JP2011175451A - Capacity detecting device - Google Patents

Capacity detecting device Download PDF

Info

Publication number
JP2011175451A
JP2011175451A JP2010038906A JP2010038906A JP2011175451A JP 2011175451 A JP2011175451 A JP 2011175451A JP 2010038906 A JP2010038906 A JP 2010038906A JP 2010038906 A JP2010038906 A JP 2010038906A JP 2011175451 A JP2011175451 A JP 2011175451A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
electrode
charge
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010038906A
Other languages
Japanese (ja)
Other versions
JP5422437B2 (en
Inventor
Yoshiki Kurokawa
能毅 黒川
Shigehiko Kasai
成彦 笠井
Akihito Akai
亮仁 赤井
Kazuo Daimon
一夫 大門
Tatsuya Ishii
達也 石井
Yutaka Miyagawa
裕 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Japan GK
Original Assignee
Renesas SP Drivers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas SP Drivers Inc filed Critical Renesas SP Drivers Inc
Priority to JP2010038906A priority Critical patent/JP5422437B2/en
Publication of JP2011175451A publication Critical patent/JP2011175451A/en
Application granted granted Critical
Publication of JP5422437B2 publication Critical patent/JP5422437B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the effect of noise in a capacity detecting device such as a capacitive type touch panel susceptible to the effect of external noise. <P>SOLUTION: When electric charges charged in an electrode unit is introduced to and accumulated in a capacitor (202) more than once by electric charge redistribution, the capacitor is at first precharged in a changing direction of voltage due to accumulation of the charge. Further, in the course of operation to accumulate the charge more than once, the voltage by the accumulated charge of the capacitor is shifted in a direction reverse to the case of precharging and then the operation of accumulation is continued. By introducing the charged electric charges into the precharged capacitor, the variation of voltage produced in the capacitor due to each charge shift is reduced. During the course, the capacitor is subjected to voltage shift and then introduction of the charged electric charge is restarted, so that an amount of charged electric charges that can be accumulated in the capacitor can be increased as a whole. By respective steps, an averaged capacitance detection result can be obtained without being controlled by noise at specific time when the charged electric charges are introduced into the capacitor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は被検出体の接近又は接触により変化される容量を検出する容量検出装置に関し、例えば液晶ディスプレイ(LCD)に重ねて配置されて使用される静電容量型のタッチセンサ装置に適用して有効な技術に関する。   The present invention relates to a capacitance detection device that detects a capacitance that is changed by the approach or contact of an object to be detected. For example, the present invention is applied to a capacitive touch sensor device that is used by being superimposed on a liquid crystal display (LCD). It relates to effective technology.

透明導電膜(ITO)で形成される電極容量の、指等のタッチによる変動を検出する、静電容量型タッチパネルにおいて、容量の変動を検出する方式として、外部電源からタッチパネルの電極容量へチャージし、チャージされた電荷を外部の検出容量に移動する方式が一般的である。   In a capacitive touch panel that detects changes in the capacitance of electrodes made of transparent conductive film (ITO) due to touch of a finger, etc., as a method of detecting the change in capacitance, charging is performed from the external power supply to the electrode capacitance of the touch panel. In general, the charged charge is transferred to an external detection capacitor.

この電荷移動を利用した方法として、外部電源を電圧源とし、検出容量への電荷移動量を電圧として計測することにより電極容量の変動を検出する方式が特許文献1に、外部電源を電流源とし、検出容量への電荷移動の時間を計測することにより電極容量の変動を検出する方式が特許文献2に開示されている。   As a method using this charge transfer, Patent Document 1 discloses a method of detecting a change in electrode capacitance by measuring an external power supply as a voltage source and measuring a charge transfer amount to the detection capacitor as a voltage, and using an external power supply as a current source. Japanese Patent Application Laid-Open No. 2004-228688 discloses a method of detecting a change in electrode capacitance by measuring the time of charge transfer to the detection capacitor.

米国特許第7312616号明細書U.S. Pat. No. 7,31,616 米国特許第5730165号明細書US Pat. No. 5,730,165

外部電源からタッチパネルの電極容量へチャージし、チャージされた電荷を外部の検出容量に移動する方式では、1回の検出サイクルに上記チャージと電荷移動を複数回繰り返すことによって、検出信号量が大きくなると共に特定回の電荷移動によるノイズの影響が相対的に小さく見えるようになる。   In the method of charging the electrode capacitance of the touch panel from an external power source and transferring the charged charge to an external detection capacitor, the amount of detection signal increases by repeating the above charge and charge transfer multiple times in one detection cycle. At the same time, the influence of noise due to the specific charge transfer appears to be relatively small.

しかしながら、上記特許文献の技術は、電極容量測定のために移動する電荷量が移動回数により減少していくため、測定結果には1回目の移動時の電圧が支配的になる。要するに、チャージされた電荷を電荷再配分によって検出容量に移動する動作を繰り返して検出容量に累積していくから、当然第1回目のチャージシェアで蓄積される電荷量が大きくなる。電極への接触による電極容量の変化は微小で、外部ノイズの影響を受けやすいため、複数回の電荷移動により1回の電荷移動での重畳ノイズを平均化する効果が考えられるが、前述のように特定の電荷移動が最終的に測定する電圧に対し支配的になると、平均化効果が低下し特定回のノイズの影響を受けやすくなることが本発明者によって明らかにされた。   However, in the technique of the above-mentioned patent document, since the amount of charge that moves for electrode capacitance measurement decreases with the number of movements, the voltage during the first movement is dominant in the measurement result. In short, the operation of moving the charged charge to the detection capacitor by charge redistribution is repeated and accumulated in the detection capacitor, so that naturally the amount of charge accumulated in the first charge share increases. The change in the electrode capacitance due to the contact with the electrode is very small and easily affected by external noise. Therefore, the effect of averaging the superimposed noise in one charge movement by a plurality of charge movements can be considered. It has been clarified by the present inventor that if the specific charge transfer becomes dominant with respect to the voltage to be finally measured, the averaging effect is lowered and the influence of the noise of a specific time becomes more likely.

本発明はこれらの問題点に鑑みてなされたものであり、外部ノイズの影響を受けやすい静電容量型のタッチパネル等の容量検出装置において、ノイズの影響を軽減することを目的とする。   The present invention has been made in view of these problems, and an object of the present invention is to reduce the influence of noise in a capacitance detection device such as a capacitive touch panel that is easily affected by external noise.

本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。   The following is a brief description of an outline of typical inventions disclosed in the present application.

すなわち、電極部へ充電された電荷を電荷再配分によって複数回キャパシタに取り込んで累積するとき、最初にキャパシタを電荷の累積による電圧の変化方向にプリチャージする。また、複数回累積する動作の途中で、キャパシタの蓄積電荷による電圧をプリチャージの場合とは逆方向にシフトしてから累積する動作を継続する。   That is, when the charge charged in the electrode portion is taken into the capacitor a plurality of times by charge redistribution and accumulated, the capacitor is first precharged in the direction of voltage change due to the accumulation of charge. Further, during the operation of accumulating a plurality of times, the operation of accumulating is continued after shifting the voltage due to the accumulated charge of the capacitor in the direction opposite to that in the case of precharging.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

すなわち、プリチャージしたキャパシタに充電電荷を取り込むことにより各々の電荷移動でキャパシタに生じる電圧のばらつきが小さくなる。途中でキャパシタを電圧シフトしてから充電電荷の取り込みを再開することにより、キャパシタに累積できる充電電荷量を全体的に多くすることができる。それぞれにより、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることが可能になる。   That is, by taking charge charge into the precharged capacitor, the variation in voltage generated in the capacitor due to each charge movement is reduced. By restarting the charge charge capture after shifting the voltage of the capacitor in the middle, the amount of charge charge that can be accumulated in the capacitor can be increased as a whole. With each of them, it is possible to obtain an averaged capacitance detection result without being controlled by noise of a specific number of times when charging charge is taken into the capacitor.

図1は本発明の一実施の形態に係るタッチセンサ装置を適用したLCD表示装置のブロック図である。FIG. 1 is a block diagram of an LCD display device to which a touch sensor device according to an embodiment of the present invention is applied. 図2は図1の静電容量型タッチパネルの内部構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the internal configuration of the capacitive touch panel of FIG. 図3は図1のタッチパネル駆動ユニット内蔵データ線駆動ユニットの内部構成を例示するブロック図である。FIG. 3 is a block diagram illustrating the internal configuration of the data line drive unit with a built-in touch panel drive unit of FIG. 図4は図3の容量差分検出部の内部構成を例示する論理回路図である。FIG. 4 is a logic circuit diagram illustrating the internal configuration of the capacity difference detection unit of FIG. 図5は図2記載の静電容量タッチパネルの各々の菱形電極が持つ容量に対して、指で触ったとき(タッチ)の容量変化を等価的に示した説明図である。FIG. 5 is an explanatory diagram equivalently showing a change in capacitance when touched with a finger (touch) with respect to the capacitance of each rhomboid electrode of the capacitive touch panel shown in FIG. 図6は図4記載の第1X電極線第1選択スイッチ51〜第10Y電極線第1選択スイッチ54、および第1X電極線第2選択スイッチ60〜第10Y電極線第2選択スイッチ63、第1電極線非選択スイッチ69〜第10Y電極線非選択スイッチ72の動作の詳細を例示するタイミングチャートである。6 shows the first X electrode line first selection switch 51 to the 10th Y electrode line first selection switch 54, the first X electrode line second selection switch 60 to the 10th Y electrode line second selection switch 63, and the first X line shown in FIG. 12 is a timing chart illustrating details of operations of an electrode line non-select switch 69 to a 10th Y electrode line non-select switch 72; 図7は図4記載の第1X電極線非選択スイッチ69〜第10Y電極線非選択スイッチ72の動作の詳細を例示するタイミングチャートである。FIG. 7 is a timing chart illustrating details of the operation of the first X electrode line non-select switch 69 to the 10th Y electrode line non-select switch 72 shown in FIG. 図8は図4の第1電圧変換回路の内部構成を例示する回路図である。FIG. 8 is a circuit diagram illustrating the internal configuration of the first voltage conversion circuit of FIG. 図9は図8で示した容量検出回路の動作を逐次的に示す第1の動作説明図である。FIG. 9 is a first operation explanatory diagram sequentially showing the operation of the capacitance detection circuit shown in FIG. 図10は図8で示した容量検出回路の動作を逐次的に示す第2の動作説明図である。FIG. 10 is a second operation explanatory diagram sequentially showing the operation of the capacitance detection circuit shown in FIG. 図11は図8で示した容量検出回路の動作を逐次的に示す第3の動作説明図である。FIG. 11 is a third operation explanatory diagram sequentially showing the operation of the capacitance detection circuit shown in FIG. 図12は図8で示した容量検出回路の動作を逐次的に示す第4の動作説明図である。FIG. 12 is a fourth operation explanatory diagram sequentially showing the operation of the capacitance detection circuit shown in FIG. 図13は図8で示した容量検出回路の動作を逐次的に示す第5の動作説明図である。FIG. 13 is a fifth operation explanatory diagram sequentially showing the operation of the capacitance detection circuit shown in FIG. 図14は図8で示した容量検出回路の動作を逐次的に示す第6の動作説明図である。FIG. 14 is a sixth operation explanatory diagram sequentially showing the operation of the capacitance detection circuit shown in FIG. 図15には図8で示した容量検出回路の動作タイミングが例示するタイミングチャートである。FIG. 15 is a timing chart illustrating the operation timing of the capacitance detection circuit shown in FIG. 図16は図8の電圧変換部85,87を用いて取り込み容量202のプリチャージ及び電圧シフトを行ったときの電荷の蓄積波形を例示する動作説明図である。FIG. 16 is an operation explanatory diagram illustrating an accumulation waveform of charges when the precharge and voltage shift of the capture capacitor 202 are performed using the voltage converters 85 and 87 of FIG. 図17はプリチャージ及び電圧シフトの何れも行わなかったときの電荷の蓄積波形を例示する比較動作例の説明図である。FIG. 17 is an explanatory diagram of a comparative operation example illustrating a charge accumulation waveform when neither precharge nor voltage shift is performed.

1.実施の形態の概要
先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。
1. First, an outline of a typical embodiment of the invention disclosed in the present application will be described. Reference numerals in the drawings referred to in parentheses in the outline description of the representative embodiments merely exemplify what are included in the concept of the components to which the reference numerals are attached.

