ワイヤは例えばAu線だが、AlやCuなど他の金属ワイヤでも同様の効果が得られる。また、明確な縞状の凹凸(ナノ周期構造)が形成されなくても、レーザを照射された最表面の結晶寸法が微細化されれば同様の効果が得られる。   For example, a light source manufactured by Cyber Laser is used as the light source of the femtosecond laser. However, the same effect can be obtained with lasers having other wavelengths and outputs as long as the laser can generate ripples. The wire is, for example, Au wire, but the same effect can be obtained with other metal wires such as Al and Cu. Even if clear stripe-shaped irregularities (nano-periodic structure) are not formed, the same effect can be obtained if the crystal size of the outermost surface irradiated with the laser is miniaturized.

12 ワイヤ
14 ボール
16 第1の凹凸
22 第2の凹凸
26 第2の電極
28 第3の凹凸
30 屈曲部
12 Wire 14 Ball 16 First unevenness 22 Second unevenness 26 Second electrode 28 Third unevenness 30 Bending portion

Claims (5)

ワイヤの先端に形成されたボールの表面にフェムト秒レーザを照射して縞状の第1の凹凸を形成する工程と、
前記ボールを第1の電極に接触させて超音波振動を印加しながら押し潰すことにより、前記ワイヤを前記第1の電極にボンディングする工程とを備え、
前記第1の凹凸が延びる方向は、前記超音波振動の振幅方向に直交することを特徴とするワイヤボンディング方法。
Irradiating the surface of a ball formed at the tip of the wire with a femtosecond laser to form first striped irregularities;
Bonding the wire to the first electrode by bringing the ball into contact with the first electrode and crushing while applying ultrasonic vibration,
The wire bonding method characterized in that a direction in which the first unevenness extends is orthogonal to an amplitude direction of the ultrasonic vibration.
前記第1の電極の表面にフェムト秒レーザを照射して縞状の第2の凹凸を形成する工程を更に備え、
前記第2の凹凸が延びる方向は、前記超音波振動の振幅方向に直交することを特徴とする請求項1に記載のワイヤボンディング方法。
Further comprising the step of irradiating the surface of the first electrode with a femtosecond laser to form striped second irregularities;
The wire bonding method according to claim 1, wherein a direction in which the second unevenness extends is perpendicular to an amplitude direction of the ultrasonic vibration.
前記第1の電極の構造及び材質に応じて前記フェムト秒レーザの波長及び出力を調整して、前記第1の凹凸と前記第2の凹凸をほぼ等しい寸法にすることを特徴とする請求項2に記載のワイヤボンディング方法。   3. The wavelength and output of the femtosecond laser are adjusted according to the structure and material of the first electrode so that the first unevenness and the second unevenness are approximately equal in size. The wire bonding method as described in. 前記第1の凹凸を形成する前に、前記ワイヤの先端にフェムト秒レーザを照射して前記ボールを形成する工程を更に備えることを特徴とする請求項1〜3の何れか1項に記載のワイヤボンディング方法。   4. The method according to claim 1, further comprising a step of irradiating a tip of the wire with a femtosecond laser to form the ball before forming the first unevenness. 5. Wire bonding method. 前記ワイヤを前記第1の電極にボンディングした後に前記ワイヤを第2の電極にボンディングして、前記第1の電極と前記第2の電極の間において前記ワイヤが屈曲部を有するループ状になるようにする工程と、
前記ワイヤを前記第2の電極にボンディングする前に、前記ワイヤの前記屈曲部となる部分にフェムト秒レーザを照射して屈曲方向に直交する縞状の第3の凹凸を形成する工程とを更に備えることを特徴とする請求項1〜4の何れか1項に記載のワイヤボンディング方法。
After the wire is bonded to the first electrode, the wire is bonded to the second electrode so that the wire has a loop shape having a bent portion between the first electrode and the second electrode. And the process of
Before bonding the wire to the second electrode, the step of irradiating a portion that becomes the bent portion of the wire with a femtosecond laser to form striped third unevenness perpendicular to the bending direction; The wire bonding method according to claim 1, further comprising: a wire bonding method according to claim 1.
JP2010046935A 2010-03-03 2010-03-03 Wire bonding method Active JP5381816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046935A JP5381816B2 (en) 2010-03-03 2010-03-03 Wire bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046935A JP5381816B2 (en) 2010-03-03 2010-03-03 Wire bonding method

