JP2011162287A - Power feeding device and tire type gantry crane including the same - Google Patents

Power feeding device and tire type gantry crane including the same Download PDF

Info

Publication number
JP2011162287A
JP2011162287A JP2010025041A JP2010025041A JP2011162287A JP 2011162287 A JP2011162287 A JP 2011162287A JP 2010025041 A JP2010025041 A JP 2010025041A JP 2010025041 A JP2010025041 A JP 2010025041A JP 2011162287 A JP2011162287 A JP 2011162287A
Authority
JP
Japan
Prior art keywords
storage battery
power
power supply
state
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010025041A
Other languages
Japanese (ja)
Inventor
Nobuo Yoshioka
伸郎 吉岡
Original Assignee
Mitsubishi Heavy Ind Ltd
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd, 三菱重工業株式会社 filed Critical Mitsubishi Heavy Ind Ltd
Priority to JP2010025041A priority Critical patent/JP2011162287A/en
Publication of JP2011162287A publication Critical patent/JP2011162287A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/12Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power feeding device capable of realizing a full battery RTG (Rubber Tired Gantry Crane) and a tire type gantry crane including the same. <P>SOLUTION: This power feeding device includes two storage batteries 45 and 46, and supplies electric power to a load of an RTG 18 by one (the storage battery 45 or the storage battery 46) of the two storage batteries 45 and 46, wherein the other storage battery 46 (or the storage battery 45) is connected to a storage battery power feeding means (such as a noncontact type power feeding system) and put in a chargeable state of charging supply electric power from the storage battery power feeding means, and simultaneously allows discharge of the storage battery 45 (or the storage battery 46) of a discharge state and charge of the storage battery 46 (or the storage battery 45) of the chargeable state. and comprises a storage battery switching means (storage battery switching switches 47 and 48 and a control device 77) for repeatedly switching the storage battery 46 (or the storage battery 45) of the chargeable state to the discharging state and at the same time for switching the storage battery 45 (or the storage battery 46) of the discharging state to the chargeable state. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は給電装置及びこれを備えたタイヤ式門型クレーンに関する。   The present invention relates to a power feeding device and a tire type portal crane including the same.
港湾のコンテナターミナルにおけるコンテナヤード(図1参照:詳細後述)では、タイヤ式門型クレーン(Rubber Tired Gantry Crane:以後、RTGとも称する)によってコンテナの荷役作業が行なわれている。RTGはタイヤを駆動する走行用電動機、コンテナの巻上げ巻下げ(昇降)を行なう巻上げ用電動機、トロリを横行させる横行用電動機などを、負荷として有している。   In a container yard at a container terminal in a harbor (see FIG. 1; details will be described later), a container handling operation is performed by a tire-type crane (Rubber Tired Gantry Crane: hereinafter also referred to as RTG). The RTG has, as loads, a traveling motor that drives the tire, a winding motor that winds and lowers (lifts) the container, a traverse motor that traverses the trolley, and the like.
かかるRTGには、近年盛んに製品化が進められているハイブリッドRTGがある。
このハイブリッドRTGでは、走行用や巻上げ用の電動機などの負荷への電力を供給するために発電装置(ディーゼルエンジン及び発電機)と蓄電池(2次電池)とが装備されているが、発電機のピークカット及び巻下げ時に発生する回生エネルギの回収を主たる目的として蓄電池が採用されている。これにより、発電機の負荷変動を小さくする事ができ、結果的に発電機のサイズダウンを図ることができるため、燃費改善の効果を得ている。
また、運転待機状態には、蓄電池だけで待機エネルギを担い、発電機を停止することによって、更に燃費を改善する方式も考案されている。
Among such RTGs, there is a hybrid RTG that has been actively commercialized in recent years.
This hybrid RTG is equipped with a power generator (diesel engine and generator) and a storage battery (secondary battery) to supply power to a load such as an electric motor for running or hoisting. A storage battery is employed mainly for the purpose of recovering regenerative energy generated during peak cut and lowering. Thereby, the load fluctuation of the generator can be reduced, and as a result, the size of the generator can be reduced, so that an effect of improving fuel consumption is obtained.
In addition, a system has been devised in which the fuel consumption is further improved in the operation standby state by carrying standby energy only by the storage battery and stopping the generator.
このようなハイブリッドRTG技術においては、図10に示すように発電装置1が稼動しているときにあって、巻上げ用電動機2などの負荷の消費エネルギが低いとき又は負荷からの回生エネルギが発生しているときに充電し、図11に示すように負荷の消費エネルギが高いとき又は発電装置1が停止しているときに放電するといった振る舞いが蓄電池3には期待されている。
つまり、この従来技術においては、充電と放電は同時に行われる必要がないため、蓄電池3は1つで構成されている。なお、図10及び図11において、4はAC/DC変換を行うコンバータ5とDC/AC変換を行うインバータ6とを組み合わせたインバータユニットである。
In such hybrid RTG technology, as shown in FIG. 10, when the power generator 1 is in operation, the energy consumption of the load such as the hoisting motor 2 is low or regenerative energy is generated from the load. The storage battery 3 is expected to behave in such a manner that it is charged when the battery is running and discharged when the energy consumption of the load is high as shown in FIG.
That is, in this prior art, it is not necessary to perform charging and discharging at the same time, so the storage battery 3 is composed of one. 10 and 11, reference numeral 4 denotes an inverter unit that combines a converter 5 that performs AC / DC conversion and an inverter 6 that performs DC / AC conversion.
なお、従来のRTGの給電装置について開示された先行技術文献としては、例えば次のものがある。
特開2009−242088号公報 特開2009−23816号公報
In addition, as a prior art document disclosed about the electric power feeder of conventional RTG, there exist the following, for example.
JP 2009-242088 A JP 2009-23816 A
上記のように構成された従来技術によるハイブリッドRTGでは、発電装置1を負荷稼動エネルギ源の主としており、蓄電池3は発電装置1の補助として位置づけられていることから、発電装置1の極限までの小型化は適っておらず、結果として、燃費の改善率が理論的に60%程度(実質的には40%程度)に留まっている。   In the hybrid RTG according to the related art configured as described above, the power generation device 1 is mainly used as a load operating energy source, and the storage battery 3 is positioned as an auxiliary to the power generation device 1. As a result, the improvement rate of fuel efficiency is theoretically only about 60% (substantially about 40%).
このようなことから、本願の発明者等は発電装置1を排除したクリーンな電動RTGとして、フル電池RTGの開発を目指している。フル電池RTGとは、負荷が要求する稼動エネルギの全てを蓄電池が担い、蓄電池だけで稼動できるRTGである。
このために、蓄電池には、高出力でかつ圧倒的な持久力を持つものが要求されている。そして、この蓄電池の大幅な容量UPに伴って、必然的に蓄電池の充電に必要な時間も長くなることから、いかにして効率的に充電するかという点が課題となっている。
For these reasons, the inventors of the present application aim to develop a full battery RTG as a clean electric RTG from which the power generator 1 is excluded. The full battery RTG is an RTG that can operate with only the storage battery, with the storage battery taking up all of the operating energy required by the load.
For this reason, the storage battery is required to have high output and overwhelming endurance. As the capacity of the storage battery increases significantly, the time required for charging the storage battery inevitably increases, so the problem is how to charge efficiently.
従って本発明は上記の事情に鑑み、フル電池RTGなどを実現することができる給電装置及びこれを備えたタイヤ式門型クレーンを提供することを課題とする。   Therefore, in view of the above circumstances, an object of the present invention is to provide a power feeding device that can realize a full battery RTG and the like, and a tire-type portal crane including the power feeding device.
上記課題を解決する第1発明の給電装置は、搬送機械に設置され、複数の蓄電池を有し、前記複数の蓄電池の少なくとも1つにより前記搬送機械の負荷に電力を供給する給電装置であって、
他の蓄電池は蓄電池給電手段へ接続して前記蓄電池給電手段からの供給電力を充電する充電可能状態であり、前記放電状態の蓄電池の放電と前記充電可能状態の蓄電池の充電とを同時に行うことを可能とし、
且つ、前記放電状態の蓄電池を充電可能状態に切り替えると同時に前記充電可能状態の蓄電池を放電状態に切り替える蓄電池切替えを、繰り返し行なう蓄電池切替え手段を、
有して成ることを特徴とする。
A power supply device according to a first aspect of the present invention that solves the above problem is a power supply device that is installed in a transport machine, has a plurality of storage batteries, and supplies power to a load of the transport machine by at least one of the plurality of storage batteries. ,
The other storage battery is connected to the storage battery power supply means and is in a chargeable state in which the power supplied from the storage battery power supply means is charged, and discharging the storage battery in the discharged state and charging the storage battery in the chargeable state are performed simultaneously. Made possible
And the storage battery switching means for repeatedly switching the storage battery that switches the storage battery in the chargeable state to the discharge state simultaneously with switching the storage battery in the discharged state to the chargeable state,
It is characterized by having.
また、第2発明の給電装置は、第1発明の給電装置において、
前記蓄電池切替え手段は、残留容量検出手段によって検出される前記放電状態の蓄電池の残留容量が閾値以下になったときに前記蓄電池切替えを行なう、又は、一定時間毎に前記蓄電池切替えを行なう構成であることを特徴とする。
The power supply device of the second invention is the power supply device of the first invention,
The storage battery switching means is configured to switch the storage battery when the remaining capacity of the discharged storage battery detected by the remaining capacity detection means is equal to or less than a threshold value, or to switch the storage battery at regular intervals. It is characterized by that.
また、第3発明の給電装置は、第2発明の給電装置において、
前記蓄電池の残留容量閾値は、前記搬送機械の1作業単位を完了させるだけの給電が可能な残留容量であること特徴とする。
The power supply device of the third invention is the power supply device of the second invention,
The residual capacity threshold value of the storage battery is a residual capacity capable of supplying power enough to complete one work unit of the transport machine.
また、第4発明の給電装置は、第1〜第3発明の何れか1つの給電装置において、
前記蓄電池給電手段は、非接触式給電システム、又は、接触式の地上給電設備、又は、前記搬送機械に搭載した発電設備であることを特徴とする。
Further, the power feeding device of the fourth invention is the power feeding device of any one of the first to third inventions,
The storage battery power supply means is a non-contact power supply system, a contact-type ground power supply facility, or a power generation facility mounted on the transfer machine.
また、第5発明のタイヤ式門型クレーンは、タイヤを駆動する走行用電動機と、被搬送物の巻上げ巻下げを行なう巻上げ用電動機と、トロリを横行させる横行用電動機とを、負荷として有するタイヤ式門型クレーンにおいて、
第1〜第4発明の何れか1つの給電装置を備え、この給電装置における放電状態の蓄電池から前記負荷へ電力を供給する構成であることを特徴とする。
