JP2011181161A - Hexagonal ferrite particle powder for magnetic recording medium, and magnetic recording medium - Google Patents

Hexagonal ferrite particle powder for magnetic recording medium, and magnetic recording medium Download PDF

Info

Publication number
JP2011181161A
JP2011181161A JP2010047401A JP2010047401A JP2011181161A JP 2011181161 A JP2011181161 A JP 2011181161A JP 2010047401 A JP2010047401 A JP 2010047401A JP 2010047401 A JP2010047401 A JP 2010047401A JP 2011181161 A JP2011181161 A JP 2011181161A
Authority
JP
Japan
Prior art keywords
magnetic recording
hexagonal ferrite
recording medium
particle powder
ferrite particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010047401A
Other languages
Japanese (ja)
Other versions
JP5305037B2 (en
Inventor
Shinji Horie
真司 堀江
Angyoku Sho
安玉 章
Hiroko Morii
弘子 森井
Kazuyuki Hayashi
一之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2010047401A priority Critical patent/JP5305037B2/en
Publication of JP2011181161A publication Critical patent/JP2011181161A/en
Application granted granted Critical
Publication of JP5305037B2 publication Critical patent/JP5305037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide hexagonal ferrite particle powder for a magnetic recording medium which can reduce the noise of the magnetic recording medium and can suppress the deterioration of the magnetic recording medium. <P>SOLUTION: The hexagonal ferrite particle power for the magnetic recording medium has an average plate surface diameter of 10 to 30 nm. The proportion of large particles having a plate surface diameter of 50 nm or larger relative to all particles is 3.0% or smaller. The total amount of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum) contained in the hexagonal ferrite particle power is 10 ppm or smaller. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、磁気記録媒体用六方晶フェライト粒子粉末に関するものであり、詳しくは、平均板面径が10〜30nmであり、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下である、磁気記録媒体のノイズ低減に効果的な六方晶フェライト粒子粉末に関するものである。   The present invention relates to a hexagonal ferrite particle powder for magnetic recording media. Specifically, the average plate surface diameter is 10 to 30 nm, and the presence ratio of large particles having a plate surface diameter of 50 nm or more with respect to all particles. The present invention relates to a hexagonal ferrite particle powder that is 3.0% or less and is effective for reducing noise in a magnetic recording medium.

磁気記録技術は、従来、オーディオ用、ビデオ用、コンピューター用等をはじめとしてさまざまな分野で幅広く用いられている。近年、機器の小型軽量化、記録の長時間化及び記録容量の増大等が求められており、記録媒体に対しては、記録密度のより一層の向上が望まれている。   Conventionally, magnetic recording technology has been widely used in various fields including audio, video, and computer. In recent years, there has been a demand for smaller and lighter devices, longer recording time, increased recording capacity, and the like, and further improvement in recording density is desired for recording media.

従来の磁気記録媒体に対してより高密度記録を行うためには、高いC/N比が必要であり、ノイズ(N)が低く、再生出力(C)が高いことが求められている。近年では、これまで用いられていた誘導型磁気ヘッドに替わり、磁気抵抗型ヘッド(MRヘッド)や巨大磁気抵抗型ヘッド(GMRヘッド)等の高感度ヘッドが開発されており、これらは誘導型磁気ヘッドに比べて再生出力が得られやすいことから、高いC/N比を得るためには、出力を上げるよりもノイズを低減する方が重要となってきている。   In order to perform high-density recording on a conventional magnetic recording medium, a high C / N ratio is required, noise (N) is low, and reproduction output (C) is required to be high. In recent years, high-sensitivity heads such as magnetoresistive heads (MR heads) and giant magnetoresistive heads (GMR heads) have been developed in place of the inductive magnetic heads used so far. Since it is easy to obtain a reproduction output as compared with the head, in order to obtain a high C / N ratio, it is more important to reduce the noise than to increase the output.

磁気記録媒体のノイズ低減には、単位体積当たりの磁性粒子粉末の密度を高めることが有効である。単位体積当たりの磁性粒子粉末の密度を向上させる方法としては、磁性層中の磁性粒子の体積存在比率を高める方法や磁性粒子の粒子体積を小さくする方法が知られている。   In order to reduce noise of the magnetic recording medium, it is effective to increase the density of the magnetic particle powder per unit volume. As a method for improving the density of magnetic particle powder per unit volume, a method for increasing the volume ratio of magnetic particles in the magnetic layer and a method for reducing the particle volume of magnetic particles are known.

磁性粒子の体積を小さくするためには磁性粒子粉末を微細化すればよいが、磁性粒子の粒子体積は、粒子サイズの2乗〜3乗倍の大きさで作用するため、平均粒子サイズが小さくても、粗大な磁性粒子の存在割合が多い場合にはノイズ低減効果が減少する。   In order to reduce the volume of the magnetic particles, it is only necessary to refine the magnetic particle powder. However, since the particle volume of the magnetic particles acts as a square to a cube of the particle size, the average particle size is small. However, the noise reduction effect is reduced when the presence ratio of coarse magnetic particles is large.

一般に、微粒子、且つ、高保磁力値を有する磁性粒子粉末としては、鉄を主成分とする金属磁性粒子粉末及び六方晶フェライト粒子粉末等が知られており、六方晶フェライト粒子粉末は針状の金属磁性粒子粉末に比べ短波長領域で高い出力が得られるという特徴があり、再生にMRヘッドやGMRヘッドを用いた高密度記録の磁気記録媒体用磁性粉末として非常に有望である。   Generally, as magnetic particles having fine particles and a high coercive force value, metal magnetic particle powders mainly composed of iron, hexagonal ferrite particle powders, and the like are known, and hexagonal ferrite particle powders are acicular metal. Compared with magnetic particle powder, it has a feature that a high output can be obtained in a short wavelength region, and is very promising as a magnetic powder for high-density recording magnetic recording media using an MR head or GMR head for reproduction.

これまでに、六方晶フェライト粒子粉末のSFD改善を目的として、六方晶フェライト粒子粉末の微粒子成分の存在量を3〜5%以下に限定した六方晶フェライト粒子粉末(特許文献1及び特許文献2)等が知られている。   So far, hexagonal ferrite particle powder in which the abundance of fine particle components in hexagonal ferrite particle powder is limited to 3 to 5% or less for the purpose of improving SFD of hexagonal ferrite particle powder (Patent Document 1 and Patent Document 2). Etc. are known.

特開平10−92618号公報JP-A-10-92618 特開2005−329309号公報JP 2005-329309 A

前出特許文献1及び特許文献2には、得られた六方晶フェライト粒子粉末を強酸の水溶液で処理することにより微粒子成分を除去する方法が記載されているが、大粒子成分については考慮されておらず、後出比較例に示す通り、大粒子の存在割合が高いことによって磁気記録媒体のノイズが高くなるため、優れた出力特性を得ることが困難である。また、特許文献2はガラス結晶化法によって六方晶フェライト粒子粉末を合成しており、ガラス溶融時に白金等のるつぼを用いるため、得られる六方晶フェライト粒子粉末中に白金等の触媒活性のある金属元素を含むという問題がある。   Patent Document 1 and Patent Document 2 described above describe a method of removing fine particle components by treating the obtained hexagonal ferrite particle powder with an aqueous solution of a strong acid, but the large particle components are considered. In addition, as shown in a comparative example to be described later, since the noise of the magnetic recording medium is increased due to the high ratio of large particles, it is difficult to obtain excellent output characteristics. Further, Patent Document 2 synthesizes hexagonal ferrite particle powder by a glass crystallization method, and uses a crucible such as platinum at the time of glass melting. Therefore, a metal having catalytic activity such as platinum in the obtained hexagonal ferrite particle powder. There is a problem of containing elements.

そこで、本発明は、六方晶フェライト粒子粉末の平均板面径が10〜30nmであり、全粒子に対して板面径が50nm以上の大粒子の存在割合を3.0%以下とすることにより、磁気記録媒体のノイズ低減に効果的な六方晶フェライト粒子粉末を得ることを技術的課題とする。   Therefore, the present invention provides an hexagonal ferrite particle powder having an average plate surface diameter of 10 to 30 nm and a ratio of large particles having a plate surface diameter of 50 nm or more to the total particles of 3.0% or less. Another object of the present invention is to obtain hexagonal ferrite particle powder that is effective in reducing noise in magnetic recording media.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、六方晶フェライト粒子粉末の平均板面径が10〜30nmであり、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下であると共に、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下であることを特徴とする磁気記録媒体用六方晶フェライト粒子粉末である(本発明1)。   That is, the present invention has an average plate surface diameter of hexagonal ferrite particle powder of 10 to 30 nm, and the presence ratio of large particles having a plate surface diameter of 50 nm or more with respect to all particles is 3.0% or less, A hexagonal ferrite particle for a magnetic recording medium, wherein the total amount of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) contained in the hexagonal ferrite particle powder is 10 ppm or less It is a powder (Invention 1).

