JP2011173423A - Copper-clad laminated substrate - Google Patents

Copper-clad laminated substrate Download PDF

Info

Publication number
JP2011173423A
JP2011173423A JP2011080680A JP2011080680A JP2011173423A JP 2011173423 A JP2011173423 A JP 2011173423A JP 2011080680 A JP2011080680 A JP 2011080680A JP 2011080680 A JP2011080680 A JP 2011080680A JP 2011173423 A JP2011173423 A JP 2011173423A
Authority
JP
Japan
Prior art keywords
copper
polyimide
clad laminate
copper foil
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011080680A
Other languages
Japanese (ja)
Inventor
Koji Narui
耕治 鳴井
Masafumi Hashimoto
雅文 橋本
Takuro Kouchiyama
拓郎 河内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011080680A priority Critical patent/JP2011173423A/en
Publication of JP2011173423A publication Critical patent/JP2011173423A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/068Features of the lamination press or of the lamination process, e.g. using special separator sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-clad laminated substrate which is improved in slip performance and skid property in the surface, favorable in appearance, and high in flexibility. <P>SOLUTION: The copper-clad laminated substrate is prepared by laminating copper foil at one side or both sides of a polyimide film by thermocompression bonding. The polyimide film has a heat-resistant polyimide layer and a thermoplastic polyimide layer. The copper-clad laminated substrate is formed by laminating the copper foil at one side or both sides of the heat-resistant polyimide layer via the thermoplastic polyimide layer by thermocompression bonding. Polyimide particles are dispersed in the thermoplastic polyimide layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリイミドフィルムに銅箔を積層してなる高屈曲性の銅張り積層基板に関する。   The present invention relates to a highly flexible copper-clad laminated substrate obtained by laminating a copper foil on a polyimide film.

ポリイミドフィルムは、耐熱性、耐薬品性、機械的強度、電気特性などに優れていることから積層板、フレキシブルプリント基板等に使用されてきた。   Polyimide films have been used for laminates, flexible printed boards, and the like because of their excellent heat resistance, chemical resistance, mechanical strength, electrical properties, and the like.

例えばフレキシブルプリント配線板(FPC)としては、ポリイミドフィルムの片面または両面に銅箔を積層してなる銅張り積層基板が使用されている(特許文献1〜3)。使用されるポリイミドフィルムは、通常、特許文献1〜3の実施例のように厚み25μm程度のものである。   For example, as a flexible printed wiring board (FPC), a copper-clad laminated board formed by laminating a copper foil on one side or both sides of a polyimide film is used (Patent Documents 1 to 3). The polyimide film used is usually about 25 μm thick as in Examples of Patent Documents 1 to 3.

現在、電子部品用基板を始め、銅張り積層基板には優れた機械的特性、高い屈曲性が求められている。特に、銅張り積層基板をヒンジ部に適用する場合に高屈曲性が求められている。しかしながら、厚み25μm程度のポリイミドフィルムを使用した従来の銅張り積層基板は、十分な屈曲性を有するものではなかった。   Currently, excellent mechanical properties and high flexibility are demanded for copper-clad laminates, including substrates for electronic components. In particular, high flexibility is required when a copper-clad laminate is applied to the hinge portion. However, the conventional copper-clad laminate using a polyimide film having a thickness of about 25 μm does not have sufficient flexibility.

また、ポリイミドフィルムは接着性に問題がある。この接着性を改善する方法としては、アルカリ処理、コロナ処理、サンドブラスト、低温プラズマ処理などの表面処理を施す方法などが行われている。しかし、これらの方法は接着性の改善には効果があるが、接着剤としてポリイミド以外の接着剤、例えばエポキシ樹脂系接着剤を必要とし、フレキシブル基板全体としての耐熱性が低下する。   Moreover, a polyimide film has a problem in adhesiveness. As a method for improving the adhesiveness, a surface treatment such as alkali treatment, corona treatment, sand blasting, and low-temperature plasma treatment is performed. However, although these methods are effective in improving the adhesiveness, an adhesive other than polyimide, for example, an epoxy resin adhesive is required as an adhesive, and the heat resistance of the entire flexible substrate is lowered.

このため、ポリイミドフィルムとして、熱可塑性ポリイミドの薄層を耐熱性ポリイミド層の両面に積層した熱圧着性多層ポリイミドフィルムが提案された。   For this reason, the thermocompression-bonding multilayer polyimide film which laminated | stacked the thin layer of the thermoplastic polyimide on both surfaces of the heat resistant polyimide layer was proposed as a polyimide film.

しかし、この熱圧着性多層ポリイミドフィルムは、表面が平滑である場合には、巻取りロールに巻取るフィルム製造時や、銅箔とラミネートする際にロール等との摩擦が大きく、皺が入ったり、ロールに巻き付くというトラブルが生じることがあり、巻取りに制限を受ける。そのため、ポリイミドフィルムの表面滑性を改良する必要があった。   However, when the surface of this thermocompression-bonding multilayer polyimide film is smooth, the friction between the roll and the like is large when producing a film to be wound on a winding roll or when laminating with copper foil, and wrinkles may occur. The trouble of winding around a roll may occur, and winding is limited. Therefore, it was necessary to improve the surface slipperiness of the polyimide film.

ポリイミドフィルムの表面滑性を良くする方法としては、例えば、エンボス加工のような表面処理をする方法や、ポリイミドフィルム中にリン酸カルシウム(特許文献1)やシリカ(特許文献2)などの無機粉末を分散させ、フィルム表面に微細な突起を生じさせて、表面の摩擦係数を減らす方法が採用されてきた。また、微細無機フィラーを分散させた溶媒中で重合したポリアミック酸溶液を流延製膜してポリイミドフィルムを製造する方法が提案された(特許文献3)。   As a method for improving the surface smoothness of the polyimide film, for example, a surface treatment such as embossing, or inorganic powder such as calcium phosphate (Patent Document 1) or silica (Patent Document 2) is dispersed in the polyimide film. And a method of reducing the friction coefficient of the surface by causing fine protrusions on the film surface. In addition, a method for producing a polyimide film by casting a polyamic acid solution polymerized in a solvent in which fine inorganic fillers are dispersed has been proposed (Patent Document 3).

しかしながら、表面処理をする第一の方法は、フィルム表面に過度の凹凸が生じてフィルムの外観が損なわれ易いという欠点があった。また第二の方法では、ポリアミック酸溶液に無機粉末を混合してポリイミドフィルムを製造するが、特別な分散装置を使用しないと無機粉末をポリアミック酸溶液中に均一に分散させることは難しい。そのため、この方法では、無機粉末が分散せずに塊となって残ったりして、得られるフィルム表面に大きな突起が形成される場合がある。第三の方法においても同様に、微粒子状の無機粉末を均一分散させることは困難であり、粒径の大きい無機粉末を使用すると第二の方法と同じ問題が生じることがある。   However, the first method of surface treatment has a drawback that excessive irregularities are generated on the film surface and the appearance of the film is easily impaired. In the second method, an inorganic powder is mixed with a polyamic acid solution to produce a polyimide film. However, it is difficult to uniformly disperse the inorganic powder in the polyamic acid solution unless a special dispersing device is used. Therefore, in this method, the inorganic powder may remain as a lump without being dispersed, and large protrusions may be formed on the resulting film surface. Similarly, in the third method, it is difficult to uniformly disperse the fine particle inorganic powder, and the use of an inorganic powder having a large particle size may cause the same problem as in the second method.

このため、ファインパターンが求められるCOF用銅張り積層基板においては、これらの無機フィラーを添加する方法を適用すると、熱可塑性ポリイミド表面の突起が微細ピッチ形成の障害となる場合がある。   For this reason, in the copper-clad laminated substrate for COF where a fine pattern is required, when the method of adding these inorganic fillers is applied, the protrusions on the surface of the thermoplastic polyimide may obstruct the formation of a fine pitch.

特開昭62−68852号公報JP-A-62-68852 特開昭62−68853号公報JP 62-68853 A 特開平6−145378号公報JP-A-6-145378

本発明の目的は、屈曲性の高い銅張り積層基板を提供することである。さらに、本発明の他の目的は、ポリイミドフィルム表面の滑り性および易滑性が改良され、外観が良好で屈曲性の高い銅張り積層基板を提供することである。   An object of the present invention is to provide a copper-clad laminate having high flexibility. Furthermore, another object of the present invention is to provide a copper-clad laminate having improved flexibility and smoothness on the surface of a polyimide film, a good appearance and high flexibility.

本発明は以下の事項に関する。   The present invention relates to the following matters.

1. ポリイミドフィルムの片面または両面に銅箔を熱圧着により積層してなる銅張り積層基板であって、
ポリイミドフィルムの厚みが5〜20μmであり、
銅箔の厚みが1〜18μmであることを特徴とする銅張り積層基板。
1. It is a copper-clad laminated board formed by laminating copper foil on one or both sides of a polyimide film by thermocompression bonding,
The thickness of the polyimide film is 5 to 20 μm,
A copper-clad laminate having a copper foil thickness of 1 to 18 μm.

2. ポリイミドフィルムは、耐熱性ポリイミド層と熱可塑性ポリイミド層とを有し、
銅張り積層基板が、耐熱性ポリイミド層の片面または両面に熱可塑性ポリイミド層を介して、銅箔を熱圧着により積層してなる銅張り積層基板である上記1記載の銅張り積層基板。
2. The polyimide film has a heat-resistant polyimide layer and a thermoplastic polyimide layer,
2. The copper-clad laminate substrate according to 1 above, wherein the copper-clad laminate substrate is a copper-clad laminate substrate obtained by laminating a copper foil by thermocompression bonding on one or both sides of a heat-resistant polyimide layer via a thermoplastic polyimide layer.

3. ポリイミドフィルムの厚みが5〜15μmである上記1記載の銅張り積層基板。   3. 2. The copper-clad laminate as described in 1 above, wherein the polyimide film has a thickness of 5 to 15 μm.

4. 銅箔が、厚みが8〜18μmの圧延銅箔である上記1記載の銅張り積層基板。   4). 2. The copper-clad laminate as described in 1 above, wherein the copper foil is a rolled copper foil having a thickness of 8 to 18 μm.

5. 銅箔が、厚みが10〜18μmの圧延銅箔である上記4記載の銅張り積層基板。   5. 5. The copper-clad laminate as described in 4 above, wherein the copper foil is a rolled copper foil having a thickness of 10 to 18 μm.

6. 銅箔が、厚みが10〜12μmの圧延銅箔である上記5記載の銅張り積層基板。   6). 6. The copper-clad laminate as described in 5 above, wherein the copper foil is a rolled copper foil having a thickness of 10 to 12 μm.

7. 銅箔が、熱処理前の引張強度が300N/mm以上であり、下記式(1)で定義される180℃、1時間熱処理後の引張強度比が33%以下の圧延銅箔である上記1記載の銅張り積層基板。
熱処理後の引張強度比(%)=熱処理後の引張強度/熱処理前の引張強度×100 (1)
7). The copper foil is a rolled copper foil having a tensile strength before heat treatment of 300 N / mm 2 or more and a tensile strength ratio after heat treatment at 180 ° C. for 1 hour of 33% or less defined by the following formula (1): 33% or less The copper-clad laminate as described.
Tensile strength ratio after heat treatment (%) = tensile strength after heat treatment / tensile strength before heat treatment × 100 (1)

8. 銅箔がキャリア付き銅箔であり、
キャリアを剥離した銅箔の厚みが1〜5μmである上記1記載の銅張り積層基板。
8). The copper foil is a copper foil with a carrier,
2. The copper-clad laminate as described in 1 above, wherein the thickness of the copper foil from which the carrier is peeled is 1 to 5 μm.

9. 上記8記載の銅張り積層基板からキャリアを剥離した後、銅メッキにより銅箔の厚みを5〜8μmに調整して得られる銅張り積層基板。   9. A copper-clad laminate obtained by peeling the carrier from the copper-clad laminate described in 8 above and then adjusting the thickness of the copper foil to 5 to 8 μm by copper plating.

10. MIT耐折性が約2000回以上である上記1記載の銅張り積層基板。   10. 2. The copper-clad laminate as described in 1 above, wherein the MIT folding resistance is about 2000 times or more.

11. MIT耐折性が約2000回以上である上記9記載の銅張り積層基板。   11. The copper-clad laminate as described in 9 above, wherein the MIT folding resistance is about 2000 times or more.

12. ポリイミドフィルムが、耐熱性ポリイミド層の片面または両面に熱可塑性ポリイミド層を有する熱圧着性多層ポリイミドフィルムである上記1記載の銅張り積層基板。   12 2. The copper-clad laminate according to 1 above, wherein the polyimide film is a thermocompression-bonding multilayer polyimide film having a thermoplastic polyimide layer on one side or both sides of the heat-resistant polyimide layer.

13. 熱可塑性ポリイミド層中にポリイミド粒子が分散されている上記12記載の銅張り積層基板。   13. 13. The copper-clad laminate as described in 12 above, wherein polyimide particles are dispersed in the thermoplastic polyimide layer.

14. 熱可塑性ポリイミド層が、その表面から少なくとも0.5μm中に、メジアン径が0.3〜0.8μmでかつ最大径が2μm以下であるポリイミド粒子を、ポリイミド表面層のポリイミドに対して約0.5〜10質量%の割合で分散してなるものであり、無機粉末を実質的に含有しておらず、
ポリイミドフィルムの摩擦係数が0.05〜0.7である上記13記載の銅張り積層基板。
14 The polyimide film having a median diameter of 0.3 to 0.8 μm and a maximum diameter of 2 μm or less in a thermoplastic polyimide layer of at least 0.5 μm from the surface thereof is about 0. It is dispersed at a rate of 5 to 10% by mass, does not substantially contain inorganic powder,
14. The copper-clad laminate as described in 13 above, wherein the polyimide film has a friction coefficient of 0.05 to 0.7.

15. ポリイミド粒子が、ピロメリット酸成分とp−フェニレンジアミン成分とから得られるものである上記13記載の銅張り積層基板。   15. 14. The copper-clad laminate as described in 13 above, wherein the polyimide particles are obtained from a pyromellitic acid component and a p-phenylenediamine component.

16. ポリイミドフィルムが、厚み3〜18μmの耐熱性ポリイミド層の両面に厚み1〜6μmの熱可塑性ポリイミド層を有するものである上記12記載の銅張り積層基板。   16. 13. The copper-clad laminate as described in 12 above, wherein the polyimide film has a thermoplastic polyimide layer having a thickness of 1 to 6 μm on both sides of a heat-resistant polyimide layer having a thickness of 3 to 18 μm.

17. 熱圧着性多層ポリイミドフィルムと銅箔とを加圧下に熱可塑性ポリイミドのガラス転移温度以上、400℃以下の温度で熱圧着してなる上記12記載の銅張り積層基板。   17. 13. The copper-clad laminate as described in 12 above, wherein a thermocompression-bonding multilayer polyimide film and a copper foil are thermocompression bonded under pressure at a temperature not lower than the glass transition temperature of the thermoplastic polyimide and not higher than 400 ° C.

18. 熱圧着性多層ポリイミドフィルムが、共押出し−流延製膜法によって耐熱性のポリイミド層の片面または両面に熱圧着性のポリイミド層を積層一体化して得られたものである上記12記載の銅張り積層基板。   18. 13. The copper-clad sheet as described in 12 above, wherein the thermocompression-bonding multilayer polyimide film is obtained by laminating and integrating a thermocompression-bonding polyimide layer on one side or both sides of a heat-resistant polyimide layer by a coextrusion-casting film forming method. Laminated substrate.

19. オールポリイミドのヒンジ部用である上記1記載の銅張り積層基板。   19. The copper-clad laminate as described in 1 above, which is used for the hinge part of all polyimide.

20. 耐熱性ポリイミド層の少なくとも片面に熱可塑性ポリイミド層を有し、熱可塑性ポリイミド層中にポリイミド粒子を分散してなる厚みが5〜25μmの熱圧着性多層ポリイミドフィルムに、厚みが18μm以下の銅箔を積層してなる銅張り積層基板。   20. Copper foil having a thickness of 18 μm or less on a thermocompression-bonding multilayer polyimide film having a thickness of 5 to 25 μm, which has a thermoplastic polyimide layer on at least one side of the heat-resistant polyimide layer, and polyimide particles are dispersed in the thermoplastic polyimide layer A copper-clad laminated board made by laminating layers.

21. 耐熱性ポリイミド層の片面または両面に熱可塑性ポリイミド層を有する厚み5〜20μmのポリイミドフィルムに、厚み1〜18μmの銅箔を熱圧着して積層する銅張り積層基板の連続的製造方法であって、
ポリイミドフィルムの熱可塑性ポリイミド層と銅箔とを重ね合わせるようにしてラミネート装置に連続的に供給し、加圧下に熱可塑性ポリイミドのガラス転移温度以上、400℃以下の温度で熱圧着して積層する銅張り積層基板の連続的製造方法。
21. A continuous production method for a copper-clad laminate in which a copper film having a thickness of 1 to 18 μm is laminated by thermocompression bonding to a polyimide film having a thickness of 5 to 20 μm having a thermoplastic polyimide layer on one or both sides of the heat-resistant polyimide layer. ,
The thermoplastic polyimide layer of the polyimide film and the copper foil are continuously supplied to the laminating apparatus so as to overlap each other, and are laminated by thermocompression bonding at a temperature not lower than the glass transition temperature of the thermoplastic polyimide and not higher than 400 ° C. under pressure. Continuous manufacturing method for copper-clad laminate.

ここで、MIT耐折性とは、JIS・C6471に準拠し、片面のみに同試験方法に規定された銅箔回路を形成し、曲率半径0.8mm、荷重4.9N、折り曲げ速度175回/分、左右折り曲げ角度135度で、初期電気抵抗値から20%以上上昇した時点での耐折回数を測定したものである。   Here, MIT folding resistance is based on JIS C6471, a copper foil circuit defined in the test method is formed only on one side, a radius of curvature of 0.8 mm, a load of 4.9 N, a bending speed of 175 times / This is a measurement of the number of folding resistances at the time when the initial electrical resistance value increased by 20% or more at a left and right folding angle of 135 degrees.

また、銅箔の引張強度は、JIS・C6515に準拠し、同試験方法に規定された試験片を作製し、クロスヘッド速度が2mm/分にて測定したものである。   Moreover, the tensile strength of copper foil is based on JIS * C6515, the test piece prescribed | regulated to the test method was produced, and the crosshead speed | rate measured by 2 mm / min.