〔1〕本発明の代表的な実施の形態に係る容量検出装置は、被検出体の接近又は接触により容量変化を起こす電極部(15,201)と、前記電極部へ充電された電荷を電荷再配分によって所定複数回取り込んで累積するキャパシタ(202)と、前記キャパシタに累積された電荷により生ずる電圧を測定する測定部(89,91)と、を有し、前記キャパシタは、前記電荷の累積による電圧の変化方向にプリチャージされてから前記電荷を取り込んで累積する動作が開始される。   [1] A capacitance detection device according to a typical embodiment of the present invention includes an electrode portion (15, 201) that causes a capacitance change due to the approach or contact of a detection target, and charge that is charged to the electrode portion. A capacitor (202) that captures and accumulates a plurality of times by redistribution, and a measurement unit (89, 91) that measures a voltage generated by the charge accumulated in the capacitor, wherein the capacitor accumulates the charge The operation of taking in and accumulating the charge is started after being precharged in the direction of voltage change due to.

プリチャージしたキャパシタに充電電荷を取り込むことにより各々の電荷移動でキャパシタに生じる電圧のばらつきが小さくなる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   By taking charge charge into the precharged capacitor, the variation in voltage generated in the capacitor by each charge movement is reduced. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔2〕項1の容量検出装置において、前記キャパシタは、前記電荷の累積による電圧の変化方向にプリチャージされてから前記電荷を取り込んで累積する動作が開始された後、途中で、蓄積電荷を維持した状態で前記電荷の累積による電圧の変化方向とは逆方向に電圧シフトされる。   [2] In the capacitance detection device according to [1], after the capacitor is precharged in the direction of voltage change due to the accumulation of the charge and starts the operation of taking in and accumulating the charge, In the maintained state, the voltage is shifted in the direction opposite to the direction of voltage change due to the accumulation of the charges.

途中でキャパシタを電圧シフトしてから充電電荷の取り込みを再開することにより、キャパシタに累積できる充電電荷量を全体的に多くすることができる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   By restarting the charge charge capture after shifting the voltage of the capacitor in the middle, the amount of charge charge that can be accumulated in the capacitor can be increased as a whole. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔3〕本発明の別の実施の形態に係る容量検出装置は、被検出体の接近又は接触により容量変化を起こす電極部と、前記電極部へ充電された電荷を電荷再配分によって所定複数回取り込んで累積するキャパシタと、前記キャパシタに累積された電荷により生ずる電圧を測定する測定部と、を有し、前記キャパシタは、前記電荷を取り込んで累積する動作が開始された後、途中で、蓄積電荷を維持した状態で前記電荷の累積による電圧の変化方向とは逆方向に電圧シフトされる。   [3] A capacity detection device according to another embodiment of the present invention includes an electrode section that causes a capacity change due to the approach or contact of a detection target, and a charge charged to the electrode section a predetermined number of times by charge redistribution. A capacitor that captures and accumulates; and a measurement unit that measures a voltage generated by the charge accumulated in the capacitor. The capacitor accumulates in the middle after the operation of capturing and accumulating the charge is started. In a state where the electric charge is maintained, the voltage is shifted in the direction opposite to the voltage changing direction due to the accumulation of the electric charge.

途中でキャパシタを電圧シフトしてから充電電荷の取り込みを再開することにより、キャパシタに累積できる充電電荷量を全体的に多くすることができる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   By restarting the charge charge capture after shifting the voltage of the capacitor in the middle, the amount of charge charge that can be accumulated in the capacitor can be increased as a whole. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔4〕項3の容量検出装置において、前記キャパシタは、前記電荷を取り込んで累積する動作が開始され前に、前記電荷の累積による電圧の変化方向にプリチャージされる。   [4] In the capacitance detecting device according to item 3, the capacitor is precharged in the direction of voltage change due to the accumulation of the charges before the operation of taking in and accumulating the charges is started.

プリチャージしたキャパシタに充電電荷を取り込むことにより各々の電荷移動でキャパシタに生じる電圧のばらつきが小さくなる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   By taking charge charge into the precharged capacitor, the variation in voltage generated in the capacitor by each charge movement is reduced. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔5〕本発明の別の実施の形態に係る容量検出装置は、被検出体の接近又は接触により容量変化を起こす電極部(15,201)と、前記電極部へ充電された電荷を所定複数回取り込んで累積するキャパシタ(202)と、前記電極部に接続される前記キャパシタの第1キャパシタ電極(202a)とは反対側の第2キャパシタ電極(202b)に選択的に接続される複数の電圧ノード(NDa,NDb)と、前記第2キャパシタ電極に接続する前記電圧ノードを切換える切換え回路(301,303,45)と、前記第1キャパシタ電極に得られる電圧を測定する測定部(89,91)と、を有する。   [5] A capacity detection device according to another embodiment of the present invention includes an electrode section (15, 201) that causes a capacity change due to the approach or contact of a detection target, and a predetermined plurality of charges charged in the electrode section. A plurality of voltages selectively connected to the capacitor (202) that accumulates and accumulates and the second capacitor electrode (202b) opposite to the first capacitor electrode (202a) of the capacitor connected to the electrode portion. A node (NDa, NDb), a switching circuit (301, 303, 45) for switching the voltage node connected to the second capacitor electrode, and a measuring unit (89, 91) for measuring the voltage obtained at the first capacitor electrode And).

前記第2キャパシタ電極に対する電圧ノードの接続が切換え可能にされることにより、前記キャパシタに対する電荷初期状態や電荷保持状態におけるキャパシタ電極の電圧シフト操作が可能になる。   Since the connection of the voltage node to the second capacitor electrode can be switched, the voltage shift operation of the capacitor electrode in the charge initial state and the charge holding state with respect to the capacitor can be performed.

〔6〕項5の容量検出装置において、前記切換え回路は、前記第1キャパシタ電極を第1電圧(Vss)に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧(−V)に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記電極部の充電電荷を前記キャパシタに累積する動作を開始させる。   [6] In the capacitance detection device according to item 5, the switching circuit connects the first capacitor electrode to a first voltage (Vss) and connects the second capacitor electrode to a second voltage (level lower than the first voltage). -V) to perform the initialization, cut off the application of the first voltage to the first capacitor electrode after the initialization, and switch the connection to the second capacitor electrode to the first voltage, The operation of accumulating the charge of the electrode portion in the capacitor is started.

キャパシタをプリチャージしてから充電電荷を取り込むことができ、各々の電荷移動でキャパシタに生じる電圧のばらつきが小さくなる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   The charge can be taken in after the capacitor is precharged, and the variation in voltage generated in the capacitor by each charge movement is reduced. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔7〕項5の容量検出装置において、前記切換え回路は、前記第2キャパシタ電極を第1電圧に接続して、前記電極部の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を前記第1電圧よりもレベルの低い第2電圧に切換えてから、前記電極部の充電電荷を前記キャパシタに累積する動作を継続させる。   [7] In the capacitance detection device according to [5], the switching circuit connects the second capacitor electrode to the first voltage, starts an operation of accumulating the charge of the electrode unit in the capacitor, and accumulates the same. In the middle of the operation, the connection to the second capacitor electrode is switched to the second voltage having a level lower than the first voltage, and then the operation of accumulating the charged charge of the electrode portion in the capacitor is continued.

途中でキャパシタを電圧シフトしてから充電電荷の取り込みを再開することにより、キャパシタに累積できる充電電荷量を全体的に多くすることができる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   By restarting the charge charge capture after shifting the voltage of the capacitor in the middle, the amount of charge charge that can be accumulated in the capacitor can be increased as a whole. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔8〕項5の容量検出装置において、前記切換え回路は、前記第1キャパシタ電極を第1電圧に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記電極部の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を第2電圧に切換えてから、前記電極部の充電電荷を前記キャパシタに累積する動作を継続させる。   [8] In the capacitance detection device according to [5], the switching circuit connects the first capacitor electrode to a first voltage and connects the second capacitor electrode to a second voltage lower in level than the first voltage. The initialization is performed, and after the initialization, the application of the first voltage to the first capacitor electrode is cut off, and the connection to the second capacitor electrode is switched to the first voltage, and the charge of the electrode unit is The operation of accumulating in the capacitor is started, and during the accumulation operation, the connection to the second capacitor electrode is switched to the second voltage, and then the operation of accumulating the charged charge of the electrode unit in the capacitor is continued. .

キャパシタをプリチャージしてから充電電荷を取り込むことができ、且つ、途中でキャパシタを電圧シフトしてから充電電荷の取り込みを再開することにより、キャパシタに累積できる充電電荷量を全体的に多くすることができる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   The charge charge can be taken after precharging the capacitor, and the charge charge that can be accumulated in the capacitor is increased overall by restarting the charge charge capture after shifting the voltage of the capacitor in the middle. Can do. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔9〕本発明の更に別の実施の形態に係る容量検出装置は、被検出体の接近又は接触により容量変化を起こす複数の容量電極(18,19)によって構成された静電容量型タッチパネル(15)と、前記容量電極へ充電された電荷を所定複数回取り込んで累積するキャパシタ(202)と、前記容量電極に接続される前記キャパシタの第1キャパシタ電極(202a)とは反対側の第2キャパシタ電極(202b)に選択的に接続される複数の電圧ノード(NDa,NDb)と、前記第2キャパシタ電極に接続する前記電圧ノードを切換える切換え回路(301,303,45)と、前記第1キャパシタ電極に得られる電圧を測定する測定部(89,91)と、を有する。   [9] A capacitance detection device according to still another embodiment of the present invention is a capacitive touch panel (18, 19) configured by a plurality of capacitance electrodes (18, 19) that cause a capacitance change by the approach or contact of a detection target. 15), a capacitor (202) for taking in and accumulating charges charged in the capacitor electrode a predetermined number of times, and a second capacitor electrode (202a) opposite to the first capacitor electrode (202a) connected to the capacitor electrode. A plurality of voltage nodes (NDa, NDb) selectively connected to the capacitor electrode (202b); a switching circuit (301, 303, 45) for switching the voltage node connected to the second capacitor electrode; And a measurement unit (89, 91) for measuring a voltage obtained at the capacitor electrode.

前記第2キャパシタ電極に対する電圧ノードの接続が切換え可能にされることにより、前記キャパシタに対する電荷初期状態や電荷保持状態におけるキャパシタ電極の電圧シフト操作が可能になる。   Since the connection of the voltage node to the second capacitor electrode can be switched, the voltage shift operation of the capacitor electrode in the charge initial state and the charge holding state with respect to the capacitor can be performed.

〔10〕項9の容量検出装置において、前記切換え回路は、前記第1キャパシタ電極を第1電圧(Vss)に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧(−V)に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記容量電極の充電電荷を前記キャパシタに累積する動作を開始させる。   [10] In the capacitance detection device of item 9, the switching circuit connects the first capacitor electrode to a first voltage (Vss) and connects the second capacitor electrode to a second voltage (level lower than the first voltage). -V) to perform the initialization, cut off the application of the first voltage to the first capacitor electrode after the initialization, and switch the connection to the second capacitor electrode to the first voltage, The operation of accumulating the charge on the capacitor electrode in the capacitor is started.

キャパシタをプリチャージしてから充電電荷を取り込むことができ、各々の電荷移動でキャパシタに生じる電圧のばらつきが小さくなる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   The charge can be taken in after the capacitor is precharged, and the variation in voltage generated in the capacitor by each charge movement is reduced. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔11〕項9の容量検出装置において、前記切換え回路は、前記第2キャパシタ電極を第1電圧に接続して、前記容量電極の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を前記第1電圧よりもレベルの低い第2電圧に切換えてから、前記容量電極の充電電荷を前記キャパシタに累積する動作を継続させる。   [11] In the capacitance detection device of item 9, the switching circuit connects the second capacitor electrode to the first voltage, starts an operation of accumulating the charge of the capacitance electrode in the capacitor, and accumulates the same. In the middle of the operation, the connection to the second capacitor electrode is switched to the second voltage having a level lower than the first voltage, and then the operation of accumulating the charge on the capacitor electrode in the capacitor is continued.

途中でキャパシタを電圧シフトしてから充電電荷の取り込みを再開することにより、キャパシタに累積できる充電電荷量を全体的に多くすることができる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   By restarting the charge charge capture after shifting the voltage of the capacitor in the middle, the amount of charge charge that can be accumulated in the capacitor can be increased as a whole. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

〔12〕項9の容量検出装置において、前記切換え回路は、前記第1キャパシタ電極を第1電圧に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記容量電極の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を第2電圧に切換えてから、前記容量電極の充電電荷を前記キャパシタに累積する動作を継続させる。   [12] In the capacitance detection device of item 9, the switching circuit connects the first capacitor electrode to a first voltage and connects the second capacitor electrode to a second voltage having a level lower than the first voltage. Performing the initialization, cutting off the application of the first voltage to the first capacitor electrode and switching the connection to the second capacitor electrode to the first voltage after the initialization, The operation of accumulating in the capacitor is started, and during the accumulation operation, the connection to the second capacitor electrode is switched to the second voltage, and then the operation of accumulating the charge of the capacitor electrode in the capacitor is continued. .