また、本発明は、六方晶フェライト粒子粉末の平均板面径が10〜25nmであり、全粒子に対して板面径が40nm以上の大粒子の存在割合が3.0%以下であると共に、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下であることを特徴とする磁気記録媒体用六方晶フェライト粒子粉末である(本発明2)。   In the present invention, the average plate surface diameter of the hexagonal ferrite particle powder is 10 to 25 nm, and the presence ratio of large particles having a plate surface diameter of 40 nm or more with respect to all particles is 3.0% or less. A hexagonal ferrite particle for a magnetic recording medium, wherein the total amount of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) contained in the hexagonal ferrite particle powder is 10 ppm or less It is a powder (Invention 2).

また、本発明は、保磁力(Hc)が95.5kA/m以上であることを特徴とする本発明1又は本発明2記載の磁気記録媒体用六方晶フェライト粒子粉末である(本発明3)。   Further, the present invention is the hexagonal ferrite particle powder for magnetic recording media according to the present invention 1 or 2, wherein the coercive force (Hc) is 95.5 kA / m or more (Invention 3). .

また、本発明は、非磁性支持体上の上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記磁性粒子粉末として本発明1乃至3のいずれかに記載の磁気記録媒体用六方晶フェライト粒子粉末を用いることを特徴とする磁気記録媒体である(本発明4)。   Further, the present invention provides a magnetic recording medium comprising a magnetic recording layer comprising a magnetic particle powder and a binder resin formed on a nonmagnetic support, and the magnetic particle powder is any one of the present inventions 1 to 3. A magnetic recording medium comprising the hexagonal ferrite particle powder for magnetic recording medium described in (4).

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、平均板面径が10〜30nm、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下であり、白金族元素の各元素の合計量が10ppm以下であることにより、磁気記録媒体のノイズをより低減できると共に、磁気記録媒体の劣化を抑制することができるため、高密度磁気記録媒体の磁性粒子粉末として好適である。   The hexagonal ferrite particle powder for magnetic recording media according to the present invention has an average plate surface diameter of 10 to 30 nm, and the ratio of large particles having a plate surface diameter of 50 nm or more to all particles is 3.0% or less, Since the total amount of each element of the platinum group element is 10 ppm or less, the noise of the magnetic recording medium can be further reduced and the deterioration of the magnetic recording medium can be suppressed, so that the magnetic particle powder of the high-density magnetic recording medium It is suitable as.

本発明の構成をより詳しく説明すれば、次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る磁気記録媒体用六方晶フェライト粒子粉末について述べる。   First, the hexagonal ferrite particle powder for magnetic recording media according to the present invention will be described.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、平均板面径が10〜30nm、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下であり、白金族元素の各元素の合計量が10ppm以下であることを特徴とする。   The hexagonal ferrite particle powder for magnetic recording media according to the present invention has an average plate surface diameter of 10 to 30 nm, and the ratio of large particles having a plate surface diameter of 50 nm or more to all particles is 3.0% or less, The total amount of each platinum group element is 10 ppm or less.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、Ba、Sr及びCaから選ばれる1種又は2種以上の元素を含有するマグネトプランバイト型(M型)フェライト微粒子粉末又はW型フェライト微粒子粉末、あるいはそれらの原子の一部が他の元素で置換された六方晶フェライト粒子粉末である。置換元素としては、具体的にはCo、Ni、Zn、Mn、Mg、Ti、Sn、Zr、Cu、Mo、La、Ce、V、Si、S、Sc、Sb、Y、Rh、Pd、Nd、Nb、B、P、Ge、Al、Ag、Au、Ru、Pr、Bi、W、Re、Te等の元素を1種又は2種以上を用いることができる。   The hexagonal ferrite particle powder for magnetic recording media according to the present invention is a magnetoplumbite type (M type) ferrite fine particle powder or W type ferrite fine particle containing one or more elements selected from Ba, Sr and Ca. It is a powder or a hexagonal ferrite particle powder in which some of the atoms are substituted with other elements. Specific examples of substitution elements include Co, Ni, Zn, Mn, Mg, Ti, Sn, Zr, Cu, Mo, La, Ce, V, Si, S, Sc, Sb, Y, Rh, Pd, and Nd. Nb, B, P, Ge, Al, Ag, Au, Ru, Pr, Bi, W, Re, Te, or the like can be used alone or in combination.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末の平均板面径は10〜30nmであり、好ましくは10〜28nm、より好ましくは10〜25nmである。六方晶フェライト粒子粉末の平均板面径が30nmを超える場合には、粒子サイズが大きいため、粒子性ノイズをより低減することが難しく、高いC/N比を有する磁気記録媒体を得ることが困難となる。また、平均板面径が10nm未満である場合には、磁性粒子粉末の微細化に伴う熱揺らぎの影響が大きくなるため好ましくない。   The average plate surface diameter of the hexagonal ferrite particles for magnetic recording media according to the present invention is 10 to 30 nm, preferably 10 to 28 nm, and more preferably 10 to 25 nm. When the average plate surface diameter of the hexagonal ferrite particle powder exceeds 30 nm, the particle size is large, so that it is difficult to further reduce the particulate noise, and it is difficult to obtain a magnetic recording medium having a high C / N ratio. It becomes. Moreover, when the average plate surface diameter is less than 10 nm, the influence of thermal fluctuation accompanying the miniaturization of the magnetic particle powder increases, which is not preferable.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末の板状比(平均板面径と平均厚みの比)(以下、「板状比」という。)は1.5〜10.0が好ましく、より好ましくは1.75〜8.0、更により好ましくは2.0〜6.0である。板状比が10を超える場合には、粒子間のスタッキングが多くなり、磁性塗料の製造時におけるビヒクル中への分散性が低下すると共に、粘度が増加する場合があるため好ましくない。   The plate ratio (average plate surface diameter to average thickness) (hereinafter referred to as “plate ratio”) of the hexagonal ferrite particles for magnetic recording media according to the present invention is preferably 1.5 to 10.0, More preferably, it is 1.75 to 8.0, and still more preferably 2.0 to 6.0. When the plate ratio exceeds 10, stacking between particles increases, dispersibility in the vehicle during production of the magnetic coating material decreases, and viscosity may increase, which is not preferable.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末のBET比表面積値は20〜200m2/gが好ましく、より好ましくは25〜200m2/g、更により好ましくは30〜150m2/gである。BET比表面積値が20m2/g未満の場合には、磁気記録媒体用磁性微粒子粉末が粗大であるため、これを用いて得られた磁気記録媒体の表面平滑性が低下し、それに起因して出力も向上し難くなる。また、短波長領域における飽和磁化値や保磁力値が低下すると共に粒子性ノイズが増大するため好ましくない。BET比表面積値が200m2/gを超える場合には、粒子の微細化による分子間力の増大により凝集を起こしやすいため、磁性塗料の製造時におけるビヒクル中への分散性が低下する。 BET specific surface area of the magnetic recording medium for the hexagonal ferrite particles according to the present invention is preferably 20 to 200 m 2 / g, more preferably 25~200m 2 / g, still more preferably is 30 to 150 m 2 / g . When the BET specific surface area value is less than 20 m 2 / g, the magnetic fine particle powder for a magnetic recording medium is coarse, so that the surface smoothness of the magnetic recording medium obtained by using this decreases, resulting in that It becomes difficult to improve the output. In addition, the saturation magnetization value and the coercive force value in the short wavelength region are decreased, and particle noise is increased, which is not preferable. When the BET specific surface area value exceeds 200 m 2 / g, aggregation tends to occur due to an increase in intermolecular force due to finer particles, so that the dispersibility in the vehicle during the production of the magnetic coating material decreases.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下であり、好ましくは2.0%以下、より好ましくは1.0%以下である。全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%を超える場合には、粗大な磁性粒子の存在割合が多いため、粒子性ノイズをより低減することが難しく、高いC/N比を有する磁気記録媒体を得ることが困難となる。   In the hexagonal ferrite particles for magnetic recording media according to the present invention, the ratio of large particles having a plate surface diameter of 50 nm or more to the total particles is 3.0% or less, preferably 2.0% or less. Preferably it is 1.0% or less. When the proportion of large particles having a plate surface diameter of 50 nm or more with respect to all particles exceeds 3.0%, since the proportion of coarse magnetic particles is large, it is difficult to further reduce particulate noise. It becomes difficult to obtain a magnetic recording medium having a high C / N ratio.