According to a fifth aspect of the present invention, there is provided a tire-type portal crane having as a load a traveling motor for driving a tire, a winding motor for winding and unwinding a conveyed object, and a traversing motor for traversing a trolley. In the type gate type crane,
A power supply device according to any one of the first to fourth aspects of the present invention is provided, and power is supplied from the discharged storage battery in the power supply device to the load.
第1発明の給電装置によれば、搬送機械に設置され、複数の蓄電池を有し、前記複数の蓄電池の少なくとも1つにより前記搬送機械の負荷に電力を供給する給電装置であって、他の蓄電池は蓄電池給電手段へ接続して前記蓄電池給電手段からの供給電力を充電する充電可能状態であり、前記放電状態の蓄電池の放電と前記充電可能状態の蓄電池の充電とを同時に行うことを可能とし、且つ、前記放電状態の蓄電池を充電可能状態に切り替えると同時に前記充電可能状態の蓄電池を放電状態に切り替える蓄電池切替えを、繰り返し行なう蓄電池切替え手段を有して成ることを特徴としており、充電と放電を同時に行うことができるため、搬送機械の負荷が要求する稼動エネルギ(電力)の全てを蓄電池が担い、蓄電池だけで稼動できる搬送機械(例えばフル電池RTG)を実現することができる。
しかも、蓄電池給電手段は搬送機械の負荷が要求する稼動エネルギ(電力)の平均値に蓄電池エネルギのロスを考慮した(加えた)エネルギを充電可能状態の蓄電池に補給することができればよいため、蓄電池給電手段の大幅な小型化を図ることができる。
According to the power supply device of the first invention, the power supply device is installed in a transport machine, has a plurality of storage batteries, and supplies power to the load of the transport machine by at least one of the plurality of storage batteries. The storage battery is in a chargeable state in which the storage battery is connected to the storage battery power supply means to charge the power supplied from the storage battery power supply means, and the discharge of the storage battery in the discharged state and the charge of the storage battery in the chargeable state can be performed simultaneously. And storage battery switching means for repeatedly switching the storage battery in the chargeable state to the discharge state at the same time as switching the storage battery in the discharge state to the chargeable state. Since the storage battery bears all the operating energy (electric power) required by the load of the transport machine, the transport machine can operate with only the storage battery. For example it is possible to realize a full battery RTG).
In addition, since the storage battery power supply means only needs to be able to replenish the storage battery in a chargeable state, taking into account (addition) the loss of storage battery energy to the average value of operating energy (electric power) required by the load of the transport machine. The power supply means can be greatly reduced in size.
第2発明の給電装置によれば、第1発明の給電装置において、前記蓄電池切替え手段は、残留容量検出手段によって検出される前記放電状態の蓄電池の残留容量が閾値以下になったときに前記蓄電池切替えを行なう、又は、一定時間毎に前記蓄電池切替えを行なう構成であることを特徴としているため、容易に適切なタイミングで蓄電池切替えを行うことができる。   According to the power supply apparatus of the second invention, in the power supply apparatus of the first invention, the storage battery switching means is configured to store the storage battery when the remaining capacity of the discharged storage battery detected by the remaining capacity detection means becomes equal to or less than a threshold value. Since the storage battery is switched or the storage battery is switched at regular intervals, the storage battery can be easily switched at an appropriate timing.
第3発明の給電装置によれば、第2発明の給電装置において、前記蓄電池の残留容量閾値は、前記搬送機械の1作業単位を完了させるだけの給電が可能な残留容量であること特徴としているため、放電状態の蓄電池の残留容量が搬送機械の1作業単位を完了させるだけの給電が可能な残留容量以下になったときに蓄電池切替えを行なうことができる。   According to the power supply device of the third invention, in the power supply device of the second invention, the remaining capacity threshold value of the storage battery is a remaining capacity capable of supplying power enough to complete one work unit of the transport machine. Therefore, the storage battery can be switched when the remaining capacity of the storage battery in the discharged state becomes equal to or less than the remaining capacity that can be fed enough to complete one work unit of the transport machine.
第4発明の給電装置によれば、第1〜第3発明の何れか1つの給電装置において、前記蓄電池給電手段は、非接触式給電システム、又は、接触式の地上給電設備、又は、前記搬送機械に搭載した発電設備であることを特徴としているため、非接触式給電システム又は接触式の地上給電設備又は発電設備の大幅な小型化を図って、蓄電池だけで稼動できる搬送機械(例えばフル電池RTG)を実現することができる。特に、大容量化が難しい非接触式給電システムを用いて、最も将来性が高いと考えられる非接触式地上給電フル電池RTGの実現を図ることができる。   According to the power feeding device of the fourth invention, in any one of the power feeding devices of the first to third inventions, the storage battery power feeding means is a non-contact power feeding system, a contact ground power feeding facility, or the transport. It is characterized by the fact that it is a power generation facility mounted on a machine. Therefore, a non-contact type power supply system or a contact-type ground power supply facility or a power generation facility can be greatly reduced in size so that it can be operated with only a storage battery (for example, a full battery). RTG) can be realized. In particular, it is possible to achieve a non-contact type ground-fed full battery RTG that is considered to have the highest potential by using a non-contact type power supply system that is difficult to increase in capacity.
第5発明のタイヤ式門型クレーンは、タイヤを駆動する走行用電動機と、被搬送物の巻上げ巻下げを行なう巻上げ用電動機と、トロリを横行させる横行用電動機とを、負荷として有するタイヤ式門型クレーンにおいて、第1〜第4発明の何れか1つの給電装置を備え、この給電装置における放電状態の蓄電池から前記負荷へ電力を供給する構成であることを特徴としているため、蓄電池給電手段(非接触式給電システム、接触式の地上給電設備、発電設備等)の大幅な小型化を図って、蓄電池だけで稼動できるフル電池RTGを実現することができる。   A tire-type portal crane according to a fifth aspect of the present invention is a tire-type gate having a load including a traveling electric motor for driving a tire, a hoisting motor for hoisting and lowering a transported object, and a traverse motor for traversing a trolley. The type crane includes any one of the first to fourth inventions of the power feeding device, and is configured to supply power to the load from a discharged storage battery in the power feeding device. A full battery RTG that can be operated with only a storage battery can be realized by significantly reducing the size of a non-contact power supply system, a contact-type ground power supply facility, a power generation facility, and the like.
本発明の実施の形態例に係るタイヤ式門型クレーンが適用される一般的なコンテナヤードの構成例を示す図である。It is a figure which shows the structural example of the general container yard to which the tire-type portal crane which concerns on the embodiment of this invention is applied. 本発明の実施の形態例に係るタイヤ式門型クレーンの拡大斜視図である。1 is an enlarged perspective view of a tire-type portal crane according to an embodiment of the present invention. 本発明の実施の形態例に係るタイヤ式門型クレーンの給電装置の構成及びその充放電状態を示す図である。It is a figure which shows the structure of the electric power feeder of the tire type portal crane which concerns on the embodiment of this invention, and its charging / discharging state. 本発明の実施の形態例に係るタイヤ式門型クレーンの給電装置の構成及びその充放電状態を示す図である。It is a figure which shows the structure of the electric power feeder of the tire type portal crane which concerns on the embodiment of this invention, and its charging / discharging state. 本発明の実施の形態例に係るタイヤ式門型クレーンの給電装置の他の構成及びその充放電状態を示す図である。It is a figure which shows the other structure of the electric power feeder of the tire type portal crane which concerns on the embodiment of this invention, and its charging / discharging state. 本発明の実施の形態例に係るタイヤ式門型クレーンの給電装置の他の構成及びその充放電状態を示す図である。It is a figure which shows the other structure of the electric power feeder of the tire type portal crane which concerns on the embodiment of this invention, and its charging / discharging state. 参考例のタイヤ式門型クレーンの給電装置の構成及びその充放電状態を示す図である。It is a figure which shows the structure of the electric power feeder of the tire type portal crane of a reference example, and its charging / discharging state. 参考例のタイヤ式門型クレーンの給電装置の構成及びその充放電状態を示す図である。It is a figure which shows the structure of the electric power feeder of the tire type portal crane of a reference example, and its charging / discharging state. タイヤ式門型クレーンのコンテナ荷役におけるエネルギ消費及びエネルギ発生の様子を示すチャートである。It is a chart which shows the mode of the energy consumption and energy generation in the container handling of a tire type portal crane. 従来のタイヤ式門型クレーンの給電装置の構成及びその充放電状態を示す図である。It is a figure which shows the structure of the electric power feeder of the conventional tire type portal crane, and its charging / discharging state. 従来のタイヤ式門型クレーンの給電装置の構成及びその充放電状態を示す図である。It is a figure which shows the structure of the electric power feeder of the conventional tire type portal crane, and its charging / discharging state.
以下、本発明の実施の形態例を図面に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.
まず、図1に基づき、本発明の実施の形態例に係るタイヤ式門型クレーンが適用される一般的なコンテナヤードの構成について説明する。
図1に示すように、港湾のコンテナターミナル11の岸壁には、コンテナ船12が係留される。このコンテナ船12に積載されているコンテナ13は、岸壁に設けられたガントリクレーン(Gantry Crane:以後、GCとも称する)14によって荷揚げされ、コンテナヤード15内を自走する自動搬送台車(Automated Guided Vehicle:以後、AGVとも称する)16へ積み替えられる。AGV16に積載されたコンテナ13は、コンテナヤード15の各コンテナ蔵置部17へAGV16によって搬送される。
そして、コンテナヤード15の各コンテナ蔵置部17には本実施の形態例のタイヤ式門型クレーン(RTG)18が配置されており、AGV16によって搬送されてきたコンテナ13が、このRTG18の荷役作業によってコンテナ蔵置部17の所望の位置に置かれる。
First, based on FIG. 1, the structure of the general container yard to which the tire type portal crane which concerns on the embodiment of this invention is applied is demonstrated.
As shown in FIG. 1, a container ship 12 is moored on a quay of a container terminal 11 in a harbor. A container 13 loaded on the container ship 12 is unloaded by a gantry crane (Gantry Crane: hereinafter referred to as GC) 14 provided on a quay, and is automatically guided in a container yard 15 (Automated Guided Vehicle). : Hereinafter also referred to as AGV). The container 13 loaded on the AGV 16 is conveyed by the AGV 16 to each container storage unit 17 in the container yard 15.
A tire type portal crane (RTG) 18 according to the present embodiment is arranged in each container storage portion 17 of the container yard 15, and the container 13 transported by the AGV 16 is loaded and unloaded by the RTG 18. The container storage unit 17 is placed at a desired position.