キャパシタをプリチャージしてから充電電荷を取り込むことができ、且つ、途中でキャパシタを電圧シフトしてから充電電荷の取り込みを再開することにより、キャパシタに累積できる充電電荷量を全体的に多くすることができる。これは、キャパシタに充電電荷を取り込む特定回のノイズに支配されずに平均化された容量検出結果を得ることを可能にする。   The charge charge can be taken after precharging the capacitor, and the charge charge that can be accumulated in the capacitor is increased overall by restarting the charge charge capture after shifting the voltage of the capacitor in the middle. Can do. This makes it possible to obtain an averaged capacitance detection result without being governed by a specific number of noises that take charge charges into the capacitor.

2.実施の形態の詳細
実施の形態について更に詳述する。
2. Details of Embodiments Embodiments will be further described in detail.

図1は本発明の一実施の形態に係るタッチセンサ装置を適用したLCD表示装置の例である。図1において、1は水平同期信号、2は垂直同期信号、3はデータイネーブル、4は表示データ、5は同期クロックである。垂直同期信号1は表示一画面周期(1フレーム周期)の信号、水平同期信号2は一水平周期の信号、データイネーブル信号3は表示データ4が有効である期間(表示有効期間)を示す信号で、全ての信号が同期クロック5に同期して入力される。本実施形態では、これら表示データが、一画面分が左上端の画素から順次ラスタスキャン形式で転送され、1画素分の情報は6ビットのディジタルデータからなるものとして以下説明する。6は表示制御ユニット、7はデータ線およびタッチパネル制御信号、8は走査線制御信号であり、表示制御ユニット6は、垂直同期信号1、水平同期信号2、データイネーブル信号3、表示データ4、同期クロック5から、表示制御とタッチパネル制御のためのデータ線およびタッチパネル制御信号7と、表示の走査制御のための走査線制御信号8を生成する。9はLCDパネル、10はタッチパネル駆動ユニット内蔵データ線駆動ユニット、11はデータ線駆動信号、12は走査線駆動ユニット、13は走査線選択信号、14は表示画素アレイであり、LCDパネル9は、1枚のガラス基板上にタッチパネル駆動ユニット内蔵データ線駆動ユニット10、走査線駆動ユニット12、表示画素アレイ14を設けたものである。本実施形態では、タッチパネル駆動ユニット内蔵データ線駆動ユニット10はLSIで、走査線駆動ユニット12と表示画素アレイ14はガラス基板上に低温ポリシリコン(LTPS)で構成されるものとして以下説明する。タッチパネル駆動ユニット内蔵データ線駆動ユニット10は、従来と同様にデータ線およびタッチパネル制御信号7のうちの表示制御に関する信号から、表示画素アレイ14に書き込む信号電圧を生成するとともに、タッチパネル制御に関する信号からタッチパネルの座標を示す信号(後述)を生成する。走査線駆動ユニット12は、従来と同様、データ線駆動信号11として出力される書込み信号電圧を書き込む走査線を選択するための走査線選択信号13を出力する。表示画素アレイ14は、従来と同様、走査線選択信号13によって選択したライン上の画素にデータ線駆動信号11として出力される書込み信号電圧を書込み、書込み電圧に応じた階調制御を行う。15は静電容量型タッチパネル、16は検出電極線、17は座標信号であり、静電容量型タッチパネル15は、直交する複数の透明導電膜(ITO)による電極線を備える基板である。各々の電極線は検出電極線16としてタッチパネル駆動ユニット内蔵データ線駆動ユニット10に入力され、座標信号17に変換される。   FIG. 1 shows an example of an LCD display device to which a touch sensor device according to an embodiment of the present invention is applied. In FIG. 1, 1 is a horizontal synchronizing signal, 2 is a vertical synchronizing signal, 3 is a data enable, 4 is display data, and 5 is a synchronizing clock. The vertical synchronization signal 1 is a signal of one display period (one frame period), the horizontal synchronization signal 2 is a signal of one horizontal period, and the data enable signal 3 is a signal indicating a period during which the display data 4 is valid (display effective period). All signals are input in synchronization with the synchronous clock 5. In the present embodiment, the following description will be made assuming that the display data is sequentially transferred in a raster scan format from the upper left pixel for one screen, and information for one pixel is composed of 6-bit digital data. Reference numeral 6 is a display control unit, 7 is a data line and touch panel control signal, 8 is a scanning line control signal, and the display control unit 6 is a vertical synchronization signal 1, horizontal synchronization signal 2, data enable signal 3, display data 4, and synchronization. From the clock 5, a data line and touch panel control signal 7 for display control and touch panel control and a scanning line control signal 8 for display scanning control are generated. 9 is an LCD panel, 10 is a touch panel drive unit built-in data line drive unit, 11 is a data line drive signal, 12 is a scan line drive unit, 13 is a scan line selection signal, 14 is a display pixel array, A touch panel drive unit built-in data line drive unit 10, a scan line drive unit 12, and a display pixel array 14 are provided on a single glass substrate. In the present embodiment, the data line driving unit 10 with a built-in touch panel driving unit is an LSI, and the scanning line driving unit 12 and the display pixel array 14 are described below as being formed of low-temperature polysilicon (LTPS) on a glass substrate. The touch panel drive unit built-in data line drive unit 10 generates a signal voltage to be written to the display pixel array 14 from the data line and touch panel control signal 7 among the data lines and the touch panel control signal 7 as in the prior art, and the touch panel control signal from the touch panel control signal. A signal (described later) indicating the coordinates is generated. The scanning line driving unit 12 outputs a scanning line selection signal 13 for selecting a scanning line to which the writing signal voltage output as the data line driving signal 11 is written, as in the conventional case. The display pixel array 14 writes the write signal voltage output as the data line drive signal 11 to the pixels on the line selected by the scanning line selection signal 13 as in the conventional case, and performs gradation control according to the write voltage. 15 is a capacitive touch panel, 16 is a detection electrode line, 17 is a coordinate signal, and the capacitive touch panel 15 is a substrate provided with electrode lines made of a plurality of orthogonal transparent conductive films (ITO). Each electrode line is input to the touch panel drive unit built-in data line drive unit 10 as a detection electrode line 16 and converted into a coordinate signal 17.

図2は図1記載の静電容量型タッチパネル15の内部構成の一実施形態である。18はX1−1電極、19はY1−2電極であり、各々水平方向に配置されるX電極線と垂直方向に配置されるY電極線の交点以外の領域に設ける。本実施形態は、交点以外の領域を同じ形、面積の菱形で埋める構成として以下説明する。20は第1X電極線、21は第2X電極線、22は第3X電極線、23は第4X電極線、24は第5X電極線、25は第6X電極線、26は第1Y電極線、27は第2Y電極線、28は第3Y電極線、29は第4Y電極線、30は第5Y電極線、31は第6Y電極線、32は第7Y電極線、33は第8Y電極線、34は第9Y電極線、35は第10Y電極線であり、XとYが直交する形で配置され、すべての電極線が検出電極線16として出力される。本実施形態では、X電極線が6本、Y電極線が10本で構成されるものとして、以下説明する。したがって、X1−1電極18、Y1−2電極19と同一の電極が、X電極線上に10個、Y電極線上に6個、設けられることとなる。   FIG. 2 shows an embodiment of the internal configuration of the capacitive touch panel 15 shown in FIG. Reference numeral 18 denotes an X1-1 electrode, and 19 denotes a Y1-2 electrode, which are provided in a region other than the intersection of the X electrode line arranged in the horizontal direction and the Y electrode line arranged in the vertical direction. The present embodiment will be described below as a configuration in which regions other than the intersection are filled with diamonds having the same shape and area. 20 is a first X electrode line, 21 is a second X electrode line, 22 is a third X electrode line, 23 is a fourth X electrode line, 24 is a fifth X electrode line, 25 is a sixth X electrode line, 26 is a first Y electrode line, 27 Is the second Y electrode line, 28 is the third Y electrode line, 29 is the fourth Y electrode line, 30 is the fifth Y electrode line, 31 is the sixth Y electrode line, 32 is the seventh Y electrode line, 33 is the eighth Y electrode line, and 34 is The ninth Y electrode line 35 is a tenth Y electrode line, which is arranged so that X and Y are orthogonal to each other, and all the electrode lines are output as the detection electrode lines 16. In the present embodiment, the following description will be given on the assumption that the X electrode lines are composed of 6 and the Y electrode lines are composed of 10. Accordingly, 10 electrodes identical to the X1-1 electrode 18 and the Y1-2 electrode 19 are provided on the X electrode line and six on the Y electrode line.

図3は図1記載のタッチパネル駆動ユニット内蔵データ線駆動ユニット10の内部構成の一実施形態である。36はデータシフト部、37はデータ開始信号、38はデータシフトクロック、39はシリアル表示データ、40はパラレル表示データであり、データシフト部36は、従来と同様に、データ開始信号37を基準に、データシフトクロック38に従ってシリアル表示データ39を取り込み、パラレル表示データ40として順次出力する。41は1ラインラッチ部、42は水平ラッチクロック、43は1ラインデータであり、1ラインラッチ部41は、従来と同様に、順次出力されるパラレル表示データ40を、1ライン分の出力が終了するタイミングを示す水平ラッチクロック42に従って、1ラインデータ43として出力する。44はD/A変換部であり、従来と同様に、ディジタル値である1ラインデータ43をアナログ値に変換し、画素への書込み信号となるデータ線駆動信号11として出力する。45は検出制御部、46は検出スイッチ駆動信号、47は座標変換タイミング信号、48は容量差分検出部、49は容量差分値、50は座標変換部であり、検出制御部45は、容量差分検出部48における検出動作を制御するための検出スイッチ駆動信号46と、座標変換部50における動作を制御するための座標変換タイミング信号47を生成する。本実施形態では、検出動作、座標変換動作が水平ラッチクロック42に同期して一水平期間を基準として行うものとして、以下説明する。容量差分検出部48は、検出電極線16のなかの2本ずつの容量差分を、容量差分値49として出力する。座標変換部50は、容量差分値49から各々の電極線の容量を計算し、その容量の分布状態から座標を算出、座標信号17として出力する。   FIG. 3 shows an embodiment of the internal configuration of the touch panel drive unit built-in data line drive unit 10 shown in FIG. 36 is a data shift unit, 37 is a data start signal, 38 is a data shift clock, 39 is serial display data, and 40 is parallel display data. The data shift unit 36 is based on the data start signal 37 as in the prior art. The serial display data 39 is fetched in accordance with the data shift clock 38 and sequentially output as parallel display data 40. Reference numeral 41 denotes a one-line latch unit, 42 denotes a horizontal latch clock, 43 denotes one-line data, and the one-line latch unit 41 finishes outputting parallel display data 40 sequentially output for one line as in the conventional case. In accordance with the horizontal latch clock 42 indicating the timing to perform, the data is output as one line data 43. Reference numeral 44 denotes a D / A converter, which converts 1-line data 43, which is a digital value, into an analog value and outputs it as a data line drive signal 11 that becomes a write signal to the pixel, as in the prior art. 45 is a detection control unit, 46 is a detection switch drive signal, 47 is a coordinate conversion timing signal, 48 is a capacitance difference detection unit, 49 is a capacitance difference value, 50 is a coordinate conversion unit, and the detection control unit 45 is a capacitance difference detection The detection switch drive signal 46 for controlling the detection operation in the unit 48 and the coordinate conversion timing signal 47 for controlling the operation in the coordinate conversion unit 50 are generated. In the present embodiment, the following description will be made assuming that the detection operation and the coordinate conversion operation are performed on the basis of one horizontal period in synchronization with the horizontal latch clock 42. The capacitance difference detection unit 48 outputs a capacitance difference for each two detection electrode lines 16 as a capacitance difference value 49. The coordinate conversion unit 50 calculates the capacitance of each electrode line from the capacitance difference value 49, calculates the coordinate from the capacitance distribution state, and outputs it as the coordinate signal 17.

図4は図3記載の容量差分検出部48の内部構成の一実施形態である。51は第1X電極線第1選択スイッチ、52は第2X電極線第1選択スイッチ、53は第3X電極線第1選択スイッチ、54は第10Y電極線第1選択スイッチであり、すべては図示していないが、X電極6本、Y電極10本、各々に、差分検出のための第1の対象となる電極を選択する選択スイッチ(計16個)が接続される。55は第1選択スイッチ信号、56は第1X電極線第1選択信号、57は第2X電極線第1選択信号、58は第3X電極線第1選択信号、59は第10Y電極線第1選択信号であり、すべては図示していないが、差分検出のための第1の対象となる電極を選択する信号(計16本)が入力される。前記第1選択スイッチ信号55は前記選択スイッチ信号56乃至59を総称する。   FIG. 4 shows an embodiment of the internal configuration of the capacity difference detector 48 shown in FIG. 51 is a first X electrode line first selection switch, 52 is a second X electrode line first selection switch, 53 is a third X electrode line first selection switch, 54 is a 10th Y electrode line first selection switch, all shown However, the selection switches (16 in total) for selecting the first target electrode for difference detection are connected to each of the six X electrodes and the ten Y electrodes. 55 denotes a first selection switch signal, 56 denotes a first X electrode line first selection signal, 57 denotes a second X electrode line first selection signal, 58 denotes a third X electrode line first selection signal, and 59 denotes a tenth Y electrode line first selection. These are all signals, not shown in the figure, but signals for selecting the first target electrode for difference detection (16 in total) are input. The first selection switch signal 55 is a general term for the selection switch signals 56 to 59.