また、本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、殊に、平均板面径が10〜25nmの範囲にある場合には、全粒子に対して板面径が40nm以上の大粒子の存在割合が3.0%以下であり、好ましくは2.0%以下、より好ましくは1.0%以下である。平均板面径が10〜25nmの範囲にあり、全粒子に対して板面径が40nm以上の大粒子の存在割合が3.0%を超える場合には、粗大な磁性粒子の存在割合が多いため、粒子性ノイズをより低減することが難しく、高いC/N比を有する磁気記録媒体を得ることが困難となる。   The hexagonal ferrite particle powder for magnetic recording media according to the present invention is a large particle having a plate surface diameter of 40 nm or more with respect to all particles, particularly when the average plate surface diameter is in the range of 10 to 25 nm. Is 3.0% or less, preferably 2.0% or less, more preferably 1.0% or less. When the average plate surface diameter is in the range of 10 to 25 nm and the presence ratio of large particles having a plate surface diameter of 40 nm or more with respect to all particles exceeds 3.0%, the presence ratio of coarse magnetic particles is large. Therefore, it is difficult to reduce particulate noise, and it is difficult to obtain a magnetic recording medium having a high C / N ratio.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末が含有する白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計は10ppm以下であり、好ましくは8ppm以下、より好ましくは5ppm以下である。白金族元素の含有量が10ppmを超える場合には、これを用いて作製した磁性塗料や磁気記録媒体中に含まれる有機溶剤や樹脂が、白金等の触媒活性のある金属により劣化しやすいため好ましくない。   The total of the platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) contained in the hexagonal ferrite particles for magnetic recording media according to the present invention is 10 ppm or less, preferably 8 ppm or less, more preferably. Is 5 ppm or less. When the content of the platinum group element exceeds 10 ppm, it is preferable because an organic solvent or a resin contained in a magnetic paint or a magnetic recording medium produced using the platinum group element is easily deteriorated by a metal having catalytic activity such as platinum. Absent.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末の磁気特性は、保磁力(Hc)が95.5〜397.9kA/mが好ましく、より好ましくは119.4〜318.3kA/mであり、飽和磁化値が40〜70Am/kgが好ましく、より好ましくは45〜70Am/kgである。 As for the magnetic properties of the hexagonal ferrite particles for magnetic recording media according to the present invention, the coercive force (Hc) is preferably 95.5 to 397.9 kA / m, more preferably 119.4 to 318.3 kA / m. The saturation magnetization value is preferably 40 to 70 Am 2 / kg, more preferably 45 to 70 Am 2 / kg.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、必要により、六方晶フェライト粒子粉末の粒子表面を、アルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれた1種又は2種以上の化合物(以下、「アルミニウムの水酸化物等」という。)で被覆しておいてもよい。アルミニウムの水酸化物等で被覆処理を行うことにより、磁性塗料中に分散させた場合に、結合剤樹脂とのなじみがよく、所望の分散度がより得られ易い。   The hexagonal ferrite particle powder for magnetic recording media according to the present invention, if necessary, the surface of the hexagonal ferrite particle powder is made of aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. You may coat | cover with the 1 type (s) or 2 or more types of selected compound (henceforth "aluminum hydroxide etc."). By carrying out a coating treatment with aluminum hydroxide or the like, when dispersed in a magnetic paint, it is well-familiar with the binder resin and a desired degree of dispersion is more easily obtained.

次に、本発明に係る磁気記録媒体について述べる。   Next, the magnetic recording medium according to the present invention will be described.

本発明に係る磁気記録媒体は、本発明に係る六方晶フェライト粒子粉末と結合剤樹脂とを含む磁気記録層が非磁性支持体上に形成されてなる。また、必要に応じて、非磁性支持体と磁気記録層との間に非磁性下地層を形成してもよく、更に、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成させてもよい。殊に、コンピューター記録用のバックアップテープの場合には、巻き乱れの防止や走行耐久性向上の点から、非磁性下地層やバックコート層を設けることが好ましい。   The magnetic recording medium according to the present invention is formed by forming a magnetic recording layer containing the hexagonal ferrite particle powder according to the present invention and a binder resin on a nonmagnetic support. Further, if necessary, a nonmagnetic underlayer may be formed between the nonmagnetic support and the magnetic recording layer, and further, with respect to the magnetic recording layer formed on one surface of the nonmagnetic support, A back coat layer may be formed on the other surface of the nonmagnetic support. In particular, in the case of a backup tape for computer recording, it is preferable to provide a nonmagnetic underlayer or a backcoat layer from the viewpoint of preventing winding disturbance and improving running durability.

本発明における非磁性支持体としては、現在、磁気記録媒体に汎用されているポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル類、ポリエチレン、ポリプロピレン等のポリオレフィン類、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリイミド、芳香族ポリアミド、芳香族ポリイミド、芳香族ポリアミドイミド、ポリスルフォン、セルローストリアセテート、ポリベンゾオキサゾール等の合成樹脂フィルム、アルミニウム、ステンレス等金属の箔や板及び各種の紙を使用することができる。   As the nonmagnetic support in the present invention, polyesters such as polyethylene terephthalate and polyethylene naphthalate that are currently widely used in magnetic recording media, polyolefins such as polyethylene and polypropylene, polycarbonate, polyamide, polyamideimide, polyimide, aromatic Synthetic resin films such as polyamide, aromatic polyimide, aromatic polyamideimide, polysulfone, cellulose triacetate, and polybenzoxazole, metal foils and plates such as aluminum and stainless steel, and various papers can be used.

結合剤樹脂としては、磁気記録媒体の製造にあたって汎用されている熱可塑性樹脂、熱硬化性樹脂、電子線硬化型樹脂等を単独又は組み合わせて用いることができる。   As the binder resin, a thermoplastic resin, a thermosetting resin, an electron beam curable resin, etc. that are widely used in the production of magnetic recording media can be used alone or in combination.

本発明の磁気記録媒体において、非磁性支持体と磁気記録層との間に非磁性下地層を形成する場合、非磁性下地層中には非磁性粒子粉末と結合剤が含まれている。   In the magnetic recording medium of the present invention, when a nonmagnetic underlayer is formed between the nonmagnetic support and the magnetic recording layer, the nonmagnetic underlayer contains nonmagnetic particle powder and a binder.

非磁性下地層に用いられる非磁性粒子粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等を、単独又は組合せて用いることができる。好ましくはヘマタイト、ゲータイト、酸化チタンであり、より好ましくはヘマタイトである。   Nonmagnetic particle powders used for the nonmagnetic underlayer include alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, and barium sulfate. Can be used alone or in combination. Hematite, goethite and titanium oxide are preferred, and hematite is more preferred.

前記非磁性粒子粉末の粒子形状は、針状、紡錘状、米粒状、球状、粒状、多面体状、フレーク状、鱗片状及び板状等のいずれの形状であってもよい。粒子サイズは、好ましくは0.005〜0.30μmであり、より好ましくは0.010〜0.25μmである。また、必要により、粒子表面をアルミニウムの水酸化物、アルミニウムの酸化物、ケイ素の水酸化物及びケイ素の酸化物から選ばれた1種又は2種以上の化合物で被覆してもよく、化合物で被覆しない場合に比べ、非磁性塗料中での分散性を改善することができる。   The particle shape of the non-magnetic particle powder may be any shape such as needle shape, spindle shape, rice grain shape, spherical shape, granular shape, polyhedron shape, flake shape, scale shape and plate shape. The particle size is preferably 0.005 to 0.30 μm, more preferably 0.010 to 0.25 μm. If necessary, the particle surface may be coated with one or more compounds selected from aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon oxide. Compared with the case of not coating, dispersibility in the nonmagnetic paint can be improved.

結合剤樹脂としては、前記磁気記録層を作製するために用いた結合剤樹脂を使用することができる。   As the binder resin, the binder resin used for producing the magnetic recording layer can be used.

本発明の磁気記録媒体において、非磁性支持体の一方の面に形成される磁気記録層に対し、非磁性支持体の他方の面にバックコート層を形成する場合、バックコート層中には、結合剤樹脂と共に、バックコート層の表面電気抵抗値及び強度向上を目的として、帯電防止剤及び無機粒子粉末を含有させることが好ましい。   In the magnetic recording medium of the present invention, when a backcoat layer is formed on the other surface of the nonmagnetic support relative to the magnetic recording layer formed on one surface of the nonmagnetic support, It is preferable to contain an antistatic agent and inorganic particle powder together with the binder resin for the purpose of improving the surface electrical resistance value and strength of the backcoat layer.

無機粉末としては、アルミナ、ヘマタイト、ゲータイト、酸化チタン、シリカ、酸化クロム、酸化セリウム、酸化亜鉛、チッ化珪素、窒化ホウ素、炭化ケイ素、炭酸カルシウム及び硫酸バリウム等から選ばれる1種又は2種以上を用いることができる。粒子サイズは、好ましくは0.005〜1.0μmであり、より好ましくは0.010〜0.5μmである。   As the inorganic powder, one or more selected from alumina, hematite, goethite, titanium oxide, silica, chromium oxide, cerium oxide, zinc oxide, silicon nitride, boron nitride, silicon carbide, calcium carbonate, barium sulfate, etc. Can be used. The particle size is preferably 0.005 to 1.0 [mu] m, more preferably 0.010 to 0.5 [mu] m.