また、熱処理後の引張強度比(%)は、(1)式から算出した。   Further, the tensile strength ratio (%) after the heat treatment was calculated from the equation (1).

熱処理後の引張強度比(%)=(熱処理後の引張強度)/(熱処理前の引張強度)×100(1)     Tensile strength ratio after heat treatment (%) = (Tensile strength after heat treatment) / (Tensile strength before heat treatment) × 100 (1)

本発明の銅張り積層基板は、厚みが5〜20μmのポリイミドフィルムの片面または両面に厚みが1〜18μmの銅箔を熱圧着により積層したものである。ポリイミドフィルムの厚みは5〜15μmが好ましい。銅箔は、厚みが12μm以下、特に10〜12μmの圧延銅箔が好ましい。このようにポリイミドフィルムおよび銅箔の厚みを薄くすることにより、屈曲性が非常に高くなる。例えば、ポリイミドフィルムの厚みを25μmから15μmにすると、MIT耐折性が、MDおよびTDいずれにおいても約2倍以上になった。また、ポリイミドフィルムの厚みを変えずに、銅箔の厚みを18μmから12μmにしても、MIT耐折性がMDおよびTDいずれにおいても高くなった。   The copper-clad laminate of the present invention is obtained by laminating a copper foil having a thickness of 1 to 18 μm on one or both sides of a polyimide film having a thickness of 5 to 20 μm by thermocompression bonding. The thickness of the polyimide film is preferably 5 to 15 μm. The copper foil is preferably a rolled copper foil having a thickness of 12 μm or less, particularly 10 to 12 μm. In this way, by reducing the thickness of the polyimide film and the copper foil, the flexibility becomes very high. For example, when the thickness of the polyimide film was changed from 25 μm to 15 μm, the MIT folding resistance was about twice or more in both MD and TD. Further, even when the thickness of the copper foil was changed from 18 μm to 12 μm without changing the thickness of the polyimide film, the MIT folding resistance increased in both MD and TD.

特に、使用する銅箔が熱処理前の引張強度が300N/mm以上であり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比が33%以下である圧延銅箔の場合に、ポリイミドフィルムおよび銅箔の厚みを薄くすることによって、より顕著に屈曲性が向上する。 In particular, the copper foil used is a rolled copper foil having a tensile strength before heat treatment of 300 N / mm 2 or more and a tensile strength ratio after heat treatment at 180 ° C. for 1 hour defined by the above formula (1) of 33% or less. In this case, the flexibility is remarkably improved by reducing the thickness of the polyimide film and the copper foil.

本発明の銅張り積層基板は、MIT耐折性が好ましくはMDおよびTDのいずれにおいても約2000回以上であり、ポリイミドフィルムおよび銅箔の厚み、銅箔の種類を選択することで約3000回以上、さらには約3700回以上、さらには約4000回以上、さらには約5000回以上、さらには約7000回以上にすることもできる。   In the copper-clad laminate of the present invention, the MIT folding resistance is preferably about 2000 times or more in both MD and TD, and about 3000 times by selecting the thickness of the polyimide film and copper foil and the type of copper foil. More than about 3,700 times, further about 4000 times, further about 5000 times, further about 7000 times or more can be used.

一方で、銅箔およびポリイミドフィルムの厚みを小さくすると、長尺状の銅張り積層基板を得るためのラミネート法による工程中でローラー接触部分でしわが発生し、張り合わせ後に外観不良のため歩留まりが低下するという問題があった。特に、厚み25μm以下の薄いポリイミドフィルムでは、通紙性の面で連続的な銅張り積層基板の製造が困難であった。   On the other hand, when the thickness of the copper foil and polyimide film is reduced, wrinkles occur at the roller contact portion in the process of the laminating method for obtaining a long copper-clad laminate, and the yield decreases due to poor appearance after lamination. There was a problem to do. In particular, with a polyimide film having a thickness of 25 μm or less, it was difficult to produce a continuous copper-clad laminate in terms of paper permeability.

ポリイミドフィルムとして、耐熱性ポリイミド層の片面または両面に、ポリイミド粒子が分散されている熱可塑性ポリイミド層を有する熱圧着性多層ポリイミドフィルムを用いることにより、ポリイミドフィルム表面の易滑性が改良され、得られる銅張り積層基板は全長にわたる測定によりシワ等の外観不良がなくなる。特に、熱可塑性ポリイミド層が、その表面から少なくとも0.5μm中に、好適には表面から少なくとも0.7μm中に、メジアン径が0.3〜0.8μmでかつ最大径が2μm以下であるポリイミド粒子を、ポリイミド表面層のポリイミドに対して約0.5〜10質量%の割合で分散してなるものであり、無機粉末を実質的に含有していないものであることが好ましく、厚み25μm以下の薄いポリイミドフィルムを用いても外観不良がない銅張り積層基板が得られる。   By using a thermocompression-bonding multilayer polyimide film having a thermoplastic polyimide layer in which polyimide particles are dispersed on one or both sides of a heat-resistant polyimide layer, the slidability of the polyimide film surface is improved and obtained. The resulting copper-clad laminate is free from defects such as wrinkles due to measurement over its entire length. In particular, a polyimide whose thermoplastic polyimide layer is at least 0.5 μm from the surface, preferably at least 0.7 μm from the surface, with a median diameter of 0.3 to 0.8 μm and a maximum diameter of 2 μm or less. The particles are dispersed in a proportion of about 0.5 to 10% by mass with respect to the polyimide of the polyimide surface layer, and preferably contain substantially no inorganic powder and have a thickness of 25 μm or less. Even if a thin polyimide film is used, a copper-clad laminate having no defective appearance can be obtained.

図1は、実施例1で得られたポリイミドフィルムの表面のSEM観察結果(2000倍)を示す図である。1 is a diagram showing SEM observation results (2000 times) of the surface of the polyimide film obtained in Example 1. FIG. 図2は、参考例2で得られたポリイミドフィルムの表面のSEM観察結果(2000倍)を示す図である。FIG. 2 is a view showing SEM observation results (2000 times) of the surface of the polyimide film obtained in Reference Example 2. FIG.

1.本発明の銅張り積層基板に使用されるポリイミドフィルム
本発明において使用されるポリイミドフィルムは、厚みが5〜20μmのものである。ポリイミドフィルムの厚みは、5〜18μm、さらに5〜15μmであることが好ましい。ポリイミドフィルムの厚みを20μm以下、好ましくは18μm以下、特に15μm以下にまで薄くすることにより、銅張り積層基板の屈曲性が非常に向上する。これは特定のポリイミドフィルムに限られるものではなく、いずれのポリイミドフィルムに適用しても同様の効果が得られる。
1. Polyimide film used for the copper-clad laminate of the present invention The polyimide film used in the present invention has a thickness of 5 to 20 μm. The thickness of the polyimide film is preferably 5 to 18 μm, and more preferably 5 to 15 μm. By reducing the thickness of the polyimide film to 20 μm or less, preferably 18 μm or less, particularly 15 μm or less, the flexibility of the copper-clad laminate is greatly improved. This is not limited to a specific polyimide film, and the same effect can be obtained when applied to any polyimide film.

ポリイミドフィルムとしては特に限定されないが、プリント配線板、フレキシブルプリント基板、TABテープ等の電子部品の素材として用いられるポリイミドフィルム、該ポリイミドフィルムを構成する酸成分及びジアミン成分とから得られる、或いは該ポリイミドフィルムを構成する酸成分及びジアミン成分とを含むポリイミドなどを挙げることができる。   Although it does not specifically limit as a polyimide film, It is obtained from the polyimide film used as a raw material of electronic components, such as a printed wiring board, a flexible printed circuit board, and a TAB tape, The acid component and diamine component which comprise this polyimide film, or this polyimide Examples thereof include a polyimide containing an acid component and a diamine component constituting the film.

本発明において使用されるポリイミドフィルムは、以下の特性を少なくとも1つ以上有することが好ましい。
1)ガラス転移温度が300℃以上、好ましくはガラス転移温度が330℃以上、さらに好ましくは確認不可能であるもの。
2)線膨張係数(50〜200℃)(MD)が、ポリイミドフィルムに積層する銅箔などの金属箔の熱膨張係数に近いもの。具体的には、金属箔として銅箔を用いる場合、ポリイミドフィルムの熱膨張係数は5×10−6〜28×10−6cm/cm/℃であることが好ましく、9×10−6〜20×10−6cm/cm/℃であることがより好ましく、さらに12×10−6〜18×10−6cm/cm/℃であることが好ましい。
3)引張弾性率(MD、ASTM−D882)は300kg/mm以上、好ましくは500kg/mm以上、さらに700kg/mm以上であるもの。
The polyimide film used in the present invention preferably has at least one or more of the following characteristics.
1) A glass transition temperature of 300 ° C. or higher, preferably a glass transition temperature of 330 ° C. or higher, more preferably unidentifiable.
2) A linear expansion coefficient (50-200 degreeC) (MD) is a thing close | similar to the thermal expansion coefficient of metal foil, such as copper foil laminated | stacked on a polyimide film. Specifically, when copper foil is used as the metal foil, the thermal expansion coefficient of the polyimide film is preferably 5 × 10 −6 to 28 × 10 −6 cm / cm / ° C., and 9 × 10 −6 to 20 more preferably × is 10 -6 cm / cm / ℃, is preferably further 12 × 10 -6 ~18 × 10 -6 cm / cm / ℃.
3) Tensile elastic modulus (MD, ASTM-D882) is 300 kg / mm 2 or more, preferably 500 kg / mm 2 or more, and more preferably 700 kg / mm 2 or more.

ポリイミドフィルムとしては、耐熱性ポリイミド層と熱可塑性ポリイミド層とを有するもの、耐熱性ポリイミド層の片面または両面に熱可塑性ポリイミド層を有する熱圧着性多層ポリイミドフィルムが好ましい。熱可塑性ポリイミド層が銅箔を熱圧着する面であり、従って、両面銅張り積層基板には耐熱性ポリイミド層の両面に熱可塑性ポリイミド層を有するものが使用され、片面銅張り積層基板には耐熱性ポリイミド層の片面に熱可塑性ポリイミド層を有するものが使用される。   As a polyimide film, the thing which has a heat resistant polyimide layer and a thermoplastic polyimide layer, and the thermocompression-bonding multilayer polyimide film which has a thermoplastic polyimide layer on the one or both surfaces of a heat resistant polyimide layer are preferable. The thermoplastic polyimide layer is the surface on which the copper foil is thermocompression-bonded. Therefore, a double-sided copper-clad laminate is one that has a thermoplastic polyimide layer on both sides of a heat-resistant polyimide layer, and a single-sided copper-clad laminate is heat-resistant. A material having a thermoplastic polyimide layer on one side of the conductive polyimide layer is used.

熱可塑性ポリイミド層のポリイミドのガラス転移温度は、耐熱性ポリイミドより低いものであり、好ましくは170〜370℃であり、より好ましくは170〜320℃、特に好ましくは190〜300℃である。   The glass transition temperature of the polyimide of the thermoplastic polyimide layer is lower than that of the heat-resistant polyimide, preferably 170 to 370 ° C, more preferably 170 to 320 ° C, and particularly preferably 190 to 300 ° C.

耐熱性ポリイミド層の厚みは、3〜18μm程度、熱可塑性ポリイミド層の厚みは1〜6μm程度にすることが好ましい。   The thickness of the heat-resistant polyimide layer is preferably about 3 to 18 μm, and the thickness of the thermoplastic polyimide layer is preferably about 1 to 6 μm.

耐熱性ポリイミド層のポリイミドは、ガラス転移温度が熱可塑性ポリイミド層よりも高く、好ましくは300℃以上、より好ましくは320℃以上、特に好ましくは350℃以上の温度では観測されない耐熱性を有するポリイミドを用いることが好ましい。   The polyimide of the heat-resistant polyimide layer has a glass transition temperature higher than that of the thermoplastic polyimide layer, preferably 300 ° C. or higher, more preferably 320 ° C. or higher, particularly preferably 350 ° C. or higher. It is preferable to use it.

前述の通り、ポリイミドフィルムの厚みを薄くすると優れた屈曲性が得られるが、得られる銅張り積層基板にシワ等の外観不良が発生しやすくなる。ポリイミドフィルム表面の易滑性を向上させ、銅張り積層基板の外観を良好にするためには、ポリイミドフィルム表面あるいは熱可塑性ポリイミド層中にポリイミド粒子が分散されていることが好ましい。特に、ポリイミドフィルム表面あるいは熱可塑性ポリイミド層の表面から少なくとも0.5μm中に、好適には表面から少なくとも0.7μm中に、メジアン径が0.3〜0.8μmでかつ最大径が2μm以下であるポリイミド粒子が、ポリイミド表面層のポリイミドに対して約0.5〜10質量%の割合で分散されていることが好ましい。また、ポリイミドフィルム表面あるいは熱可塑性ポリイミド層は無機粉末を含有してもよいし、実質的に含有していなくてもよい。   As described above, when the thickness of the polyimide film is reduced, excellent flexibility can be obtained. However, appearance defects such as wrinkles are likely to occur in the obtained copper-clad laminate. In order to improve the slipperiness of the polyimide film surface and to improve the appearance of the copper-clad laminate, it is preferable that polyimide particles are dispersed in the polyimide film surface or the thermoplastic polyimide layer. In particular, at least 0.5 μm from the surface of the polyimide film or the thermoplastic polyimide layer, preferably at least 0.7 μm from the surface, the median diameter is 0.3 to 0.8 μm and the maximum diameter is 2 μm or less. It is preferable that a certain polyimide particle is dispersed at a ratio of about 0.5 to 10% by mass with respect to the polyimide of the polyimide surface layer. Moreover, the polyimide film surface or the thermoplastic polyimide layer may contain inorganic powder or may not contain substantially.

熱可塑性ポリイミド層中にポリイミド粒子を含む熱圧着性多層ポリイミドフィルムは、例えば、次のようにして製造することができる。まず、ガラス転移温度が170〜320℃である熱可塑性ポリイミドを与えるポリアミック酸と上記のようなポリイミド粒子を含有するポリアミック酸溶液組成物と、耐熱性ポリイミドからなるポリイミドコア層(耐熱性ポリイミド層)を与えるポリアミック酸を含有するポリアミック酸溶液とを、共押出−流延製膜法によって、全体の厚みが5〜20μmとなるように支持体上に流延し、乾燥して自己支持性フィルムを形成する。そして、得られた自己支持性フィルムを支持体から剥離し、加熱して溶媒除去およびイミド化することによって、ポリイミドフィルムを製造することができる。熱可塑性ポリイミド層用のポリアミック酸溶液組成物中のポリアミック酸の含有量は16〜22質量%、ポリイミド粒子の含有量はポリアミック酸に対して0.5〜10質量%、好適には0.5〜5質量%とすることができる。また、耐熱性ポリイミド層用のポリアミック酸溶液中のポリアミック酸の含有量は16〜22質量%とすることができる。   A thermocompression-bonding multilayer polyimide film containing polyimide particles in a thermoplastic polyimide layer can be produced, for example, as follows. First, a polyamic acid providing a thermoplastic polyimide having a glass transition temperature of 170 to 320 ° C., a polyamic acid solution composition containing polyimide particles as described above, and a polyimide core layer (heat resistant polyimide layer) comprising a heat resistant polyimide A polyamic acid solution containing a polyamic acid that gives a water is cast on a support so as to have a total thickness of 5 to 20 μm by a coextrusion-casting film forming method, and dried to form a self-supporting film. Form. And a polyimide film can be manufactured by peeling the obtained self-supporting film from a support body, heating, solvent removal, and imidation. The content of the polyamic acid in the polyamic acid solution composition for the thermoplastic polyimide layer is 16 to 22% by mass, and the content of the polyimide particles is 0.5 to 10% by mass with respect to the polyamic acid, preferably 0.5. It can be made into 5 mass%. Moreover, content of the polyamic acid in the polyamic acid solution for heat resistant polyimide layers can be 16-22 mass%.

あるいは、熱可塑性ポリイミド層中にポリイミド粒子を含む熱圧着性多層ポリイミドフィルムは、次のようにして製造することもできる。まず、耐熱性ポリイミドからなるポリイミドコア層(耐熱性ポリイミド層)を与えるポリアミック酸溶液を支持体上に流延、乾燥して自己支持性フィルムを形成する。その最終の厚みは3〜18μm程度が好ましい。次に、この自己支持性フィルムの少なくとも片面に、ガラス転移温度が170〜370℃である熱可塑性ポリイミドを与えるポリアミック酸と上記のようなポリイミド粒子をポリアミック酸に対して0.5〜10質量%、好適には0.5〜5質量%の割合で含有する表面層用ポリアミック酸溶液組成物を、乾燥後の厚みが約1μm以上となるように塗布、乾燥する。必要であれば更に他の面に前記の表面層用ポリアミック酸溶液組成物を乾燥後の厚みが約1μm以上となるように塗布する。その後、加熱して溶媒除去およびイミド化することによって、ポリイミドフィルムを製造することができる。   Or the thermocompression-bonding multilayer polyimide film which contains a polyimide particle in a thermoplastic polyimide layer can also be manufactured as follows. First, a polyamic acid solution that gives a polyimide core layer (heat-resistant polyimide layer) made of heat-resistant polyimide is cast on a support and dried to form a self-supporting film. The final thickness is preferably about 3 to 18 μm. Next, the polyamic acid which gives the thermoplastic polyimide whose glass transition temperature is 170-370 degreeC and the above polyimide particles are 0.5-10 mass% with respect to polyamic acid at least on one side of this self-supporting film. The polyamic acid solution composition for the surface layer, preferably contained at a ratio of 0.5 to 5% by mass, is applied and dried so that the thickness after drying is about 1 μm or more. If necessary, the surface layer polyamic acid solution composition is applied to the other surface so that the thickness after drying is about 1 μm or more. Then, a polyimide film can be manufactured by heating to remove the solvent and imidize.

なお、ポリイミド粒子を熱可塑性ポリイミド層中に含まない熱圧着性多層ポリイミドフィルムは、上記の製造方法において、表面層用のポリアミック酸溶液組成物にポリイミド粒子を添加せず、ポリアミック酸の濃度を適宜調節して製造することができる。   In addition, the thermocompression-bonding multilayer polyimide film which does not contain polyimide particles in the thermoplastic polyimide layer does not add polyimide particles to the polyamic acid solution composition for the surface layer in the above production method, and appropriately adjusts the concentration of polyamic acid. It can be manufactured by adjusting.