一方、コンテナ船12にコンテナ13を積載する場合には、コンテナ蔵置部17に置かれているコンテナ13が、RTG18の荷役作業によってAGV16へ積載される。AGV16に積載されたコンテナ13は、GC14までAGV16によって搬送され、GC14の荷役作業によってコンテナ船12へ積み込まれる。   On the other hand, when the container 13 is loaded on the container ship 12, the container 13 placed in the container storage unit 17 is loaded on the AGV 16 by the cargo handling operation of the RTG 18. The container 13 loaded on the AGV 16 is transported by the AGV 16 to the GC 14 and loaded on the container ship 12 by the cargo handling operation of the GC 14.
次に、図2に基づき、RTG18の概要について説明する。
図2に示すように、RTG18は、水平に延びた2本の梁21Aと、この梁21Aの両側に設けられた4本の脚部21Bとを一体的に結合して成る門型のガントリ21を有している。梁21A上にはトロリ22が設けられる一方、各脚部21Aの下端部には台車23A,23B,23C,23Dがそれぞれ取り付けられている。台車23A,23B,23C,23Dには、タイヤ24A,24B,24C,24D及び走行用電動機25A,25B,25C,25Dが装備されている。
Next, an outline of the RTG 18 will be described with reference to FIG.
As shown in FIG. 2, the RTG 18 is a portal gantry 21 formed by integrally connecting two beams 21A extending horizontally and four legs 21B provided on both sides of the beams 21A. have. A trolley 22 is provided on the beam 21A, and trolleys 23A, 23B, 23C, and 23D are attached to the lower ends of the legs 21A. The carriages 23A, 23B, 23C, 23D are equipped with tires 24A, 24B, 24C, 24D and traveling motors 25A, 25B, 25C, 25D.
従って、RTG18は、走行用電動機25A〜25Dによってタイヤ24A〜24Dをそれぞれ回転駆動することにより、コンテナヤード15のコンテナ蔵置部17に敷設された給電ケーブル26に沿って(即ち矢印Aの如くコンテナ蔵置部15の長手方向に沿って)走行することができる。なお、図示は省略するが、RTG18は、台車23A〜23D(タイヤ24A〜24D)を水平に90度回動することも可能であり、これらを90度回動させれば、矢印Bの如く給電ケーブル26と直交する方向へ走行して別のコンテナ蔵置部17へ移動することもできる。   Therefore, the RTG 18 rotates the tires 24A to 24D by the driving motors 25A to 25D, respectively, thereby along the power supply cable 26 laid in the container storage portion 17 of the container yard 15 (that is, as indicated by the arrow A). It can travel along the longitudinal direction of the part 15. In addition, although illustration is abbreviate | omitted, RTG18 can also rotate the trolley | bogie 23A-23D (tire 24A-24D) horizontally 90 degree | times, and if these are rotated 90 degree | times, it will supply electric power as shown by the arrow B It is also possible to travel in a direction orthogonal to the cable 26 and move to another container storage unit 17.
一方、トロリ22には巻上げ機27、巻上げ用電動機28及び横行用電動機22が装備されている。巻上げ機27には複数本のワイヤロープ30が取り付けられており、これらのワイヤロープ30の下端部にはコンテナ13を吊持するためのスプレッダ31が取り付けられている。従って、巻上げ用電動機28の回転駆動によって巻上げ機27が正転又は逆転すると、巻上げ機27がワイヤロープ30を巻き取る又は巻き戻すことにより、スプレッダ31とともにコンテナ13が巻上げ又は巻下げられる。
また、横行用電動機29によってトロリ22の駆動輪(図示省略)を回転駆動することにより、トロリ22は矢印Cの如く梁21Aのレール(図示省略)に沿って梁21Aの長手方向へ横行する。
On the other hand, the trolley 22 is equipped with a hoisting machine 27, a hoisting electric motor 28, and a traversing electric motor 22. A plurality of wire ropes 30 are attached to the hoisting machine 27, and a spreader 31 for hanging the container 13 is attached to the lower ends of these wire ropes 30. Accordingly, when the winder 27 is rotated forward or reversely by the rotational drive of the winder motor 28, the winder 27 winds or unwinds the wire rope 30, whereby the container 13 is wound or unwound together with the spreader 31.
Further, when the driving wheel (not shown) of the trolley 22 is rotationally driven by the traversing electric motor 29, the trolley 22 traverses in the longitudinal direction of the beam 21A along the rail (not shown) of the beam 21A as shown by an arrow C.
そして、ガントリ21の支持台21Cには給電装置32が設置されており、この給電装置32から、RTG18の電動機25A〜25B,28,29などの負荷に対して電力が供給される。   A power supply device 32 is installed on the support base 21 </ b> C of the gantry 21, and electric power is supplied from the power supply device 32 to loads such as the electric motors 25 </ b> A to 25 </ b> B, 28, and 29 of the RTG 18.
次に、図3及び図4に基づき、給電装置32の構成等について説明する。
図3及び図4に示すように、1次コイルである給電ケーブル26は、充電盤41、地上変圧器42及び地上高圧盤43を介して、電力系統(図示省略)に接続されている。一方、RTG18には二次コイルを有する非接触式の受電部44が設けられている。この受電部44は、RTG18が矢印Aの如く給電ケーブル26に沿って走行するとき、給電ケーブル26に近接するように配設されている。
Next, based on FIG.3 and FIG.4, the structure etc. of the electric power feeder 32 are demonstrated.
As shown in FIGS. 3 and 4, the power supply cable 26 that is a primary coil is connected to a power system (not shown) via a charging board 41, a ground transformer 42, and a ground high voltage board 43. On the other hand, the RTG 18 is provided with a non-contact type power receiving unit 44 having a secondary coil. The power receiving unit 44 is disposed so as to be close to the power supply cable 26 when the RTG 18 travels along the power supply cable 26 as indicated by an arrow A.
即ち、図3及び図4では蓄電池給電手段として、地上給電設備の非接触式給電システムが採用されている。
この非接触式給電システムでは、電力系統から地上高圧盤43を介して供給される電力が、地上変圧器42で6600Vの高電圧から440Vの低電圧に変圧された後、充電盤41で高周波に変化されて給電ケーブル26に供給される。このため、給電ケーブル26に近接している受電部44では、給電ケーブル26(1次コイル)と受電部44(2次コイル)との間の電磁誘導作用によって交流電力が得られ、この交流電力を受電部44の整流回路で整流することにより、直流電力に変換して出力する。
That is, in FIG.3 and FIG.4, the non-contact-type electric power feeding system of ground electric power feeding equipment is employ | adopted as a storage battery electric power feeding means.
In this non-contact power supply system, the electric power supplied from the power system through the ground high voltage board 43 is transformed from a high voltage of 6600 V to a low voltage of 440 V by the ground transformer 42, and then converted to a high frequency by the charging board 41. It is changed and supplied to the feeding cable 26. For this reason, in the power reception unit 44 close to the power supply cable 26, AC power is obtained by electromagnetic induction between the power supply cable 26 (primary coil) and the power reception unit 44 (secondary coil). Is rectified by the rectifier circuit of the power receiving unit 44 to be converted into DC power and output.
そして、この受電部44から出力される直流電力(定電流定電圧制御された電力)が、給電装置32の2つの蓄電池45,46の何れか一方に供給されて充電される。   The DC power output from the power receiving unit 44 (power controlled at constant current and constant voltage) is supplied to one of the two storage batteries 45 and 46 of the power supply device 32 and charged.
蓄電池45の負極側端子45aはアースされている。蓄電池45の正極側端子45bは、蓄電池切替えスイッチ47の第1接点47aを介して受電部44に接続され、且つ、蓄電池切替えスイッチ48の第1接点48aを介して各インバータユニット49,50,51,52,53,54に接続されている。インバータユニット49,50,51,52,53,54はAC/DC変換を行なうコンバータ55,56,57,58,59,60とインバータ61,62,63,64,65,66とをそれぞれ組み合わせたものであり、蓄電池45の正極側端子45bはインバータ61,62,63,64,65,66の直流(DC)側に接続されている。   The negative electrode side terminal 45a of the storage battery 45 is grounded. A positive electrode side terminal 45 b of the storage battery 45 is connected to the power receiving unit 44 via the first contact 47 a of the storage battery changeover switch 47, and each inverter unit 49, 50, 51 via the first contact 48 a of the storage battery changeover switch 48. , 52, 53, 54. Inverter units 49, 50, 51, 52, 53, 54 combine converters 55, 56, 57, 58, 59, 60 for performing AC / DC conversion and inverters 61, 62, 63, 64, 65, 66, respectively. The positive terminal 45b of the storage battery 45 is connected to the direct current (DC) side of the inverters 61, 62, 63, 64, 65, 66.
蓄電池46の負極側端子46aはアースされている。蓄電池46の正極側端子46bは、蓄電池切替えスイッチ47の第2接点47bを介して受電部44に接続され、且つ、蓄電池切替えスイッチ48の第2接点48bを介して各インバータユニット49,50,51,52,53,54のインバータ61,62,63,64,65,66の直流(DC)側に接続されている。   The negative terminal 46a of the storage battery 46 is grounded. The positive terminal 46 b of the storage battery 46 is connected to the power receiving unit 44 via the second contact 47 b of the storage battery changeover switch 47, and each inverter unit 49, 50, 51 via the second contact 48 b of the storage battery changeover switch 48. , 52, 53, 54 are connected to the direct current (DC) side of inverters 61, 62, 63, 64, 65, 66.
インバータ61の交流(AC)側は、電磁開閉器67を介して、例えば容量が22kWの交流の横行用電動機29に接続されている。インバータ62,63,64,65の交流(AC)側は、電磁開閉器68,69,70,71を介して、例えば容量が30kWの交流の走行用電動機25A,25B,25C,25Dにそれぞれ接続されている。また、インバータ64,65の交流(AC)側は、電磁開閉器72,73を介して、例えば容量が150kWの交流の巻上げ用電動機28にも接続されている。
また、インバータ66の交流(AC)側は、リアクトル74及び変圧器75を介して、RTG18に装備された空調装置や照明などの各種の補機76に接続されている。
The alternating current (AC) side of the inverter 61 is connected via an electromagnetic switch 67 to, for example, an alternating current electric motor 29 having a capacity of 22 kW. The alternating current (AC) side of the inverters 62, 63, 64, 65 is connected to AC traveling motors 25A, 25B, 25C, 25D having a capacity of 30 kW, for example, via electromagnetic switches 68, 69, 70, 71, respectively. Has been. Moreover, the alternating current (AC) side of the inverters 64 and 65 is also connected to the AC winding motor 28 having a capacity of 150 kW, for example, via the electromagnetic switches 72 and 73.
Further, the alternating current (AC) side of the inverter 66 is connected to various auxiliary devices 76 such as an air conditioner and lighting equipped in the RTG 18 via a reactor 74 and a transformer 75.
即ち、2つの蓄電池45,46は、蓄電池切替えスイッチ46(接点46a,46b)を介して、非接触式給電システム(受電部44)に対し並列に接続され、且つ、蓄電池切替えスイッチ47(接点47a,47b)を介して、RTG18の負荷(電動機25A〜25D,28,29、補機76)に対し並列に接続されている。   That is, the two storage batteries 45 and 46 are connected in parallel to the non-contact power supply system (power receiving unit 44) via the storage battery changeover switch 46 (contacts 46a and 46b), and the storage battery changeover switch 47 (contact 47a). , 47b) and connected in parallel to the load of the RTG 18 (electric motors 25A to 25D, 28, 29, auxiliary machine 76).
また、蓄電池45には残留容量検出器78が設けられている。この残留容量検出器78では、例えば蓄電池45の端子電圧を監視することなどの検出原理により、蓄電池45の残留容量を検出して、残留容量の検出信号を制御装置77へ出力する。蓄電池46には残留容量検出器79が設けられている。この残留容量検出器79では、例えば蓄電池46の端子電圧を監視することなどの検出原理により、蓄電池46の残留容量を検出して、残留容量の検出信号を制御装置77へ出力する。なお、制御装置77は蓄電池切替え専用のものでもよく、RTG18の全体的な制御を行なうものでもよい。   The storage battery 45 is provided with a residual capacity detector 78. The residual capacity detector 78 detects the residual capacity of the storage battery 45 based on a detection principle such as monitoring the terminal voltage of the storage battery 45 and outputs a residual capacity detection signal to the control device 77. The storage battery 46 is provided with a residual capacity detector 79. The residual capacity detector 79 detects the residual capacity of the storage battery 46 based on a detection principle such as monitoring the terminal voltage of the storage battery 46 and outputs a residual capacity detection signal to the control device 77. Note that the control device 77 may be dedicated to storage battery switching or may perform overall control of the RTG 18.