帯電防止剤としては、カーボンブラック、グラファイト、酸化スズ、酸化チタン−酸化スズ−酸化アンチモン等の導電性粉末及び界面活性剤等を用いることができる。帯電防止の他に、摩擦係数低減、磁気記録媒体の強度向上といった効果が期待できることから、帯電防止剤としては、カーボンブラックを用いることが好ましい。   As the antistatic agent, conductive powder such as carbon black, graphite, tin oxide, titanium oxide-tin oxide-antimony oxide, a surfactant, and the like can be used. In addition to antistatic properties, carbon black is preferably used as the antistatic agent since effects such as reduction of the friction coefficient and improvement of the strength of the magnetic recording medium can be expected.

結合剤樹脂としては、前記磁気記録層、及び非磁性下地層を作製するために用いた結合剤樹脂を使用することができる。   As the binder resin, the binder resin used for producing the magnetic recording layer and the nonmagnetic underlayer can be used.

本発明における磁気記録層、非磁性下地層及びバックコート層中には、必要に応じて、磁気記録媒体の製造に通常用いられている潤滑剤、研磨剤、分散剤、帯電防止剤等を添加してもよい。   In the magnetic recording layer, nonmagnetic underlayer and backcoat layer in the present invention, lubricants, abrasives, dispersants, antistatic agents, etc., which are usually used in the production of magnetic recording media are added as necessary. May be.

本発明に係る磁気記録媒体は、保磁力値が95.5〜358.1kA/m、好ましくは51.7〜318.3kA/m、保磁力分布SFD(Switching Field Distribution)が、0.70以下、好ましくは0.67以下、より好ましくは0.65以下である。   The magnetic recording medium according to the present invention has a coercive force value of 95.5 to 358.1 kA / m, preferably 51.7 to 318.3 kA / m, and a coercive force distribution SFD (Switching Field Distribution) of 0.70 or less. , Preferably 0.67 or less, more preferably 0.65 or less.

次に、本発明に係る磁気記録媒体用六方晶フェライト粒子粉末の製造法について述べる。   Next, a method for producing hexagonal ferrite particles for magnetic recording media according to the present invention will be described.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末を得るための製造法としては、前述の特性を満たすものであれば特に限定されないが、ガラス結晶化法は、焼成の際に通常、白金からなるるつぼを用いるため、得られる六方晶フェライト粒子粉末の白金族元素の含有量が10ppmを超えるので好ましくない。好ましくは、水熱合成法、共沈−焼成法等の湿式法である。   The production method for obtaining the hexagonal ferrite particle powder for magnetic recording media according to the present invention is not particularly limited as long as it satisfies the above-mentioned characteristics, but the glass crystallization method is usually performed from platinum during firing. Since the resulting crucible is used, the platinum group element content of the obtained hexagonal ferrite particle powder exceeds 10 ppm, which is not preferable. Preferred are wet methods such as a hydrothermal synthesis method and a coprecipitation-calcination method.

共沈−焼成法としては、具体的には、バリウム、ストロンチウム、及びカルシウムより選ばれた少なくとも1種の金属元素を含む金属塩と鉄化合物、並びに、2価乃至5価の金属元素から選ばれる1種又は2種以上の金属塩を混合した懸濁液を、アルカリ水溶液に20分以上かけて徐添加した後、60〜100℃の温度範囲で反応し、得られた共沈物を濾別・乾燥し、次いで、融剤の存在下で600〜800℃の温度で焼成した後、融剤を除去することによって得ることができる。   Specifically, the coprecipitation-firing method is selected from metal salts and iron compounds containing at least one metal element selected from barium, strontium, and calcium, and divalent to pentavalent metal elements. A suspension in which one or more metal salts are mixed is gradually added to an alkaline aqueous solution over 20 minutes, and then reacted in a temperature range of 60 to 100 ° C., and the resulting coprecipitate is filtered off. -It can obtain by removing a flux after drying and then baking at the temperature of 600-800 degreeC in presence of a flux.

水熱合成法としては、具体的には、バリウム、ストロンチウム、及びカルシウムより選ばれた少なくとも1種の金属元素を含む金属塩と鉄化合物、並びに、2価乃至5価の金属元素から選ばれる1種又は2種以上の金属塩を混合した懸濁液を、アルカリ水溶液に20分以上かけて徐添加した後、100〜300℃の温度範囲で反応し、得られた六方晶フェライトの前駆体を濾別・乾燥し、次いで、融剤の存在下で600〜800℃の温度で焼成した後、融剤を除去することによって得ることができる。   Specifically, the hydrothermal synthesis method is selected from a metal salt and an iron compound containing at least one metal element selected from barium, strontium, and calcium, and a divalent to pentavalent metal element. A suspension in which seeds or two or more kinds of metal salts are mixed is gradually added to an alkaline aqueous solution over 20 minutes, and then reacted in a temperature range of 100 to 300 ° C., and the obtained hexagonal ferrite precursor is obtained. It can be obtained by filtering and drying, and then baking at a temperature of 600 to 800 ° C. in the presence of a flux and then removing the flux.

次に、本発明における磁気記録媒体の製造法について述べる。   Next, a method for manufacturing a magnetic recording medium in the present invention will be described.

前記非磁性下地層、磁気記録層、及びバックコート層の形成にあたって用いる溶剤としては、磁気記録媒体に汎用されているアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びテトラヒドロフラン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、メタノール、エタノール、プロパノール、ブタノール、イソブチルアルコール及びイソプロピルアルコール等のアルコール類、酢酸メチル、酢酸ブチル、酢酸イソブチル及び酢酸グリコール等のエステル類、グリコールジメチルエーテル、グリコールモノエチルエーテル及びジオキサン等のグリコールエーテル類及びその混合物等を使用することができる。   Solvents used in the formation of the nonmagnetic underlayer, magnetic recording layer, and backcoat layer include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and tetrahydrofuran, toluene, xylene, etc. that are widely used in magnetic recording media. Aromatic hydrocarbons, alcohols such as methanol, ethanol, propanol, butanol, isobutyl alcohol and isopropyl alcohol, esters such as methyl acetate, butyl acetate, isobutyl acetate and glycol acetate, glycol dimethyl ether, glycol monoethyl ether and dioxane Glycol ethers and mixtures thereof can be used.

非磁性下地層、磁気記録層、バックコート層は、各層を構成する成分及び溶剤を一般に使用される混練機及び分散機により混練・分散処理を行い、各塗料を作製する。該各塗料を用いて、非磁性支持体上の一面に非磁性下地層、磁気記録層の順に塗布、乾燥後、カレンダー処理を行う。その際の塗布方法としては、磁性層と非磁性層をほぼ同時に塗布するWet on Wet法でも、非磁性下地層を塗布・乾燥後、その上に磁気記録層を塗布するWet on Dry法のどちらでもよい。また、必要により、バックコート層を設ける場合には、非磁性下地層及び磁気記録層とは反対面の非磁性支持体上にバックコート層用塗料を塗布、乾燥後、カレンダー処理を行い、磁気記録媒体を得る。   The nonmagnetic underlayer, the magnetic recording layer, and the backcoat layer are kneaded and dispersed with a kneader and a disperser that generally use components and solvents that constitute each layer, thereby preparing each paint. Using each of the coating materials, a nonmagnetic underlayer and a magnetic recording layer are applied in this order on one surface of the nonmagnetic support, dried, and then calendared. As a coating method at that time, either the Wet on Wet method in which the magnetic layer and the nonmagnetic layer are applied almost simultaneously, or the Wet on Dry method in which the nonmagnetic underlayer is applied and dried and then the magnetic recording layer is applied thereon. But you can. If necessary, if a backcoat layer is provided, a backcoat layer coating is applied on the nonmagnetic support opposite to the nonmagnetic underlayer and the magnetic recording layer, dried, calendered, and magnetically treated. A recording medium is obtained.

<作用>
本発明において最も重要な点は、本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、磁気記録媒体のノイズをより低減できると共に、磁気記録媒体の劣化を抑制することができるという事実である。
<Action>
The most important point in the present invention is the fact that the hexagonal ferrite particle powder for a magnetic recording medium according to the present invention can further reduce noise of the magnetic recording medium and suppress deterioration of the magnetic recording medium. .

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末が、磁気記録媒体のノイズをより低減できた理由について、本発明者は、次のように考えている。   The present inventor considers the reason why the hexagonal ferrite particle powder for magnetic recording media according to the present invention can further reduce the noise of the magnetic recording media as follows.