熱可塑性ポリイミド層のポリイミドとしては、プリント配線板、フレキシブルプリント回路基板、TABテープ、COF基板等の電子部品のテープ素材又は耐熱性ポリイミドと銅箔との熱圧着性を有すること、又は加圧下熱圧着性を有することができる公知のポリイミドを用いることができる。   As a polyimide of the thermoplastic polyimide layer, it has a thermocompression bonding property between a tape material of an electronic component such as a printed wiring board, a flexible printed circuit board, a TAB tape, and a COF board or a heat-resistant polyimide and a copper foil, or heat under pressure. A known polyimide that can have pressure-bonding properties can be used.

熱可塑性ポリイミド層のポリイミドとしては、好ましくは熱圧着性ポリイミドのガラス転移温度以上から400℃以下の温度で銅箔とはり合せることができる熱圧着性を有するポリイミドを用いることができる。   As the polyimide of the thermoplastic polyimide layer, it is possible to use a polyimide having a thermocompression bonding property that can be bonded to the copper foil at a temperature not lower than the glass transition temperature of the thermocompression bonding polyimide and not higher than 400 ° C.

熱可塑性ポリイミド層のポリイミドは、
(1)3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物及び1,4−ヒドロキノンジベンゾエート−3,3’,4,4’−テトラカルボン酸二無水物などの酸二無水物より選ばれる成分を少なくとも1種含む酸成分、好ましくはこれらの酸成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む酸成分と、
(2)1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンなどのジアミンより選ばれる成分を少なくとも1種含むジアミン成分、好ましくはこれらのジアミン成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含むジアミン成分と
から得られるポリイミドなどを用いることができる。
The polyimide of the thermoplastic polyimide layer is
(1) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 3,3 ′ , 4,4′-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4- Dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride and 1,4-hydroquinone dibenzoate An acid component containing at least one component selected from acid dianhydrides such as −3,3 ′, 4,4′-tetracarboxylic dianhydride, preferably at least 70 mol% of these acid components; Preferably 80 mol% or more, more preferably an acid component comprising 90 mol% or more,
(2) 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 3,3′-diaminobenzophenone, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-amino Phenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [ 4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4 A component selected from diamines such as aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane A diamine component containing at least one kind, preferably a polyimide obtained from a diamine component containing at least 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol% or more of these diamine components can be used.

熱可塑性ポリイミド層のポリイミドを得ることができる酸成分とジアミン成分との組合せの一例としては、
(1)3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及び2,3,3’,4’−ビフェニルテトラカルボン酸二無水物の酸二無水物より選ばれる成分を少なくとも1種含む酸成分、好ましくはこれらの酸成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む酸成分と、
(2)1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンなどのジアミンより選ばれる成分を少なくとも1種含むジアミン成分、好ましくはこれらのジアミン成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含むジアミン成分と
から得られるポリイミドなどを用いることができる。
As an example of a combination of an acid component and a diamine component that can obtain a polyimide of the thermoplastic polyimide layer,
(1) At least one component selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride acid dianhydride An acid component containing seeds, preferably an acid component containing at least 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol% or more of these acid components;
(2) 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (3- Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4- Aminophenoxy) phenyl] a diamine component containing at least one component selected from diamines such as propane, preferably at least 70 mol%, more preferably 80 mol%, more preferably 90 mol% or more. A polyimide obtained from a diamine component can be used.

熱可塑性ポリイミド層のポリイミドを得ることができるジアミン成分として、上記に示すジアミン成分の他に、本発明の特性を損なわない範囲で、
m−フェニレンジアミン、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2−ジ(3−アミノフェニル)プロパン、2,2−ジ(4−アミノフェニル)プロパンなどのジアミン成分を用いることができる。
As a diamine component that can obtain the polyimide of the thermoplastic polyimide layer, in addition to the diamine component shown above, in the range that does not impair the characteristics of the present invention,
m-phenylenediamine, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 4, , 4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, and other diamine components can be used.

熱可塑性ポリイミド層のポリイミドの具体的一例として、1,3−ビス(4−アミノフェノキシ)ベンゼンおよび2,3,3’,4’−ビフェニルテトラカルボン酸二無水物と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物との両成分の割合(モル比)が20/80〜80/20の割合で共重合して得られる熱融着性のポリイミド、あるいは4,4−ジアミノジフェニルエーテルおよび3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を重合して得られるポリイミドが挙げられる。   As a specific example of the polyimide of the thermoplastic polyimide layer, 1,3-bis (4-aminophenoxy) benzene and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride and 3,3 ′, 4, Thermally fusible polyimide or 4,4-diamino obtained by copolymerizing both components with 4′-biphenyltetracarboxylic dianhydride at a ratio (molar ratio) of 20/80 to 80/20 Examples thereof include polyimide obtained by polymerizing diphenyl ether and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.

また、熱可塑性ポリイミド層のポリイミドの具体的一例として、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物などの芳香族テトラカルボン酸二無水物と1,3−ビス(4−アミノフェノキシ)ベンゼンあるいは1,3−ビス(3−アミノフェノキシ)ベンゼンなどの芳香族ジアミンとを重合、イミド化して得られるポリイミドが挙げられる。   Further, as specific examples of the polyimide of the thermoplastic polyimide layer, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride Aromatic tetracarboxylic dianhydrides such as bis (3,4-dicarboxyphenyl) methane dianhydride and bis (3,4-dicarboxyphenyl) ether dianhydride and 1,3-bis (4-amino) And a polyimide obtained by polymerizing and imidizing an aromatic diamine such as phenoxy) benzene or 1,3-bis (3-aminophenoxy) benzene.

熱可塑性ポリイミド層のポリイミドは、以下の特性を少なくとも1つ以上有することが好ましい。
1)熱圧着性ポリイミド(S2)は、金属箔とポリイミド(S2)とのピール強度が0.7N/mm以上で、150℃で168時間加熱処理後でもピール強度の保持率が90%以上、さらに95%以上、特に100%以上であるポリイミドであること。
2)単独のポリイミドフィルムとして、引張弾性率が100〜700Kg/mmであること。
3)単独のポリイミドフィルムとして、線膨張係数(50〜200℃)(MD)が13〜30×10−6cm/cm/℃であること。
The polyimide of the thermoplastic polyimide layer preferably has at least one or more of the following characteristics.
1) The thermocompression bonding polyimide (S2) has a peel strength of 0.7 N / mm or more between the metal foil and the polyimide (S2), and a peel strength retention of 90% or more even after heat treatment at 150 ° C. for 168 hours, Further, the polyimide should be 95% or more, particularly 100% or more.
2) The tensile modulus is 100 to 700 Kg / mm 2 as a single polyimide film.
3) As a single polyimide film, the linear expansion coefficient (50 to 200 ° C.) (MD) is 13 to 30 × 10 −6 cm / cm / ° C.

耐熱性ポリイミド層は、プリント配線板、フレキシブルプリント回路基板、TABテープ、COF基板等の電子部品のテープ素材として用いることができるベースフィルムを構成する耐熱性ポリイミドを用いることが好ましい。   As the heat-resistant polyimide layer, it is preferable to use a heat-resistant polyimide constituting a base film that can be used as a tape material for electronic components such as a printed wiring board, a flexible printed circuit board, a TAB tape, and a COF board.

耐熱性ポリイミド層の耐熱性ポリイミドとしては、
(1)3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物及び1,4−ヒドロキノンジベンゾエート−3,3’,4,4’−テトラカルボン酸二無水物より選ばれる成分を少なくとも1種含む酸成分、好ましくはこれらの酸成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含む酸成分と、
(2)p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、m−トリジン及び4,4’−ジアミノベンズアニリドより選ばれる成分を少なくとも1種含むジアミン成分、好ましくはこれらのジアミン成分を少なくとも70モル%以上、さらに好ましくは80モル%以上、より好ましくは90モル%以上含むジアミン成分と
から得られるポリイミドなどを用いることができる。
As the heat-resistant polyimide of the heat-resistant polyimide layer,
(1) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride and 1,4-hydroquinone dibenzoate-3,3 ′, 4,4′-tetracarboxylic acid bis An acid component containing at least one component selected from anhydrides, preferably an acid component containing at least 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol% or more of these acid components;
(2) A diamine component containing at least one component selected from p-phenylenediamine, 4,4′-diaminodiphenyl ether, m-tolidine and 4,4′-diaminobenzanilide, preferably at least 70 mol of these diamine components. %, More preferably 80 mol% or more, and more preferably, polyimide obtained from a diamine component containing 90 mol% or more can be used.

耐熱性ポリイミドを構成する酸成分とジアミン成分との組合せの一例としては、
1)3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と、p−フェニレンジアミン或いはp−フェニレンジアミン及び4,4−ジアミノジフェニルエーテル、
2)3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物と、p−フェニレンジアミン或いはp−フェニレンジアミン及び4,4−ジアミノジフェニルエ−テル、
3)ピロメリット酸二無水物と、p−フェニレンジアミン及び4,4−ジアミノジフェニルエ−テル、
4)3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンとを主成分(合計100モル%中の50モル%以上)として得られるものが、プリント配線板、フレキシブルプリント回路基板、TABテープ等の電子部品の素材として用いられている。これらは、広い温度範囲にわたって優れた機械的特性を有し、長期耐熱性を有し、耐加水分解性に優れ、熱分解開始温度が高く、加熱収縮率と線膨張係数が小さく、難燃性に優れるために好ましい。
As an example of a combination of an acid component and a diamine component constituting the heat-resistant polyimide,
1) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine or p-phenylenediamine and 4,4-diaminodiphenyl ether,
2) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride, p-phenylenediamine or p-phenylenediamine and 4,4-diaminodiphenyl ether,
3) pyromellitic dianhydride, p-phenylenediamine and 4,4-diaminodiphenyl ether,
4) What is obtained by using 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine as main components (50 mol% or more in a total of 100 mol%) is a printed wiring board, It is used as a material for electronic components such as flexible printed circuit boards and TAB tapes. They have excellent mechanical properties over a wide temperature range, long-term heat resistance, excellent hydrolysis resistance, high thermal decomposition starting temperature, low heat shrinkage and linear expansion coefficient, flame resistance It is preferable because of its superiority.

耐熱性ポリイミド層の耐熱性ポリイミドを得ることができる酸成分として、上記に示す酸成分の他に、本発明の特性を損なわない範囲で、
2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス[(3,4−ジカルボキシフェノキシ)フェニル]プロパン二無水物などの酸二無水物成分を用いることができる。
As an acid component that can obtain the heat-resistant polyimide of the heat-resistant polyimide layer, in addition to the acid component shown above, as long as the characteristics of the present invention are not impaired,
2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride Bis (3,4-dicarboxyphenyl) sulfide dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2- Bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2 Acid dianhydride components such as 2-bis [(3,4-dicarboxyphenoxy) phenyl] propane dianhydride can be used.

耐熱性ポリイミド層の耐熱性ポリイミドを得ることができるジアミン成分として、上記に示すジアミン成分の他に、本発明の特性を損なわない範囲で、
m−フェニレンジアミン、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2−ジ(3−アミノフェニル)プロパン、2,2−ジ(4−アミノフェニル)プロパンなどのジアミン成分を用いることができる。
As a diamine component capable of obtaining the heat-resistant polyimide of the heat-resistant polyimide layer, in addition to the diamine component shown above, the range does not impair the characteristics of the present invention.
m-phenylenediamine, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfone, 3 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 4, , 4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2-di (3-aminophenyl) propane, 2,2-di (4-aminophenyl) propane, and other diamine components can be used.

耐熱性ポリイミド層のポリイミドとしては、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下単にs−BPDAと略記することもある。)とパラフェニレンジアミン(以下単にPPDと略記することもある。)と場合によりさらに4,4’−ジアミノジフェニルエーテル(以下単にDADEと略記することもある。)とから製造される。この場合、PPD/DADE(モル比)は100/0〜85/15であることが好ましい。   As the polyimide of the heat-resistant polyimide layer, for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes simply referred to as s-BPDA) and paraphenylenediamine (hereinafter simply referred to as PPD). And optionally further 4,4′-diaminodiphenyl ether (hereinafter sometimes abbreviated simply as DADE). In this case, the PPD / DADE (molar ratio) is preferably 100/0 to 85/15.

また、他の耐熱性ポリイミド層のポリイミドとして、ピロメリット酸二無水物(以下単にPMDAと略記することもある。)、あるいは3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とピロメリット酸二無水物とである芳香族テトラカルボン酸二無水物と、ベンゼンジアミンあるいはビフェニルジアミンなどの芳香族ジアミンとから製造される。芳香族ジアミンとしては、パラフェニレンジアミン、あるいはPPD/DADEが90/10〜10/90である芳香族ジアミン、あるいはメタ−トリジンが好ましい。この場合、BPDA/PMDAは0/100〜90/10であることが好ましい。   In addition, as a polyimide of another heat-resistant polyimide layer, pyromellitic dianhydride (hereinafter sometimes simply referred to as PMDA), or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, It is produced from an aromatic tetracarboxylic dianhydride that is pyromellitic dianhydride and an aromatic diamine such as benzenediamine or biphenyldiamine. As the aromatic diamine, paraphenylenediamine, aromatic diamine having PPD / DADE of 90/10 to 10/90, or meta-tolidine is preferable. In this case, BPDA / PMDA is preferably 0/100 to 90/10.

また、他の耐熱性ポリイミド層のポリイミドとして、ピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエーテルとから製造される。この場合、DADE/PPDは90/10〜10/90であることが好ましい。   Moreover, it is manufactured from pyromellitic dianhydride, paraphenylenediamine, and 4,4'-diaminodiphenyl ether as the polyimide of another heat resistant polyimide layer. In this case, DADE / PPD is preferably 90/10 to 10/90.

耐熱性ポリイミド層のポリイミドとして、下記の特徴を少なくとも1つ有するもの、下記の特徴を少なくとも2つ有するもの[1)と2)、1)と3)、2)と3)の組合せ]、特に下記の特徴を全て有するものを用いることができる。
1)単独のポリイミドフィルムとして、ガラス転移温度が300℃以上、好ましくはガラス転移温度が330℃以上、さらに好ましくは確認不可能であるもの。
2)単独のポリイミドフィルムとして、線膨張係数(50〜200℃)(MD)が、好ましくはポリイミドフィルムに積層する銅箔などの金属箔の熱膨張係数に近いもの。具体的には、金属箔として銅箔を用いる場合、ポリイミドフィルムの熱膨張係数は5×10−6〜28×10−6cm/cm/℃であることが好ましく、9×10−6〜20×10−6cm/cm/℃であることがより好ましく、さらに12×10−6〜18×10−6cm/cm/℃であることが好ましい。
3)単独のポリイミドフィルムとして、引張弾性率(MD、ASTM−D882)は300kg/mm以上、好ましくは500kg/mm以上、さらに700kg/mm以上であるもの。
As the polyimide of the heat-resistant polyimide layer, those having at least one of the following features, those having at least two of the following features [1) and 2), a combination of 1) and 3), 2) and 3)], in particular What has all the following characteristics can be used.
1) A single polyimide film having a glass transition temperature of 300 ° C. or higher, preferably a glass transition temperature of 330 ° C. or higher, more preferably unidentifiable.
2) As a single polyimide film, a linear expansion coefficient (50 to 200 ° C.) (MD) is preferably close to the thermal expansion coefficient of a metal foil such as a copper foil laminated on the polyimide film. Specifically, when copper foil is used as the metal foil, the thermal expansion coefficient of the polyimide film is preferably 5 × 10 −6 to 28 × 10 −6 cm / cm / ° C., and 9 × 10 −6 to 20 more preferably × is 10 -6 cm / cm / ℃, is preferably further 12 × 10 -6 ~18 × 10 -6 cm / cm / ℃.
3) As a single polyimide film, a tensile elastic modulus (MD, ASTM-D882) is 300 kg / mm 2 or more, preferably 500 kg / mm 2 or more, and further 700 kg / mm 2 or more.

耐熱性ポリイミドを与えるポリアミック酸溶液は、有機極性溶媒中で耐熱性ポリイミドを与える芳香族ジアミンと芳香族テトラカルボン酸二無水物とを定法によって重合することにより得ることができる。   The polyamic acid solution that gives heat-resistant polyimide can be obtained by polymerizing an aromatic diamine and aromatic tetracarboxylic dianhydride that give heat-resistant polyimide in an organic polar solvent by a conventional method.

有機極性溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−メチルカプロラクタム等のアミド系溶媒、ジメチルスルホキシド、ヘキサメチルフォスホルアミド、ジメチルスルホン、テトラメチレンスルホン、ジメチルテトラメチレンスルホン、ピリジン、エチレングリコール等を挙げることができる。   Examples of the organic polar solvent include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-methylcaprolactam, dimethyl sulfoxide, hexamethylphosphoformamide, dimethyl sulfone, Examples include tetramethylene sulfone, dimethyltetramethylene sulfone, pyridine, and ethylene glycol.

前記の方法において、ポリアミック酸溶液を、例えばステンレス鏡面、ベルト面等の平滑な支持体面上に流延塗布し、100〜200℃で半硬化状態またはそれ以前の乾燥状態とすることが好ましい。200℃を超えた高い温度で流延フィルムを処理すると、熱可塑性ポリイミドフィルムの製造において、接着性の低下などが起こる傾向にある。この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。   In the above-described method, it is preferable that the polyamic acid solution is cast-coated on a smooth support surface such as a stainless steel mirror surface or a belt surface to be semi-cured at 100 to 200 ° C. or dried before that. When the cast film is processed at a high temperature exceeding 200 ° C., the adhesiveness tends to be lowered in the production of the thermoplastic polyimide film. This semi-cured state or an earlier state means that it is in a self-supporting state by heating and / or chemical imidization.

熱可塑性ポリイミド層を形成するためのポリアミック酸溶液組成物は、ガラス転移温度が170〜320℃、好適には190〜300℃である熱可塑性ポリイミドを与えるポリアミック酸溶液およびポリイミド粒子を含有する。ポリイミド粒子の割合は、ポリアミック酸に対して0.5〜10質量%、特に0.5〜5質量%が好ましい。ポリイミド粒子としては、ピロメリット酸成分とp−フェニレンジアミン成分とを80%以上含有し、メジアン径が0.3〜0.8μmでかつ最大径が2μm以下である全芳香族ポリイミド粒子が好ましい。   The polyamic acid solution composition for forming the thermoplastic polyimide layer contains a polyamic acid solution and polyimide particles that give a thermoplastic polyimide having a glass transition temperature of 170 to 320 ° C, preferably 190 to 300 ° C. The ratio of the polyimide particles is preferably 0.5 to 10% by mass, particularly preferably 0.5 to 5% by mass with respect to the polyamic acid. As the polyimide particles, wholly aromatic polyimide particles containing at least 80% of a pyromellitic acid component and a p-phenylenediamine component, a median diameter of 0.3 to 0.8 μm, and a maximum diameter of 2 μm or less are preferable.