制御装置77では、残留容量検出器78,79で検出する蓄電池45,46の残留容量に基づいて、蓄電池切替えスイッチ47,48へ蓄電池切替え指令信号を出力する。
蓄電池切替えスイッチ47では、制御装置77からの蓄電池切替え指令信号に基づいて、第1接点47a及び第2接点47bの開閉動作を行うことにより、非接触式給電システム(受電部44)へ接続する蓄電池を、蓄電池45から蓄電池46へ切り替える、又は、蓄電池46から蓄電池45へ切り替える。
同時に、蓄電池切替えスイッチ48では、制御装置77からの蓄電池切替え指令信号に基づいて、第1接点48a及び第2接点48bの開閉動作を行うことにより、RTG18の負荷(電動機25A〜25D,28,29及び補機76)へ接続する蓄電池を、蓄電池45から蓄電池46へ切り替える、又は、蓄電池46から蓄電池45へ切り替える。
The control device 77 outputs a storage battery switching command signal to the storage battery switching switches 47 and 48 based on the remaining capacity of the storage batteries 45 and 46 detected by the remaining capacity detectors 78 and 79.
In the storage battery changeover switch 47, a storage battery connected to the non-contact power supply system (power receiving unit 44) by performing an opening / closing operation of the first contact 47 a and the second contact 47 b based on a storage battery switch command signal from the control device 77. Is switched from the storage battery 45 to the storage battery 46 or switched from the storage battery 46 to the storage battery 45.
At the same time, the storage battery changeover switch 48 opens and closes the first contact 48 a and the second contact 48 b based on the storage battery change command signal from the control device 77, thereby loading the load on the RTG 18 (electric motors 25 </ b> A to 25 </ b> D, 28, 29). And the storage battery connected to the auxiliary machine 76) is switched from the storage battery 45 to the storage battery 46, or is switched from the storage battery 46 to the storage battery 45.
図3及び図4に基づき、この制御装置77による蓄電池切替え制御について詳述する。   Based on FIG.3 and FIG.4, the storage battery switching control by this control apparatus 77 is explained in full detail.
図3には、蓄電池切替えスイッチ47の第1接点47aが開き、第2接点47bが閉じて、蓄電池46が非接触式給電システム(受電部44)へ接続される一方、蓄電池切替えスイッチ48の第1接点48aが閉じ、第2接点48bが開いて、蓄電池45がRTG18の負荷(電動機25A〜25D,28,29及び補機76)へ接続されているときの状態を示している。
このときには、図3中に矢印Dで示すように蓄電池45は放電状態となり、RTG18の負荷へ電力を供給する、或いは、巻上げ用電動機28などの負荷から電力の回生があったときには当該回生電力が充電される一方、図3中に矢印Eで示すように蓄電池46は充電可能状態となり、非接触式給電システムからの供給電力によって充電される。
かかる状態において、蓄電池46の残留容量は増加する一方、蓄電池45の残留容量は徐々に低下する。そして、制御装置77では、残留容量検出器78によって検出される蓄電池45の残留容量と閾値とを比較し、前記残留容量が前記閾値以下になったと判定すると、蓄電池切替えスイッチ47,48に対して蓄電池切替え指令信号を出力する。
In FIG. 3, the first contact 47 a of the storage battery changeover switch 47 is opened, the second contact 47 b is closed, and the storage battery 46 is connected to the non-contact power supply system (power receiving unit 44), while the storage battery changeover switch 48 The state is shown when the first contact 48a is closed and the second contact 48b is opened, and the storage battery 45 is connected to the load of the RTG 18 (the motors 25A to 25D, 28, 29, and the auxiliary device 76).
At this time, as indicated by an arrow D in FIG. 3, the storage battery 45 is in a discharged state to supply power to the load of the RTG 18, or when power is regenerated from a load such as the hoisting motor 28, the regenerative power is On the other hand, as shown by the arrow E in FIG. 3, the storage battery 46 is in a chargeable state and is charged by the power supplied from the non-contact power supply system.
In this state, the remaining capacity of the storage battery 46 increases, while the remaining capacity of the storage battery 45 gradually decreases. Then, when the control device 77 compares the remaining capacity of the storage battery 45 detected by the remaining capacity detector 78 with a threshold value and determines that the remaining capacity is equal to or less than the threshold value, A storage battery switching command signal is output.
その結果、蓄電池切替えスイッチ47の第1接点47aが閉じて、第2接点47bが開くことにより、非接触式給電システムへ接続される蓄電池が、蓄電池46から蓄電池45へ切り替わる。同時に、蓄電池切替えスイッチ48の第1接点48aが開いて、第2接点48bが閉じることにより、RTG18の負荷へ接続される蓄電池が、蓄電池45から蓄電池46へ切り替わる。   As a result, the first contact 47a of the storage battery changeover switch 47 is closed and the second contact 47b is opened, so that the storage battery connected to the non-contact power supply system is switched from the storage battery 46 to the storage battery 45. At the same time, when the first contact 48 a of the storage battery changeover switch 48 is opened and the second contact 48 b is closed, the storage battery connected to the load of the RTG 18 is switched from the storage battery 45 to the storage battery 46.
このときの状態を図4に示している。このとき、図4中に矢印Fで示すように蓄電池46は放電状態となり、RTG18の負荷へ電力を供給し、また、巻上げ用電動機28などの負荷から電力の回生があったときには当該回生電力が充電される一方、図4中に矢印Gで示すように蓄電池45は充電可能状態となり、非接触式給電システムからの供給電力が充電される。
かかる状態において、蓄電池45の残留容量は増加する一方、蓄電池46の残留容量は徐々に低下する。そして、制御装置77では、残留容量検出器79によって検出される蓄電池46の残留容量と閾値とを比較し、前記残留容量が前記閾値以下になったと判定すると、蓄電池切替えスイッチ47,48に対して蓄電池切替え指令信号を出力する。
The state at this time is shown in FIG. At this time, as shown by arrow F in FIG. 4, the storage battery 46 is in a discharged state, supplies power to the load of the RTG 18, and when power is regenerated from a load such as the hoisting motor 28, the regenerative power is On the other hand, as shown by the arrow G in FIG. 4, the storage battery 45 is in a chargeable state, and the power supplied from the non-contact power supply system is charged.
In this state, the residual capacity of the storage battery 45 increases, while the residual capacity of the storage battery 46 gradually decreases. Then, when the control device 77 compares the remaining capacity of the storage battery 46 detected by the remaining capacity detector 79 with a threshold value and determines that the remaining capacity is equal to or less than the threshold value, A storage battery switching command signal is output.
その結果、蓄電池切替えスイッチ47の第1接点47aが開いて、第2接点47bが閉じることにより、非接触式給電システムへ接続される蓄電池が、蓄電池45から蓄電池46へ切り替わる。同時に、蓄電池切替えスイッチ48の第1接点48aが閉じて、第2接点48bが開くことにより、RTG18の負荷へ接続される蓄電池が、蓄電池46から蓄電池46へ切り替わる。即ち、前述の図3の状態となる。なお、前記蓄電池45,46の残留容量閾値は、例えば、RTG18の1作業単位(コンテナ荷役の1サイクル:詳細後述)を完了させるだけの給電が可能な残留容量とする。   As a result, when the first contact 47a of the storage battery changeover switch 47 is opened and the second contact 47b is closed, the storage battery connected to the non-contact power supply system is switched from the storage battery 45 to the storage battery 46. At the same time, when the first contact 48 a of the storage battery changeover switch 48 is closed and the second contact 48 b is opened, the storage battery connected to the load of the RTG 18 is switched from the storage battery 46 to the storage battery 46. That is, the state shown in FIG. Note that the remaining capacity threshold value of the storage batteries 45 and 46 is, for example, a remaining capacity that can be fed enough to complete one work unit of RTG 18 (one cycle of container handling: details will be described later).
以後、このような蓄電池切替えが繰り返され、常時、充電と放電を同時に行うことができる状態となる。
つまり、蓄電池切換スイッチ47,48及び制御装置77は蓄電池切替え手段を構成しており、この蓄電池切替え手段では、放電状態の蓄電池45(又は蓄電池46)を充電可能状態に切り替えると同時に充電可能状態の蓄電池46(又は蓄電池45)を放電状態に切り替える蓄電池切替えを、繰り返し行なう。
なお、このような蓄電池切替えは、電力を充電(貯蔵)した蓄電池45(又は蓄電池46)を、放電によって残留容量が低下した蓄電池46(又蓄電池45)と切り替えることから、バンク切り替えとも称している。
Thereafter, such storage battery switching is repeated, so that charging and discharging can be performed simultaneously at all times.
That is, the storage battery changeover switches 47 and 48 and the control device 77 constitute storage battery switching means. In this storage battery switching means, the storage battery 45 (or storage battery 46) in a discharged state is switched to a chargeable state and at the same time charged. The storage battery switching for switching the storage battery 46 (or the storage battery 45) to the discharged state is repeated.
Such storage battery switching is also referred to as bank switching because the storage battery 45 (or storage battery 46) charged (stored) with electric power is switched to the storage battery 46 (or storage battery 45) whose residual capacity has decreased due to discharge. .
また、上記では残留容量の検出信号に基づいて蓄電池切替えを行う場合について説明したが、必ずしもこれに限定するものではなく、例えば、制御装置77から一定時間毎に蓄電池切替えスイッチ47,48へ蓄電池切換指令信号を出力し、この蓄電池切換指令信号に基づいて蓄電池切替えスイッチ47の第1接点47a及び第2接点47bの開閉状態を切り替え、且つ、蓄電池切替えスイッチ48の第1接点48a及び第2接点48bの開閉状態を切り替えることにより、前記一定時間毎に、非接触式給電システムへ接続する蓄電池(即ち充電可能状態の蓄電池)を、蓄電池45(又は蓄電池46)から蓄電池46(又は蓄電池45)へ切り替え、且つ、RTG18の負荷へ接続する蓄電池(即ち放電状態の蓄電池)を、蓄電池46(又は蓄電池45)から蓄電池45(又は蓄電池46)へ切り替えるようにしてもよい。   In the above description, the case where the storage battery is switched based on the detection signal of the remaining capacity has been described. However, the present invention is not necessarily limited thereto. For example, the storage battery is switched from the control device 77 to the storage battery switching switches 47 and 48 at regular intervals. A command signal is output, and the open / close state of the first contact 47a and the second contact 47b of the storage battery switch 47 is switched based on the storage battery switch command signal, and the first contact 48a and the second contact 48b of the storage battery switch 48 are switched. By switching the open / close state of the battery, the storage battery (that is, the storage battery in a chargeable state) connected to the non-contact power supply system is switched from the storage battery 45 (or the storage battery 46) to the storage battery 46 (or the storage battery 45) at every predetermined time. And the storage battery (that is, the storage battery in a discharged state) connected to the load of the RTG 18 is replaced with the storage battery 46 (or It may be switched from the battery 45) to the storage battery 45 (or the storage battery 46).
また、非接触式給電システムとしては、エアギャップを介して電磁誘導作用を生じるものに限らず、鉄心が介してトランス結合するものや、マイクロ波送電方式のものなど、適宜のものを用いることができる。
また、必ずしも非接触式給電システムに限定するものではなく、図示は省略するが、接触式の地上給電設備(例えばパンタグラフ式のものなど)を蓄電池給電手段として用いてもよい。この場合にも、蓄電池45,46のバンク切り替え方式については非接触式給電システムを用いた場合と同様である。