即ち、磁気記録媒体のノイズ低減には、単位体積当たりの磁性粒子粉末の密度を高めることが有効であり、磁性粒子の粒子体積を小さくする方法が知られている。磁性粒子の体積を小さくするためには磁性粒子粉末を微細化すればよいが、磁性粒子の粒子体積は、粒子サイズの2乗〜3乗倍の大きさで作用するため、平均粒子サイズが小さくても、粗大な磁性粒子の存在割合が多い場合にはノイズ低減効果が減少する。本発明においては、ノイズ低減に影響する粗大な六方晶フェライト粒子粉末の存在割合を3.0%以下とすることによって、磁気記録媒体のノイズ低減を達成できたものと本発明者は考えている。   That is, to reduce the noise of the magnetic recording medium, it is effective to increase the density of the magnetic particle powder per unit volume, and a method for reducing the particle volume of the magnetic particles is known. In order to reduce the volume of the magnetic particles, it is only necessary to refine the magnetic particle powder. However, since the particle volume of the magnetic particles acts as a square to a cube of the particle size, the average particle size is small. However, the noise reduction effect is reduced when the presence ratio of coarse magnetic particles is large. In the present invention, the present inventor believes that the noise reduction of the magnetic recording medium can be achieved by setting the proportion of coarse hexagonal ferrite particle powder that affects noise reduction to 3.0% or less. .

以下に、本発明における実施例を示し、本発明を具体的に説明する。   Examples of the present invention are shown below, and the present invention will be specifically described.

六方晶フェライト粒子粉末の平均板面径及び平均厚さは、透過型電子顕微鏡を用いて複数の視野において粒子の写真を撮影し、該写真を用いて粒子360個以上について板面径、厚さをそれぞれ測定し、その平均値で粒子の平均板面径及び平均厚さを示した。なお、平均板面径及び平均厚さを求める際の粒子の選定基準としては、粒子同士が重なっており、境界がはっきりしていないものは測定を行わないものとした。   The average plate surface diameter and average thickness of the hexagonal ferrite particle powder are obtained by taking a photograph of particles in a plurality of fields of view using a transmission electron microscope, and using the photograph, the plate surface diameter and thickness of 360 or more particles. Were measured, and the average plate surface diameter and average thickness of the particles were shown by their average values. In addition, as selection criteria of the particle | grains at the time of calculating | requiring an average board surface diameter and average thickness, the particle | grains have overlapped and the thing where the boundary is not clear shall not be measured.

六方晶フェライト粒子粉末の大粒子の存在割合は、前述の透過型電子顕微鏡を用いて撮影した複数の視野の写真から、粒子約1000個分以上の視野を選び、視野中の全粒子の個数を測定し、次いで、板面径が50nm又は40nmを超える大粒子の数を測定し、全粒子の個数に対する割合(%)で示した。   The ratio of the large particles in the hexagonal ferrite particles is determined by selecting a field of view of more than about 1000 particles from the above-mentioned photographs taken using the transmission electron microscope and calculating the number of all particles in the field of view. Then, the number of large particles having a plate surface diameter exceeding 50 nm or 40 nm was measured and expressed as a ratio (%) to the total number of particles.

板状比は、平均板面径と平均厚さとの比で示した。   The plate ratio was shown as the ratio between the average plate surface diameter and the average thickness.

比表面積は、「モノソーブMS−11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。   The specific surface area was shown by the value measured by BET method using “Monosorb MS-11” (manufactured by Kantachrome Co., Ltd.).

六方晶フェライト粒子粉末に含有される各種元素の含有量は、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。   The content of various elements contained in the hexagonal ferrite particle powder is measured using a “fluorescence X-ray analyzer 3063M type” (manufactured by Rigaku Denki Kogyo Co., Ltd.) according to “General X-ray fluorescence analysis rules” of JIS K0119. did.

六方晶フェライト粒子粉末に含有される白金族元素の含有量は、試料0.2gと王水10mlとを100mlのフッ素樹脂製ビーカーへ入れて攪拌し、240℃で20分保持して溶解させ、この溶液を「誘導結合プラズマ発光分光分析装置 SPS4000」(セイコー電子工業株式会社製)を用いて測定した。   The content of the platinum group element contained in the hexagonal ferrite particle powder is 0.2 g of sample and 10 ml of aqua regia placed in a 100 ml fluororesin beaker and stirred, and held at 240 ° C. for 20 minutes to dissolve, This solution was measured using an “inductively coupled plasma optical emission spectrometer SPS4000” (manufactured by Seiko Denshi Kogyo Co., Ltd.).

六方晶フェライト粒子粉末及び磁気テープの磁気特性は、「振動試料型磁力計VSM SSM−5−15」(東英工業株式会社製)を用いて外部磁場1193.7kA/mの条件で測定した。また、粉体SFD及び磁気テープのSFDは、印加磁場が0〜397.9kA/mの範囲ではスイープ速度を79.6(kA/m)/分とし、397.9〜1,193.7kA/mの範囲ではスイープ速度を397.9(kA/m)/分として測定した。   The magnetic properties of the hexagonal ferrite particle powder and the magnetic tape were measured using a “vibrating sample magnetometer VSM SSM-5-15” (manufactured by Toei Kogyo Co., Ltd.) under an external magnetic field of 1193.7 kA / m. The powder SFD and the SFD of the magnetic tape have a sweep speed of 79.6 (kA / m) / min when the applied magnetic field is in the range of 0 to 397.9 kA / m, and is 397.9 to 1,193.7 kA / min. In the range of m, the sweep rate was measured as 397.9 (kA / m) / min.

磁気テープの塗膜表面の光沢度は、「グロスメーター UGV−5D」(スガ試験機株式会社製)を用いて入射角45°で測定した値であり、標準板光沢を86.3%とした時の値を%で示したものである。   The glossiness of the coating film surface of the magnetic tape is a value measured at an incident angle of 45 ° using “Gloss meter UGV-5D” (manufactured by Suga Test Instruments Co., Ltd.), and the standard plate gloss is 86.3%. The hour value is shown in%.

表面粗度Raは、「ZYGO NewView600S」(ZYGO株式会社製)を用いて塗膜の中心線平均粗さを測定した。   Surface roughness Ra measured the centerline average roughness of the coating film using "ZYGO NewView600S" (made by ZYGO Corporation).

磁気記録媒体を構成する非磁性支持体及び磁気記録層の各層の厚みは、デジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて測定した。   The thickness of each of the nonmagnetic support and the magnetic recording layer constituting the magnetic recording medium was measured using a digital electronic micrometer K351C (manufactured by Anritsu Electric Co., Ltd.).

磁気テープの電磁変換特性は、ドラムテスターを用い、記録ヘッドにはMIGヘッドを、再生用ヘッドにはMRヘッドを用いて測定を行った。ヘッドと磁気テープとの相対速度は2.5m/secとし、記録周波数10MHzにおける再生信号出力(C)及び記録周波数9MHzにおける出力をノイズ信号出力(N)を、それぞれ後出比較例2−1を0dB(基準テープ)として、基準テープに対する相対値として求めた。またC/Nはこれら再生信号出力(C)とノイズ信号出力(N)を用いて示した。   The electromagnetic conversion characteristics of the magnetic tape were measured using a drum tester, a MIG head as a recording head, and an MR head as a reproducing head. The relative speed between the head and the magnetic tape is 2.5 m / sec. The reproduction signal output (C) at a recording frequency of 10 MHz and the output at a recording frequency of 9 MHz are noise signal outputs (N). The relative value with respect to the reference tape was determined as 0 dB (reference tape). C / N is shown using these reproduction signal output (C) and noise signal output (N).

磁気テープの劣化は、磁気テープを温度60℃、相対湿度90%の環境下で14日間保存し、保存前と保存後の磁気テープそれぞれについて、前述の電磁変換特性を測定したときと同様の条件で得られるエンベロープより、単位時間当たりのドロップアウトの個数をカウントし、保存前に対する保存後のドロップアウトの増加量で示した。   The deterioration of the magnetic tape is the same condition as when the magnetic tape was stored for 14 days in an environment of a temperature of 60 ° C. and a relative humidity of 90%, and the electromagnetic conversion characteristics were measured for each of the magnetic tape before and after storage. From the envelope obtained in step 1, the number of dropouts per unit time was counted and indicated by the amount of increase in dropout after storage compared to before storage.

<実施例1−1:磁気記録媒体用六方晶フェライト粒子粉末の製造>
BaCl・2HO 0.817mol、FeCl・6HO 6.00mol、NiCl 0.36mol、TiCl 0.18molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、80℃で6時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、フラックスとしてNaClを前記六方晶フェライト粒子の共沈物100重量部に対して30重量部添加し、ろ過・乾燥して共沈物を得た。
<Example 1-1: Production of hexagonal ferrite particle powder for magnetic recording medium>
Pure water was added and dissolved in 0.817 mol of BaCl 2 · 2H 2 O, 6.00 mol of FeCl 3 · 6H 2 O, 0.36 mol of NiCl 2 and 0.18 mol of TiCl 4 to prepare a 7 L mixed solution. Next, while stirring 5 L of 18.55 mol / L NaOH aqueous solution, the mixed solution was stirred at 200 mL / min. Was added to an aqueous NaOH solution at a flow rate of 80 ° C. and then reacted at 80 ° C. for 6 hours. Next, after sufficiently washing with pure water to make a 10 L slurry containing coprecipitate, 30 parts by weight of NaCl as a flux is added to 100 parts by weight of the coprecipitate of hexagonal ferrite particles, Filtration and drying gave a coprecipitate.