全芳香族ポリイミド粒子を得るには、前記の有機極性溶媒に、p−フェニレンジアミンおよびピロメリット酸二無水物がそれぞれ80%以上である芳香族ジアミンおよび芳香族テトラカルボン酸成分の等モル量の混合物を加え、必要であれば分散剤を加えて、窒素ガスなどの不活性ガス雰囲気下に攪拌しながら160℃程度まで昇温し、この温度で2〜5時間程度加熱した後、冷却すると、全芳香族ポリイミド粒子を含有する溶液混合物として得られる。通常、混合物中のポリイミドが3〜10質量%となるように、極性溶媒に芳香族ジアミンおよび芳香族テトラカルボン酸成分を加えればよい。ポリイミド粒子としては、このようにして得られた溶液混合物をそのまま、あるいは必要であれば極性溶媒を除去または加えて使用することが好ましい。   In order to obtain fully aromatic polyimide particles, equimolar amounts of an aromatic diamine and an aromatic tetracarboxylic acid component each containing 80% or more of p-phenylenediamine and pyromellitic dianhydride are added to the organic polar solvent. Add the mixture, add a dispersant if necessary, raise the temperature to about 160 ° C. with stirring in an inert gas atmosphere such as nitrogen gas, heat at this temperature for about 2 to 5 hours, then cool, Obtained as a solution mixture containing wholly aromatic polyimide particles. Usually, an aromatic diamine and an aromatic tetracarboxylic acid component may be added to the polar solvent so that the polyimide in the mixture is 3 to 10% by mass. As the polyimide particles, it is preferable to use the solution mixture thus obtained as it is or after removing or adding a polar solvent if necessary.

p−フェニレンジアミンおよびピロメリット酸二無水物が80%以上である芳香族ジアミンおよび芳香族テトラカルボン酸成分を使用すると、メジアン径が0.3〜0.8μmでかつ最大径が2μm以下である全芳香族ポリイミド粒子を容易に得ることができる。また、ポリイミド粒子が前記の範囲内の粒径のものであると、熱可塑性ポリイミド層表面に微細な突起を形成することが容易であり、ファインパターンが求められる銅張り積層基板に好適である。   When an aromatic diamine and an aromatic tetracarboxylic acid component in which p-phenylenediamine and pyromellitic dianhydride are 80% or more are used, the median diameter is 0.3 to 0.8 μm and the maximum diameter is 2 μm or less. Totally aromatic polyimide particles can be easily obtained. In addition, when the polyimide particles have a particle size within the above range, it is easy to form fine protrusions on the surface of the thermoplastic polyimide layer, which is suitable for a copper-clad laminate that requires a fine pattern.

ここで、メジアン径とは、累積分布曲線の50%累積値に相当する径を指す。   Here, the median diameter refers to a diameter corresponding to a 50% cumulative value of the cumulative distribution curve.

従って、ポリイミド粒子は真球状のものであってもよいが、短径と長径との比が2〜10、特に3〜6程度の柱状、ダンベル状或いは楕円球状のものであってもよい。柱状、ダンベル状或いは楕円球状の場合、短径が0.05〜0.5μmで、長径が0.7〜1.5μmであるものが好ましい。   Accordingly, the polyimide particles may be spherical, but may be columnar, dumbbell-shaped, or oval-spherical in which the ratio of the minor axis to the major axis is 2 to 10, particularly about 3 to 6. In the case of a columnar shape, a dumbbell shape, or an elliptical sphere, those having a minor axis of 0.05 to 0.5 μm and a major axis of 0.7 to 1.5 μm are preferable.

また、銅張り積層基板としてファインパターンが求められない場合には、メジアン径が0.3〜10μmである全芳香族ポリイミド粒子を使用することができる。   Moreover, when a fine pattern is not calculated | required as a copper clad laminated substrate, the fully aromatic polyimide particle whose median diameter is 0.3-10 micrometers can be used.

前記の構成により、ガラス転移温度が170〜320℃、特に190〜300℃である熱可塑性ポリイミドからなり無機粉末を実質的に含有しないポリイミド表面層を有し、静摩擦係数、動摩擦係数がともに0.05〜0.7、好適には0.1〜0.7であり、フィルム表面に大きな突起が形成されていない易滑性の改良された熱圧着性多層ポリイミドフィルムが得られる。   By the said structure, it has a polyimide surface layer which consists of a thermoplastic polyimide whose glass transition temperature is 170-320 degreeC, especially 190-300 degreeC, and does not contain an inorganic powder substantially, and both a static friction coefficient and a dynamic friction coefficient are 0. A thermocompression-bonding multilayer polyimide film having an improved slidability in which large protrusions are not formed on the film surface is obtained.

本発明において使用される熱圧着性多層ポリイミドフィルムは、少なくとも片面が熱融着性を有し、厚みが5〜20μmである。この厚みが5〜20μmのポリイミドフィルムと厚みが18μm以下の銅箔とを組合わせることによって、MIT耐折性が、好適にはMDおよびTDのいずれにおいても約2000回以上である、良好な屈曲性を有する銅張り積層基板を得ることができる。   The thermocompression-bonding multilayer polyimide film used in the present invention has at least one surface having heat-fusibility and a thickness of 5 to 20 μm. By combining this polyimide film having a thickness of 5 to 20 μm and a copper foil having a thickness of 18 μm or less, the MIT folding resistance is preferably about 2000 times or more in both MD and TD, and a good bending A copper-clad laminate having the properties can be obtained.

さらに、熱圧着性多層ポリイミドフィルムが熱可塑性ポリイミド層中にポリイミド粒子を含む場合、ポリイミドフィルム表面の易滑性が向上し、長尺で1m/分以上の速度で巻取りロールに良好に巻取ることができ、全長にわたる測定によりシワ等の外観不良がない銅張り積層基板を得ることができる。外観の良好な銅張り積層基板を得るためには、厚み20μm以下のものに限られず、熱可塑性ポリイミド層中にポリイミド粒子を含む熱圧着性多層ポリイミドフィルムを用いることは有効である。   Further, when the thermocompression-bonding multilayer polyimide film contains polyimide particles in the thermoplastic polyimide layer, the slipperiness of the polyimide film surface is improved, and the film is wound up on a winding roll at a speed of 1 m / min or more in a long length. In addition, a copper-clad laminate having no appearance defects such as wrinkles can be obtained by measurement over the entire length. In order to obtain a copper-clad laminate having a good appearance, it is not limited to those having a thickness of 20 μm or less, and it is effective to use a thermocompression-bonding multilayer polyimide film containing polyimide particles in a thermoplastic polyimide layer.

2.本発明の銅張り積層基板に使用される銅箔
本発明において使用される銅箔は、厚みが1〜18μm、特に3〜18μmのものである。銅箔の厚みは12μm以下であることが好ましい。
2. Copper foil used in the copper-clad laminate of the present invention The copper foil used in the present invention has a thickness of 1 to 18 μm, particularly 3 to 18 μm. The thickness of the copper foil is preferably 12 μm or less.

銅箔としては圧延銅箔、電解銅箔などが使用できるが、圧延銅箔を使用した場合により優れた銅張り積層基板が得られる。また、キャリア付き銅箔を使用することもできる。   As the copper foil, a rolled copper foil, an electrolytic copper foil, or the like can be used, but a more excellent copper-clad laminate can be obtained when the rolled copper foil is used. Moreover, copper foil with a carrier can also be used.

銅箔の厚みの好ましい範囲は、使用する銅箔によって異なる。圧延銅箔の場合、厚みは8〜18μmが好ましく、10〜18μmがより好ましく、10〜12μmが特に好ましい。電解銅箔の場合、厚みは7〜12μmが好ましく、9〜12μmがより好ましい。   The preferable range of the thickness of the copper foil varies depending on the copper foil used. In the case of a rolled copper foil, the thickness is preferably 8 to 18 μm, more preferably 10 to 18 μm, and particularly preferably 10 to 12 μm. In the case of the electrolytic copper foil, the thickness is preferably 7 to 12 μm, and more preferably 9 to 12 μm.

また、銅箔としては、表面粗度を示すRzが3μm以下、特にRzが2μm以下、特に0.5〜1.5μmであるものが好ましい。Rzが小さい場合には、銅箔表面を表面処理して使用してもよい。   Moreover, as copper foil, Rz which shows surface roughness is 3 micrometers or less, Especially Rz is 2 micrometers or less, Especially 0.5-1.5 micrometers is preferable. When Rz is small, the copper foil surface may be surface-treated.

このような銅箔としては、圧延銅箔(マイクロハード社、VSBK、18μm)、圧延銅箔(マイクロハード社、VSRD、12μm)、圧延銅箔(日立電線社、HPF−ST12−E、12μm)、圧延銅箔(日鉱マテリアルズ、BHY−13H−T、18μm)、圧延銅箔(日鉱マテリアルズ、BHY−22B−T、12μm)、圧延銅箔(福田金属箔粉工業社、RCF−T4X、12μm)、圧延銅箔(日立電線社、HPF−ST10−E、10μm)、圧延銅箔(日鉱マテリアルズ、BHY−13H−HA、18μm)、圧延銅箔(日鉱マテリアルズ、BHY−22B−HA、12μm)、電解銅箔(日本電解社、HLB、12μm)、電解銅箔(日本電解社、HLB、9μm)、電解銅箔(日本電解社、HLS、9μm)などを挙げることができる。   As such copper foil, rolled copper foil (Microhard Corp., VSBK, 18 μm), rolled copper foil (Microhard Corp., VSRD, 12 μm), rolled copper foil (Hitachi Cable Corp., HPF-ST12-E, 12 μm) , Rolled copper foil (Nikko Materials, BHY-13H-T, 18 μm), rolled copper foil (Nikko Materials, BHY-22B-T, 12 μm), rolled copper foil (Fukuda Metal Foil Powder Co., Ltd., RCF-T4X, 12 μm), rolled copper foil (Hitachi Cable, HPF-ST10-E, 10 μm), rolled copper foil (Nikko Materials, BHY-13H-HA, 18 μm), rolled copper foil (Nikko Materials, BHY-22B-HA) , 12 μm), electrolytic copper foil (Nippon Electrolytic Co., Ltd., HLB, 12 μm), electrolytic copper foil (Nippon Electrolytic Co., Ltd., HLB, 9 μm), electrolytic copper foil (Nippon Electrolytic Co., Ltd., HLS, 9 μm) It can be.

圧延銅箔の場合、熱処理前の引張強度が300N/mm以上であり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比が33%以下であるものが好ましい。このような圧延銅箔を使用した場合、高屈曲性の銅張り積層基板が得られるとともに、本発明のポリイミドおよび銅箔の薄層化による屈曲性向上の効果がより顕著に現れる。このような圧延銅箔としては、圧延銅箔(日鉱マテリアルズ、BHY−13H−HA)、圧延銅箔(日鉱マテリアルズ、BHY−22B−HA)などが挙げられる。 In the case of a rolled copper foil, it is preferable that the tensile strength before heat treatment is 300 N / mm 2 or more and the tensile strength ratio after heat treatment at 180 ° C. for 1 hour defined by the above formula (1) is 33% or less. When such a rolled copper foil is used, a highly flexible copper-clad laminate is obtained, and the effect of improving the flexibility by thinning the polyimide and the copper foil of the present invention appears more remarkably. Examples of such rolled copper foil include rolled copper foil (Nikko Materials, BHY-13H-HA), rolled copper foil (Nikko Materials, BHY-22B-HA), and the like.

一方、電解銅箔の場合は、熱処理前の引張強度が300N/mm以上であり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比が60%以下であるものが好ましい。 On the other hand, in the case of electrolytic copper foil, the tensile strength before heat treatment is 300 N / mm 2 or more, and the tensile strength ratio after heat treatment at 180 ° C. for 1 hour defined by the above formula (1) is 60% or less. Is preferred.

キャリア付き銅箔としては、厚みが1〜5μmの極薄銅箔に金属系、セラミックス系等のキャリアが耐熱性を有する接合剤で接合されているものが好ましい。キャリアとしては、厚み12〜35μm程度、特に12〜18μmの銅箔などが挙げられる。キャリア付き極薄銅箔の具体例としては、キャリア付き電解銅箔(日本電解社、YSNAP−3B、薄銅厚み3μm、キャリア銅箔厚み18μm)などが挙げられる。   As the copper foil with a carrier, a copper foil having a thickness of 1 to 5 μm and a metal or ceramic carrier bonded with a heat-resistant bonding agent is preferable. Examples of the carrier include a copper foil having a thickness of about 12 to 35 μm, particularly 12 to 18 μm. Specific examples of the ultrathin copper foil with carrier include electrolytic copper foil with carrier (Nippon Electrolytic Co., Ltd., YSNAP-3B, thin copper thickness 3 μm, carrier copper foil thickness 18 μm) and the like.

キャリア付き銅箔の場合には、得られた銅張り積層基板からキャリアを剥離し、電解メッキにより所定の銅箔厚み、例えば5〜8μmに調整して使用される。   In the case of a copper foil with a carrier, the carrier is peeled off from the obtained copper-clad laminate and adjusted to a predetermined copper foil thickness, for example, 5 to 8 μm by electrolytic plating.

3.本発明の銅張り積層基板およびその製造方法
本発明の銅張り積層基板は、上記のような厚みが5〜20μmのポリイミドフィルムの片面または両面に厚みが1〜18μmの銅箔を熱圧着により積層したものである。厚みが5〜20μmのポリイミドフィルムと厚みが1〜18μmの銅箔とを組合わせることにより、MIT耐折性が、好適にはMDおよびTDのいずれにおいても約2000回以上である、良好な屈曲性を有する銅張り積層基板を得ることができる。
3. Copper-clad laminate of the present invention and method for producing the same The copper-clad laminate of the present invention is obtained by laminating a 1 to 18 μm thick copper foil on one or both sides of a polyimide film having a thickness of 5 to 20 μm as described above by thermocompression bonding. It is what. By combining a polyimide film having a thickness of 5 to 20 μm and a copper foil having a thickness of 1 to 18 μm, the MIT folding resistance is preferably about 2000 times or more in both MD and TD, and good bending A copper-clad laminate having the properties can be obtained.

本発明の銅張り積層基板の全体厚みは、両面銅張り積層基板で51μm以下が好ましく、39μm以下が特に好ましい。片面銅張り積層基板では、33μm以下が好ましく、27μm以下が特に好ましい。   The total thickness of the copper-clad laminate of the present invention is preferably 51 μm or less, particularly preferably 39 μm or less, for a double-sided copper-clad laminate. In a single-sided copper-clad laminate, it is preferably 33 μm or less, particularly preferably 27 μm or less.

本発明の銅張り積層基板は、例えば、ロールラミネートあるいはダブルベルトプレスなどの連続ラミネート装置を用い、熱圧着性多層ポリイミドフィルムの片面または両面に銅箔を加圧下に熱圧着して、または加圧下に熱圧着−冷却して積層して得られる。   The copper-clad laminate of the present invention is obtained by, for example, using a continuous laminating apparatus such as a roll laminate or a double belt press, and thermocompressing a copper foil on one or both sides of a thermocompression-bonding multilayer polyimide film under pressure, or under pressure. Obtained by laminating by thermocompression-cooling.

熱圧着性多層ポリイミドフィルムのみ、あるいは熱圧着性多層ポリイミドフィルムと銅箔とを、連続ラミネート装置に導入する直前のインラインで150〜250℃程度、特に150℃より高く250℃以下の温度で2〜120秒間程度予熱することが好ましい。予熱には、熱風供給装置や赤外線加熱機などの予熱器が用いられる。インラインとは、原材料の繰り出し装置と連続ラミネート装置の圧着部との間に予熱装置を設置し、予熱直後に圧着できる装置配置になったものをいう。また、ラミネート時に、熱圧着性多層ポリイミドフィルムおよび/または銅箔とベルトまたはローラーとの間に保護材を介在させることも好ましい。このようにして耐熱性ポリイミド層の少なくとも片面に銅箔を熱圧着性のポリイミド層を介して積層して、製品外観不良がなく高寸法安定性(寸法安定性が0.1%以下である)の銅張り積層基板が得られる。   The thermocompression-bonding multilayer polyimide film alone or the thermocompression-bonding multilayer polyimide film and the copper foil are inline immediately before being introduced into the continuous laminating apparatus at about 150 to 250 ° C., particularly at a temperature higher than 150 ° C. and lower than 250 ° C. It is preferable to preheat for about 120 seconds. A preheater such as a hot air supply device or an infrared heater is used for preheating. In-line means a device arrangement in which a preheating device is installed between the raw material feeding device and the crimping part of the continuous laminating device, and the device can be crimped immediately after preheating. Moreover, it is also preferable to interpose a protective material between the thermocompression-bonding multilayer polyimide film and / or copper foil and the belt or roller during lamination. In this way, a copper foil is laminated on at least one surface of the heat-resistant polyimide layer via a thermocompression-bonding polyimide layer, and there is no defective product appearance, and high dimensional stability (dimensional stability is 0.1% or less) A copper-clad laminate is obtained.

前記のダブルベルトプレスは、加圧下に高温加熱−冷却を行うことができるものであって、熱媒を用いた液圧式のものが好ましい。   The double belt press is capable of performing high-temperature heating and cooling under pressure, and is preferably a hydraulic type using a heat medium.

インラインで予熱することによって、大気から吸水してポリイミドに含有されている水分によりラミネート後の積層体に発泡による外観不良が発生したり、電子回路形成時の半田浴浸漬時に発泡が生じたりして製品収率が悪化するのを防止することができる。ラミネート装置全体を炉の中に設置する方法も考えられるが、ラミネート装置がコンパクトなものに実質限定され、銅張り積層基板の形状に制限を受け実用的ではない。アウトラインで予熱処理しても、積層するまでに再度吸湿してしまい、発泡による外観不良や半田耐熱性の低下が生じる場合がある。   Preheating in-line may cause poor appearance due to foaming in the laminated body after absorbing water from the atmosphere and contained in the polyimide, or foaming may occur during immersion in the solder bath during electronic circuit formation. It is possible to prevent the product yield from deteriorating. Although a method of installing the entire laminating apparatus in a furnace is also conceivable, the laminating apparatus is practically limited to a compact one and is not practical due to limitations on the shape of the copper-clad laminated substrate. Even if pre-heat treatment is performed in the outline, moisture is absorbed again by the time of stacking, which may cause poor appearance and reduced solder heat resistance due to foaming.