In addition, the non-contact power supply system is not limited to the one that generates electromagnetic induction through the air gap, and an appropriate one such as one that is transformer-coupled through an iron core or one that uses a microwave power transmission method may be used. it can.
Moreover, it is not necessarily limited to a non-contact type electric power feeding system, and although illustration is abbreviate | omitted, you may use a contact-type ground electric power installation (for example, pantograph type etc.) as a storage battery electric power feeding means. Also in this case, the bank switching method of the storage batteries 45 and 46 is the same as that in the case of using the non-contact power supply system.
更には、図5及び図6に示すように、RTG18に発電設備91を搭載することにより(即ちハイブリッドRTGとすることにより)、この発電設備91を蓄電池給電手段として用いてもよい。発電設備91はディーゼルエンジンなどのエンジンと、このエンジンの回転駆動によって発電する発電機とを備えたものである。発電設備91の発電電力はコンバータ92によってAC/DC変換される。そして、このコンバータ92から出力される直流電力(定電流定電圧制御された電力)が、給電装置32の2つの蓄電池45,46の何れか一方に供給されて充電される。この場合にも、蓄電池45,46のバンク切り替え方式については非接触式給電システムを用いた場合と同様である。   Furthermore, as shown in FIGS. 5 and 6, the power generation facility 91 may be used as a storage battery power supply unit by mounting the power generation facility 91 on the RTG 18 (that is, by using a hybrid RTG). The power generation equipment 91 includes an engine such as a diesel engine and a generator that generates electric power by rotating the engine. The power generated by the power generation facility 91 is AC / DC converted by the converter 92. The DC power output from the converter 92 (power controlled at constant current and constant voltage) is supplied to one of the two storage batteries 45 and 46 of the power supply device 32 and charged. Also in this case, the bank switching method of the storage batteries 45 and 46 is the same as that in the case of using the non-contact power supply system.
図5には、蓄電池切替えスイッチ47の第1接点47aが開き、第2接点47bが閉じて、蓄電池46が発電設備91へ接続される一方、蓄電池切替えスイッチ48の第1接点48aが閉じ、第2接点48bが開いて、蓄電池45がRTG18の負荷へ接続されているときの状態を示している。このときには、図5中に矢印Lで示すように蓄電池45は放電状態となり、RTG18の負荷へ電力を供給する、或いは、巻上げ用電動機28など負荷から電力の回生があったときには当該回生電力が充電される一方、図5中に矢印Mで示すように蓄電池46は充電可能状態となり、発電設備91からの供給電力によって充電される。
図6には、蓄電池切替えスイッチ47の第1接点47aが閉じ、第2接点47bが開いて、蓄電池45が発電設備91へ接続される一方、蓄電池切替えスイッチ48の第1接点48aが開き、第2接点48bが閉じて、蓄電池46がRTG18の負荷へ接続されているときの状態を示している。このときには、図6中に矢印Nで示すように蓄電池46は放電状態となり、RTG18の負荷へ電力を供給する、或いは、巻上げ用電動機28など負荷から電力の回生があったときには当該回生電力が充電される一方、図6中に矢印Oで示すように蓄電池45は充電可能状態となり、発電設備91からの供給電力によって充電される。
In FIG. 5, the first contact 47a of the storage battery changeover switch 47 is opened, the second contact 47b is closed, and the storage battery 46 is connected to the power generation equipment 91, while the first contact 48a of the storage battery changeover switch 48 is closed, The state when the two contacts 48b are opened and the storage battery 45 is connected to the load of the RTG 18 is shown. At this time, as indicated by an arrow L in FIG. 5, the storage battery 45 is in a discharged state to supply power to the load of the RTG 18, or when the power is regenerated from the load such as the hoisting motor 28, the regenerative power is charged. On the other hand, as shown by an arrow M in FIG. 5, the storage battery 46 is in a chargeable state and is charged by the power supplied from the power generation facility 91.
In FIG. 6, the first contact 47a of the storage battery changeover switch 47 is closed, the second contact 47b is opened, and the storage battery 45 is connected to the power generation equipment 91, while the first contact 48a of the storage battery changeover switch 48 is opened, The state when the two contacts 48b are closed and the storage battery 46 is connected to the load of the RTG 18 is shown. At this time, as indicated by an arrow N in FIG. 6, the storage battery 46 is in a discharged state to supply power to the load of the RTG 18, or when power is regenerated from the load such as the hoisting motor 28, the regenerative power is charged. On the other hand, as shown by an arrow O in FIG. 6, the storage battery 45 is in a chargeable state and is charged by the power supplied from the power generation equipment 91.
以上のように、本実施の形態例の給電装置32によれば、2つの蓄電池45,46を有し、2つの蓄電池45,46の1つ(蓄電池45(又は蓄電池46))によりRTG18の負荷に電力を供給する給電装置であって、他の蓄電池46(又は蓄電池45)は蓄電池給電手段(非接触式給電システム、接触式の地上給電設備、発電設備91)へ接続して前記蓄電池給電手段からの供給電力を充電する充電可能状態であり、前記放電状態の蓄電池45(又は蓄電池46)の放電と前記充電可能状態の蓄電池46(又は蓄電池45)の充電とを同時に行うことを可能とし、且つ、前記放電状態の蓄電池45(又は蓄電池46)を充電可能状態に切り替えると同時に前記充電可能状態の蓄電池46(又は蓄電池45)を放電状態に切り替える蓄電池切替えを、繰り返し行なう蓄電池切替え手段(蓄電池切換スイッチ47,48、制御装置77)を有して成ることを特徴としており、充電と放電を同時に行うことができるため、RTG18の負荷が要求する稼動エネルギ(電力)の全てを蓄電池が担い、蓄電池だけで稼動できるフル電池RTGを実現することができる。
しかも、蓄電池給電手段(非接触式給電システム、接触式の地上給電設備、発電設備91)はRTG18の負荷が要求する稼動エネルギ(電力)の平均値に蓄電池エネルギのロスを考慮した(加えた)エネルギを充電可能状態の蓄電池に補給することができればよいため、蓄電池給電手段(非接触式給電システム、接触式の地上給電設備、発電設備91)の大幅な小型化を図ることができる。特に、大容量化が難しい非接触式給電システムを用いて、最も将来性が高いと考えられる非接触式地上給電フル電池RTG18の実現を図ることができる。
As described above, according to the power supply device 32 of the present embodiment, the load of the RTG 18 is provided by one of the two storage batteries 45 and 46 (the storage battery 45 (or the storage battery 46)). The other storage battery 46 (or storage battery 45) is connected to storage battery power supply means (non-contact power supply system, contact type ground power supply facility, power generation equipment 91), and the storage battery power supply means. In a chargeable state for charging the power supplied from the battery, enabling the discharging of the storage battery 45 (or storage battery 46) in the discharged state and the charging of the storage battery 46 (or storage battery 45) in the chargeable state simultaneously. Further, the storage battery 45 (or the storage battery 46) in the discharged state is switched to the chargeable state, and at the same time the storage battery 46 (or the storage battery 45) in the chargeable state is switched to the discharged state. It is characterized by having storage battery switching means (storage battery switching switches 47 and 48, control device 77) for repeated replacement, and since charging and discharging can be performed simultaneously, the operating energy required by the load of the RTG 18 A storage battery bears all of (electric power), and a full battery RTG that can be operated only by the storage battery can be realized.
Moreover, the storage battery power supply means (contactless power supply system, contact type ground power supply facility, power generation facility 91) considers (adds) the loss of storage battery energy to the average value of operating energy (electric power) required by the load of the RTG 18 Since it is sufficient that energy can be supplied to the rechargeable storage battery, the storage battery power supply means (non-contact power supply system, contact ground power supply facility, power generation facility 91) can be greatly reduced in size. In particular, it is possible to realize a non-contact type ground-fed full battery RTG 18 that is considered to have the highest potential by using a non-contact type power supply system that is difficult to increase in capacity.
また、本実施の形態例の給電装置32によれば、前記蓄電池切替え手段は、残留容量検出器78,79によって検出される前記放電状態の蓄電池45(又は蓄電池46)の残留容量が閾値以下になったときに前記蓄電池切替えを行なう、又は、一定時間毎に前記蓄電池切替えを行なう構成であることを特徴としているため、容易に適切なタイミングで蓄電池切替えを行うことができる。   Further, according to the power supply device 32 of the present embodiment, the storage battery switching means is configured such that the remaining capacity of the storage battery 45 (or the storage battery 46) in the discharged state detected by the remaining capacity detectors 78 and 79 is equal to or less than a threshold value. Therefore, the storage battery is switched at a certain time, or the storage battery is switched at regular intervals. Therefore, the storage battery can be easily switched at an appropriate timing.
また、本実施の形態例の給電装置32によれば、蓄電池45,46の残留容量閾値は、RTG18の1作業単位を完了させるだけの給電が可能な残留容量であること特徴としているため、放電状態の蓄電池45(又は蓄電池46)の残留容量がRTG18の1作業単位を完了させるだけの給電が可能な残留容量以下になったときに蓄電池切替えを行なうことができる。   In addition, according to the power supply device 32 of the present embodiment, the remaining capacity threshold value of the storage batteries 45 and 46 is characterized by a remaining capacity that can supply power only to complete one unit of work of the RTG 18. The storage battery can be switched when the remaining capacity of the storage battery 45 (or the storage battery 46) in the state becomes equal to or less than the remaining capacity that can be fed enough to complete one unit of work of the RTG 18.
ここで、本発明の効果を図7〜図9に基づいて更に詳述する。
従来技術であるハイブリッドRTGの回路構成をそのまま応用すると、図7及び図8の参考例のように1つの蓄電池81で回路が構成されることから、この蓄電池81において充電と放電を同時に行うことはできない。
即ち、図7に矢印H,Iで示すように、地上給電設備(非接触式給電システム)は、蓄電池81を充電しているときには、負荷稼動エネルギをも賄う必要がある。また、図8に矢印J,Kで示すように、蓄電池81が放電しているときは、地上給電設備(非接触式給電システム)のエネルギは行き場がないか、若しくは、負荷の稼動用エネルギとして充当されるため、地上給電設備(非接触式給電システム)としてのエネルギ供給は負荷の状況や蓄電池81の状態に依存して変動する。
このため、ピーク電力を保証する大容量の地上給電設備(非接触式給電システム)が必要となり、実用化への大きな妨げとなっている。
これに対して、本実施の形態例の給電装置32では、上記の如く、2つの蓄電池45,46を有し、2つの蓄電池45,46の1つ(蓄電池45(又は蓄電池46))によりRTG18の負荷に電力し、他の蓄電池46(又は蓄電池45)は蓄電池給電手段(非接触式給電システム、接触式の地上給電設備、発電設備91)へ接続して前記蓄電池給電手段からの供給電力を充電する充電可能状態であり、前記放電状態の蓄電池45(又は蓄電池46)の放電と前記充電可能状態の蓄電池46(又は蓄電池45)の充電とを同時に行うことを可能とし、且つ、前記放電状態の蓄電池45(又は蓄電池46)を充電可能状態に切り替えると同時に前記充電可能状態の蓄電池46(又は蓄電池45)を放電状態に切り替える蓄電池切替えを、繰り返し行なう方式としたことにより、非接触式給電システムの大幅な小型化を図ることができ、非接触式給電システムを用いた地上給電が実現可能となる。
Here, the effect of the present invention will be described in more detail with reference to FIGS.
If the circuit configuration of the conventional hybrid RTG is applied as it is, a circuit is configured by one storage battery 81 as in the reference examples of FIGS. 7 and 8, so that charging and discharging in the storage battery 81 can be performed simultaneously. Can not.