Publications (2)

Publication Number Publication Date
JP2011181839A true JP2011181839A (en) 2011-09-15
JP5381816B2 JP5381816B2 (en) 2014-01-08

Family

ID=44693017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046935A Active JP5381816B2 (en) 2010-03-03 2010-03-03 Wire bonding method

Country Status (1)

Country Link
JP (1) JP5381816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546670B1 (en) * 2013-06-13 2014-07-09 田中電子工業株式会社 Structure of coated copper wire for ultrasonic bonding
CN109332901A (en) * 2018-09-14 2019-02-15 深圳市商德先进陶瓷股份有限公司 Ceramic chopper and preparation method thereof and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248033A (en) * 1985-08-28 1987-03-02 Nec Corp Wire bonding method
JP2004360012A (en) * 2003-06-04 2004-12-24 Laser Gijutsu Sogo Kenkyusho Method and device for surface treatment of close-contact metal surface
JP2006210534A (en) * 2005-01-26 2006-08-10 Sumitomo Electric Hardmetal Corp Mounting tool
JP2010105043A (en) * 2008-10-03 2010-05-13 Nissan Motor Co Ltd Low temperature joining method for metal
JP2011119563A (en) * 2009-12-07 2011-06-16 Denso Corp Wire bonding method and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248033A (en) * 1985-08-28 1987-03-02 Nec Corp Wire bonding method
JP2004360012A (en) * 2003-06-04 2004-12-24 Laser Gijutsu Sogo Kenkyusho Method and device for surface treatment of close-contact metal surface
JP2006210534A (en) * 2005-01-26 2006-08-10 Sumitomo Electric Hardmetal Corp Mounting tool
JP2010105043A (en) * 2008-10-03 2010-05-13 Nissan Motor Co Ltd Low temperature joining method for metal
JP2011119563A (en) * 2009-12-07 2011-06-16 Denso Corp Wire bonding method and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546670B1 (en) * 2013-06-13 2014-07-09 田中電子工業株式会社 Structure of coated copper wire for ultrasonic bonding
JP2015002213A (en) * 2013-06-13 2015-01-05 田中電子工業株式会社 Structure of coating copper wire for ultrasonic bonding
CN109332901A (en) * 2018-09-14 2019-02-15 深圳市商德先进陶瓷股份有限公司 Ceramic chopper and preparation method thereof and application

Also Published As

Publication number Publication date
JP5381816B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP6578900B2 (en) Semiconductor device and manufacturing method thereof
JP5419235B2 (en) Manufacturing method of semiconductor device
TWI395313B (en) Stud bump structure and method for forming the same
JP5658898B2 (en) Manufacturing method of wafer bonded semiconductor device
JP2010166019A (en) Semiconductor laser device
JP6485397B2 (en) Electronic device and manufacturing method thereof
JP2010123654A (en) Optical semiconductor apparatus
JP4764983B2 (en) Manufacturing method of semiconductor device
JP4765853B2 (en) Manufacturing method of semiconductor device
JP2011077193A (en) Method for manufacturing semiconductor device
JP2012515441A5 (en)
WO2016092791A1 (en) Semiconductor device and method for manufacturing same
WO2013039099A1 (en) Method for producing semiconductor device, and semiconductor device produced using production method
JP2016096279A (en) Circuit module and method of manufacturing the same
JP2011018823A (en) Wire bonding method, and laser welding apparatus for wire bonding
JP5381816B2 (en) Wire bonding method
JP4572984B2 (en) Laser welding structure and laser welding method
JP2007305620A (en) Manufacturing method of semiconductor device
JP2007027346A (en) Manufacturing method of semiconductor device and a manufacturing equipment
CN104465427A (en) Packaging structure and semiconductor process
JP2011101894A (en) Joining structure and joining method
CN204632803U (en) A kind of CSP LED and substrate
JP2006332151A (en) Method of packaging semiconductor device
JP2006114649A (en) Method and apparatus for manufacturing semiconductor device
Tokunari et al. Optoelectronic chip assembly process of optical MCM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250