60は第1X電極線第2選択スイッチ、61は第2X電極線第2選択スイッチ、62は第3X電極線第2選択スイッチ、63は第10Y電極線第2選択スイッチであり、すべては図示していないが、X電極6本、Y電極10本、各々に、差分検出のための第2の対象となる電極を選択する選択スイッチ(計16個)が接続される。64は第2選択スイッチ信号、65は第1X電極線第2選択信号、66は第2X電極線第2選択信号、67は第3X電極線第2選択信号、68は第10Y電極線第2選択信号であり、すべては図示していないが、差分検出のための第2の対象となる電極を選択する信号(計16本)が入力される。前記第2選択スイッチ信号64は前記選択スイッチ信号65乃至68を総称する。   60 is a first X electrode line second selection switch, 61 is a second X electrode line second selection switch, 62 is a third X electrode line second selection switch, 63 is a 10th Y electrode line second selection switch, all shown Although not shown, six X electrodes and 10 Y electrodes are connected to a selection switch (16 in total) for selecting a second target electrode for difference detection. 64 is the second selection switch signal, 65 is the first X electrode line second selection signal, 66 is the second X electrode line second selection signal, 67 is the third X electrode line second selection signal, and 68 is the tenth Y electrode line second selection. These are all signals, not shown in the figure, but signals for selecting the second target electrodes for difference detection (16 in total) are input. The second selection switch signal 64 is a general term for the selection switch signals 65 to 68.

69は第1X電極線非選択スイッチ、70は第2X電極線非選択スイッチ、71は第3X電極線非選択スイッチ、72は第10Y電極線非選択スイッチであり、すべては図示していないが、X電極6本、Y電極10本、各々に、差分検出のための第1の対象、第2の対象、どちらにも選択されない電極を選択してGNDに接続するスイッチ(計16個)が接続される。73は非選択スイッチ信号、74は第1X電極線非選択信号、75は第2X電極線非選択信号、76は第3X電極線非選択信号、77は第10Y電極線非選択信号であり、すべては図示していないが、差分検出のための第1の対象、第2の対象、どちらにも選択されない電極を選択する信号(計16本)が入力される。前記非選択スイッチ信号73は前記非選択信号74乃至77を総称する。   69 is a first X electrode line non-selection switch, 70 is a second X electrode line non-selection switch, 71 is a third X electrode line non-selection switch, 72 is a 10th Y electrode line non-selection switch, and all are not shown, 6 X electrodes and 10 Y electrodes are connected to each of the switches (total 16) that select the electrodes that are not selected for the first and second objects for differential detection and connect to GND. Is done. 73 is a non-select switch signal, 74 is a first X electrode line non-select signal, 75 is a second X electrode line non-select signal, 76 is a third X electrode line non-select signal, 77 is a 10th Y electrode line non-select signal, Although not shown in the figure, signals (total 16) for selecting electrodes that are not selected for the first target and the second target for difference detection are input. The non-selection switch signal 73 is a general term for the non-selection signals 74 to 77.

78は第1X電極容量、79は第2X電極容量、80は第3X電極容量、81は第10Y電極容量であり、すべては図示していないが、各々の電極(計16本)が容量を持つことを等価的に表すものである。82は第1選択電極線、83は第2選択電極線であり、第1選択電極線82は、第1X電極線第1選択スイッチ51〜第10Y電極線第1選択スイッチ54のなかから1つ選択された電極線が、差分検出の第1の対象として接続される。第2選択電極線83は、第1X電極線第2選択スイッチ60〜第10Y電極線第2選択スイッチ63のなかから1つ選択された電極線が、差分検出の第2の対象として接続される。84は電極線検出タイミング信号、85は第1電圧変換回路、86は第1電極線電圧、87は第2電圧変換回路、88は第2電極線電圧であり、第1電圧変換回路85は第1選択電極線82の容量を電圧に変換し、第1電極線電圧86として出力する。第2電圧変換回路87は第2選択電極線83の容量を電圧に変換し、第2電極線電圧88として出力する。89は差動増幅部,90は容量差分電圧であり、差動増幅部89は、第1電極線電圧86と第2電極線電圧88を差動入力とする差動増幅部であり、増幅後の電圧を容量差分電圧90として出力する。91はA/D変換部であり、アナログ値である容量差分電圧90をディジタル値に変換し、容量差分値49として出力する。   Reference numeral 78 is a first X electrode capacity, 79 is a second X electrode capacity, 80 is a third X electrode capacity, and 81 is a 10th Y electrode capacity. Although not all shown, each electrode (16 electrodes in total) has a capacity. Is equivalently expressed. 82 is a first selection electrode line, 83 is a second selection electrode line, and the first selection electrode line 82 is one of the first X electrode line first selection switch 51 to the 10th Y electrode line first selection switch 54. The selected electrode line is connected as the first target for difference detection. For the second selection electrode line 83, one electrode line selected from the first X electrode line second selection switch 60 to the 10th Y electrode line second selection switch 63 is connected as a second target of difference detection. . 84 is an electrode line detection timing signal, 85 is a first voltage conversion circuit, 86 is a first electrode line voltage, 87 is a second voltage conversion circuit, 88 is a second electrode line voltage, and the first voltage conversion circuit 85 is The capacitance of the first selection electrode line 82 is converted into a voltage and output as a first electrode line voltage 86. The second voltage conversion circuit 87 converts the capacitance of the second selection electrode line 83 into a voltage and outputs it as a second electrode line voltage 88. 89 is a differential amplifying unit, 90 is a capacitance differential voltage, and the differential amplifying unit 89 is a differential amplifying unit having a first electrode line voltage 86 and a second electrode line voltage 88 as differential inputs. Is output as a capacitance difference voltage 90. Reference numeral 91 denotes an A / D conversion unit that converts a capacitance difference voltage 90 that is an analog value into a digital value and outputs the converted value as a capacitance difference value 49.

図5は図2記載の静電容量タッチパネル15の各々の菱形電極が持つ容量に対して、指で触ったとき(タッチ)の容量変化を等価的に示した図である。92は検出電源、93はX電極容量、94はY電極容量、95は指、96はX−指容量、97はY−指容量、98は接地容量であり、検出電源92から見た容量は、指95がない場合にはX電極容量93のみであるのに対し、指が接触することにより、X−指容量96を介したY−指容量97、Y電極容量94が合成された容量となる。この容量変化を検出することにより、静電容量タッチパネルの座標検出が行われる。   FIG. 5 is a diagram equivalently showing a change in capacitance when touched with a finger (touch) with respect to the capacitance of each rhomboid electrode of the capacitive touch panel 15 shown in FIG. 92 is a detection power supply, 93 is an X electrode capacity, 94 is a Y electrode capacity, 95 is a finger, 96 is an X-finger capacity, 97 is a Y-finger capacity, and 98 is a ground capacity. When the finger 95 is not provided, only the X electrode capacitance 93 is obtained, whereas when the finger comes into contact, the Y-finger capacitance 97 and the Y electrode capacitance 94 via the X-finger capacitance 96 are combined. Become. By detecting this capacitance change, coordinate detection of the capacitive touch panel is performed.

図6は図4記載の第1X電極線第1選択スイッチ51〜第10Y電極線第1選択スイッチ54、および第1X電極線第2選択スイッチ60〜第10Y電極線第2選択スイッチ63、第1電極線非選択スイッチ69〜第10Y電極線非選択スイッチ72の動作の詳細の一実施形態である。99は第1X電極線第1選択信号波形、100は第2X電極線第1選択信号波形、101は第5X電極線第1選択信号波形、102は第6X電極線第1選択信号波形、103は第1Y電極線第1選択信号波形、104は第2Y電極線第1選択信号波形、105は第3Y電極線第1選択信号波形、106は第9Y電極線第1選択信号波形、107は第10Y電極線第1選択信号波形、108は第1X電極線第2選択信号波形、109は第2X電極線第2選択信号波形、110は第5X電極線第2選択信号波形、111は第6X電極線第2選択信号波形、112は第1Y電極線第2選択信号波形、113は第2Y電極線第2選択信号波形、114は第3Y電極線第2選択信号波形、115は第9Y電極線第2選択信号波形、116は第10Y電極線第2選択信号波形、117は第1選択電極線状態、118は第2選択電極線状態であり、ある期間で選択された電極線は次の期間では第1選択と第2選択を入れ替えて選択される。例えば、第1選択電極線状態117がX1電極、第2選択電極線状態118がX2電極である次の期間では、第1選択電極線状態117がX2電極、第2選択電極線状態118がX1電極となるよう、各選択信号は動作する。本実施形態では、第1選択電極線82、第2選択電極線83は隣接する電極線が選択され、X1とX2、X2とX1(先の入替え)、X2とX3、X3とX2(先の入替え)、・・・、X5とX6、X6とX5(先の入替え)が選択された後、Y1とY2、Y2とY1(先の入替え)、Y2とY3、Y3とY2(先の入替え)、・・・、Y9とY10、Y10とY9(先の入替え)と選択されるものとして、以下説明する。   6 shows the first X electrode line first selection switch 51 to the 10th Y electrode line first selection switch 54, the first X electrode line second selection switch 60 to the 10th Y electrode line second selection switch 63, and the first X line shown in FIG. 14 is an embodiment of details of the operation of the electrode line non-select switch 69 to the 10th Y electrode line non-select switch 72. 99 is the first X electrode line first selection signal waveform, 100 is the second X electrode line first selection signal waveform, 101 is the fifth X electrode line first selection signal waveform, 102 is the sixth X electrode line first selection signal waveform, 103 is First Y electrode line first selection signal waveform, 104 is second Y electrode line first selection signal waveform, 105 is third Y electrode line first selection signal waveform, 106 is ninth Y electrode line first selection signal waveform, 107 is 10th Y The electrode line first selection signal waveform, 108 is the first X electrode line second selection signal waveform, 109 is the second X electrode line second selection signal waveform, 110 is the fifth X electrode line second selection signal waveform, and 111 is the sixth X electrode line. The second selection signal waveform, 112 is the first Y electrode line second selection signal waveform, 113 is the second Y electrode line second selection signal waveform, 114 is the third Y electrode line second selection signal waveform, and 115 is the ninth Y electrode line second. Selection signal waveform, 116 is the 10th Y electrode The second selection signal waveform, 117 is the first selection electrode line state, 118 is the second selection electrode line state, and the electrode line selected in one period is selected by switching the first selection and the second selection in the next period. Is done. For example, in the next period in which the first selection electrode line state 117 is the X1 electrode and the second selection electrode line state 118 is the X2 electrode, the first selection electrode line state 117 is the X2 electrode and the second selection electrode line state 118 is the X1. Each selection signal operates to be an electrode. In the present embodiment, adjacent electrode lines are selected as the first selection electrode line 82 and the second selection electrode line 83, and X1 and X2, X2 and X1 (previous replacement), X2 and X3, X3 and X2 (previous replacement). After replacement is selected, X5 and X6, X6 and X5 (first replacement), Y1 and Y2, Y2 and Y1 (first replacement), Y2 and Y3, Y3 and Y2 (first replacement) ,..., Y9 and Y10, and Y10 and Y9 (previous replacement) will be described below.