本発明の銅張り積層基板は、好適にはロールラミネートまたはダブルベルトプレスの加熱圧着ゾーンの温度が熱圧着性ポリイミド(上記の多層ポリイミドフィルムでは、熱可塑性ポリイミド層のポリイミド)のガラス転移温度より20℃以上高く400℃以下の温度、特にガラス転移温度より30℃以上高く400℃以下の温度で加圧下に熱圧着し、ダブルベルトプレスの場合には引き続いて冷却ゾーンで加圧下に冷却して、好適には熱圧着性ポリイミドのガラス転移温度より20℃以上低い温度、特に30℃以上低い温度まで冷却して、ポリイミドフィルムの片面または両面に銅箔を積層することによって製造することができる。   In the copper-clad laminate of the present invention, the temperature of the thermocompression bonding zone of roll laminate or double belt press is preferably 20 from the glass transition temperature of thermocompression bonding polyimide (in the above-mentioned multilayer polyimide film, polyimide of the thermoplastic polyimide layer). Higher than 400 ° C. and higher than 400 ° C., in particular 30 ° C. higher than glass transition temperature and lower than 400 ° C. under pressure, and in the case of a double belt press, it is subsequently cooled under pressure in a cooling zone, Preferably, it can be manufactured by laminating a copper foil on one or both sides of a polyimide film after cooling to a temperature 20 ° C. or more lower than the glass transition temperature of the thermocompression bonding polyimide, particularly 30 ° C. or more.

製品が片面金属箔の銅張り積層基板である場合には、剥離容易な高耐熱性フィルム、例えばRzが2μm未満の高耐熱性フィルムまたは金属箔、好適にはポリイミドフィルム(宇部興産株式会社製、ユーピレックスSなど)やフッ素樹脂フィルムなどの高耐熱性樹脂フィルムや、表面粗さが小さく表面平滑性の良好な圧延銅箔などの金属箔を保護材として用いることが出来、熱圧着性ポリイミド層とポリイミドフィルムの銅箔を積層していない面に保護材を積層させ、この保護材は積層後、積層体から除いて巻き取ってもよく、保護材を積層したままで巻き取って使用時に取り除いてもよい。   When the product is a copper-clad laminate with a single-sided metal foil, a highly heat-resistant film that can be easily peeled off, such as a high-heat-resistant film or metal foil having an Rz of less than 2 μm, preferably a polyimide film (manufactured by Ube Industries, Ltd., High heat-resistant resin films such as Upilex S) and fluororesin films, and metal foils such as rolled copper foils with small surface roughness and good surface smoothness can be used as protective materials. Laminate a protective material on the surface of the polyimide film that is not laminated with copper foil, and after lamination, this protective material may be removed from the laminate and wound up, or wound with the protective material laminated and removed during use. Also good.

特にダブルベルトプレスを用いて加圧下に熱圧着−冷却して積層することによって、好適には引き取り速度1m/分以上とすることができ、かつ、長尺で幅が約400mm以上、特に約500mm以上の幅広の、接着強度が大きく(90度ピール強度:0.7N/mm以上、特に1N/mm以上)、金属箔表面に皺が実質的に認められない程外観が良好な銅張り積層基板を得ることができる。また、ダブルベルトプレスを用いた場合、得られる銅張り積層基板は、好適には寸法変化率が、各幅方向のL、CおよびR(フィルムの巻き出し方向の左端、中心、右端)の平均で、MD、TDともに室温(エッチング後乾燥のみ)および150℃(エッチング後加熱処理)で0.1%以下となり、寸法変化の均一性が高くなる。   In particular, it is possible to achieve a take-up speed of 1 m / min or more by laminating by thermocompression-cooling under pressure using a double belt press, and it is long and has a width of about 400 mm or more, particularly about 500 mm. A copper-clad laminate with a wide appearance and high adhesive strength (90-degree peel strength: 0.7 N / mm or more, particularly 1 N / mm or more) and a good appearance so that no flaws are substantially observed on the surface of the metal foil. Can be obtained. Moreover, when a double belt press is used, the obtained copper-clad laminate preferably has an average dimensional change rate of L, C, and R (left end, center, right end in the film unwinding direction) in each width direction. Thus, both MD and TD become 0.1% or less at room temperature (only after drying after etching) and 150 ° C. (after-etching heat treatment), and the uniformity of dimensional change becomes high.

本発明の一態様においては、ポリイミドフィルムおよび銅箔がロール巻きの状態でロールラミネートまたはダブルベルトプレスにそれぞれ供給され、銅張り積層基板はロール巻きの状態で得られる。   In one embodiment of the present invention, the polyimide film and the copper foil are respectively supplied to a roll laminate or a double belt press in a roll state, and the copper-clad laminate is obtained in a roll state.

本発明によって得られる銅張り積層基板は、ロール巻き、エッチング、および場合によりカール戻し等の各処理を行った後、所定の大きさに切断して、電子部品用基板として使用できる。例えば、FPC、多層FPC、フレックスリジッド基板の基板として好適に使用することができる。特に、銅箔の厚みが3〜18μmでポリイミドフィルム層の厚みが5〜20μmである片面銅張り積層基板(全体厚みが8〜38μm)あるいは両面銅張り積層基板(全体厚みが11〜56μm)を複数、例えば2〜10層、耐熱性ポリイミド系接着剤(厚み5〜12μm)で接着することによって、高耐熱性・低吸水・低誘電率・高電気特性を満足する多層基板を得ることができる。   The copper-clad laminate obtained by the present invention can be used as an electronic component substrate after being subjected to various processes such as roll winding, etching, and, in some cases, curling back, and then cut into a predetermined size. For example, it can be suitably used as a substrate for FPC, multilayer FPC, or flex-rigid substrate. In particular, a single-sided copper-clad laminate (overall thickness is 8 to 38 μm) or a double-sided copper-clad laminate (overall thickness is 11 to 56 μm) with a copper foil thickness of 3 to 18 μm and a polyimide film layer thickness of 5 to 20 μm. A multi-layer substrate satisfying high heat resistance, low water absorption, low dielectric constant, and high electrical characteristics can be obtained by bonding with a plurality of, for example, 2 to 10 layers and a heat-resistant polyimide adhesive (thickness 5 to 12 μm). .

本発明の銅張り積層基板には、長尺状のものだけでなく、長尺状のものを所定の大きさ(幅を小さく、あるいは長さを短く)切断したものも含まれる。   The copper-clad laminate of the present invention includes not only a long substrate but also a long substrate cut into a predetermined size (small width or short length).

本発明の銅張り積層基板は、上記のラミネート法以外にも公知の方法で製造することができる。例えば、
(1)銅箔に、ポリイミドの前駆体であるポリアミック酸溶液を流延又は塗布し、必要に応じて乾燥及び/又はイミド化し、さらに必要に応じて加熱する方法、
(2)銅箔に、熱可塑性ポリイミドの前駆体溶液を流延又は塗布し、必要に応じて乾燥及び/又はイミド化し、熱可塑性ポリイミド層にさらに耐熱性ポリイミドの前駆体溶液を流延又は塗布し、イミド化し、さらに必要に応じて加熱する方法、
(3)銅箔に、熱可塑性ポリイミドの前駆体溶液を流延又は塗布し、必要に応じて乾燥及び/又はイミド化し、熱可塑性ポリイミド層にさらに耐熱性ポリイミドの前駆体溶液を流延又は塗布し、必要に応じて乾燥及び/又はイミド化し、耐熱性ポリイミド層にさらに熱可塑性ポリイミドの前駆体溶液を流延又は塗布し、必要に応じて乾燥及び/又はイミド化し、さらに必要に応じて加熱する方法
で製造することができる。上記(1)〜(3)より得られる片面積層ポリイミドフィルムにさらに銅箔をラミネートしたもの、上記(1)〜(3)より得られる2つの片面積層ポリイミドフィルム、一例として(1)と(2)、(1)と(1)、(2)と(2)などをラミネートして得られるものを用いることができる。
The copper-clad laminate of the present invention can be produced by a known method other than the laminating method described above. For example,
(1) A method of casting or applying a polyamic acid solution, which is a polyimide precursor, to copper foil, drying and / or imidizing as necessary, and further heating as necessary.
(2) Cast or apply a thermoplastic polyimide precursor solution to a copper foil, dry and / or imidize if necessary, and then cast or apply a heat-resistant polyimide precursor solution to the thermoplastic polyimide layer. And then imidizing and further heating if necessary,
(3) A thermoplastic polyimide precursor solution is cast or applied to a copper foil, dried and / or imidized as necessary, and a thermoplastic polyimide layer is further cast or coated with a heat resistant polyimide precursor solution. Then, if necessary, dry and / or imidize, cast or apply a thermoplastic polyimide precursor solution to the heat-resistant polyimide layer, dry and / or imidize if necessary, and further heat as necessary It can be manufactured by the method. What laminated | stacked copper foil on the single area layer polyimide film obtained from said (1)-(3) further, two single area layer polyimide films obtained from said (1)-(3), (1) and (2 ), (1) and (1), (2) and (2), etc. can be used.

この明細書において、ポリイミドフィルムの易滑性を表す摩擦係数の評価方法は次による。   In this specification, the evaluation method of the friction coefficient representing the slipperiness of the polyimide film is as follows.

ASTM・D1894に記載の方法に従って、23℃、60%RH、24時間で保持、調湿したポリイミドフィルムの片面を基板とし、同じ面がすり合わさるようにスレッドメタル(6cm×6cm)に張り付け、ダイナミックスリップテスターを用いて(荷重:200g、滑り速度:150mm/min)摩擦係数を測定した。チャートの動き出したときの値を静摩擦係数、チャートの安定したときの値を動摩擦係数で表示する。   In accordance with the method described in ASTM D1894, a polyimide film that has been held and conditioned at 23 ° C., 60% RH for 24 hours is used as a substrate, and is adhered to a thread metal (6 cm × 6 cm) so that the same surface is rubbed together. The coefficient of friction was measured using a slip tester (load: 200 g, sliding speed: 150 mm / min). The value when the chart starts to move is displayed as a static friction coefficient, and the value when the chart is stabilized as a dynamic friction coefficient.

この明細書において、ポリイミドフィルムおよび銅張り積層基板のMIT耐折性の評価方法は、特に記載のない限り、次による。   In this specification, the evaluation method of the MIT folding resistance of the polyimide film and the copper-clad laminate is as follows unless otherwise specified.

MIT耐折性(銅張り積層基板)は、特に記載のない限り、JIS C6471に準拠し、片面のみに同試験方法に規定された銅箔回路を形成し、曲率半径0.8mm、荷重4.9N、折り曲げ速度175回/分、左右折り曲げ角度135度で、初期電気抵抗値から20%以上上昇した時点での耐折回数を測定したものである。サンプリングは全幅から、各10点の試験片を作製し、これらの平均値をMIT耐折性の値とした。   MIT folding resistance (copper-clad laminate) is based on JIS C6471, unless otherwise specified, forms a copper foil circuit defined in the same test method only on one side, has a radius of curvature of 0.8 mm, and a load of 4. The number of times of folding was measured at 9N, at a bending speed of 175 times / minute, and at a left / right bending angle of 135 degrees, when the initial electrical resistance value increased by 20% or more. For sampling, test pieces of 10 points were prepared from the entire width, and the average value of these was used as the MIT folding resistance value.

加工性は、ポリイミドフィルムを2m/分の速度で繰り出した時の繰り出し機からプレス機までの通紙ライン間でのシワ発生の有無を目視により観察し、シワの発生が無い場合を○、シワの発生がある場合を×とした。   The workability is determined by visually observing the occurrence of wrinkles between the feeding lines from the feeding machine to the press when the polyimide film is fed at a speed of 2 m / min. The case where there was occurrence of was marked as x.

銅張り積層基板の外観は、長尺状の銅張り積層基板を巻取りロール(心棒の外径:15cm)に2m/分の速度で巻取った全長についてシワ発生の有無をCCDカメラで検査し、シワ起因の外観不良が無い場合を○、シワ起因の外観不良が一部でも発生した場合を×とした。   The external appearance of the copper-clad multilayer substrate is checked by a CCD camera for the occurrence of wrinkles on the entire length of the long copper-clad laminate substrate wound on a winding roll (outer diameter of the mandrel: 15 cm) at a speed of 2 m / min. The case where there was no appearance defect due to wrinkles was rated as “◯”, and the case where some appearance defects due to wrinkles occurred was marked as “X”.

また、粒子状ポリイミドの大きさの分析は次による。   The size of the particulate polyimide is analyzed as follows.

分散溶媒としてN,N−ジメチルアセトアミドを使用し、超音波で60分間分散させて、測定範囲0.02〜1000μmで、レーザー回折−散乱式粒度分布測定法によって、粒子径基準として体積基準で測定した。粒子状ポリイミドの作製により得られたスラリー溶液を超音波洗浄機により60分間分散させた。測定セルに分散媒を入れ、それに分散させたスラリー溶液をレーザー光・ランプの透過率が95〜75%になるように滴下、稀釈した。その後、マニュアルバッチ式セル測定により測定を行なった。機器:レーザー回折−散乱式粒度分布測定装置(形式:LA−910、堀場製作所株式会社製)、測定モード:マニュアルバッチ式セル測定。   Using N, N-dimethylacetamide as a dispersion solvent, dispersed for 60 minutes with ultrasonic waves, measured in a measurement range of 0.02 to 1000 μm, and measured on a volume basis as a particle diameter reference by a laser diffraction-scattering particle size distribution measurement method. did. The slurry solution obtained by producing the particulate polyimide was dispersed for 60 minutes by an ultrasonic cleaner. The dispersion medium was put into the measurement cell, and the slurry solution dispersed therein was dropped and diluted so that the transmittance of the laser beam / lamp was 95 to 75%. Then, it measured by manual batch type cell measurement. Equipment: Laser diffraction-scattering particle size distribution measuring device (type: LA-910, manufactured by Horiba, Ltd.), measurement mode: manual batch cell measurement.

粒子状ポリイミドの形状分析は、ガラス板上の粒子状ポリイミドの形状をSEM観察によって確認した。   In the shape analysis of the particulate polyimide, the shape of the particulate polyimide on the glass plate was confirmed by SEM observation.

その他のポリイミドフィルムの物性評価は以下の方法に従って行った。
1)ポリイミドフィルムのガラス転移温度(Tg):動的粘弾性法により、tanδのピーク値から求めた(引張り法、周波数6.28rad/秒、昇温速度10℃/分)。
2)ポリイミドフィルムの線膨張係数(50〜200℃):TMA法により、20〜200℃平均線膨張係数を測定した(引張り法、昇温速度5℃/分)。
3)ポリイミドフィルムの体積抵抗:ASTM・D257に準拠して測定した。
4)ポリイミドフィルムの機械的特性
・引張強度:ASTM・D882に準拠して測定した(クロスヘッド速度50mm/分)。
・伸び率:ASTM・D882に準拠して測定した(クロスヘッド速度50mm/分)。
・引張弾性率:ASTM・D882に準拠して測定した(クロスヘッド速度5mm/分)。
5)MIT耐折性(ポリイミドフィルム)は、JIS・C6471により、全幅に渡って幅15mmの試験片を切り出し、曲率半径0.38mm、荷重9.8N、折り曲げ速度175回/分、左右折り曲げ角度135度で、ポリイミドフィルムが破断するまでの回数を測定したものである。
The physical properties of other polyimide films were evaluated according to the following methods.
1) Glass transition temperature (Tg) of polyimide film: determined from a peak value of tan δ by a dynamic viscoelasticity method (tensile method, frequency 6.28 rad / sec, temperature rising rate 10 ° C./min).
2) Linear expansion coefficient of polyimide film (50 to 200 ° C.): An average linear expansion coefficient of 20 to 200 ° C. was measured by a TMA method (tensile method, heating rate 5 ° C./min).
3) Volume resistance of polyimide film: measured in accordance with ASTM D257.
4) Mechanical properties and tensile strength of polyimide film: Measured according to ASTM D882 (crosshead speed 50 mm / min).
Elongation rate: Measured according to ASTM D882 (crosshead speed 50 mm / min).
-Tensile elastic modulus: Measured according to ASTM D882 (crosshead speed 5 mm / min).
5) For MIT folding resistance (polyimide film), a test piece having a width of 15 mm was cut out over the entire width according to JIS C6471, the radius of curvature was 0.38 mm, the load was 9.8 N, the bending speed was 175 times / minute, and the left and right bending angles. The number of times until the polyimide film breaks at 135 degrees is measured.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

(参考例1)
粒子状ポリイミドの製造例
粒子状ポリイミドは、N,N’−ジメチルアセトアミド中にp−フェニレンジアミン、ピロメリット酸二無水物を溶解し、分散剤(デスパーサント:対モノマー0.5質量%)を添加し、窒素雰囲気下で撹拌(40rpm)しながら160℃まで徐々に昇温し、該温度に到達後3時間攪拌を行なって得られたものを使用した。得られた粒子状ポリイミドの粒度分布をレーザー回折−散乱式粒度分布測定装置にて測定した結果、メジアン径0.3μm、分布範囲0.1〜1μmであった。また、SEM観察において粒子状ポリイミドの形状を確認した結果、短径と長径の比が3〜6の柱状粒子であった。
(Reference Example 1)
Production Example of Particulate Polyimide Particulate polyimide is prepared by dissolving p-phenylenediamine and pyromellitic dianhydride in N, N′-dimethylacetamide and adding a dispersant (despersant: 0.5% by mass of monomer). The resulting mixture was gradually heated to 160 ° C. with stirring (40 rpm) in a nitrogen atmosphere, and the resulting mixture was stirred for 3 hours after reaching this temperature. As a result of measuring the particle size distribution of the obtained particulate polyimide with a laser diffraction-scattering type particle size distribution measuring device, the median diameter was 0.3 μm and the distribution range was 0.1 to 1 μm. Moreover, as a result of confirming the shape of the particulate polyimide in SEM observation, the ratio of the minor axis to the major axis was a columnar particle having 3 to 6.