That is, as indicated by arrows H and I in FIG. 7, the ground power supply facility (non-contact power supply system) needs to cover the load operating energy when charging the storage battery 81. Further, as indicated by arrows J and K in FIG. 8, when the storage battery 81 is discharged, the energy of the ground power supply facility (non-contact power supply system) has no place to go, or as the operating energy of the load Therefore, the energy supply as ground power supply equipment (non-contact power supply system) varies depending on the load condition and the state of the storage battery 81.
For this reason, a large-capacity ground power supply facility (non-contact power supply system) that guarantees peak power is required, which is a great hindrance to practical use.
On the other hand, the power supply device 32 according to the present embodiment has two storage batteries 45 and 46 as described above, and the RTG 18 is provided by one of the two storage batteries 45 and 46 (storage battery 45 (or storage battery 46)). The other storage battery 46 (or storage battery 45) is connected to storage battery power supply means (non-contact power supply system, contact-type ground power supply facility, power generation equipment 91) to supply power supplied from the storage battery power supply means. It is a chargeable state to be charged, it is possible to simultaneously discharge the storage battery 45 (or storage battery 46) in the discharge state and the storage battery 46 (or storage battery 45) in the chargeable state, and the discharge state Storage battery 45 (or storage battery 46) is switched to a chargeable state, and at the same time, the storage battery switching to switch the storage battery 46 (or storage battery 45) in the chargeable state to a discharge state is repeated. By was scheme performed, it is possible to achieve a significant reduction in size of the noncontact-type power feeding system, ground power feeding using a noncontact-type power feeding system can be realized.
図9にはRTG18のコンテナ荷役におけるエネルギ消費(図9の正側の電力)、エネルギ発生(図9の負側の電力)の様子を示す。図9において、a部は巻下げ直前に一旦、制動状態において巻上げ用電動機28でスプレッダ31の巻上げ動作を行なったときのエネルギ消費、b部は巻上げ用電動機28でスプレッダ31の巻下げたときのエネルギ発生(回生電力)、c部は巻上げ用電動機28でコンテナ13を巻上げたときのエネルギ消費、d部は横行用電動機29でトロリ22を横行させたときのエネルギ消費、e部は巻上げ用電動機28でコンテナ13の巻下げたときのエネルギ消費(回生電力)、fは巻上げ用電動機28でスプレッダ31の巻上げたときのエネルギ消費、g部は走行用電動機25A〜25DでRTG18を走行させたときのエネルギ消費であり、a部〜g部までがコンテナ荷役の1サイクル(1作業単位)である。   FIG. 9 shows the state of energy consumption (positive power in FIG. 9) and energy generation (negative power in FIG. 9) in container handling of the RTG 18. In FIG. 9, a portion is energy consumption when the spreader 31 is hoisted by the hoisting motor 28 in the braking state, just before the lowering, and b portion is when the spreader 31 is lowered by the hoisting motor 28. Energy generation (regenerative power), part c is energy consumption when the container 13 is wound up by the hoisting motor 28, part d is energy consumption when the trolley 22 is traversed by the traverse motor 29, and part e is the hoisting motor Energy consumption (regenerative power) when the container 13 is unwound at 28, f is energy consumption when the spreader 31 is wound up by the hoisting motor 28, and g is when the RTG 18 is run by the running motors 25A to 25D The energy consumption of No. 1 to No. g is one cycle (one work unit) of container handling.
図9に示すように、負荷が要求するエネルギ消費は最大で300kW超に達するが、コンテナ荷役1サイクルで平均してみると、30kW程度のエネルギ消費に過ぎないことが分かる。このコンテナ巻上げ巻下げ巻下げや、定常周期的に発生する横行及び走行に必要なエネルギ(30kW)に、各蓄電池45,46のエネルギロスを考慮しても、おおよそ45kW程度のエネルギを定常的に補給する事ができれば、エネルギの需給はバランスすると想定される。従って、蓄電池45,46は一時的に300kW超のピーク電力を放電する必要があるが、平均的には30kW程度の電力を放電すればよい。   As shown in FIG. 9, the energy consumption required by the load reaches a maximum of more than 300 kW, but it can be seen that the average energy consumption in one cycle of container handling is only about 30 kW. Even if the energy loss of each of the storage batteries 45 and 46 is taken into consideration for the energy (30 kW) required for this container winding / lowering / lowering, traversing periodically generated and traveling (30 kW), the energy of about 45 kW is constantly applied. If it can be replenished, energy supply and demand are assumed to be balanced. Therefore, the storage batteries 45 and 46 need to temporarily discharge a peak power exceeding 300 kW, but on average, it is sufficient to discharge a power of about 30 kW.
このため、本実施の形態例の給電装置32では、負荷の消費エネルギの平均(30kW程度)に加えて、蓄電池45,46のエネルギロスを考慮した電力(45kW程度)を定常的に補給できる(即ち一定した低電力で蓄電池45,46を充電できる)蓄電池給電手段(非接触式給電システム、接触式の地上給電設備、発電設備91)があれば、稼動エネルギを十分に賄うことが可能となる。
この結果、現在、給電容量や設備費用の面から実用化が困難とされている非接触式給電システムにおいても、フル電池RTG18の実現が可能になる。この非接触式地上給電フル電池RTG18の実現が最も将来性が高いと考えられるが、勿論、これだけではなく、小型の発電設備91を搭載した究極のハイブリッドRTG18や、小容量地上給電式電動RTG18の実現も可能になる。
For this reason, in the power feeding device 32 of the present embodiment, in addition to the average of the energy consumption of the load (about 30 kW), electric power (about 45 kW) considering the energy loss of the storage batteries 45 and 46 can be replenished constantly ( In other words, if there is a storage battery power supply means (non-contact type power supply system, contact type ground power supply facility, power generation facility 91) that can charge the storage batteries 45 and 46 with constant low power, it is possible to sufficiently cover the operating energy. .
As a result, the full battery RTG 18 can be realized even in a contactless power supply system that is currently difficult to put into practical use in terms of power supply capacity and equipment costs. The realization of this non-contact type ground-fed full battery RTG18 is considered to have the highest potential, but of course, not only this but also the ultimate hybrid RTG18 equipped with a small power generation facility 91 and the small-capacity ground-fed electric RTG18 Realization is also possible.
なお、上記では2つの蓄電池45,46を用いる場合について説明したが、これに限定するものではなく、3つ以上の蓄電池を用いてもよい。3つ以上の蓄電池を用いた場合でも、複数(3つ以上)の蓄電池の少なくとも1つによりRTGの負荷に電力を供給する給電装置であって、他の蓄電池は蓄電池給電手段へ接続して前記蓄電池給電手段からの供給電力を充電する充電可能状態であり、前記放電状態の蓄電池の放電と前記充電可能状態の蓄電池の充電とを同時に行うことを可能とし、且つ、前記放電状態の蓄電池を充電可能状態に切り替えると同時に前記充電可能状態の蓄電池を放電状態に切り替える蓄電池切替えを、繰り返し行なう蓄電池切替え手段を有して成る構成とすればよい。   In addition, although the case where the two storage batteries 45 and 46 were used was demonstrated above, it is not limited to this, You may use three or more storage batteries. Even when three or more storage batteries are used, the power supply device supplies power to the load of the RTG by at least one of a plurality (three or more) of storage batteries, and the other storage batteries are connected to the storage battery power supply means and It is in a chargeable state for charging the power supplied from the storage battery power supply means, and can discharge the storage battery in the discharged state and charge the storage battery in the chargeable state at the same time, and charge the storage battery in the discharged state What is necessary is just to set it as the structure which comprises the storage battery switching means which repeats the storage battery switching which switches the storage battery of the said chargeable state to a discharge state simultaneously with switching to a possible state.
また、上記では地上給電設備(非接触式給電システム)から給電する場合、RTG18が移動するコンテナ蔵置部17全体に亘って給電ケーブルを敷設しているが、これに限定するものではなく、地上給電設備(非接触式給電システム)の充電ポイントを、荷役ポイントに対応した数だけ(例えば100荷役ポイントに対して10充電ポイント)、コンテナ蔵置部17に設けてもよい。
また、本発明の給電装置はRTGに適用して有用なものであるが、RTG以外の搬送機械(例えば所定のエリア内を移動するAGVなど)にも適用することができる。
Further, in the above description, when power is supplied from the ground power supply facility (non-contact power supply system), the power supply cable is laid throughout the container storage unit 17 to which the RTG 18 moves. However, the present invention is not limited to this. The number of charging points of the facility (non-contact power supply system) may be provided in the container storage unit 17 by the number corresponding to the handling point (for example, 10 charging points for 100 handling points).
The power supply apparatus of the present invention is useful when applied to RTG, but can also be applied to a transport machine other than RTG (for example, AGV moving within a predetermined area).
本発明は給電装置及びこれを備えたタイヤ式門型クレーンに関するものであり、特に非接触式給電システムを用いた非接触式給電フル電池RTGを実現する場合などに適用して有用なものである。   The present invention relates to a power feeding device and a tire-type portal crane equipped with the same, and is particularly useful when applied to a non-contact power feeding full battery RTG using a non-contact power feeding system. .
11 コンテナターミナル
12 コンテナ船
13 コンテナ
14 ガントリクレーン(GC)
15 コンテナヤード
16 自動搬送台車(AGV)
17 コンテナ蔵置部
18 タイヤ式門型クレーン(RTG)
21 ガントリ
21A 梁
21B 脚部
21C 支持台
22 トロリ
23A,23B,23C,23D 台車
24A,24B,24C,24D タイヤ
25A,25B,25C,25D 走行用電動機
26 給電ケーブル
27 巻上げ機
28 巻上げ用電動機
29 横行用電動機
30 ワイヤロープ
31 スプレッダ
32 給電装置
41 充電盤
42 地上変圧器
43 地上高圧盤
44 受電部
45,46 蓄電池
47 蓄電池切替えスイッチ
47a 第1接点
47b 第2接点
48 蓄電池切替えスイッチ
48a 第1接点
48b 第2接点
49,50,51,52,53,54 インバータユニット
55,56,57,58,59,60 コンバータ
61,62,63,64,65,66 インバータ
67,68,69,70,71,72,73 電磁開閉器
74 リアクトル
75 変圧器
76 補機
77 制御装置
81 蓄電池
91 給電装置
92 コンバータ
11 Container terminal 12 Container ship 13 Container 14 Gantry crane (GC)
15 Container yard 16 Automatic transport cart (AGV)
17 Container storage 18 Tire type portal crane (RTG)
21 Gantry 21A Beam 21B Leg 21C Support base 22 Trolley 23A, 23B, 23C, 23D Bogie 24A, 24B, 24C, 24D Tire 25A, 25B, 25C, 25D Electric motor for traveling 26 Power supply cable 27 Winding machine 28 Electric motor for hoisting 29 Electric motor 30 Wire rope 31 Spreader 32 Power feeding device 41 Charging panel 42 Ground transformer 43 Ground high voltage panel 44 Power receiving unit 45, 46 Storage battery 47 Storage battery switching switch 47a First contact 47b Second contact 48 Storage battery switching switch 48a First contact 48b First 2-contact 49, 50, 51, 52, 53, 54 Inverter unit 55, 56, 57, 58, 59, 60 Converter 61, 62, 63, 64, 65, 66 Inverter 67, 68, 69, 70, 71, 72 , 73 Electromagnetic switch 4 reactor 75 transformer 76 accessory 77 controller 81 storage battery 91 power supply device 92 converter