図7は図4記載の第1X電極線非選択スイッチ69〜第10Y電極線非選択スイッチ72の動作の詳細の一実施形態である。119は第1X電極線非選択信号波形、120は第2X電極線非選択信号波形、121は第5X電極線非選択信号波形、122は第6X電極線非選択信号波形、123は第1Y電極線非選択信号波形、124は第2Y電極線非選択信号波形、125は第3Y電極線非選択信号波形、126は第9Y電極線非選択信号波形、127は第10Y電極線非選択信号波形であり、図6記載の第1選択スイッチ信号55、第2選択スイッチ信号64のいずれの信号も選択していない電極線を非選択とするような波形とする。本実施形態では、非選択スイッチにより、検出に関係のない電極線はGNDに接続するものとして、以下説明する。128はX1電極接続状態、129はX2電極接続状態、130はX6電極接続状態、131はY1電極接続状態、132はY2電極接続状態、133はY10電極接続状態であり、検1、検2とは、各々第1選択電極線82、第2選択電極線83に接続されている状態を示す。X、Y各々の端となるX1電極線接続状態128、X6電極線接続状態130、Y1電極線接続状態131、Y10電極線接続状態133は、差分検出のため第1選択、第2選択が1回ずつでその他の期間はGND接続となり、それ以外のX2電極線接続状態129(X3からX5も同様)、Y2電極線接続状態132(Y3からY9も同様)は第1選択、第2選択が2回ずつでその他の期間はGND接続となる。   FIG. 7 shows an embodiment of details of the operations of the first X electrode line non-select switch 69 to the 10th Y electrode line non-select switch 72 shown in FIG. 119 is a first X electrode line non-selection signal waveform, 120 is a second X electrode line non-selection signal waveform, 121 is a fifth X electrode line non-selection signal waveform, 122 is a sixth X electrode line non-selection signal waveform, and 123 is a first Y electrode line A non-selection signal waveform, 124 is a second Y electrode line non-selection signal waveform, 125 is a third Y electrode line non-selection signal waveform, 126 is a ninth Y electrode line non-selection signal waveform, and 127 is a tenth Y electrode line non-selection signal waveform. The waveform is such that an electrode line that has not selected either the first selection switch signal 55 or the second selection switch signal 64 shown in FIG. 6 is not selected. In the present embodiment, the following description will be made on the assumption that an electrode line not related to detection is connected to GND by a non-selection switch. 128 is an X1 electrode connection state, 129 is an X2 electrode connection state, 130 is an X6 electrode connection state, 131 is a Y1 electrode connection state, 132 is a Y2 electrode connection state, 133 is a Y10 electrode connection state, Indicates a state of being connected to the first selection electrode line 82 and the second selection electrode line 83, respectively. The X1 electrode line connection state 128, the X6 electrode line connection state 130, the Y1 electrode line connection state 131, and the Y10 electrode line connection state 133 at the ends of each of X and Y are the first selection and the second selection are 1 for the difference detection. In other periods, GND connection is established, and other X2 electrode line connection states 129 (same for X3 to X5) and Y2 electrode line connection states 132 (same for Y3 to Y9) are the first selection and second selection. Twice each time, the GND connection is made for the other periods.

図8には図4記載の第1電圧変換回路85の内部構成が例示される。図中201は電極合成容量、202は取込み容量、203は電極充電スイッチ、204は電圧源、305は負電圧源、205は検出電極シェアスイッチ、206は取込み容量正極側セットスイッチ、301は取込み容量負極側接地スイッチ、303は取込み容量負極側負電圧スイッチである。電極合成容量201は図4に代表される電極容量78から81で例示されるような図5記載の等価回路によるタッチ/非タッチに応ずる合成容量成分を意味し、単に検出電極201とも称する。検出電極201は、外部からの接触により容量が変化する電極であり、この容量は後述する電極充電スイッチ203を介して接続される電圧源204により充電され、検出電極シェアスイッチ205により取込み容量202に接続されることで、充電された電荷を取込み容量202に転送するよう動作し、この電荷量の変化によって接触の有無を判定する。   FIG. 8 illustrates the internal configuration of the first voltage conversion circuit 85 shown in FIG. In the figure, 201 is an electrode combined capacity, 202 is an intake capacity, 203 is an electrode charge switch, 204 is a voltage source, 305 is a negative voltage source, 205 is a detection electrode share switch, 206 is an intake capacity positive side set switch, and 301 is an intake capacity. A negative electrode side ground switch 303 is an intake capacitor negative electrode side negative voltage switch. The electrode combined capacitance 201 means a combined capacitance component that responds to touch / non-touch by the equivalent circuit shown in FIG. 5 as exemplified by electrode capacitances 78 to 81 typified by FIG. The detection electrode 201 is an electrode whose capacitance changes due to contact from the outside, and this capacitance is charged by a voltage source 204 connected via an electrode charging switch 203 described later, and is taken into a capture capacitor 202 by a detection electrode share switch 205. By being connected, an operation is performed so that the charged electric charge is taken in and transferred to the capacitor 202, and the presence or absence of contact is determined by the change in the electric charge amount.

取り込み電極202の一方の第1キャパシタ電極202aを便宜上正極、他方の第2キャパシタ電極202bを便宜上負極とも記す。取込み容量202は、前述の検出電極201から検出電極シェアスイッチ205を介して電荷を受け取り蓄積する。蓄積された電荷量により正極、負極間に電圧が生じ、この電圧を検出することで容量判定を行う。電極充電スイッチ203は検出電極201に電圧源204を接続し、オン時に電圧源204からの一定の電圧を与え、電圧源204と同一の電圧となった後にオフとなるように動作する。検出電極シェアスイッチ205は、検出電極201と取込み容量202を接続する。前述の電極充電スイッチ203をオフにした後、本スイッチ205をオンすることで検出電極201に蓄積された電荷を取込み容量202に転送する。取込み容量正極側セットスイッチ206は、検出動作の初期化時に使用し、初期化時にオンとなり取込み容量202の正極を接地する。後述する取込み容量負極側負電圧スイッチ303も同時にオンとなり、これによって、接地(グランドレベルVss)と負極電圧の差に相当する電荷が取込み容量202に初期値としてセットされる。   For convenience, one first capacitor electrode 202a of the capture electrode 202 is also referred to as a positive electrode, and the other second capacitor electrode 202b is also referred to as a negative electrode for convenience. The take-in capacitor 202 receives and accumulates charges from the aforementioned detection electrode 201 via the detection electrode share switch 205. A voltage is generated between the positive electrode and the negative electrode due to the accumulated charge amount, and the capacity is determined by detecting this voltage. The electrode charging switch 203 connects the voltage source 204 to the detection electrode 201, applies a constant voltage from the voltage source 204 when turned on, and operates so as to turn off after the same voltage as the voltage source 204 is reached. The detection electrode share switch 205 connects the detection electrode 201 and the capture capacitor 202. After the electrode charge switch 203 is turned off, the charge 205 stored in the detection electrode 201 is taken in and transferred to the capacitor 202 by turning on the switch 205. The take-in capacity positive electrode side set switch 206 is used at the time of initialization of the detection operation, and is turned on at the time of initialization to ground the positive electrode of the take-in capacity 202. An acquisition capacitor negative electrode-side negative voltage switch 303 which will be described later is also turned on at the same time, whereby a charge corresponding to the difference between the ground (ground level Vss) and the negative electrode voltage is set in the acquisition capacitor 202 as an initial value.

取込み容量負極側接地スイッチ301はグランド電圧(Vss)の電極ノードNDbを選択的に第2のキャパシタ電極202bに接続し、容量負極側負電圧スイッチ303は負電圧(―V)の電極ノードNDaを選択的に第2のキャパシタ電極202bに接続する。取込み容量負極側接地スイッチ301と取込み容量負極側負電圧スイッチ303はペアで使用され、双方とも202の取込み容量の負極に接続されており、排他的に制御される。つまり、301がオンのときは常に303はオフであり、逆に303がオンのときは常に301はオフとなっている。これらのスイッチ301,303はオンとオフを切り替える瞬間に双方ともオフとなるデッド期間を有し、双方同時にオンとなり、ショートを防止している。動作は、初期化時には、負極側負電圧スイッチ303がオンとなり、取込み容量の負極に負電圧源305の電圧(−V)を印加し、前述の取込み容量正極側セットスイッチ206により正極に印加される接地電圧(Vss)とにより、取込み容量202に初期電圧をセットする。初期化期間終了後、負極側負電圧スイッチはオフとなり、負極側接地スイッチ301がオンとなり、負極は接地電圧に上昇する。正極側はどこにも接続されていないハイインピーダンス状態のため、負極の電圧上昇に伴い、正極も上昇する。この状態から、電極充電スイッチ203とシェアスイッチ205を交互にオンすることで取込み容量202に電荷を蓄積する。一定回数蓄積後、負極側接地スイッチ301をオフし、負極側負電圧スイッチをオンすることで、負極側の電圧が負電圧源303の電圧に下降し、これに伴い正極側の電圧も負電源の電圧と等しい電圧だけ降下する。この後降下した正極側の電圧から、電極充電スイッチ203とシェアスイッチ205を交互にオンすることによる取込み容量への電荷蓄積を再開し、一定回数蓄積後、検出結果として電圧を出力する。尚、特に図示はしないが、第2電圧変換回路87も上記同様に構成される。   The take-in capacitor negative side ground switch 301 selectively connects the electrode node NDb of the ground voltage (Vss) to the second capacitor electrode 202b, and the capacitor negative side negative voltage switch 303 connects the electrode node NDa of the negative voltage (−V). It is selectively connected to the second capacitor electrode 202b. The take-in capacity negative electrode side ground switch 301 and the take-in capacity negative electrode side negative voltage switch 303 are used in pairs, and both are connected to the negative electrode of the take-in capacity 202 and are controlled exclusively. That is, when 301 is on, 303 is always off, and conversely, when 303 is on, 301 is always off. These switches 301 and 303 have a dead period in which both switches are turned off at the moment of switching on and off, and both are turned on at the same time to prevent a short circuit. During initialization, the negative-side negative voltage switch 303 is turned on, the voltage (-V) of the negative voltage source 305 is applied to the negative electrode of the take-in capacitor, and is applied to the positive electrode by the take-up capacitor positive-side set switch 206 described above. The initial voltage is set in the take-in capacitor 202 according to the ground voltage (Vss). After the initialization period ends, the negative-side negative voltage switch is turned off, the negative-side ground switch 301 is turned on, and the negative electrode rises to the ground voltage. Since the positive electrode side is in a high impedance state connected to nowhere, the positive electrode also rises as the voltage of the negative electrode rises. From this state, the electrode charge switch 203 and the share switch 205 are alternately turned on to accumulate charges in the take-in capacitor 202. After accumulation for a certain number of times, the negative side ground switch 301 is turned off and the negative side negative voltage switch is turned on, so that the negative side voltage drops to the voltage of the negative voltage source 303, and accordingly the positive side voltage also changes to the negative power source. Drops by a voltage equal to the voltage of. Thereafter, charge accumulation in the take-in capacitor by alternately turning on the electrode charge switch 203 and the share switch 205 is restarted from the voltage on the positive electrode side that has dropped thereafter, and after a certain number of accumulations, the voltage is output as a detection result. Although not specifically shown, the second voltage conversion circuit 87 is configured in the same manner as described above.

図9乃至図14には、図8で示した容量検出回路の動作が逐次的に示される。   9 to 14 sequentially show the operation of the capacitance detection circuit shown in FIG.

図9では検出電極シェアスイッチ205をオフし、取込み容量正極側セットスイッチ206と取込み容量負極側負電圧スイッチ303をオンすることで取込み容量202に負電圧源305で決定する電圧で充電を行う。また、電極充電スイッチ203をオンし、検出電極201に電圧源204で決定する電圧で充電を行う。   In FIG. 9, the detection electrode share switch 205 is turned off, and the take-in capacity positive electrode side set switch 206 and the take-in capacity negative electrode side negative voltage switch 303 are turned on to charge the take-in capacity 202 with a voltage determined by the negative voltage source 305. Further, the electrode charging switch 203 is turned on, and the detection electrode 201 is charged with a voltage determined by the voltage source 204.

図10では、取込み容量正極側セットスイッチ206と取込み容量負極側負電圧スイッチ303をオフし、同時に取込み容量負極側接地スイッチ301をオンすることで、取り込み容量202の負極側は接地電圧まで上昇し、正極側は充電された電圧分を保持するため、接地電圧から負電圧源305の電圧分上昇する。次に図11では、検出電極シェアスイッチ205をオンし検出電極201に充電した電荷を取り込み容量202へ転送する。次に図12では、検出電極シェアスイッチ205をオフし、電極充電スイッチ203をオンすることで、再度検出電極201を充電する。図11と図12の処理を一定回数繰り返すことで、取込み容量202に検出電極201の容量に比例した電荷を蓄積する。このときの取込み容量202の電圧は、負電圧源305の電圧と図11及び図12の操作で蓄積された電荷分の電圧の和となる。次に図13において、取込み容量負極側接地スイッチ301をオフし取込み容量負極側負電圧スイッチ303をオンすることで、取込み容量202の負極電圧を負電圧源305の負電源電圧に設定する。これによって正極側の電圧は負電源電圧分だけ降下する。また、電極充電スイッチ203をオンすることで、検出電極201に充電を行う。次に図14において、電極充電スイッチ203をオフし検出電極シェアスイッチ205をオンすることで、検出電極201の電荷を取込み容量202に転送する。このとき取込み容量202の正極電圧が負電源電圧分だけ降下しているため、転送される電荷分の電圧が増加する。図13及び図14の処理を一定回数繰り返すことで、取込み容量202に検出電極201の容量に比例した電荷を蓄積する。これらの動作によって、取込み容量202には対接地で図11及び図12の処理の繰り返しによる電圧と図13及び図14の処理の繰り返しによる電圧の和が生じ、その電圧は、特定回の動作での獲得電圧に依存しない。   In FIG. 10, by turning off the take-in capacity positive side set switch 206 and the take-in capacity negative side negative voltage switch 303 and simultaneously turning on the take-in capacity negative side ground switch 301, the negative side of the take-in capacity 202 rises to the ground voltage. Since the positive voltage side holds the charged voltage, the voltage rises by the voltage of the negative voltage source 305 from the ground voltage. Next, in FIG. 11, the detection electrode share switch 205 is turned on, and the charge charged in the detection electrode 201 is captured and transferred to the capacitor 202. Next, in FIG. 12, the detection electrode share switch 205 is turned off and the electrode charge switch 203 is turned on, whereby the detection electrode 201 is charged again. By repeating the processes of FIGS. 11 and 12 a predetermined number of times, charges proportional to the capacitance of the detection electrode 201 are accumulated in the capture capacitor 202. The voltage of the take-in capacitor 202 at this time is the sum of the voltage of the negative voltage source 305 and the voltage corresponding to the charge accumulated by the operations of FIGS. Next, in FIG. 13, the negative capacity voltage of the negative capacity source 305 is set to the negative power supply voltage of the negative voltage source 305 by turning off the negative capacity ground side switch 301 and turning on the negative capacity switch 303. As a result, the voltage on the positive side drops by the negative power supply voltage. Further, the detection electrode 201 is charged by turning on the electrode charging switch 203. Next, in FIG. 14, the electrode charge switch 203 is turned off and the detection electrode share switch 205 is turned on, whereby the charge of the detection electrode 201 is taken in and transferred to the capacitor 202. At this time, since the positive voltage of the take-in capacitor 202 is lowered by the negative power supply voltage, the voltage of the transferred charge increases. By repeating the processes of FIGS. 13 and 14 a predetermined number of times, charges in proportion to the capacitance of the detection electrode 201 are accumulated in the capture capacitor 202. As a result of these operations, the sum of the voltage due to the repetition of the processes of FIGS. 11 and 12 and the voltage due to the repetition of the processes of FIGS. It does not depend on the acquired voltage.