(参考例2)
易滑性の熱圧着性多層ポリイミドフィルムの製造例
N−メチル−2−ピロリドン中でパラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマー濃度が18%(重量%、以下同じ)になるように加え、50℃で3時間反応させて、25℃における溶液粘度が約1500ポイズのポリアミック酸溶液(耐熱性ポリイミド用ドープ)を得た。また、N−メチル−2−ピロリドン中で1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)とを1000:1000のモル比でモノマー濃度が22%になるように加え、またトリフェニルホスフェートをモノマー重量に対して0.1%加え、5℃で1時間反応させた。得られた25℃における溶液粘度が約2000ポイズであるポリアミック酸溶液に、参考例1で得られた粒子状ポリイミドを、モノマー濃度に対して4.0質量%となるように添加してドープ(表面層の熱可塑性ポリイミド用ドープ)を得た。得られた耐熱性ポリイミド用ドープと熱可塑性ポリイミド用ドープとを、三層押出し成形用ダイス(マルチマニホールド型ダイス)を設けた製膜装置を使用し、三層押出ダイスの厚みを変えて金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後、加熱炉で200℃から320℃まで徐々に昇温して溶媒の除去、イミド化を行って、長尺状の三層押出しポリイミドフィルムを巻き取りロールに巻き取った。得られた三層押出しポリイミドフィルムは、次のような物性を示した。
(Reference Example 2)
Example of production of slippery thermocompression-bonding multilayer polyimide film Paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) in N-methyl-2-pyrrolidone ) In a molar ratio of 1000: 998 so that the monomer concentration is 18% (weight%, the same applies hereinafter), and the reaction is carried out at 50 ° C. for 3 hours to give a polyamic acid solution having a solution viscosity of about 1500 poise at 25 ° C. (Doped for heat-resistant polyimide) was obtained. In addition, 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) in N-methyl-2-pyrrolidone ) At a molar ratio of 1000: 1000 so that the monomer concentration is 22%, and triphenyl phosphate was added at 0.1% based on the monomer weight, and the mixture was reacted at 5 ° C. for 1 hour. To the obtained polyamic acid solution having a solution viscosity of about 2000 poise at 25 ° C., the particulate polyimide obtained in Reference Example 1 was added so as to be 4.0% by mass with respect to the monomer concentration (dope ( A dope for thermoplastic polyimide of the surface layer) was obtained. The obtained heat-resistant polyimide dope and thermoplastic polyimide dope are made of metal by using a film forming apparatus provided with a three-layer extrusion die (multi-manifold die) and changing the thickness of the three-layer extrusion die. It was cast on a support and continuously dried with hot air at 140 ° C. to form a solidified film. After peeling the solidified film from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize the long three-layer extruded polyimide film on the take-up roll. Winded up. The obtained three-layer extruded polyimide film exhibited the following physical properties.

熱圧着性多層ポリイミドフィルム、
厚み構成:3μm/9μm/3μm(合計15μm)、
静摩擦係数:0.37、
熱可塑性の芳香族ポリイミドのTg:260℃(動的粘弾性法、tanδピーク値、以下同じ)、
コア層の耐熱性ポリイミドのTg:340℃以上、
線膨張係数(50〜200℃):18ppm/℃(TMA法)、
引張強度、伸び率:460MPa、90%(ASTM D882)、
引張弾性率:7080MPa(ASTM D882)、
MIT耐折性:10万回まで破断せず、
体積抵抗:4×1016Ω・cm(ASTM D257)。
Thermocompression bonding polyimide film,
Thickness configuration: 3 μm / 9 μm / 3 μm (total 15 μm),
Static friction coefficient: 0.37,
Tg of thermoplastic aromatic polyimide: 260 ° C. (dynamic viscoelasticity method, tan δ peak value, the same applies hereinafter),
Tg of heat-resistant polyimide for core layer: 340 ° C. or higher,
Linear expansion coefficient (50 to 200 ° C.): 18 ppm / ° C. (TMA method)
Tensile strength, elongation: 460 MPa, 90% (ASTM D882),
Tensile modulus: 7080 MPa (ASTM D882),
MIT folding resistance: not broken up to 100,000 times
Volume resistance: 4 × 10 16 Ω · cm (ASTM D257).

また、図2に、得られたポリイミドフィルムの表面のSEM観察結果(2000倍)を示す。   Moreover, the SEM observation result (2000 times) of the surface of the obtained polyimide film is shown in FIG.

(参考例3)
熱圧着性多層ポリイミドフィルムの製造例
ポリイミド表面層の熱可塑性ポリイミド用ドープにポリイミド粒子を添加しなかった他は参考例2と同様にして、長尺状の三層押出しポリイミドフィルムを巻き取りロールに巻き取った。得られた三層押出しポリイミドフィルムは、次のような物性を示した。
(Reference Example 3)
Example of production of thermocompression-bonding multilayer polyimide film Except that polyimide particles were not added to the dope for thermoplastic polyimide on the polyimide surface layer, a long three-layer extruded polyimide film was used as a winding roll in the same manner as in Reference Example 2. Winded up. The obtained three-layer extruded polyimide film exhibited the following physical properties.

熱圧着性多層ポリイミドフィルム、
厚み構成:3μm/9μm/3μm(合計15μm)、
静摩擦係数:1.00以上。
Thermocompression bonding polyimide film,
Thickness configuration: 3 μm / 9 μm / 3 μm (total 15 μm),
Static friction coefficient: 1.00 or more.

(実施例1)
2つのロール巻きした圧延銅箔(タフピッチ銅、マイクロハード社、VSBK、厚み18μm)の1組と、予めダブルベルトプレス直前のインラインで200℃の熱風で30秒間加熱した、参考例2で得られた熱圧着性多層ポリイミドフィルム(厚み:15μm)を、加熱ゾーンの温度(最高加熱温度):330℃、冷却ゾーンの温度(最低冷却温度):180℃で、圧着圧力:40kg/cm(3.9MPa)、圧着時間2分で、連続的に熱圧着−冷却して積層して、ロール巻状両面銅箔の銅張積層基板(幅:540mm、長さ:1000m)を巻き取りロールに巻き取った。得られた銅張り積層基板についての評価結果を次に示す。
Example 1
Obtained in Reference Example 2 which was heated with hot air of 200 ° C. for 30 seconds in advance immediately before double belt pressing in one set of two rolled rolled copper foils (Tough pitch copper, Microhardware, VSBK, thickness 18 μm) The heat-bondable multilayer polyimide film (thickness: 15 μm) was heated at a heating zone temperature (maximum heating temperature): 330 ° C., a cooling zone temperature (minimum cooling temperature): 180 ° C., and a pressure bonding pressure: 40 kg / cm 2 (3 0.9 MPa), with a crimping time of 2 minutes, and continuously laminated by thermocompression-cooling and winding a copper-clad laminate (width: 540 mm, length: 1000 m) of a roll-shaped double-sided copper foil on a take-up roll I took it. The evaluation results for the obtained copper-clad laminate are as follows.

MIT耐折性:MD/TD=2210回/2500回、
加工性:○、
製品外観:○。
MIT folding endurance: MD / TD = 2210 times / 2500 times,
Workability: ○,
Product appearance: ○.

また、図1に、得られたポリイミドフィルムの表面のSEM観察結果(2000倍)を示す。   Moreover, the SEM observation result (2000 times) of the surface of the obtained polyimide film is shown in FIG.

(実施例2)
2つのロール巻きした圧延銅箔(タフピッチ銅、マイクロハード社、VSRD、厚み12μm)の1組に変えた他は実施例1と同様にして、ロール巻状両面銅箔の銅張積層基板を巻き取りロールに巻き取った。得られた銅張り積層基板についての評価結果を次に示す。
(Example 2)
Winding a copper-clad laminate of rolled-up double-sided copper foil in the same manner as in Example 1 except that it was changed to one set of two rolled copper foils (Tough pitch copper, Microhardware, VSRD, thickness 12 μm). It was wound up on a take-up roll. The evaluation results for the obtained copper-clad laminate are as follows.

MIT耐折性:MD/TD=3100回/3220回、
加工性:○、
製品外観:○。
MIT folding endurance: MD / TD = 3100 times / 3320 times,
Workability: ○,
Product appearance: ○.

(実施例3)
2つのロール巻きした圧延銅箔(タフピッチ銅、日立電線社、HPF−ST10−E、厚み10μm)の1組に変えた他は実施例1と同様にして、ロール巻状両面銅箔の銅張積層基板を巻き取りロールに巻き取った。得られた銅張り積層基板についての評価結果を次に示す。
(Example 3)
A copper-clad roll-rolled double-sided copper foil in the same manner as in Example 1 except that it was changed to one roll of rolled copper foil (tough pitch copper, Hitachi Cable, HPF-ST10-E, thickness 10 μm). The laminated substrate was wound up on a winding roll. The evaluation results for the obtained copper-clad laminate are as follows.

MIT耐折性:MD/TD=3210回/3250回、
加工性:○、
製品外観:○。
MIT folding resistance: MD / TD = 3210 times / 3250 times,
Workability: ○,
Product appearance: ○.

(実施例4)
2つのロール巻きした電解銅箔(日本電解社、HLB、厚み9μm)の1組に変えた他は実施例1と同様にして、ロール巻状両面銅箔の銅張積層基板を巻き取りロールに巻き取った。得られた銅張り積層基板についての評価結果を次に示す。
Example 4
A roll-wrapped double-sided copper foil copper-clad laminate is used as a take-up roll in the same manner as in Example 1 except that two rolls of electrolytic copper foil (Nippon Electrolytic Co., Ltd., HLB, thickness 9 μm) are used. Winded up. The evaluation results for the obtained copper-clad laminate are as follows.

MIT耐折性:MD/TD=3210回/3250回、
加工性:○、
製品外観:○。
MIT folding resistance: MD / TD = 3210 times / 3250 times,
Workability: ○,
Product appearance: ○.

(実施例5)
2つのロール巻きしたキャリア銅箔付き電解銅箔(日本電解社、YSNAP−3B、キャリア銅箔厚み18μm、薄銅箔厚み3μm)の1組に変えた他は実施例1と同様にして、ロール巻状両面銅箔の銅張り積層基板を巻き取りロールに巻き取った。得られた銅張り積層基板についての評価結果を次に示す。MIT耐折性は、キャリア銅箔を剥離し、電解銅メッキにより薄銅箔の厚みを8μmにして得られた試験片について測定した。
(Example 5)
In the same manner as in Example 1, except that it was changed to one set of two roll-wound electrolytic copper foils with carrier copper foil (Nippon Electrolytic Co., Ltd., YSNAP-3B, carrier copper foil thickness 18 μm, thin copper foil thickness 3 μm). A copper-clad laminated substrate with a wound double-sided copper foil was wound around a winding roll. The evaluation results for the obtained copper-clad laminate are as follows. The MIT folding resistance was measured on a test piece obtained by peeling the carrier copper foil and setting the thickness of the thin copper foil to 8 μm by electrolytic copper plating.

MIT耐折性:MD/TD=2120回/2160回、
加工性:○、
製品外観:○。
MIT folding resistance: MD / TD = 2120 times / 2160 times,
Workability: ○,
Product appearance: ○.

(実施例6)
参考例3で得られた熱可塑性ポリイミド層がポリイミド粒子を含んでいない熱圧着性多層ポリイミドフィルム(厚み:15μm)を使用し、送り速度を半分にした他は実施例1と同様にして、ロール巻状両面銅箔の銅張積層基板を巻き取りロールに巻き取った。得られた銅張り積層基板は、MIT耐折性は実施例1と同等であったが、加工性および製品外観の評価結果は次に示す通りであった。
(Example 6)
The thermoplastic polyimide layer obtained in Reference Example 3 uses a thermocompression-bonding multilayer polyimide film (thickness: 15 μm) that does not contain polyimide particles, and is the same as in Example 1 except that the feed rate is halved. A copper-clad laminate of wound double-sided copper foil was wound up on a winding roll. The obtained copper-clad laminate had the same MIT folding resistance as that of Example 1, but the evaluation results of workability and product appearance were as follows.

加工性:×、
製品外観:×。
Workability: x,
Product appearance: x.

(実施例7)
実施例4で得られた銅張積層基板から、90μmピッチのヒンジ部材を作製し、カバーレイ(ポリイミド層厚み:25μm、接着剤層厚み:25μm)を張り合わせて、MIT耐折性試験を行った。その結果、MD/TD=5000回/4000回であり、ヒンジ用部材として良好な特性を示すことが確認された。また、保持性に優れているため、はぜ折り実装する際に良好なヒンジ部材が得られた。
(Example 7)
A hinge member with a pitch of 90 μm was prepared from the copper-clad laminate obtained in Example 4, and a coverlay (polyimide layer thickness: 25 μm, adhesive layer thickness: 25 μm) was bonded to perform an MIT folding resistance test. . As a result, MD / TD = 5000 times / 4000 times, and it was confirmed that the hinge member exhibited good characteristics. Moreover, since the holding property is excellent, a favorable hinge member was obtained when mounting by folding on the seam.

MIT耐折性は、JIS C6471により、曲率半径0.38mm、荷重4.9N、折り曲げ速度175回/分、左右折り曲げ角度135度で測定したものである。   The MIT folding resistance was measured according to JIS C6471, with a radius of curvature of 0.38 mm, a load of 4.9 N, a bending speed of 175 times / minute, and a right and left bending angle of 135 degrees.

(参考例4)
次のようにして実施例8〜14、比較例1〜6で使用するポリイミドフィルムを製造した。
(Reference Example 4)
The polyimide films used in Examples 8 to 14 and Comparative Examples 1 to 6 were produced as follows.

N−メチル−2−ピロリドン中でパラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマー濃度が18%(重量%、以下同じ)になるように加え、50℃で3時間反応させて、25℃における溶液粘度が約1500ポイズのポリアミック酸溶液(耐熱性ポリイミド用ドープ)を得た。また、N−メチル−2−ピロリドン中で1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)および3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:200:800のモル比で加え、モノマー濃度が18%になるように、またトリフェニルホスフェートをモノマー重量に対して0.5重量%加え、40℃で3時間反応させた。得られたポリアミック酸溶液の25℃における溶液粘度は、約1680ポイズであった。参考例1で得られた粒子状ポリイミドを、モノマー濃度に対して4.0質量%となるように添加してドープ(表面層の熱可塑性ポリイミド用ドープ)を得た。得られた耐熱性ポリイミド用ドープと熱可塑性ポリイミド用ドープとを、三層押出し成形用ダイス(マルチマニホールド型ダイス)を設けた製膜装置を使用し、三層押出ダイスの厚みを変えて金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後、加熱炉で200℃から320℃まで徐々に昇温して溶媒の除去、イミド化を行って、長尺状の三層押出しポリイミドフィルムを巻き取りロールに巻き取った。得られた三層押出しポリイミドフィルムは、次のような物性を示した。   In N-methyl-2-pyrrolidone, paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) were mixed at a monomer ratio of 1000: 998. It added so that it might become 18% (weight%, and the following is the same), and it was made to react at 50 degreeC for 3 hours, and obtained the polyamic acid solution (dope for heat resistant polyimide) whose solution viscosity in 25 degreeC is about 1500 poise. In addition, 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA) in N-methyl-2-pyrrolidone ) And 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) in a molar ratio of 1000: 200: 800, so that the monomer concentration is 18% and also triphenyl. Phosphate was added in an amount of 0.5% by weight based on the monomer weight, and reacted at 40 ° C for 3 hours. The solution viscosity at 25 ° C. of the obtained polyamic acid solution was about 1680 poise. The particulate polyimide obtained in Reference Example 1 was added so as to be 4.0% by mass with respect to the monomer concentration to obtain a dope (surface layer thermoplastic polyimide dope). The obtained heat-resistant polyimide dope and thermoplastic polyimide dope are made of metal by using a film forming apparatus provided with a three-layer extrusion die (multi-manifold die) and changing the thickness of the three-layer extrusion die. It was cast on a support and continuously dried with hot air at 140 ° C. to form a solidified film. After peeling the solidified film from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize the long three-layer extruded polyimide film on the take-up roll. Winded up. The obtained three-layer extruded polyimide film exhibited the following physical properties.

熱圧着性多層ポリイミドフィルム(15μm)、
厚み構成:3μm/9μm/3μm(合計15μm)、
静摩擦係数:0.37、
熱可塑性の芳香族ポリイミドのTg:240℃(動的粘弾性法、tanδピーク値、以下同じ)、
コア層の耐熱性ポリイミドのTg:340℃以上、
線膨張係数(50〜200℃):19ppm/℃(TMA法)、
引張強度、伸び率:460MPa、90%(ASTM D882)、
引張弾性率:7080MPa(ASTM D882)、
MIT耐折性:10万回まで破断せず、
体積抵抗:4×1016Ω・cm(ASTM D257)。
Thermocompression-bonding multilayer polyimide film (15 μm),
Thickness configuration: 3 μm / 9 μm / 3 μm (total 15 μm),
Static friction coefficient: 0.37,
Tg of thermoplastic aromatic polyimide: 240 ° C. (dynamic viscoelasticity method, tan δ peak value, hereinafter the same),
Tg of heat-resistant polyimide for core layer: 340 ° C. or higher,
Linear expansion coefficient (50 to 200 ° C.): 19 ppm / ° C. (TMA method)
Tensile strength, elongation: 460 MPa, 90% (ASTM D882),
Tensile modulus: 7080 MPa (ASTM D882),
MIT folding resistance: not broken up to 100,000 times
Volume resistance: 4 × 10 16 Ω · cm (ASTM D257).

熱圧着性多層ポリイミドフィルム(20μm)、
厚み構成:3.5μm/13μm/3.5μm(合計20μm)、
静摩擦係数:0.36、
熱可塑性の芳香族ポリイミドのTg:240℃、
コア層の耐熱性ポリイミドのTg:340℃以上、
線膨張係数(50〜200℃):18ppm/℃(TMA法)、
引張強度、伸び率:510MPa、100%(ASTM D882)、
引張弾性率:7140MPa(ASTM D882)、
MIT耐折性:10万回まで破断せず、
体積抵抗:3×1016Ω・cm(ASTM D257)。
Thermocompression-bonding multilayer polyimide film (20 μm),
Thickness configuration: 3.5 μm / 13 μm / 3.5 μm (total 20 μm),
Static friction coefficient: 0.36,
Tg of thermoplastic aromatic polyimide: 240 ° C.
Tg of heat-resistant polyimide for core layer: 340 ° C. or higher,
Linear expansion coefficient (50 to 200 ° C.): 18 ppm / ° C. (TMA method)
Tensile strength, elongation: 510 MPa, 100% (ASTM D882),
Tensile modulus: 7140 MPa (ASTM D882),
MIT folding resistance: not broken up to 100,000 times
Volume resistance: 3 × 10 16 Ω · cm (ASTM D257).