次いで、得られた共沈物を空気雰囲気下、690℃の温度で2時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、実施例1−1の六方晶フェライト粒子粉末を得た。   Subsequently, the obtained coprecipitate was baked at a temperature of 690 ° C. for 2 hours in an air atmosphere, and 1 L of pure water was added to the obtained baked product to obtain a dispersed slurry. The obtained slurry was adjusted to pH value 2 with hydrochloric acid and maintained for 60 minutes for acid treatment, adjusted to pH value 5 with aqueous sodium hydroxide solution, washed with water, filtered, dried, By pulverizing, the hexagonal ferrite particle powder of Example 1-1 was obtained.

得られた六方晶フェライト粒子粉末は板状であり、平均板面径は20.8nm、平均厚みは6.2nm、板状比は3.4、BET比表面積値(実測値)は77.5m/g、板面径が50nm以上の大粒子の存在割合(>50nm)は0.26%、板面径が40nm以上の大粒子の存在割合(>40nm)は0.79%、白金族の含有量は1ppmであり、保磁力値(Hc)は203.3kA/m、飽和磁化(σs)は49.8Am/kgであった。 The obtained hexagonal ferrite particle powder has a plate shape, an average plate surface diameter of 20.8 nm, an average thickness of 6.2 nm, a plate ratio of 3.4, and a BET specific surface area value (measured value) of 77.5 m. 2 / g, the abundance of large particles with a plate surface diameter of 50 nm or more (> 50 nm) is 0.26%, the abundance of large particles with a plate surface diameter of 40 nm or more (> 40 nm) is 0.79%, platinum group The coercive force value (Hc) was 203.3 kA / m, and the saturation magnetization (σs) was 49.8 Am 2 / kg.

<実施例2−1:磁気記録媒体の製造>
非磁性下地層形成用の非磁性塗料組成
非磁性下地層用ヘマタイト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 11.8重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 11.8重量部、
シクロヘキサノン 78.3重量部、
メチルエチルケトン 195.8重量部、
トルエン 117.5重量部、
硬化剤(ポリイソシアネート) 3.0重量部、
潤滑剤(ブチルステアレート) 1.0重量部。
<Example 2-1: Production of magnetic recording medium>
Nonmagnetic coating composition for nonmagnetic underlayer formation 100.0 parts by weight of hematite particle powder for nonmagnetic underlayer,
11.8 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
11.8 parts by weight of a polyurethane resin having a sodium sulfonate group,
78.3 parts by weight of cyclohexanone,
195.8 parts by weight of methyl ethyl ketone,
117.5 parts by weight of toluene,
Curing agent (polyisocyanate) 3.0 parts by weight,
Lubricant (butyl stearate) 1.0 part by weight.

非磁性下地層用ヘマタイト粒子粉末と結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が72wt%となるよう混合し、自動乳鉢を用いて30分間混練して混練物を得た。   A non-magnetic underlayer hematite particle powder, a binder resin solution (vinyl chloride copolymer resin having potassium sulfonate group 30 wt% and cyclohexanone 70 wt%) and cyclohexanone are mixed so that the solid content is 72 wt%; A kneaded product was obtained by kneading for 30 minutes using an automatic mortar.

次いで、上記非磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って非磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、非磁性下地層用非磁性塗料を調整した。   Next, the kneaded product and an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)) so that the nonmagnetic coating composition is obtained. , Cyclohexanone, methyl ethyl ketone and 95 g of toluene 1.5 mmφ glass beads were added to a 140 ml glass bottle and mixed and dispersed for 6 hours with a paint shaker to obtain a nonmagnetic coating composition. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a nonmagnetic paint for a nonmagnetic underlayer.

上記非磁性下地層用非磁性塗料を厚さ4.5μmの芳香族ポリアミドフィルム上に塗布し、次いで、乾燥させることにより非磁性下地層を形成した。   The nonmagnetic coating for the nonmagnetic underlayer was applied onto an aromatic polyamide film having a thickness of 4.5 μm, and then dried to form a nonmagnetic underlayer.

磁気記録層形成用の磁性塗料組成
六方晶フェライト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 12.5重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 7.5重量部、
研磨剤(AKP−50) 5.0重量部、
カーボンブラック 2.0重量部、
潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2) 3.0重量部、
硬化剤(ポリイソシアネート) 5.0重量部、
シクロヘキサノン 170.0重量部、
メチルエチルケトン 170.0重量部。
Magnetic coating composition for magnetic recording layer formation Hexagonal ferrite particle powder 100.0 parts by weight,
12.5 parts by weight of a vinyl chloride copolymer resin having a potassium sulfonate group,
7.5 parts by weight of a polyurethane resin having a sodium sulfonate group,
Abrasive (AKP-50) 5.0 parts by weight,
2.0 parts by weight of carbon black,
Lubricant (myristic acid: butyl stearate = 1: 2) 3.0 parts by weight,
Curing agent (polyisocyanate) 5.0 parts by weight,
170.0 parts by weight of cyclohexanone,
170.0 parts by weight of methyl ethyl ketone.

六方晶フェライト粒子粉末と研磨剤、カーボンブラック、結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が76wt%となるよう混合し、自動乳鉢を用いて40分間混練して混練物を得た。   Hexagonal ferrite particles, abrasive, carbon black, binder resin solution (30% by weight of vinyl chloride copolymer resin having potassium sulfonate group and 70% by weight of cyclohexanone) and cyclohexanone so that the solid content becomes 76% by weight. They were mixed and kneaded for 40 minutes using an automatic mortar to obtain a kneaded product.

次いで、上記磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って非磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、磁気記録層用磁性塗料を調整した。   Next, the kneaded product and an additional binder resin solution (30% by weight of a polyurethane resin having a sodium sulfonate group, 70% by weight of a solvent (methyl ethyl ketone: toluene = 1: 1)) so that the magnetic coating composition is obtained, The mixture was added to a 140 ml glass bottle together with 95 g of cyclohexanone, methyl ethyl ketone and toluene 1.5 mmφ glass beads, and mixed and dispersed for 6 hours with a paint shaker to obtain a nonmagnetic coating composition. Thereafter, a lubricant and a curing agent were added, and further mixed and dispersed for 15 minutes with a paint shaker, followed by filtration using a filter having an average pore diameter of 3 μm to prepare a magnetic coating material for a magnetic recording layer.

上記磁気記録層用塗料を、乾燥後の厚さが1.5μmになるよう前記非磁性下地層の上に塗布した後、磁場中において配向・乾燥した。その後、60℃で24時間硬化反応を行い、12.7mm幅にスリットして磁気記録媒体を得た。   The magnetic recording layer coating composition was applied on the nonmagnetic underlayer so that the thickness after drying was 1.5 μm, and then oriented and dried in a magnetic field. Thereafter, a curing reaction was performed at 60 ° C. for 24 hours, and a magnetic recording medium was obtained by slitting to a width of 12.7 mm.

得られた磁気記録媒体は、保磁力値Hcが212.9kA/m、Br/Bmが0.82、保磁力分布SFDが0.58、光沢度が173%、表面粗度Raが10.3nmであり、再生出力(C)が+1.3dB、C/Nが2.5dB、ドロップアウトの増加量が2個/msecであった。   The obtained magnetic recording medium had a coercive force value Hc of 212.9 kA / m, a Br / Bm of 0.82, a coercive force distribution SFD of 0.58, a glossiness of 173%, and a surface roughness Ra of 10.3 nm. The reproduction output (C) was +1.3 dB, C / N was 2.5 dB, and the amount of increase in dropout was 2 / msec.

前記実施例1−1及び実施例2−1に従って六方晶フェライト粒子粉末及び磁気記録媒体を作製した。各製造条件及び得られた六方晶フェライト粒子粉末及び磁気記録媒体の諸特性を示す。   A hexagonal ferrite particle powder and a magnetic recording medium were prepared according to Example 1-1 and Example 2-1. Various production conditions and various properties of the obtained hexagonal ferrite particle powder and magnetic recording medium are shown.

実施例1−2:
BaCl・2HO 0.817mol、FeCl・6HO 6.00mol、NiCl 0.36mol、TiCl 0.18molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、65℃で6時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、フラックスとしてNaClを前記六方晶フェライト粒子の共沈物100重量部に対して30重量部添加し、ろ過・乾燥して共沈物を得た。
Example 1-2:
Pure water was added and dissolved in 0.817 mol of BaCl 2 · 2H 2 O, 6.00 mol of FeCl 3 · 6H 2 O, 0.36 mol of NiCl 2 and 0.18 mol of TiCl 4 to prepare a 7 L mixed solution. Next, while stirring 5 L of 18.55 mol / L NaOH aqueous solution, the mixed solution was stirred at 200 mL / min. Was added to an aqueous NaOH solution at a flow rate of 5 ° C., followed by reaction at 65 ° C. for 6 hours. Next, after sufficiently washing with pure water to make a 10 L slurry containing coprecipitate, 30 parts by weight of NaCl as a flux is added to 100 parts by weight of the coprecipitate of hexagonal ferrite particles, Filtration and drying gave a coprecipitate.