図15には図8で示した容量検出回路の動作タイミングが示される。図中401はSET信号、402はCGSEL信号、403はCHARGE信号、404はSHARE信号、405は取込み容量の負極側端子VCS1、406は取込み容量202の正極側端子VCS2である。SET信号401は、スイッチ206を操作する信号で、ハイレベル時にスイッチ206がオンとなる。またCGSEL信号402はスイッチ301とスイッチ303を操作する信号で、ローレベル時はスイッチ301がオン、スイッチ302がオフとなり、ハイレベル時はスイッチ301がオフ、スイッチ302がオンとなる。CHARGE信号403はスイッチ205を操作する信号で、ハイレベル時にスイッチ205がオンとなり、検出電極201と取り込み容量202が接続され電荷の転送が行われる。405のVCS1と406のVCS2は上記スイッチ301,303の操作の結果の電圧波形であり、VCS1は202の負極側(スイッチ301,303側)、VCS2は正極側(スイッチ205側)となる。   FIG. 15 shows the operation timing of the capacitance detection circuit shown in FIG. In the figure, 401 is a SET signal, 402 is a CGSEL signal, 403 is a CHARGE signal, 404 is a SHARE signal, 405 is a negative-side terminal VCS1 of the taking-in capacitor, and 406 is a positive-side terminal VCS2 of the taking-in capacitor 202. A SET signal 401 is a signal for operating the switch 206, and the switch 206 is turned on at a high level. The CGSEL signal 402 is a signal for operating the switches 301 and 303. When the signal is low, the switch 301 is turned on and the switch 302 is turned off. When the signal is high, the switch 301 is turned off and the switch 302 is turned on. The CHARGE signal 403 is a signal for operating the switch 205. When the CHARGE signal 403 is at a high level, the switch 205 is turned on, and the detection electrode 201 and the capturing capacitor 202 are connected to transfer charges. VCS1 of 405 and VCS2 of 406 are voltage waveforms resulting from the operation of the switches 301 and 303, VCS1 is on the negative side of 202 (switches 301 and 303 side), and VCS2 is on the positive side (switch 205 side).

図15の上方にある数字はタイミングチャート内の時刻を示している。時刻0乃至時刻14は第1選択電極線82及び第2選択電極線83の1変化サイクル(差分検出サイクル)を意味する。   The numbers in the upper part of FIG. 15 indicate times in the timing chart. Times 0 to 14 mean one change cycle (difference detection cycle) of the first selection electrode line 82 and the second selection electrode line 83.

時刻0では、図9に相当する操作が行われている。SET信号401とCGSEL信号402がハイレベルとなることで取込み容量202への電圧設定が行われ、CHARGE信号がハイレベルとなることで、検出電極201に充電が行われる。VCS1は負電圧(−V)に設定され、VCS2は接地レベル(Vss=0V)となる。時刻1、2では、図10に相当する操作が行われている。SET信号401とCGSEL信号402がローレベルとなり、取込み容量202が負電圧源305から切り離され、負電極が接地されることによって、VCS1は接地電圧(Vss)となり、これに伴いVCS2は負電圧の絶対値電圧分(例えば+V)レベル上昇する(407)。   At time 0, an operation corresponding to FIG. 9 is performed. When the SET signal 401 and the CGSEL signal 402 are at a high level, the voltage is set to the capture capacitor 202, and when the CHARGE signal is at a high level, the detection electrode 201 is charged. VCS1 is set to a negative voltage (-V), and VCS2 is at the ground level (Vss = 0V). At times 1 and 2, an operation corresponding to FIG. 10 is performed. When the SET signal 401 and the CGSEL signal 402 become low level, the capture capacitor 202 is disconnected from the negative voltage source 305, and the negative electrode is grounded, the VCS1 becomes the ground voltage (Vss). The level is increased by an absolute value voltage (for example, + V) (407).

時刻3では、図11に相当する操作が行われ、1回目の電荷転送が行われる。CHARGE信号403がローレベルとなり、SHARE信号404がハイレベルとなる。これにより、検出電極201に充電された電荷が取込み容量202に転送される。これによって、VCS2の電圧が増加する。   At time 3, an operation corresponding to FIG. 11 is performed, and the first charge transfer is performed. The CHARGE signal 403 becomes low level and the SHARE signal 404 becomes high level. As a result, the charge charged in the detection electrode 201 is transferred to the take-in capacitor 202. This increases the voltage of VCS2.

時刻4では図12に相当する操作が行われ、2回目の電荷充電が行われる。SHARE信号404がローレベルとなり、CHARGE信号403がハイレベルとなる。これによって、検出電極201と取込み容量202は切り離され、検出電極201への充電が開始される。   At time 4, the operation corresponding to FIG. 12 is performed, and the second charge charge is performed. The SHARE signal 404 becomes low level and the CHARGE signal 403 becomes high level. As a result, the detection electrode 201 and the capture capacitor 202 are disconnected, and charging of the detection electrode 201 is started.

時刻4〜7では時刻2と3の操作が繰り返され、VCS2の電圧が漸次に増加していく。   At times 4-7, the operations at times 2 and 3 are repeated, and the voltage of VCS2 gradually increases.

時刻8では図13の操作が行われる。CGSEL信号402がハイレベルとなることで(408)、VCS1の電圧は再び負電圧(−V)となり(409)、これに伴い正極側のVCS2も当該負電圧分だけ降下する(410)。また、CHARGE信号403がオンとなり、検出電極201に充電が行われる。   At time 8, the operation of FIG. 13 is performed. When the CGSEL signal 402 becomes high level (408), the voltage of VCS1 becomes negative voltage (−V) again (409), and accordingly, VCS2 on the positive side also drops by the negative voltage (410). Further, the CHARGE signal 403 is turned on, and the detection electrode 201 is charged.

時刻9では図14の操作が行われる。CHARGE信号403がローレベルとなり、SHARE信号404がハイレベルとなる。このときCGSEL信号402はハイレベルを維持し、低下したVCS2を用いて電荷の転送が行われる。時刻10から時刻13は時刻8と時刻9の操作の繰り返しとなる。この間、VCS2には新たに転送された電荷が蓄積される。時刻14は検出動作の終了点である。このときに変換回路85,87に維持されている電圧VCS2(86,88)が差動増幅部89で差動増幅され、その増幅結果90がA/D変換部91でディジタルデータに変換されて、検出結果が得られる。変換回路85,87からの出力86,88は隣接する検出電極201に関する検出結果であるから、その検出結果には同相ノイズが載り、それを差動増幅するから双方の検出電極201間におけるタッチ及び非タッチの差に応ずる合成容量の差が信号90に現れ、これによって、タッチパネル15に対するタッチ又は非タッチの別を判別可能になる。   At time 9, the operation of FIG. 14 is performed. The CHARGE signal 403 becomes low level and the SHARE signal 404 becomes high level. At this time, the CGSEL signal 402 maintains a high level, and charges are transferred using the lowered VCS2. From time 10 to time 13, the operations of time 8 and time 9 are repeated. During this time, the newly transferred charge is stored in the VCS 2. Time 14 is the end point of the detection operation. At this time, the voltage VCS2 (86, 88) maintained in the conversion circuits 85 and 87 is differentially amplified by the differential amplifier 89, and the amplification result 90 is converted into digital data by the A / D converter 91. A detection result is obtained. Since the outputs 86 and 88 from the conversion circuits 85 and 87 are detection results related to the adjacent detection electrodes 201, the detection results include common-mode noise, which is differentially amplified. A difference in composite capacitance corresponding to the difference in non-touch appears in the signal 90, which makes it possible to determine whether the touch panel 15 is touched or not.

図16は図8の電圧変換部85,87を用いて取り込み容量202のプリチャージ及び電圧シフトを行ったときの電荷の蓄積波形を示し、図17にはプリチャージ及び電圧シフトの何れも行わなかったときの電荷の蓄積波形が示される。   FIG. 16 shows a charge accumulation waveform when the capture capacitor 202 is precharged and voltage shifted using the voltage converters 85 and 87 of FIG. 8, and FIG. 17 shows neither precharge nor voltage shift. The accumulated waveform of the charge is shown.

図17のように、1回の検出電極に充電した電荷を取込み容量に蓄積する際、蓄積される電圧は、蓄積前の取込み容量に存在する電圧と検出電極に充電する際の電圧Vddとの差に比例する。したがって、例えば1回目と4回目では、蓄積電圧501と502に大きな差が生じている。つまり、1回目の蓄積電圧501が全体の電圧503に占める割合が大きくなってしまう。これは、1回目の蓄積電圧のノイズ誤差に全体の電圧503が影響を受けやすくなっていることを示し、検出電極に対する充電と充電電荷の取り込み容量への移動とを複数回行うことによって得られる平均化によるノイズ成分の除去効果が縮小してしまう。   As shown in FIG. 17, when the charge charged in one detection electrode is stored in the storage capacitor, the stored voltage is the voltage existing in the storage capacitor before storage and the voltage Vdd when charging the detection electrode. Proportional to the difference. Therefore, for example, there is a large difference between the storage voltages 501 and 502 at the first time and the fourth time. That is, the ratio of the first accumulated voltage 501 to the entire voltage 503 increases. This indicates that the entire voltage 503 is easily affected by the noise error of the first accumulated voltage, and is obtained by performing charging of the detection electrode and transfer of the charged charge to the capture capacitor a plurality of times. The effect of removing noise components due to averaging is reduced.

これに対し、図16の場合には、プリチャージによって取込み容量には初期電圧504が設定されているので、蓄積される電圧は505のように最初から小さく抑えられている。さらに途中で取込み容量202の負極側の電圧を降下させることにより、取り込み容量の充電電圧はグランド電圧Vssを基準とした電圧506に低下され、その後に再会される電荷再配分により取り込み容量に漸次蓄積される電圧は507のように回復し、レベルシフトの前後を合わせた全体として取り込み容量202に得られる蓄積電圧にはノイズの影響が相対的に小さくしか見えなくなり、蓄積電圧のばらつきが低減される。したがって、1差分検出サイクルのどのタイミングでノイズ重畳があっても、検出電極に対する充電と充電電荷の取り込み容量への移動とを複数回行うことによって得られる平均化によるノイズ成分の除去効果として大きな効果を得ることができる。   On the other hand, in the case of FIG. 16, since the initial voltage 504 is set for the take-in capacitor by precharging, the accumulated voltage is suppressed to a small value from the beginning like 505. Further, by dropping the voltage on the negative electrode side of the take-in capacitor 202 halfway, the charge voltage of the take-in capacitor is lowered to a voltage 506 with respect to the ground voltage Vss, and then gradually accumulated in the take-up capacitor by charge redistribution that is reunited thereafter. The recovered voltage is recovered as 507, and the accumulated voltage obtained in the capturing capacitor 202 as a whole before and after the level shift can be seen to have a relatively small influence of noise, and the variation of the accumulated voltage is reduced. . Therefore, no matter what timing of the one-difference detection cycle, there is a great effect as a noise component removal effect by averaging obtained by charging the detection electrode and moving the charged charge to the capture capacitor a plurality of times, regardless of the timing at which noise is superimposed. Can be obtained.