熱圧着性多層ポリイミドフィルム(25μm)、
厚み構成:4μm/17μm/4μm(合計25μm)、
静摩擦係数:0.39、
熱可塑性の芳香族ポリイミドのTg:240℃、
コア層の耐熱性ポリイミドのTg:340℃以上、
線膨張係数(50〜200℃):18ppm/℃(TMA法)、
引張強度、伸び率:520MPa、105%(ASTM D882)、
引張弾性率:7200MPa(ASTM D882)、
MIT耐折性:10万回まで破断せず、
体積抵抗:4×1016Ω・cm(ASTM D257)。
Thermocompression-bonding multilayer polyimide film (25 μm),
Thickness configuration: 4 μm / 17 μm / 4 μm (total 25 μm),
Static friction coefficient: 0.39,
Tg of thermoplastic aromatic polyimide: 240 ° C.
Tg of heat-resistant polyimide for core layer: 340 ° C. or higher,
Linear expansion coefficient (50 to 200 ° C.): 18 ppm / ° C. (TMA method)
Tensile strength, elongation: 520 MPa, 105% (ASTM D882),
Tensile modulus: 7200 MPa (ASTM D882),
MIT folding resistance: not broken up to 100,000 times
Volume resistance: 4 × 10 16 Ω · cm (ASTM D257).

(実施例8)
参考例4で得られた厚み15μmのポリイミドフィルムと、圧延銅箔(日鉱マテリアルズ、BHY−13H−T、厚み18μm)とを次のようにして熱圧着して積層し、銅張積層基板を作製した。
(Example 8)
The polyimide film having a thickness of 15 μm obtained in Reference Example 4 and a rolled copper foil (Nikko Materials, BHY-13H-T, thickness 18 μm) are laminated by thermocompression bonding as follows, and a copper-clad laminate substrate is obtained. Produced.

ダブルベルトプレス直前のインラインで200℃の熱風で30秒間加熱して予熱したポリイミドフィルムとロール巻きした銅箔とを、加熱ゾーンの温度(最高加熱温度):330℃、冷却ゾーンの温度(最低冷却温度):180℃、圧着圧力:3.9MPa、圧着時間2分で、連続的に熱圧着−冷却して積層して、ロール巻状両面銅箔の銅張積層基板(幅:540mm、長さ:1000m)を巻き取りロールに巻き取った。   Heating zone temperature (maximum heating temperature): 330 ° C, cooling zone temperature (minimum cooling) with polyimide film preheated by heating with 200 ° C hot air for 30 seconds in-line immediately before double belt press Temperature): 180 ° C., pressure bonding pressure: 3.9 MPa, pressure bonding time of 2 minutes, continuous thermocompression-cooling and laminating, roll-rolled copper foil copper-clad laminate (width: 540 mm, length) : 1000 m) was wound on a winding roll.

そして、得られた銅張積層基板のMIT耐折性を測定した。   And the MIT folding resistance of the obtained copper clad laminated substrate was measured.

MIT耐折性は、JIS C6471に準拠し、片面のみに同試験方法に規定された銅箔回路を形成し、曲率半径0.8mm、荷重4.9N、折り曲げ速度175回/分、左右折り曲げ角度135度で、初期電気抵抗値から100%上昇した時点での耐折回数を測定したものである。サンプリングは全幅から、各10点の試験片を作製し、これらの平均値をMIT耐折性の値とした。   MIT folding resistance conforms to JIS C6471, a copper foil circuit specified in the same test method is formed only on one side, a radius of curvature of 0.8 mm, a load of 4.9 N, a bending speed of 175 times / minute, and a left and right bending angle. This is a measurement of the folding endurance at a time when the initial electrical resistance value increased by 100% at 135 degrees. For sampling, test pieces of 10 points were prepared from the entire width, and the average value of these was used as the MIT folding resistance value.

使用した圧延銅箔は、熱処理前の引張強度がMDで450N/mm、TDで433N/mmであり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比がMDで43%、TDで40%であった。 Rolled copper foil used had a tensile strength before the heat treatment is 433N / mm 2 at 450 N / mm 2, TD in MD, 180 ° C., which is defined by the formula (1), the tensile strength ratio after 1 hour heat treatment The MD was 43% and the TD was 40%.

銅箔の引張強度は、JIS C6515に準拠し、同試験方法に規定された試験片を作製し、クロスヘッド速度が2mm/分にて測定したものである。5点の測定値の平均値を引張強度とした。また、熱処理後の引張強度比(%)は(1)式から算出した。
熱処理後の引張強度比(%)=熱処理後の引張強度/熱処理前の引張強度×100 (1)
The tensile strength of the copper foil was measured at a crosshead speed of 2 mm / min by preparing a test piece defined in the same test method in accordance with JIS C6515. The average value of the five measured values was taken as the tensile strength. Further, the tensile strength ratio (%) after the heat treatment was calculated from the equation (1).
Tensile strength ratio after heat treatment (%) = tensile strength after heat treatment / tensile strength before heat treatment × 100 (1)

これらの結果を表1に示す。   These results are shown in Table 1.

(比較例1)
使用するポリイミドフィルムを厚み25μmのものに変えた他は実施例8と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表1に示す。
(Comparative Example 1)
A copper-clad laminate was prepared in the same manner as in Example 8 except that the polyimide film used was changed to one having a thickness of 25 μm, and the MIT folding resistance was measured. The results are shown in Table 1.

(実施例9)
使用する銅箔を圧延銅箔(日鉱マテリアルズ、BHY−13H−HA、厚み18μm)に変えた他は実施例8と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表1に示す。
Example 9
A copper clad laminate was prepared in the same manner as in Example 8 except that the copper foil used was changed to a rolled copper foil (Nikko Materials, BHY-13H-HA, thickness 18 μm), and MIT folding resistance was measured. The results are shown in Table 1.

使用した圧延銅箔は、熱処理前の引張強度がMDで421N/mm、TDで437N/mmであり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比がMDで22%、TDで20%であった。 Rolled copper foil used had a tensile strength before the heat treatment is 437N / mm 2 at 421N / mm 2, TD in MD, 180 ° C., which is defined by the formula (1), the tensile strength ratio after 1 hour heat treatment The MD was 22% and the TD was 20%.

(比較例2)
使用するポリイミドフィルムを厚み25μmのものに変えた他は実施例9と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表1に示す。
(Comparative Example 2)
A copper-clad laminate was prepared in the same manner as in Example 9 except that the polyimide film used was changed to one having a thickness of 25 μm, and the MIT folding resistance was measured. The results are shown in Table 1.

(実施例10)
使用する銅箔を圧延銅箔(日鉱マテリアルズ、BHY−22B−T、厚み12μm)に変えた他は実施例8と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表1に示す。
(Example 10)
A copper-clad laminate was prepared in the same manner as in Example 8 except that the copper foil used was changed to a rolled copper foil (Nikko Materials, BHY-22B-T, thickness 12 μm), and MIT folding resistance was measured. The results are shown in Table 1.

使用した圧延銅箔は、熱処理前の引張強度がMDで417N/mm、TDで420N/mmであり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比がMDで44%、TDで37%であった。 Rolled copper foil used had a tensile strength before the heat treatment is 420N / mm 2 at 417N / mm 2, TD in MD, 180 ° C., which is defined by the formula (1), the tensile strength ratio after 1 hour heat treatment The MD was 44% and the TD was 37%.

(比較例3)
使用するポリイミドフィルムを厚み25μmのものに変えた他は実施例10と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表1に示す。
(Comparative Example 3)
A copper-clad laminate was prepared in the same manner as in Example 10 except that the polyimide film used was changed to one having a thickness of 25 μm, and the MIT folding resistance was measured. The results are shown in Table 1.

(実施例11)
使用する銅箔を圧延銅箔(日鉱マテリアルズ、BHY−22B−HA、厚み12μm)に変えた他は実施例8と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表1に示す。
(Example 11)
A copper-clad laminate was prepared in the same manner as in Example 8 except that the copper foil used was changed to a rolled copper foil (Nikko Materials, BHY-22B-HA, thickness 12 μm), and MIT folding resistance was measured. The results are shown in Table 1.

使用した圧延銅箔は、熱処理前の引張強度がMDで461N/mm、TDで443N/mmであり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比がMDで21%、TDで19%であった。 Rolled copper foil used had a tensile strength before the heat treatment is 443N / mm 2 at 461N / mm 2, TD in MD, 180 ° C., which is defined by the formula (1), the tensile strength ratio after 1 hour heat treatment MD was 21% and TD was 19%.

(比較例4)
使用するポリイミドフィルムを厚み25μmのものに変えた他は実施例11と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表1に示す。
(Comparative Example 4)
A copper-clad laminate was prepared in the same manner as in Example 11 except that the polyimide film used was changed to one having a thickness of 25 μm, and the MIT folding resistance was measured. The results are shown in Table 1.

表1から明らかなように、厚み15μmのポリイミドフィルムを用いた銅張積層基板は、厚み25μmのポリイミドフィルムを用いた銅張積層基板と比べて、MIT耐折性が非常に優れていた。また、厚み12μmのより薄い銅箔を用いた銅張積層基板の方がMIT耐折性が優れていた。 As is clear from Table 1, the copper-clad laminate using a polyimide film having a thickness of 15 μm was extremely superior in MIT folding resistance compared to the copper-clad laminate using a polyimide film having a thickness of 25 μm. Moreover, the MIT folding resistance was superior in the copper-clad laminate using a thinner copper foil having a thickness of 12 μm.

また、熱処理前の引張強度が300N/mm以上であり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比が33%以下である圧延銅箔を用いた実施例9と実施例11の銅張積層基板は、MIT耐折性が非常に優れていた。 Moreover, the Example using the rolled copper foil whose tensile strength before heat processing is 300 N / mm < 2 > or more and whose tensile strength ratio after heat processing for 1 hour and 180 degreeC defined by said Formula (1) is 33% or less. The copper-clad laminates of Nos. 9 and 11 had excellent MIT folding resistance.

(実施例12)
使用する銅箔を電解銅箔(日本電解社、HLB、厚み12μm)に変えた他は実施例8と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表2に示す。
(Example 12)
A copper-clad laminate was prepared in the same manner as in Example 8 except that the copper foil used was changed to an electrolytic copper foil (Nippon Electrolytic Co., Ltd., HLB, thickness 12 μm), and MIT folding resistance was measured. The results are shown in Table 2.

使用した電解銅箔は、熱処理前の引張強度がMDで504N/mm、TDで512N/mmであり、上記式(1)で定義される180℃、1時間熱処理後の引張強度比がMDで50%、TDで49%であった。 Electrolytic copper foil used has a tensile strength before the heat treatment is 512N / mm 2 at 504N / mm 2, TD in MD, 180 ° C., which is defined by the formula (1), the tensile strength ratio after 1 hour heat treatment The MD was 50% and the TD was 49%.

(実施例13)
使用するポリイミドフィルムを厚み20μmのものに変えた他は実施例12と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表2に示す。
(Example 13)
A copper-clad laminate was prepared in the same manner as in Example 12 except that the polyimide film used was changed to one having a thickness of 20 μm, and the MIT folding resistance was measured. The results are shown in Table 2.

(比較例5)
使用するポリイミドフィルムを厚み25μmのものに変えた他は実施例12と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表2に示す。
(Comparative Example 5)
A copper-clad laminate was prepared in the same manner as in Example 12 except that the polyimide film used was changed to one having a thickness of 25 μm, and the MIT folding resistance was measured. The results are shown in Table 2.

(実施例14)
使用する銅箔を電解銅箔(日本電解社、HLB、厚み9μm)に変えた他は実施例8と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表2に示す。
(Example 14)
A copper-clad laminate was prepared in the same manner as in Example 8 except that the copper foil used was changed to an electrolytic copper foil (Nippon Electrolytic Co., Ltd., HLB, thickness 9 μm), and MIT folding resistance was measured. The results are shown in Table 2.

(比較例6)
使用するポリイミドフィルムを厚み25μmのものに変えた他は実施例14と同様にして銅張積層基板を作製し、MIT耐折性を測定した。その結果を表2に示す。
(Comparative Example 6)
A copper-clad laminate was prepared in the same manner as in Example 14 except that the polyimide film used was changed to one having a thickness of 25 μm, and the MIT folding resistance was measured. The results are shown in Table 2.

表2から明らかなように、より薄いポリイミドフィルムを用いた銅張積層基板の方がMIT耐折性が優れていた。また、厚み9μmのより薄い銅箔を用いた銅張積層基板の方がMIT耐折性が優れていた。   As is clear from Table 2, the copper-clad laminate using a thinner polyimide film was superior in MIT folding resistance. Moreover, the MIT folding resistance was superior in the copper-clad laminate using a thinner copper foil having a thickness of 9 μm.

Claims (21)

ポリイミドフィルムの片面または両面に銅箔を熱圧着により積層してなる銅張り積層基板であって、
ポリイミドフィルムの厚みが5〜20μmであり、
銅箔の厚みが1〜18μmであることを特徴とする銅張り積層基板。
It is a copper-clad laminated board formed by laminating copper foil on one or both sides of a polyimide film by thermocompression bonding,
The thickness of the polyimide film is 5 to 20 μm,
A copper-clad laminate having a copper foil thickness of 1 to 18 μm.
ポリイミドフィルムは、耐熱性ポリイミド層と熱可塑性ポリイミド層とを有し、
銅張り積層基板が、耐熱性ポリイミド層の片面または両面に熱可塑性ポリイミド層を介して、銅箔を熱圧着により積層してなる銅張り積層基板である請求項1に記載の銅張り積層基板。
The polyimide film has a heat-resistant polyimide layer and a thermoplastic polyimide layer,
The copper-clad laminate board according to claim 1, wherein the copper-clad laminate board is a copper-clad laminate board obtained by laminating a copper foil by thermocompression bonding on one side or both sides of a heat-resistant polyimide layer via a thermoplastic polyimide layer.
ポリイミドフィルムの厚みが5〜15μmである請求項1に記載の銅張り積層基板。   The copper-clad laminate according to claim 1, wherein the polyimide film has a thickness of 5 to 15 μm. 銅箔が、厚みが8〜18μmの圧延銅箔である請求項1に記載の銅張り積層基板。   The copper-clad laminate according to claim 1, wherein the copper foil is a rolled copper foil having a thickness of 8 to 18 μm. 銅箔が、厚みが10〜18μmの圧延銅箔である請求項4に記載の銅張り積層基板。   The copper-clad laminate according to claim 4, wherein the copper foil is a rolled copper foil having a thickness of 10 to 18 μm. 銅箔が、厚みが10〜12μmの圧延銅箔である請求項5に記載の銅張り積層基板。   The copper-clad laminate according to claim 5, wherein the copper foil is a rolled copper foil having a thickness of 10 to 12 μm. 銅箔が、熱処理前の引張強度が300N/mm以上であり、下記式(1)で定義される180℃、1時間熱処理後の引張強度比が33%以下の圧延銅箔である請求項1に記載の銅張り積層基板。
熱処理後の引張強度比(%)=熱処理後の引張強度/熱処理前の引張強度×100 (1)
The copper foil is a rolled copper foil having a tensile strength before heat treatment of 300 N / mm 2 or more and a tensile strength ratio after heat treatment at 180 ° C. for 1 hour defined by the following formula (1) of 33% or less. The copper-clad laminate as described in 1.
Tensile strength ratio after heat treatment (%) = tensile strength after heat treatment / tensile strength before heat treatment × 100 (1)
銅箔がキャリア付き銅箔であり、
キャリアを剥離した銅箔の厚みが1〜5μmである請求項1に記載の銅張り積層基板。
The copper foil is a copper foil with a carrier,
The copper-clad laminate according to claim 1, wherein the thickness of the copper foil from which the carrier is peeled is 1 to 5 μm.
請求項8に記載の銅張り積層基板からキャリアを剥離した後、銅メッキにより銅箔の厚みを5〜8μmに調整して得られる銅張り積層基板。   A copper-clad laminate obtained by peeling the carrier from the copper-clad laminate according to claim 8 and then adjusting the thickness of the copper foil to 5 to 8 μm by copper plating. MIT耐折性が約2000回以上である請求項1に記載の銅張り積層基板。   The copper-clad laminate according to claim 1, wherein the MIT folding resistance is about 2000 times or more. MIT耐折性が約2000回以上である請求項9に記載の銅張り積層基板。   The copper-clad laminate according to claim 9, wherein the MIT folding resistance is about 2000 times or more. ポリイミドフィルムが、耐熱性ポリイミド層の片面または両面に熱可塑性ポリイミド層を有する熱圧着性多層ポリイミドフィルムである請求項1に記載の銅張り積層基板。   The copper-clad multilayer substrate according to claim 1, wherein the polyimide film is a thermocompression-bonding multilayer polyimide film having a thermoplastic polyimide layer on one side or both sides of the heat-resistant polyimide layer. 熱可塑性ポリイミド層中にポリイミド粒子が分散されている請求項12に記載の銅張り積層基板。   The copper-clad laminate according to claim 12, wherein polyimide particles are dispersed in the thermoplastic polyimide layer. 熱可塑性ポリイミド層が、その表面から少なくとも0.5μm中に、メジアン径が0.3〜0.8μmでかつ最大径が2μm以下であるポリイミド粒子を、ポリイミド表面層のポリイミドに対して約0.5〜10質量%の割合で分散してなるものであり、無機粉末を実質的に含有しておらず、
ポリイミドフィルムの摩擦係数が0.05〜0.7である請求項13に記載の銅張り積層基板。
The polyimide film having a median diameter of 0.3 to 0.8 μm and a maximum diameter of 2 μm or less in a thermoplastic polyimide layer of at least 0.5 μm from the surface thereof is about 0. It is dispersed at a rate of 5 to 10% by mass, does not substantially contain inorganic powder,
The copper-clad laminate according to claim 13, wherein the polyimide film has a friction coefficient of 0.05 to 0.7.
ポリイミド粒子が、ピロメリット酸成分とp−フェニレンジアミン成分とから得られるものである請求項13に記載の銅張り積層基板。   The copper-clad laminate according to claim 13, wherein the polyimide particles are obtained from a pyromellitic acid component and a p-phenylenediamine component. ポリイミドフィルムが、厚み3〜18μmの耐熱性ポリイミド層の両面に厚み1〜6μmの熱可塑性ポリイミド層を有するものである請求項12に記載の銅張り積層基板。   The copper-clad laminate according to claim 12, wherein the polyimide film has a thermoplastic polyimide layer having a thickness of 1 to 6 µm on both sides of a heat-resistant polyimide layer having a thickness of 3 to 18 µm. 熱圧着性多層ポリイミドフィルムと銅箔とを加圧下に熱可塑性ポリイミドのガラス転移温度以上、400℃以下の温度で熱圧着してなる請求項12に記載の銅張り積層基板。   The copper-clad laminate according to claim 12, wherein the thermocompression-bonding multilayer polyimide film and copper foil are thermocompression bonded under pressure at a temperature not lower than the glass transition temperature of the thermoplastic polyimide and not higher than 400 ° C. 熱圧着性多層ポリイミドフィルムが、共押出し−流延製膜法によって耐熱性のポリイミド層の片面または両面に熱圧着性のポリイミド層を積層一体化して得られたものである請求項12に記載の銅張り積層基板。   The thermocompression-bonding multilayer polyimide film is obtained by laminating and integrating a thermocompression-bonding polyimide layer on one side or both sides of a heat-resistant polyimide layer by a coextrusion-casting film forming method. Copper-clad laminated board. オールポリイミドのヒンジ部用である請求項1に記載の銅張り積層基板。   The copper-clad multilayer substrate according to claim 1, which is for an all-polyimide hinge part. 耐熱性ポリイミド層の少なくとも片面に熱可塑性ポリイミド層を有し、熱可塑性ポリイミド層中にポリイミド粒子を分散してなる厚みが5〜25μmの熱圧着性多層ポリイミドフィルムに、厚みが18μm以下の銅箔を積層してなる銅張り積層基板。   Copper foil having a thickness of 18 μm or less on a thermocompression-bonding multilayer polyimide film having a thickness of 5 to 25 μm, which has a thermoplastic polyimide layer on at least one side of the heat-resistant polyimide layer, and polyimide particles are dispersed in the thermoplastic polyimide layer A copper-clad laminated board made by laminating layers. 耐熱性ポリイミド層の片面または両面に熱可塑性ポリイミド層を有する厚み5〜20μmのポリイミドフィルムに、厚み1〜18μmの銅箔を熱圧着して積層する銅張り積層基板の連続的製造方法であって、
ポリイミドフィルムの熱可塑性ポリイミド層と銅箔とを重ね合わせるようにしてラミネート装置に連続的に供給し、加圧下に熱可塑性ポリイミドのガラス転移温度以上、400℃以下の温度で熱圧着して積層する銅張り積層基板の連続的製造方法。
A continuous production method for a copper-clad laminate in which a copper film having a thickness of 1 to 18 μm is laminated by thermocompression bonding to a polyimide film having a thickness of 5 to 20 μm having a thermoplastic polyimide layer on one or both sides of the heat-resistant polyimide layer. ,
The thermoplastic polyimide layer of the polyimide film and the copper foil are continuously supplied to the laminating apparatus so as to overlap each other, and are laminated by thermocompression bonding at a temperature not lower than the glass transition temperature of the thermoplastic polyimide and not higher than 400 ° C. under pressure. Continuous manufacturing method for copper-clad laminate.
JP2011080680A 2005-04-04 2011-03-31 Copper-clad laminated substrate Pending JP2011173423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080680A JP2011173423A (en) 2005-04-04 2011-03-31 Copper-clad laminated substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005107408 2005-04-04
JP2005107408 2005-04-04
JP2011080680A JP2011173423A (en) 2005-04-04 2011-03-31 Copper-clad laminated substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007511237A Division JP4930724B2 (en) 2005-04-04 2006-04-04 Copper-clad laminate