Claims (5)

  1. 搬送機械に設置され、複数の蓄電池を有し、前記複数の蓄電池の少なくとも1つにより前記搬送機械の負荷に電力を供給する給電装置であって、
    他の蓄電池は蓄電池給電手段へ接続して前記蓄電池給電手段からの供給電力を充電する充電可能状態であり、前記放電状態の蓄電池の放電と前記充電可能状態の蓄電池の充電とを同時に行うことを可能とし、
    且つ、前記放電状態の蓄電池を充電可能状態に切り替えると同時に前記充電可能状態の蓄電池を放電状態に切り替える蓄電池切替えを、繰り返し行なう蓄電池切替え手段を、
    有して成ることを特徴とする給電装置。
    A power supply device installed in a transport machine, having a plurality of storage batteries, and supplying power to a load of the transport machine by at least one of the plurality of storage batteries,
    The other storage battery is connected to the storage battery power supply means and is in a chargeable state in which the power supplied from the storage battery power supply means is charged, and discharging the storage battery in the discharged state and charging the storage battery in the chargeable state are performed simultaneously. Made possible
    And the storage battery switching means for repeatedly switching the storage battery that switches the storage battery in the chargeable state to the discharge state simultaneously with switching the storage battery in the discharged state to the chargeable state,
    A power supply apparatus comprising:
  2. 請求項1に記載の給電装置において、
    前記蓄電池切替え手段は、残留容量検出手段によって検出される前記放電状態の蓄電池の残留容量が閾値以下になったときに前記蓄電池切替えを行なう、又は、一定時間毎に前記蓄電池切替えを行なう構成であることを特徴とする給電装置。
    In the electric power feeder of Claim 1,
    The storage battery switching means is configured to switch the storage battery when the remaining capacity of the discharged storage battery detected by the remaining capacity detection means is equal to or less than a threshold value, or to switch the storage battery at regular intervals. A power supply apparatus characterized by that.
  3. 請求項2に記載の給電装置において、
    前記蓄電池の残留容量閾値は、前記搬送機械の1作業単位を完了させるだけの給電が可能な残留容量であること特徴とする給電装置。
    In the electric power feeder of Claim 2,
    The power storage apparatus according to claim 1, wherein the remaining capacity threshold value of the storage battery is a remaining capacity capable of supplying power only to complete one work unit of the transport machine.
  4. 請求項1〜3の何れか1項に記載の給電装置において、
    前記蓄電池給電手段は、非接触式給電システム、又は、接触式の地上給電設備、又は、前記搬送機械に搭載した発電設備であることを特徴とする給電装置。
    In the electric power feeder of any one of Claims 1-3,
    The power supply device, wherein the storage battery power supply means is a non-contact power supply system, a contact ground power supply facility, or a power generation facility mounted on the transfer machine.
  5. タイヤを駆動する走行用電動機と、被搬送物の巻上げ巻下げを行なう巻上げ用電動機と、トロリを横行させる横行用電動機とを、負荷として有するタイヤ式門型クレーンにおいて、
    請求項1〜4の何れか1項に記載の給電装置を備え、この給電装置における放電状態の蓄電池から前記負荷へ電力を供給する構成であることを特徴とするタイヤ式門型クレーン。
    In a tire-type portal crane having as a load, a traveling motor for driving a tire, a winding motor for winding and unwinding a conveyed object, and a traversing motor for traversing a trolley,
    A tire-type portal crane comprising the power feeding device according to any one of claims 1 to 4, wherein power is supplied to the load from a storage battery in a discharged state in the power feeding device.
JP2010025041A 2010-02-08 2010-02-08 Power feeding device and tire type gantry crane including the same Pending JP2011162287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025041A JP2011162287A (en) 2010-02-08 2010-02-08 Power feeding device and tire type gantry crane including the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010025041A JP2011162287A (en) 2010-02-08 2010-02-08 Power feeding device and tire type gantry crane including the same
EP10171615A EP2354075A1 (en) 2010-02-08 2010-08-02 Power feeding device and rubber tired gantry crane including the same
KR1020100076176A KR101214295B1 (en) 2010-02-08 2010-08-09 Power feeding device and rubber tired gantry crane including the same
CN201010249292.4A CN102148513B (en) 2010-02-08 2010-08-10 Power feeding device and rubber tired gantry crane including the same
SG2011004777A SG173954A1 (en) 2010-02-08 2011-01-24 Power feeding device and rubber tired gantry crane including the same

Publications (1)

Publication Number Publication Date
JP2011162287A true JP2011162287A (en) 2011-08-25

Family

ID=43825365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025041A Pending JP2011162287A (en) 2010-02-08 2010-02-08 Power feeding device and tire type gantry crane including the same

Country Status (5)

Country Link
EP (1) EP2354075A1 (en)
JP (1) JP2011162287A (en)
KR (1) KR101214295B1 (en)
CN (1) CN102148513B (en)
SG (1) SG173954A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130097A (en) * 2011-12-02 2013-06-05 株式会社安川电机 Cargo loading and unloading system
WO2013094704A1 (en) * 2011-12-20 2013-06-27 三井造船株式会社 Emergency power supply method for container terminal and container terminal
WO2014125576A1 (en) * 2013-02-13 2014-08-21 三井造船株式会社 Crane apparatus, container yard, and power supply method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011001847A1 (en) * 2011-04-06 2012-10-11 Gottwald Port Technology Gmbh Portal lifting device with electric drives
ES2547606T3 (en) * 2011-04-06 2015-10-07 Terex Mhps Gmbh Gantry lift for ISO containers with electric drives
WO2013050447A2 (en) * 2011-10-05 2013-04-11 Apm Terminals Management B.V. A movable structure including a charging station and a method of supplying electrical power to a vehicle
CN104918876B (en) 2013-01-29 2016-10-12 姜美涓 For with the tire type gantry crane of contactless reception power supply and straddle carrier
CN105347194A (en) * 2015-12-11 2016-02-24 润邦卡哥特科工业有限公司 Driving system
DE102016120115A1 (en) * 2016-10-21 2018-04-26 Konecranes Global Corporation overhead crane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117430A (en) * 1982-12-23 1984-07-06 Komatsu Mfg Co Ltd Charging system for operatorless mobile unit with storage battery as a power source
JP2002124302A (en) * 2000-10-17 2002-04-26 Fumiaki Tsurukawa Charging/discharging system of battery
JP2009023817A (en) * 2007-07-23 2009-02-05 Mitsui Eng & Shipbuild Co Ltd Crane device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3890168B2 (en) * 1999-08-03 2007-03-07 株式会社東京アールアンドデー Electric device and charging / discharging method of battery unit thereof
JP2005295694A (en) 2004-03-31 2005-10-20 Osaka Gas Co Ltd Discharge energy collector of storage battery
JP4690014B2 (en) * 2004-11-02 2011-06-01 東芝三菱電機産業システム株式会社 Harbor cargo handling crane control system and harbor cargo handling crane system
JP2009023816A (en) 2007-07-23 2009-02-05 Mitsui Eng & Shipbuild Co Ltd Crane device
JP2009242088A (en) 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Crane device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117430A (en) * 1982-12-23 1984-07-06 Komatsu Mfg Co Ltd Charging system for operatorless mobile unit with storage battery as a power source
JP2002124302A (en) * 2000-10-17 2002-04-26 Fumiaki Tsurukawa Charging/discharging system of battery
JP2009023817A (en) * 2007-07-23 2009-02-05 Mitsui Eng & Shipbuild Co Ltd Crane device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130097A (en) * 2011-12-02 2013-06-05 株式会社安川电机 Cargo loading and unloading system
JP2013116802A (en) * 2011-12-02 2013-06-13 Yaskawa Electric Corp Cargo handling system
WO2013094704A1 (en) * 2011-12-20 2013-06-27 三井造船株式会社 Emergency power supply method for container terminal and container terminal
JP2013129469A (en) * 2011-12-20 2013-07-04 Mitsui Eng & Shipbuild Co Ltd Emergency power supply method for container terminal, and container terminal
US20140346869A1 (en) * 2011-12-20 2014-11-27 Mitsui Engineering & Shipbuilding Co., Ltd. Emergency power supply method for container terminal and container terminal
US10033187B2 (en) * 2011-12-20 2018-07-24 Mitsui Engineering & Shipbuilding Co., Ltd. Emergency power supply method for container terminal and container terminal
WO2014125576A1 (en) * 2013-02-13 2014-08-21 三井造船株式会社 Crane apparatus, container yard, and power supply method
US9802794B2 (en) 2013-02-13 2017-10-31 Mitsui Engineering & Shipbuilding Co., Ltd. Crane apparatus, container yard, and feeding method

Also Published As

Publication number Publication date
KR20110092195A (en) 2011-08-17
KR101214295B1 (en) 2012-12-20
EP2354075A1 (en) 2011-08-10
CN102148513B (en) 2014-08-20
SG173954A1 (en) 2011-09-29
CN102148513A (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP2011162287A (en) Power feeding device and tire type gantry crane including the same
JP4698644B2 (en) Crane equipment
WO2009123041A1 (en) Crane system
JP2007236196A (en) Railroad train of battery drive
CN106477435B (en) Elevator car power supply
JP2009023816A (en) Crane device
CN104619628A (en) Drive control device for drive system including vertical carrier machine
JP2011068499A (en) Crane device
JP2011016635A (en) Feeding type cargo handling device
KR101589360B1 (en) Power supply apparatus, crane, and power supply method
JP5935300B2 (en) Power supply apparatus and charge / discharge control method
JP5039525B2 (en) Yard crane
JP2012012149A (en) Crane control device and crane device
JP5674146B2 (en) Crane apparatus and power feeding method
JP2013051844A (en) Battery charging system of electric railway vehicle
JP2010089856A (en) Crane device and control method of crane device
JP2012171760A (en) Crane system
JP5277115B2 (en) Parking equipment
WO2011024881A1 (en) Parking apparatus
WO2013145213A1 (en) Crane apparatus
JP2010089855A (en) Crane device and control method of crane device
JP6189010B2 (en) Crane and power supply method for crane
JP6196764B2 (en) Power supply apparatus, power supply method and program
JP2020061884A (en) Power supply system using battery charged by charger as power supply for transportation facility
KR20190050439A (en) Rubber tired gantry crane having noncontact power supplying system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120827

A625 Written request for application examination (by other person)

Effective date: 20121005

Free format text: JAPANESE INTERMEDIATE CODE: A625

A977 Report on retrieval

Effective date: 20131031

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20131105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20140311

Free format text: JAPANESE INTERMEDIATE CODE: A02