次いで、得られた共沈物を空気雰囲気下、670℃の温度で2時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、実施例1−2の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。   Subsequently, the obtained coprecipitate was baked at a temperature of 670 ° C. for 2 hours in an air atmosphere, and 1 L of pure water was added to the obtained baked product to obtain a dispersed slurry. The obtained slurry was adjusted to pH value 2 with hydrochloric acid and maintained for 60 minutes for acid treatment, adjusted to pH value 5 with aqueous sodium hydroxide solution, washed with water, filtered, dried, By grinding, the hexagonal ferrite particle powder of Example 1-2 was obtained. Table 1 shows various properties of the obtained hexagonal ferrite particle powder.

実施例1−3:
BaCl・2HO 0.08mol、FeCl・6HO 0.60mol、NiCl 0.018mol、TiCl 0.018molに純水を加えて溶解し、0.7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液0.5Lを攪拌させながら、前記混合溶液を20mL/min.の流量で35分間かけてNaOH水溶液中に添加し、オートクレーブを用いて130℃で6時間反応を行った後、室温まで冷却した。
Example 1-3:
Pure water was added and dissolved in BaCl 2 .2H 2 O 0.08 mol, FeCl 3 .6H 2 O 0.60 mol, NiCl 2 0.018 mol, TiCl 4 0.018 mol to prepare a 0.7 L mixed solution. Next, while stirring 0.5 L of 18.55 mol / L NaOH aqueous solution, the mixed solution was added at 20 mL / min. Was added to an aqueous NaOH solution at a flow rate of 35 minutes, reacted at 130 ° C. for 6 hours using an autoclave, and then cooled to room temperature.

次に、得られた反応溶液を、純水を用いて十分に水洗して六方晶フェライト粒子の前駆体を含む1Lのスラリーとした後、塩酸を用いてpH値を8.5に調整し、超音波ホモジナイザー(BRANSON株式会社製SonifierII model 450D)を用いて10分間攪拌した後、フラックスとしてNaClを前記六方晶フェライト粒子の前駆体100重量部に対して30重量部添加し、ろ過・乾燥して六方晶フェライト粒子の前駆体を得た。   Next, the obtained reaction solution was sufficiently washed with pure water to obtain a 1 L slurry containing a precursor of hexagonal ferrite particles, and then the pH value was adjusted to 8.5 using hydrochloric acid, After stirring for 10 minutes using an ultrasonic homogenizer (Sonifier II model 450D manufactured by BRANSON Corporation), 30 parts by weight of NaCl as a flux is added to 100 parts by weight of the hexagonal ferrite particle precursor, filtered and dried. A precursor of hexagonal ferrite particles was obtained.

上記で得られた六方晶フェライト粒子の前駆体を、空気雰囲気下690℃の温度で120分焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、湿式粉砕後、塩酸を用いてpH値を2に調製して酸処理を行った後、水酸化ナトリウム水溶液を用いてpH値を5に調整し、水洗・ろ過・乾燥・粉砕して、実施例1−3の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。   The precursor of the hexagonal ferrite particles obtained above was calcined for 120 minutes at a temperature of 690 ° C. in an air atmosphere, and 1 L of pure water was added to the obtained calcined product to obtain a dispersed slurry. The obtained slurry was wet crushed, adjusted to pH value 2 with hydrochloric acid and acid-treated, adjusted to pH value 5 with aqueous sodium hydroxide solution, washed with water, filtered, dried, By grinding, the hexagonal ferrite particle powder of Example 1-3 was obtained. Table 1 shows various properties of the obtained hexagonal ferrite particle powder.

実施例1−4:
BaCl・2HO 0.810mol、FeCl・6HO 6.00mol、NiCl 0.24mol、TiCl 0.24molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、100℃で6時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、フラックスとしてNaClを前記六方晶フェライト粒子の共沈物100重量部に対して30重量部添加し、ろ過・乾燥して共沈物を得た。
Example 1-4:
Pure water was added and dissolved in 0.810 mol of BaCl 2 · 2H 2 O, 6.00 mol of FeCl 3 · 6H 2 O, 0.24 mol of NiCl 2 and 0.24 mol of TiCl 4 to prepare a 7 L mixed solution. Next, while stirring 5 L of 18.55 mol / L NaOH aqueous solution, the mixed solution was stirred at 200 mL / min. Was added to an aqueous NaOH solution at a flow rate of 1, and then reacted at 100 ° C. for 6 hours. Next, after sufficiently washing with pure water to make a 10 L slurry containing coprecipitate, 30 parts by weight of NaCl as a flux is added to 100 parts by weight of the coprecipitate of hexagonal ferrite particles, Filtration and drying gave a coprecipitate.

次いで、得られた共沈物を空気雰囲気下、710℃の温度で2時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、実施例1−4の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。   Subsequently, the obtained coprecipitate was baked at a temperature of 710 ° C. for 2 hours in an air atmosphere, and 1 L of pure water was added to the obtained baked product to obtain a dispersed slurry. The obtained slurry was adjusted to pH value 2 with hydrochloric acid and maintained for 60 minutes for acid treatment, adjusted to pH value 5 with aqueous sodium hydroxide solution, washed with water, filtered, dried, By grinding, the hexagonal ferrite particle powder of Example 1-4 was obtained. Table 1 shows various properties of the obtained hexagonal ferrite particle powder.

実施例1−5:
実施例1−1の六方晶フェライト粒子粉末200gと水1500mlとを用いて分散スラリーを調整し、水酸化ナトリウム水溶液を添加してpH値を9とした後、該スラリーに水を加えスラリー濃度を98g/lとした。このスラリー150Lを加熱して60℃とし、このスラリー中に1.0mol/lのアルミン酸ナトリウム溶液54.44ml(六方晶フェライト粒子粉末に対してAl換算で1.2重量%に相当する)を加え、30分間保持した後、酢酸を用いてpH値を9に調整した。この状態で30分間保持した後、濾過・水洗・乾燥・粉砕し、粒子表面がアルミニウムの水酸化物等により被覆されている実施例1−5の六方晶フェライト粒子粉末を得た。得られた粒子表面がアルミニウムの水酸化物等により被覆されている六方晶フェライト粒子粉末の諸特性を表1に示す。
Example 1-5:
A dispersion slurry was prepared using 200 g of hexagonal ferrite particle powder of Example 1-1 and 1500 ml of water, and after adding a sodium hydroxide aqueous solution to adjust the pH value to 9, water was added to the slurry to adjust the slurry concentration. The amount was 98 g / l. 150 L of this slurry was heated to 60 ° C., and 54.44 ml of 1.0 mol / l sodium aluminate solution (corresponding to 1.2% by weight in terms of Al with respect to hexagonal ferrite particle powder) was added to this slurry. In addition, after maintaining for 30 minutes, the pH value was adjusted to 9 using acetic acid. After maintaining for 30 minutes in this state, filtration, washing, drying, and pulverization were performed to obtain hexagonal ferrite particle powder of Example 1-5 in which the particle surface was coated with aluminum hydroxide or the like. Table 1 shows properties of the obtained hexagonal ferrite particle powder whose surface is coated with aluminum hydroxide or the like.

比較例1−1:
BaCl・2HO 1.134mol、FeCl・6HO 8.40mol、NiCl 0.336mol、TiCl 0.336molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、100℃で6時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、フラックスとしてNaClを前記六方晶フェライト粒子の共沈物100重量部に対して30重量部添加し、ろ過・乾燥して共沈物を得た。
Comparative Example 1-1
Pure water was added and dissolved in 1.134 mol of BaCl 2 · 2H 2 O, 8.40 mol of FeCl 3 · 6H 2 O, 0.336 mol of NiCl 2 and 0.336 mol of TiCl 4 to prepare a 7 L mixed solution. Next, while stirring 5 L of 18.55 mol / L NaOH aqueous solution, the mixed solution was stirred at 200 mL / min. Was added to an aqueous NaOH solution at a flow rate of 1, and then reacted at 100 ° C. for 6 hours. Next, after sufficiently washing with pure water to make a 10 L slurry containing coprecipitate, 30 parts by weight of NaCl as a flux is added to 100 parts by weight of the coprecipitate of hexagonal ferrite particles, Filtration and drying gave a coprecipitate.

次いで、得られた共沈物を空気雰囲気下、710℃の温度で2時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、比較例1−1の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。   Subsequently, the obtained coprecipitate was baked at a temperature of 710 ° C. for 2 hours in an air atmosphere, and 1 L of pure water was added to the obtained baked product to obtain a dispersed slurry. The obtained slurry was adjusted to pH value 2 with hydrochloric acid and maintained for 60 minutes for acid treatment, adjusted to pH value 5 with aqueous sodium hydroxide solution, washed with water, filtered, dried, By grinding, the hexagonal ferrite particle powder of Comparative Example 1-1 was obtained. Table 1 shows various properties of the obtained hexagonal ferrite particle powder.

ガラス結晶化法
比較例1−2:
BaCO 24.7mmol、HBO 34.1mmol、Fe 19.8mmol、Co 0.35mmol、ZnO 0.72mmol、Nb 0.28mmol、ZrO 0.42mmolを十分に混合し、白金ルツボに混合原料を入れて、1330℃で加熱溶融した後、(均質化した)溶融物を急冷(圧延)し、非晶質体を作製した。得られた非晶質体を600℃で3時間保持して六方晶フェライト結晶を析出させた。析出物を粉砕した後、10%の酢酸溶液中で、溶液温度を80℃以上に制御しながら、4時間攪拌し酸処理を行い、BaO及びBを溶解した。次いで、これらのBaO及びB成分並びに酸成分を除去するため水洗を繰り返した後、スラリーを乾燥させ、比較例1−2の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。
Glass crystallization method comparative example 1-2:
BaCO 3 24.7mmol, H 3 BO 3 34.1mmol, Fe 2 O 3 19.8mmol, Co 3 O 4 0.35mmol, ZnO 0.72mmol, Nb 2 O 5 0.28mmol, ZrO 2 0.42mmol enough The mixed raw material was put into a platinum crucible, heated and melted at 1330 ° C., and then the (homogenized) melt was quenched (rolled) to produce an amorphous body. The obtained amorphous body was kept at 600 ° C. for 3 hours to precipitate hexagonal ferrite crystals. After pulverizing the precipitate, acid treatment was performed by stirring for 4 hours in a 10% acetic acid solution while controlling the solution temperature at 80 ° C. or higher to dissolve BaO and B 2 O 3 . Subsequently, water washing was repeated to remove these BaO and B 2 O 3 components and the acid component, and then the slurry was dried to obtain hexagonal ferrite particle powder of Comparative Example 1-2. Table 1 shows various properties of the obtained hexagonal ferrite particle powder.

Figure 2011181161
Figure 2011181161

<磁気記録媒体の製造>
実施例2−2〜2−5、比較例2−1及び2−2:
六方晶フェライト粒子粉末の種類を種々変化させた以外は、前記実施例2−1の磁気記録媒体の作製方法に従って磁気テープを製造した。
<Manufacture of magnetic recording media>
Examples 2-2 to 2-5, comparative examples 2-1 and 2-2:
A magnetic tape was produced according to the method for producing a magnetic recording medium of Example 2-1 except that the type of hexagonal ferrite particle powder was variously changed.

得られた磁気テープの諸特性を表2に示す。   Table 2 shows the characteristics of the obtained magnetic tape.

Figure 2011181161
Figure 2011181161

上記実施例より、本発明によって得られた六方晶フェライト粒子粉末は、平均板面径が10〜30nmであり、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下であると共に、白金族元素の各元素の合計量が10ppm以下であることによって、これらを用いて得られた磁気記録媒体は、ノイズがより低減されていると共に、磁気記録媒体の劣化が抑制されていることがわかる。   From the above examples, the hexagonal ferrite particle powder obtained by the present invention has an average plate surface diameter of 10 to 30 nm, and the ratio of large particles having a plate surface diameter of 50 nm or more to the total particle is 3.0. %, And the total amount of each element of the platinum group element is 10 ppm or less, the magnetic recording medium obtained by using these elements has further reduced noise and the deterioration of the magnetic recording medium. It turns out that it is suppressed.

本発明に係る磁気記録媒体用六方晶フェライト粒子粉末は、平均板面径が10〜30nmであり、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下であって、白金族元素の各元素の合計量が10ppm以下であることにより、磁気記録媒体のノイズをより低減できると共に、磁気記録媒体の劣化を抑制することができるため、高密度磁気記録媒体の磁性粒子粉末として好適である。
The hexagonal ferrite particle powder for magnetic recording media according to the present invention has an average plate surface diameter of 10 to 30 nm, and the presence ratio of large particles having a plate surface diameter of 50 nm or more with respect to all particles is 3.0% or less. In addition, since the total amount of each element of the platinum group element is 10 ppm or less, noise of the magnetic recording medium can be further reduced and deterioration of the magnetic recording medium can be suppressed. Suitable as magnetic particle powder.

Claims (4)

六方晶フェライト粒子粉末の平均板面径が10〜30nmであり、全粒子に対して板面径が50nm以上の大粒子の存在割合が3.0%以下であると共に、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下であることを特徴とする磁気記録媒体用六方晶フェライト粒子粉末。 The hexagonal ferrite particle powder has an average plate surface diameter of 10 to 30 nm, and the ratio of large particles having a plate surface diameter of 50 nm or more to all particles is 3.0% or less. A hexagonal ferrite particle powder for a magnetic recording medium, wherein the total amount of each element of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) contained in is 10 ppm or less. 六方晶フェライト粒子粉末の平均板面径が10〜25nmであり、全粒子に対して板面径が40nm以上の大粒子の存在割合が3.0%以下であると共に、該六方晶フェライト粒子粉末に含有される白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)の各元素の合計量が10ppm以下であることを特徴とする磁気記録媒体用六方晶フェライト粒子粉末。 The hexagonal ferrite particle powder has an average plate surface diameter of 10 to 25 nm, the proportion of large particles having a plate surface diameter of 40 nm or more with respect to all particles is 3.0% or less, and the hexagonal ferrite particle powder. A hexagonal ferrite particle powder for a magnetic recording medium, wherein the total amount of each element of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum) contained in is 10 ppm or less. 保磁力(Hc)が95.5kA/m以上であることを特徴とする請求項1又は請求項2記載の磁気記録媒体用六方晶フェライト粒子粉末。 The hexagonal ferrite particle powder for a magnetic recording medium according to claim 1 or 2, wherein the coercive force (Hc) is 95.5 kA / m or more. 非磁性支持体上の上に形成される磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる磁気記録媒体において、前記磁性粒子粉末として請求項1乃至請求項3のいずれかに記載の磁気記録媒体用六方晶フェライト粒子粉末を用いることを特徴とする磁気記録媒体。 4. The magnetic recording medium according to claim 1, wherein the magnetic particle powder is a magnetic recording medium comprising a magnetic recording layer including a magnetic particle powder formed on a nonmagnetic support and a binder resin. A magnetic recording medium comprising a hexagonal ferrite particle powder for a recording medium.
JP2010047401A 2010-03-04 2010-03-04 Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium Active JP5305037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047401A JP5305037B2 (en) 2010-03-04 2010-03-04 Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047401A JP5305037B2 (en) 2010-03-04 2010-03-04 Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2011181161A true JP2011181161A (en) 2011-09-15
JP5305037B2 JP5305037B2 (en) 2013-10-02

Family

ID=44692514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047401A Active JP5305037B2 (en) 2010-03-04 2010-03-04 Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP5305037B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005300A (en) * 2004-06-21 2006-01-05 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic powder, its manufacturing method, and magnetic recording medium
JP2007099595A (en) * 2005-10-07 2007-04-19 Fujifilm Corp Hexagonal magnetoplumbite type ferrite, its production method and magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005300A (en) * 2004-06-21 2006-01-05 Fuji Photo Film Co Ltd Hexagonal ferrite magnetic powder, its manufacturing method, and magnetic recording medium
JP2007099595A (en) * 2005-10-07 2007-04-19 Fujifilm Corp Hexagonal magnetoplumbite type ferrite, its production method and magnetic recording medium

Also Published As

Publication number Publication date
JP5305037B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5403278B2 (en) Hexagonal ferrite particle powder and magnetic recording medium
JP5589348B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP2010147079A (en) Method of producing iron nitride-based magnetic powder, and iron nitride-based magnetic powder
JP5454037B2 (en) Method for producing hexagonal ferrite particle powder and magnetic recording medium
JP5712595B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JP5439861B2 (en) Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP5311074B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5446527B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5403242B2 (en) Hexagonal ferrite particles for magnetic recording media
JP5446478B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5305037B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5754091B2 (en) Method for producing hexagonal ferrite particle powder and method for producing magnetic recording medium
JP5457260B2 (en) Magnetic recording medium
JP6164396B2 (en) Spinel ferrimagnetic particle powder and magnetic recording medium for magnetic recording medium
JP6103172B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP5625364B2 (en) Method for producing hexagonal ferrite particle powder, hexagonal ferrite particle powder, and magnetic recording medium
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP2012119030A (en) Magnetic particle powder and magnetic recording medium
JP2010239067A (en) Magnetic fine particle powder for magnetic recording medium, and manufacturing method of the same
JP2010123607A (en) Method of manufacturing iron-nitride magnetic powder, and iron-nitride magnetic powder
JP2010033687A (en) Method of producing nonmagnetic particle powder for nonmagnetic under layer of magnetic recording medium, and magnetic recording medium
JP5316522B2 (en) Magnetic particle powder
JP5403241B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium
JP4352270B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250