Publications (1)

Publication Number Publication Date
JP2011173423A true JP2011173423A (en) 2011-09-08

Family

ID=37073584

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007511237A Active JP4930724B2 (en) 2005-04-04 2006-04-04 Copper-clad laminate
JP2011080680A Pending JP2011173423A (en) 2005-04-04 2011-03-31 Copper-clad laminated substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007511237A Active JP4930724B2 (en) 2005-04-04 2006-04-04 Copper-clad laminate

Country Status (6)

Country Link
US (2) US20090142607A1 (en)
JP (2) JP4930724B2 (en)
KR (2) KR100965441B1 (en)
CN (2) CN102225641B (en)
TW (1) TWI406757B (en)
WO (1) WO2006107043A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157938A (en) * 2013-02-15 2014-08-28 Panasonic Corp Material for printed wiring board, method of producing material for printed wiring board, method of manufacturing printed wiring board
WO2016013627A1 (en) * 2014-07-24 2016-01-28 宇部興産株式会社 Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate produced using said multilayer polyimide film, and co-polyimide which can be used in said products
CN111716773A (en) * 2020-06-11 2020-09-29 四川铂利明德科技有限公司 Preparation method of high-performance modified polyimide flexible substrate

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406757B (en) * 2005-04-04 2013-09-01 Ube Industries Copper-clad laminated board
KR20070038407A (en) * 2005-10-05 2007-04-10 스미또모 가가꾸 가부시끼가이샤 Substrate for flexible wiring and method for producing the same
US9944051B2 (en) * 2006-10-02 2018-04-17 Mead Johnson Nutrition Co. Laminate
JP2008119974A (en) * 2006-11-13 2008-05-29 Ube Ind Ltd Polyimide composite material sandwich panel and manufacturing method therefor
JP2010208322A (en) * 2009-02-13 2010-09-24 Asahi Kasei E-Materials Corp Polyimide metal laminate, and printed wiring board using the same
JP2010221586A (en) * 2009-03-24 2010-10-07 Asahi Kasei E-Materials Corp Metal foil polyimide laminate
EP2416639B1 (en) 2009-03-31 2018-11-28 JX Nippon Mining & Metals Corporation Electromagnetic shielding material and process for producing electromagnetic shielding material
JP5461089B2 (en) * 2009-07-13 2014-04-02 Jx日鉱日石金属株式会社 Copper foil composite
JP5573151B2 (en) * 2009-12-25 2014-08-20 宇部興産株式会社 Packaging materials for electrochemical devices and electrochemical devices
CN102939671A (en) * 2010-04-13 2013-02-20 宇部兴产株式会社 Heat dissipation substrate for led
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
JP6094044B2 (en) * 2011-03-23 2017-03-15 大日本印刷株式会社 Heat dissipation board and element using the same
KR101529417B1 (en) * 2011-05-13 2015-06-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil composite, copper foil used for the same, formed product and method of producing the same
KR101635692B1 (en) 2012-01-13 2016-07-01 제이엑스금속주식회사 Copper foil composite, molded body, and method for producing same
RU2570030C1 (en) 2012-01-13 2015-12-10 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Composite with copper foil, moulded product and method for production thereof
CN103009713A (en) * 2012-11-28 2013-04-03 梅州市志浩电子科技有限公司 Thermal compression bonding copper-clad plate by adopting polymethyl methacrylate as medium, printed circuit board as well as manufacturing method thereof
JP6320031B2 (en) * 2012-12-28 2018-05-09 新日鉄住金化学株式会社 Flexible copper clad laminate
WO2014133164A1 (en) * 2013-02-28 2014-09-04 三井金属鉱業株式会社 Blackened surface-treated copper foil, method for manufacturing blackened surface-treated copper foil, copper-clad laminate and flexible printed circuit board
JP5976588B2 (en) * 2013-03-29 2016-08-23 新日鉄住金化学株式会社 Method for producing flexible copper-clad laminate
JP6591766B2 (en) * 2014-04-24 2019-10-16 Jx金属株式会社 Copper foil with carrier, printed wiring board, laminate, electronic device and method for manufacturing printed wiring board
KR101962986B1 (en) * 2014-11-18 2019-03-27 셍기 테크놀로지 코. 엘티디. Flexible metal laminate
US9287566B1 (en) * 2015-04-17 2016-03-15 Chang Chun Petrochemical Co., Ltd. Anti-curl copper foil
KR102441931B1 (en) * 2015-06-26 2022-09-13 가부시키가이샤 가네카 Manufacturing method and manufacturing apparatus of single-sided metal-clad laminate
TWI572479B (en) * 2015-07-07 2017-03-01 律勝科技股份有限公司 Metal laminate with polyimide resin and method for manufaturing thereof
CN105235313A (en) * 2015-10-30 2016-01-13 南京理工大学 Preparation method for non-glue flexible copper clad laminate with high dimensional stability
WO2017149977A1 (en) * 2016-02-29 2017-09-08 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JP2016215651A (en) * 2016-07-19 2016-12-22 新日鉄住金化学株式会社 Flexible copper-clad laminated sheet and flexible circuit board
EP3276655A1 (en) * 2016-07-26 2018-01-31 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method and system for bonding a chip to a substrate
JP7195530B2 (en) * 2019-01-11 2022-12-26 エルジー・ケム・リミテッド Film, metal-clad laminate, flexible substrate, method for producing film, method for producing metal-clad laminate, and method for producing flexible substrate
WO2023189565A1 (en) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 Carrier-attached metal foil, metal-clad laminate, and printed wiring board
WO2023189566A1 (en) * 2022-03-29 2023-10-05 三井金属鉱業株式会社 Metal foil with carrier, metal-clad laminate, and printed wiring board
CN114890712A (en) * 2022-05-19 2022-08-12 中国振华集团云科电子有限公司 Preparation method of copper-clad plate with high thermal stability

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189260A (en) * 1982-04-30 1983-11-04 Toray Ind Inc Production of polyimide varnish
JPH02135274A (en) * 1988-10-25 1990-05-24 Internatl Business Mach Corp <Ibm> Polyimide coating film
JPH06100714A (en) * 1992-09-18 1994-04-12 Shin Etsu Chem Co Ltd Readily slippery polyimide film and its production
JPH08230101A (en) * 1995-02-28 1996-09-10 Ube Ind Ltd Metal foil-laminated polyimide film
JP2001270039A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate and manufacturing method for the same
JP2003001750A (en) * 2001-06-19 2003-01-08 Kanegafuchi Chem Ind Co Ltd Method for manufacturing heat-resistant flexible laminated sheet
JP2004230670A (en) * 2003-01-29 2004-08-19 Ube Ind Ltd Thermally fusible polyimide films, laminated sheet using polyimide film and method for manufacturing polyimide film/laminated sheet
JP2004237596A (en) * 2003-02-06 2004-08-26 Nippon Steel Chem Co Ltd Flexible copper-clad laminated plate and its production method
WO2006107043A1 (en) * 2005-04-04 2006-10-12 Ube Industries, Ltd. Copper clad laminate
JP4736389B2 (en) * 2003-10-02 2011-07-27 宇部興産株式会社 Polyimide film with improved slipperiness and substrate using the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268853A (en) 1985-09-20 1987-03-28 Kanegafuchi Chem Ind Co Ltd Improved heat-resistant polyimide film
JPH0665707B2 (en) 1985-09-20 1994-08-24 鐘淵化学工業株式会社 Improved polyimide film
WO1992016970A1 (en) * 1991-03-12 1992-10-01 Sumitomo Bakelite Company Limited Method of manufacturing two-layer tab tape
JPH06145378A (en) 1992-09-18 1994-05-24 Shin Etsu Chem Co Ltd Production of slippery polyimide film
JPH06192446A (en) 1992-12-25 1994-07-12 Shin Etsu Chem Co Ltd Production of easily slidable polyimide film
CA2198532A1 (en) * 1996-02-27 1997-08-27 Toshihiro Tsuzuki Aromatic polyamide and/or aromatic polyimide film and magnetic recording medium having such a film as a base
CN1160633A (en) * 1996-03-21 1997-10-01 日立化成工业株式会社 Copper-clad laminate, multilayer copper-clad laminate and process for producing the same
TW432124B (en) * 1996-05-13 2001-05-01 Mitsui Mining & Amp Smelting C Electrolytic copper foil with high post heat tensile strength and its manufacturing method
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JP3856582B2 (en) * 1998-11-17 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
KR100415959B1 (en) * 2000-03-14 2004-01-24 닛코 킨조쿠 가부시키가이샤 Copper alloy foil for hard disc drive suspension
JP4304854B2 (en) * 2000-09-21 2009-07-29 宇部興産株式会社 Multilayer polyimide film and laminate
TWI300744B (en) * 2001-04-19 2008-09-11 Nippon Steel Chemical Co
JP2002316386A (en) 2001-04-20 2002-10-29 Kanegafuchi Chem Ind Co Ltd Copper-clad laminate and its production method
JP4457542B2 (en) * 2001-06-22 2010-04-28 宇部興産株式会社 Multi-layer polyimide film with thermocompression bonding, heat-resistant copper-clad board
JP2003027162A (en) * 2001-07-13 2003-01-29 Nippon Mining & Metals Co Ltd Copper alloy foil for laminated board
JP4504602B2 (en) 2001-09-04 2010-07-14 三井化学株式会社 Polyimide copper clad laminate and method for producing the same
JP2002270651A (en) * 2002-02-18 2002-09-20 Hitachi Chem Co Ltd Chip-supporting substrate for semiconductor package, method for manufacturing the same and semiconductor device
JP2004010664A (en) * 2002-06-04 2004-01-15 Osaka Prefecture Material having resin layer thereon and manufacturing method therefor
TWI298988B (en) * 2002-07-19 2008-07-11 Ube Industries Copper-clad laminate
US7186456B2 (en) * 2003-10-02 2007-03-06 Ube Industries, Ltd. Easily slidable polyimide film and substrate employing it
JP4443977B2 (en) 2004-03-30 2010-03-31 新日鐵化学株式会社 Flexible copper clad laminate and manufacturing method thereof
JP2006188025A (en) * 2005-01-07 2006-07-20 Ube Ind Ltd Copper-clad laminate
JP2007059822A (en) * 2005-08-26 2007-03-08 Nippon Steel Chem Co Ltd Hinge substrate and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189260A (en) * 1982-04-30 1983-11-04 Toray Ind Inc Production of polyimide varnish
JPH02135274A (en) * 1988-10-25 1990-05-24 Internatl Business Mach Corp <Ibm> Polyimide coating film
JPH06100714A (en) * 1992-09-18 1994-04-12 Shin Etsu Chem Co Ltd Readily slippery polyimide film and its production
JPH08230101A (en) * 1995-02-28 1996-09-10 Ube Ind Ltd Metal foil-laminated polyimide film
JP2001270039A (en) * 2000-03-28 2001-10-02 Ube Ind Ltd Flexible metal foil laminate and manufacturing method for the same
JP2003001750A (en) * 2001-06-19 2003-01-08 Kanegafuchi Chem Ind Co Ltd Method for manufacturing heat-resistant flexible laminated sheet
JP2004230670A (en) * 2003-01-29 2004-08-19 Ube Ind Ltd Thermally fusible polyimide films, laminated sheet using polyimide film and method for manufacturing polyimide film/laminated sheet
JP2004237596A (en) * 2003-02-06 2004-08-26 Nippon Steel Chem Co Ltd Flexible copper-clad laminated plate and its production method
JP4736389B2 (en) * 2003-10-02 2011-07-27 宇部興産株式会社 Polyimide film with improved slipperiness and substrate using the same
WO2006107043A1 (en) * 2005-04-04 2006-10-12 Ube Industries, Ltd. Copper clad laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157938A (en) * 2013-02-15 2014-08-28 Panasonic Corp Material for printed wiring board, method of producing material for printed wiring board, method of manufacturing printed wiring board
WO2016013627A1 (en) * 2014-07-24 2016-01-28 宇部興産株式会社 Multilayer polyimide film, method for producing multilayer polyimide film, polyimide laminate produced using said multilayer polyimide film, and co-polyimide which can be used in said products
JPWO2016013627A1 (en) * 2014-07-24 2017-06-08 宇部興産株式会社 MULTILAYER POLYIMIDE FILM, PROCESS FOR PRODUCING MULTILAYER POLYIMIDE FILM, POLYIMIDE LAMINATE USING SAME, AND COPOLYMIDE POLYIMIDE USED FOR THEM
CN111716773A (en) * 2020-06-11 2020-09-29 四川铂利明德科技有限公司 Preparation method of high-performance modified polyimide flexible substrate

Also Published As

Publication number Publication date
JP4930724B2 (en) 2012-05-16
KR20070120571A (en) 2007-12-24
TW200702161A (en) 2007-01-16
US20090142607A1 (en) 2009-06-04
CN101180178B (en) 2011-11-09
KR20090115961A (en) 2009-11-10
US10377110B2 (en) 2019-08-13
KR101137274B1 (en) 2012-04-20
JPWO2006107043A1 (en) 2008-09-25
TWI406757B (en) 2013-09-01
KR100965441B1 (en) 2010-06-24
CN102225641B (en) 2014-06-25
US20160082703A1 (en) 2016-03-24
CN101180178A (en) 2008-05-14
WO2006107043A1 (en) 2006-10-12
CN102225641A (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4930724B2 (en) Copper-clad laminate
KR100952796B1 (en) Novel polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
KR100958466B1 (en) Novel polyimide film and use thereof
KR101076505B1 (en) Adhesive film and use thereof
JP2009083498A (en) Copper clad laminated sheet and its manufacturing method
JP2010163625A (en) Polyimide film with enhanced sliding property and substrate employing it
JP2006188025A (en) Copper-clad laminate
JP2001270039A (en) Flexible metal foil laminate and manufacturing method for the same
JP2005126707A (en) Polyimide film improved in slipperiness and substrate obtained by using the same
JP2002240195A (en) Polyimide/copper-clad panel
KR101195719B1 (en) Adhesive film, flexible metal-clad laminate of enhanced dimensional stability obtained therefrom and process for producing the same
JP2007216688A (en) Copper clad laminated sheet and its manufacturing method
JP2001270033A (en) Method for manufacturing flexible metal foil laminate
JP4967494B2 (en) Method for producing heat-resistant polyimide metal laminate
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP4838509B2 (en) Method for producing flexible metal-clad laminate
JP2005305729A (en) Method for producing flexible metal-clad laminate improved in productivity and flexible metal-clad laminate obtained by the method
JP4501851B2 (en) Low roughness metal foil with polyimide and method for treating metal foil surface
JP2007320083A (en) Copper-lad laminate
JP2007313854A (en) Copper-clad laminated sheet
JP4415950B2 (en) Method for producing flexible metal foil laminate
JP2006316232A (en) Adhesive film and its preparation process
JP2023182523A (en) polyimide laminated film
JP2007216687A (en) Manufacturing method of copper clad laminated sheet and manufacturing method of substrate for electronic part
JP2005335102A (en) Adhesive joining member enhanced in dimensional stability and flexible metal clad laminated sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130730