以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。   Although the invention made by the present inventor has been specifically described based on the embodiments, it is needless to say that the present invention is not limited thereto and can be variously modified without departing from the gist thereof.

例えば、被検出体の接近又は接触により容量変化を起こす電極部は検出電極をマトリクス状に配置したタッチパネルに限定されず適宜変更可能である。取り込み容量に接続される電圧ノードは負電圧ノードとグランド電圧ノードに限定されず適宜変更可能である。また、取り込み容量に対するプリチャージと差分検出サイクルの途中で行う電圧シフトの双方を行う場合だけでなく、差分検出サイクルに前記プリチャージだけを行なう場合、或いは差分検出サイクルの途中で電圧シフトだけを行う場合であってもよい。また、取り込み容量に蓄積した電荷によって得られる電圧の検出は図4などで説明した差動検出に限定されず、取り込み容量で形成された電圧を単独で増幅してA/D変換するようにしてもよい。本発明は、携帯電話やDSC、PDAといった情報処理端末の表示装置の駆動ドライバICに、表示装置表面に貼り付ける静電容量型タッチパネルの制御手段を内蔵する装置などに広く利用可能である。   For example, the electrode part that causes a capacitance change by the approach or contact of the detection target is not limited to a touch panel in which the detection electrodes are arranged in a matrix, and can be changed as appropriate. The voltage node connected to the capture capacitor is not limited to the negative voltage node and the ground voltage node, and can be changed as appropriate. In addition to performing both precharge for the capture capacitor and voltage shift performed in the middle of the difference detection cycle, only the voltage shift is performed in the case of performing only the precharge in the difference detection cycle or in the middle of the difference detection cycle. It may be the case. Further, the detection of the voltage obtained by the electric charge accumulated in the capturing capacitor is not limited to the differential detection described with reference to FIG. 4 and the like, but the voltage formed by the capturing capacitor is amplified alone and A / D converted. Also good. The present invention can be widely used for a device in which a drive driver IC of a display device of an information processing terminal such as a mobile phone, a DSC, or a PDA has a control unit of a capacitive touch panel to be attached to the surface of the display device.

1…水平同期信号
2…垂直同期信号
3…データイネーブル
4…表示データ
5…同期クロック
6…表示制御部
7…データ線およびタッチパネル制御信号
8…走査線制御信号
9…LCDパネル
10…タッチパネル駆動手段内蔵データ線駆動手段
11…データ線駆動信号
12…走査線駆動ユニット
13…走査線選択信号
14…表示画素部
15…静電容量型タッチパネル
16…検出電極線
17…座標信号
18…X1−1電極
19…Y1−2電極
20〜25…第1X電極線、第2X電極線、第3X電極線、第4X電極線、第5X電極線、第6X電極線
26〜35…第1Y電極線、第2Y電極線、第3Y電極線、第4Y電極線、第5Y電極線、第6Y電極線、第7Y電極線、第8Y電極線、第9Y電極線、第10Y電極線
36…データシフト部
37…データ開始信号
38…データシフトクロック
39…シリアル表示データ
40…パラレル表示データ
41…1ラインラッチ部
42…水平ラッチクロック
43…1ラインデータ
44…D/A変換部
45…検出制御部
46…検出スイッチ駆動信号
47…座標変換タイミング信号
48…容量差分検出部
49…容量差分値
50…座標変換部
51〜53…第1X電極線第1選択スイッチ、第2X電極線第1選択スイッチ、第3X電極線第1選択スイッチ
54…第10Y電極線第1選択スイッチ
55…第1選択スイッチ信号
56〜58…第1X電極線第1選択信号、第2X電極線第1選択信号、第3X電極線第1選択信号
59…第10Y電極線第1選択信号
60〜62…第1X電極線第2選択スイッチ、第2X電極線第2選択スイッチ、第3X電極線第2選択スイッチ
63…第10Y電極線第2選択スイッチ
64…第2選択スイッチ信号
65〜67…第1X電極線第2選択信号、第2X電極線第2選択信号、第3X電極線第2選択信号
68…第10Y電極線第2選択信号
69…第1X電極線非選択スイッチ、第2X電極線非選択スイッチ、第3X電極線非選択スイッチ
72…第10Y電極線非選択スイッチ
73…非選択スイッチ信号
74〜76…第1X電極線非選択信号、第2X電極線非選択信号、第3X電極線非選択信号
77…第10Y電極線非選択信号
78〜80…第1X電極容量、第2X電極容量、第3X電極容量
81…第10Y電極容量
82、83…第1選択電極線、第2選択電極線
84…電極線検出タイミング信号
85…第1電圧変換手段
86…第1電極線電圧
87…第2電圧変換手段
88…第2電極線電圧
89…差動増幅手段
90…容量差分電圧
91…A/D変換部
92…検出電源
93…X電極容量
94…Y電極容量
99〜102…第1X電極線第1選択信号波形、第2X電極線第1選択信号波形、第5X電極線第1選択信号波形、、第6X電極線第1選択信号波形
103〜107…第1Y電極線第1選択信号波形、第2Y電極線第1選択信号波形、第3Y電極線第1選択信号波形、第9Y電極線第1選択信号波形、第10Y電極線第1選択信号波形
108〜111…第1X電極線第2選択信号波形、第2X電極線第2選択信号波形、第5X電極線第2選択信号波形、第6X電極線第2選択信号波形
112〜116…第1Y電極線第2選択信号波形、第2Y電極線第2選択信号波形、第3Y電極線第2選択信号波形、第9Y電極線第2選択信号波形、第10Y電極線第2選択信号波形
117、118…第1選択電極線状態、第2選択電極線状態
119〜122…第1X電極線非選択信号波形、第2X電極線非選択信号波形、第5X電極線非選択信号波形、第6X電極線非選択信号波形
123〜127…第1Y電極線非選択信号波形、第2Y電極線非選択信号波形、第3Y電極線非選択信号波形、第9Y電極線非選択信号波形、第10Y電極線非選択信号波形
128〜130…X1電極接続状態、X2電極接続状態、X6電極接続状態
131〜133…Y1電極接続状態、Y2電極接続状態、Y10電極接続状態
201…検出電極
202…取込み容量
203…電極充電スイッチ
204…電圧源
205…検出電極シェアスイッチ
206…取込み容量正極側セットスイッチ
301…取込み容量負極側接地スイッチ
303…取込み容量負極側負電圧スイッチ
305…負電圧源
DESCRIPTION OF SYMBOLS 1 ... Horizontal synchronizing signal 2 ... Vertical synchronizing signal 3 ... Data enable 4 ... Display data 5 ... Synchronization clock 6 ... Display control part 7 ... Data line and touch panel control signal 8 ... Scanning line control signal 9 ... LCD panel 10 ... Touch panel drive means Built-in data line driving means 11 ... Data line driving signal 12 ... Scanning line driving unit 13 ... Scanning line selection signal 14 ... Display pixel unit 15 ... Capacitive touch panel 16 ... Detection electrode line 17 ... Coordinate signal 18 ... X1-1 electrode DESCRIPTION OF SYMBOLS 19 ... Y1-2 electrode 20-25 ... 1st X electrode line, 2nd X electrode line, 3rd X electrode line, 4th X electrode line, 5th X electrode line, 6th X electrode line 26-35 ... 1st Y electrode line, 2nd Y Electrode line, third Y electrode line, fourth Y electrode line, fifth Y electrode line, sixth Y electrode line, seventh Y electrode line, eighth Y electrode line, ninth Y electrode line, tenth Y electrode line 36... Data shift Unit 37: Data start signal 38 ... Data shift clock 39 ... Serial display data 40 ... Parallel display data 41 ... 1 line latch unit 42 ... Horizontal latch clock 43 ... 1 line data 44 ... D / A conversion unit 45 ... Detection control unit 46 ... Detection switch drive signal 47 ... Coordinate conversion timing signal 48 ... Capacity difference detection unit 49 ... Capacity difference value 50 ... Coordinate conversion unit 51-53 ... First X electrode line first selection switch, second X electrode line first selection switch, first 3X electrode line 1st selection switch 54 ... 10th Y electrode line 1st selection switch 55 ... 1st selection switch signal 56-58 ... 1st X electrode line 1st selection signal, 2nd X electrode line 1st selection signal, 3rd X electrode line First selection signal 59 ... 10th Y electrode line first selection signal 60-62 ... 1st X electrode line 2nd selection switch, 2nd X electrode line 2nd selection switch H, third X electrode line second selection switch 63... 10th Y electrode line second selection switch 64... Second selection switch signal 65 to 67... First X electrode line second selection signal, second X electrode line second selection signal, second 3X electrode line second selection signal 68 ... 10th Y electrode line second selection signal 69 ... 1st X electrode line non-selection switch, 2nd X electrode line non-selection switch, 3rd X electrode line non-selection switch 72 ... 10th Y electrode line non-selection Switch 73 ... Non-selection switch signal 74 to 76 ... 1st X electrode line non-selection signal, 2nd X electrode line non-selection signal, 3rd X electrode line non-selection signal 77 ... 10th Y electrode line non-selection signal 78 to 80 ... 1st X electrode Capacity, 2nd X electrode capacity, 3rd X electrode capacity 81 ... 10th Y electrode capacity 82, 83 ... 1st selection electrode line, 2nd selection electrode line 84 ... Electrode line detection timing signal 85 ... 1st voltage conversion means 86 ... 1st Polar line voltage 87 ... second voltage conversion means 88 ... second electrode line voltage 89 ... differential amplification means 90 ... capacitance difference voltage 91 ... A / D conversion section 92 ... detection power supply 93 ... X electrode capacity 94 ... Y electrode capacity 99 -10 2 ... 1st X electrode line 1st selection signal waveform, 2nd X electrode line 1st selection signal waveform, 5th X electrode line 1st selection signal waveform, 6th X electrode line 1st selection signal waveform 103-107 ... 1st Y electrode Line first selection signal waveform, second Y electrode line first selection signal waveform, third Y electrode line first selection signal waveform, ninth Y electrode line first selection signal waveform, tenth Y electrode line first selection signal waveform 108-111. First X electrode line second selection signal waveform, second X electrode line second selection signal waveform, fifth X electrode line second selection signal waveform, sixth X electrode line second selection signal waveform 112-116 ... first Y electrode line second selection Signal waveform, second Y electrode line second selection signal wave , Third Y electrode line second selection signal waveform, ninth Y electrode line second selection signal waveform, tenth Y electrode line second selection signal waveform 117, 118... First selection electrode line state, second selection electrode line state 119 to 122. ... 1st X electrode line non-selection signal waveform, 2nd X electrode line non-selection signal waveform, 5th X electrode line non-selection signal waveform, 6th X electrode line non-selection signal waveform 123-127 ... 1st Y electrode line non-selection signal waveform, 1st 2Y electrode line non-selection signal waveform, 3rd Y electrode line non-selection signal waveform, 9th Y electrode line non-selection signal waveform, 10th Y electrode line non-selection signal waveform 128 to 130 ... X1 electrode connection state, X2 electrode connection state, X6 electrode Connection state 131-133: Y1 electrode connection state, Y2 electrode connection state, Y10 electrode connection state 201 ... Detection electrode 202 ... Capture capacity 203 ... Electrode charge switch 204 ... Voltage source 205 ... Detection electrode shell Switch 206 ... uptake capacity positive electrode side set switch 301 ... uptake capacity negative electrode side grounding switch 303 ... uptake capacity negative electrode side negative voltage switch 305 ... negative voltage source

Claims (12)

被検出体の接近又は接触により容量変化を起こす電極部と、
前記電極部へ充電された電荷を電荷再配分によって所定複数回取り込んで累積するキャパシタと、
前記キャパシタに累積された電荷により生ずる電圧を測定する測定部と、を有し、
前記キャパシタは、前記電荷の累積による電圧の変化方向にプリチャージされてから前記電荷を取り込んで累積する動作が開始される容量検出装置。
An electrode part that causes a capacitance change by the approach or contact of the detected object; and
A capacitor that takes in and accumulates the charge charged to the electrode unit a predetermined number of times by charge redistribution;
A measurement unit for measuring a voltage generated by the electric charge accumulated in the capacitor,
The capacitor is a capacitance detection device in which an operation of taking in and accumulating the charge is started after the capacitor is precharged in a voltage change direction due to the accumulation of the electric charge.
前記キャパシタは、前記電荷の累積による電圧の変化方向にプリチャージされてから前記電荷を取り込んで累積する動作が開始された後、途中で、蓄積電荷を維持した状態で前記電荷の累積による電圧の変化方向とは逆方向に電圧シフトされる、請求項1記載の容量検出装置。   The capacitor is precharged in the direction of voltage change due to the accumulation of the charge, and then starts the operation of taking in and accumulating the charge. The capacitance detection device according to claim 1, wherein the voltage is shifted in a direction opposite to the direction of change. 被検出体の接近又は接触により容量変化を起こす電極部と、
前記電極部へ充電された電荷を電荷再配分によって所定複数回取り込んで累積するキャパシタと、
前記キャパシタに累積された電荷により生ずる電圧を測定する測定部と、を有し、
前記キャパシタは、前記電荷を取り込んで累積する動作が開始された後、途中で、蓄積電荷を維持した状態で前記電荷の累積による電圧の変化方向とは逆方向に電圧シフトされる、容量検出装置。
An electrode part that causes a capacitance change by the approach or contact of the detected object; and
A capacitor that takes in and accumulates the charge charged to the electrode unit a predetermined number of times by charge redistribution;
A measurement unit for measuring a voltage generated by the electric charge accumulated in the capacitor,
The capacitor is a capacitance detection device in which, after the operation of taking in and accumulating the charge is started, the voltage is shifted in the opposite direction to the voltage change direction due to the accumulation of the charge while maintaining the accumulated charge. .
前記キャパシタは、前記電荷を取り込んで累積する動作が開始され前に、前記電荷の累積による電圧の変化方向にプリチャージされる、請求項3記載の容量検出装置。   The capacitance detection device according to claim 3, wherein the capacitor is precharged in a direction in which a voltage changes due to the accumulation of the charge before the operation of taking in and accumulating the charge is started. 被検出体の接近又は接触により容量変化を起こす電極部と、
前記電極部へ充電された電荷を所定複数回取り込んで累積するキャパシタと、
前記電極部に接続される前記キャパシタの第1キャパシタ電極とは反対側の第2キャパシタ電極に選択的に接続される複数の電圧ノードと、
前記第2キャパシタ電極に接続する前記電圧ノードを切換える切換え回路と、
前記第1キャパシタ電極に得られる電圧を測定する測定部と、を有する容量検出装置。
An electrode part that causes a capacitance change by the approach or contact of the detected object; and
A capacitor that takes in and accumulates a plurality of charges charged in the electrode unit, and
A plurality of voltage nodes selectively connected to a second capacitor electrode opposite to the first capacitor electrode of the capacitor connected to the electrode portion;
A switching circuit for switching the voltage node connected to the second capacitor electrode;
And a measuring unit that measures a voltage obtained at the first capacitor electrode.
前記切換え回路は、前記第1キャパシタ電極を第1電圧に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記電極部の充電電荷を前記キャパシタに累積する動作を開始させる、請求項5記載の容量検出装置。   The switching circuit performs the initialization by connecting the first capacitor electrode to a first voltage and connecting the second capacitor electrode to a second voltage having a level lower than the first voltage, and after the initialization, The application of the first voltage to the first capacitor electrode is cut off, and the connection to the second capacitor electrode is switched to the first voltage, and the operation of accumulating the charged charge of the electrode unit in the capacitor is started. 5. The capacity detection device according to 5. 前記切換え回路は、前記第2キャパシタ電極を第1電圧に接続して、前記電極部の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を前記第1電圧よりもレベルの低い第2電圧に切換えてから、前記電極部の充電電荷を前記キャパシタに累積する動作を継続させる、請求項5記載の容量検出装置。   The switching circuit connects the second capacitor electrode to a first voltage and starts an operation of accumulating the charge of the electrode unit in the capacitor, and to the second capacitor electrode during the accumulation operation. The capacitance detection device according to claim 5, wherein the operation of accumulating the charged charge of the electrode portion in the capacitor is continued after the connection of is switched to the second voltage having a level lower than the first voltage. 前記切換え回路は、前記第1キャパシタ電極を第1電圧に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記電極部の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を第2電圧に切換えてから、前記電極部の充電電荷を前記キャパシタに累積する動作を継続させる、請求項5記載の容量検出装置。   The switching circuit performs the initialization by connecting the first capacitor electrode to a first voltage and connecting the second capacitor electrode to a second voltage having a level lower than the first voltage, and after the initialization, The application of the first voltage to the first capacitor electrode is cut off, and the connection to the second capacitor electrode is switched to the first voltage, and the operation of accumulating the charged charge of the electrode unit in the capacitor is started. 6. The capacitance detection device according to claim 5, wherein the operation of accumulating the charge of the electrode unit in the capacitor is continued after the connection to the second capacitor electrode is switched to the second voltage during the operation to be performed. 被検出体の接近又は接触により容量変化を起こす複数の容量電極によって構成された静電容量型タッチパネルと、
前記容量電極へ充電された電荷を所定複数回取り込んで累積するキャパシタと、
前記容量電極に接続される前記キャパシタの第1キャパシタ電極とは反対側の第2キャパシタ電極に選択的に接続される複数の電圧ノードと、
前記第2キャパシタ電極に接続する前記電圧ノードを切換える切換え回路と、
前記第1キャパシタ電極に得られる電圧を測定する測定部と、を有する容量検出装置。
A capacitive touch panel constituted by a plurality of capacitive electrodes that cause a capacitance change due to the approach or contact of the detected object; and
A capacitor that takes in and accumulates a plurality of charges charged in the capacitor electrode; and
A plurality of voltage nodes selectively connected to a second capacitor electrode opposite to the first capacitor electrode of the capacitor connected to the capacitor electrode;
A switching circuit for switching the voltage node connected to the second capacitor electrode;
And a measuring unit that measures a voltage obtained at the first capacitor electrode.
前記切換え回路は、前記第1キャパシタ電極を第1電圧に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記容量電極の充電電荷を前記キャパシタに累積する動作を開始させる、請求項9記載の容量検出装置。   The switching circuit performs the initialization by connecting the first capacitor electrode to a first voltage and connecting the second capacitor electrode to a second voltage having a level lower than the first voltage, and after the initialization, The application of the first voltage to the first capacitor electrode is cut off, and the connection to the second capacitor electrode is switched to the first voltage, and the operation of accumulating the charged charge of the capacitor electrode in the capacitor is started. 9. The capacity detection device according to 9. 前記切換え回路は、前記第2キャパシタ電極を第1電圧に接続して、前記容量電極の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を前記第1電圧よりもレベルの低い第2電圧に切換えてから、前記容量電極の充電電荷を前記キャパシタに累積する動作を継続させる、請求項9記載の容量検出装置。   The switching circuit connects the second capacitor electrode to the first voltage and starts an operation of accumulating the charge of the capacitor electrode in the capacitor, and to the second capacitor electrode during the accumulation operation. The capacitance detection device according to claim 9, wherein after the connection of is switched to a second voltage having a level lower than the first voltage, the operation of accumulating the charge of the capacitance electrode in the capacitor is continued. 前記切換え回路は、前記第1キャパシタ電極を第1電圧に接続すると共に前記第2キャパシタ電極を第1電圧よりもレベルの低い第2電圧に接続して前記初期化を行い、前記初期化後に前記第1キャパシタ電極への第1電圧の印加を遮断し且つ前記第2キャパシタ電極への接続を第1電圧に切換えて、前記容量電極の充電電荷を前記キャパシタに累積する動作を開始させ、当該累積する動作の途中で、前記第2キャパシタ電極への接続を第2電圧に切換えてから、前記容量電極の充電電荷を前記キャパシタに累積する動作を継続させる、請求項9記載の容量検出装置。   The switching circuit performs the initialization by connecting the first capacitor electrode to a first voltage and connecting the second capacitor electrode to a second voltage having a level lower than the first voltage, and after the initialization, The application of the first voltage to the first capacitor electrode is cut off, and the connection to the second capacitor electrode is switched to the first voltage, and the operation of accumulating the charged charge of the capacitor electrode in the capacitor is started. 10. The capacitance detection device according to claim 9, wherein the operation of accumulating the charge of the capacitor electrode in the capacitor is continued after the connection to the second capacitor electrode is switched to the second voltage during the operation to be performed.
JP2010038906A 2010-02-24 2010-02-24 Capacity detector Expired - Fee Related JP5422437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038906A JP5422437B2 (en) 2010-02-24 2010-02-24 Capacity detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038906A JP5422437B2 (en) 2010-02-24 2010-02-24 Capacity detector

Publications (2)

Publication Number Publication Date
JP2011175451A true JP2011175451A (en) 2011-09-08
JP5422437B2 JP5422437B2 (en) 2014-02-19

Family

ID=44688251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038906A Expired - Fee Related JP5422437B2 (en) 2010-02-24 2010-02-24 Capacity detector

Country Status (1)

Country Link
JP (1) JP5422437B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131079A (en) * 2011-12-21 2013-07-04 Futaba Corp Projection type electrostatic capacity system touch panel and coordinate detection method thereof
JP2014534683A (en) * 2011-10-07 2014-12-18 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Microcontroller with optimized ADC controller
US9467141B2 (en) 2011-10-07 2016-10-11 Microchip Technology Incorporated Measuring capacitance of a capacitive sensor with a microcontroller having an analog output for driving a guard ring
US9805572B2 (en) 2011-10-06 2017-10-31 Microchip Technology Incorporated Differential current measurements to determine ion current in the presence of leakage current
US9823280B2 (en) 2011-12-21 2017-11-21 Microchip Technology Incorporated Current sensing with internal ADC capacitor
KR20170136051A (en) * 2016-05-30 2017-12-11 엘지디스플레이 주식회사 Display device having sensor screen and driving method thereof
KR20180033338A (en) * 2016-09-23 2018-04-03 엘지디스플레이 주식회사 Touch driving circuit, touch display device and method for driving thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009260536A (en) * 2008-04-15 2009-11-05 Hitachi Displays Ltd Input device and display device equipped with same
JP2011510375A (en) * 2008-01-15 2011-03-31 ピクサー マイクロエレクトロニクス カンパニー リミテッド Apparatus for quantifying electrical imbalance and contact detection system incorporating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510375A (en) * 2008-01-15 2011-03-31 ピクサー マイクロエレクトロニクス カンパニー リミテッド Apparatus for quantifying electrical imbalance and contact detection system incorporating the same
JP2009260536A (en) * 2008-04-15 2009-11-05 Hitachi Displays Ltd Input device and display device equipped with same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9805572B2 (en) 2011-10-06 2017-10-31 Microchip Technology Incorporated Differential current measurements to determine ion current in the presence of leakage current
JP2014534683A (en) * 2011-10-07 2014-12-18 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Microcontroller with optimized ADC controller
US9467141B2 (en) 2011-10-07 2016-10-11 Microchip Technology Incorporated Measuring capacitance of a capacitive sensor with a microcontroller having an analog output for driving a guard ring
JP2013131079A (en) * 2011-12-21 2013-07-04 Futaba Corp Projection type electrostatic capacity system touch panel and coordinate detection method thereof
US9823280B2 (en) 2011-12-21 2017-11-21 Microchip Technology Incorporated Current sensing with internal ADC capacitor
KR20170136051A (en) * 2016-05-30 2017-12-11 엘지디스플레이 주식회사 Display device having sensor screen and driving method thereof
KR102526290B1 (en) * 2016-05-30 2023-04-28 엘지디스플레이 주식회사 Display device having sensor screen and driving method thereof
KR20180033338A (en) * 2016-09-23 2018-04-03 엘지디스플레이 주식회사 Touch driving circuit, touch display device and method for driving thereof
KR102586120B1 (en) * 2016-09-23 2023-10-06 엘지디스플레이 주식회사 Touch driving circuit, touch display device and method for driving thereof

Also Published As

Publication number Publication date
JP5422437B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5422437B2 (en) Capacity detector
JP4945345B2 (en) Display device with touch panel
TWI533186B (en) Liquid crystal display device
KR101350874B1 (en) Display device and driving method thereof
US9846502B2 (en) Touch sensor and display apparatus including the same
CN105183248B (en) Capacitance detection circuit, touch detection circuit, and semiconductor integrated circuit including the same
KR101462149B1 (en) Touch sensor, liquid crystal display panel having the same and method of sensing the same
JP5427648B2 (en) Coordinate input device and display device including the same
JP5694536B2 (en) Display device
KR101542397B1 (en) Touch sensible display device and driving method thereof
US9041678B2 (en) Input device, contact position detection method, and display device provided with input device
US9519385B2 (en) Semiconductor device and electronic device
CN102859471B (en) Display device with touch sensor
TWI381302B (en) Capacitive touch panel and capacitance sensing apparatus and method for the same
JP5443207B2 (en) Touch sensor device
CN103853406B (en) Semiconductor device and electronic equipment
US20130076675A1 (en) Touch screen driver and method for driving the same
US10001877B2 (en) Semiconductor device
TW200422705A (en) AMLCD with integrated touch input
CN105830002A (en) Touch input sensing method for reducing influence of parasitic capacitance and device therefor
CN105630261A (en) Integrator and touch sensing system using same
CN102200857A (en) Touch signal scanning frequency determining method of touch panel
JP2009301545A (en) Touch screen display device
US20160170531A1 (en) Touch signal detection apparatus and touch signal detection method
TW201913340A (en) Touch display device, touch circuit, and touch sensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees