JP2011136018A - Pulse wave analysis apparatus and pulse wave analysis program - Google Patents

Pulse wave analysis apparatus and pulse wave analysis program Download PDF

Info

Publication number
JP2011136018A
JP2011136018A JP2009297556A JP2009297556A JP2011136018A JP 2011136018 A JP2011136018 A JP 2011136018A JP 2009297556 A JP2009297556 A JP 2009297556A JP 2009297556 A JP2009297556 A JP 2009297556A JP 2011136018 A JP2011136018 A JP 2011136018A
Authority
JP
Japan
Prior art keywords
pulse wave
pressure
amplitude
external pressure
blood vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297556A
Other languages
Japanese (ja)
Other versions
JP5328635B2 (en
Inventor
Atsushi Hori
淳史 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009297556A priority Critical patent/JP5328635B2/en
Publication of JP2011136018A publication Critical patent/JP2011136018A/en
Application granted granted Critical
Publication of JP5328635B2 publication Critical patent/JP5328635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulse wave analysis apparatus capable of suppressing inaccuracy in detecting pulse waves caused by the nonlinearity of the change of the pressure/volume of blood vessels, and more accurately acquiring the amplitude of an ejection waves and a reflection wave of the pulse waves. <P>SOLUTION: In the pulse wave analysis apparatus, a pressure control part 8 of a vascular internal/external pressure difference control part 2 controls the difference between the internal pressure and external pressure in the blood vessels in one region so that the amplitude of the pulse waves detected by a pulse wave amplitude information detecting part 7 is in a range in which the relation with the difference between the internal pressure and external pressure in the one region detected by a pulse wave detecting part 1 can be considered approximately as linear by controlling the external pressure applied to the blood vessels in the one region detected by the pulse wave detection part 1. As a result, the variation in the amplitude of the pulse waves relative to the variation of the internal pressure of the blood vessels can be linear and large, and the amplitude of the ejection wave and reflection wave of the pulse waves can be more accurately detected by a pulse wave amplitude detection part 6. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、生体の脈波に含まれている駆出波と反射波を高精度に同定する脈波解析装置および脈波解析プログラムに関する。   The present invention relates to a pulse wave analysis device and a pulse wave analysis program for accurately identifying ejection waves and reflected waves contained in a pulse wave of a living body.

脈波は生体の循環器系の状態を把握する上で様々な重要な情報を有していることが知られている。例えば、AI(Augmentation Index)は、脈波に含まれている駆出波成分と反射波成分の比率を求めることで、全身の動脈硬化度の定量的な評価や、中心動脈圧の推定などに用いられている。   It is known that the pulse wave has various important information for grasping the state of the circulatory system of a living body. For example, AI (Augmentation Index) is used for quantitative evaluation of the degree of arteriosclerosis in the whole body, estimation of central arterial pressure, etc. by calculating the ratio of the ejection wave component and the reflected wave component contained in the pulse wave. It is used.

このAIを求めるためには、脈波が含んでいる駆出波成分と反射波成分のそれぞれを特定する必要があり、そのための技術が特許文献1(特開2004‐313468号公報)などで開示されている。この特許文献1では、脈波の微分による波形解析で駆出波成分と反射波成分を求めている。   In order to obtain the AI, it is necessary to specify each of the ejection wave component and the reflected wave component included in the pulse wave, and a technique for that purpose is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2004-313468) and the like. Has been. In Patent Document 1, the ejection wave component and the reflected wave component are obtained by waveform analysis based on the differentiation of the pulse wave.

また、2箇所の測定部位の脈波を測定することで求められる脈波伝播速度についても、駆出波と反射波を分離し、この駆出波と反射波の時間差から1箇所の測定部位での脈波から脈波伝播速度を同定する技術が特許文献2(特開2003‐010139号公報)に開示されている。   In addition, regarding the pulse wave velocity obtained by measuring the pulse wave at two measurement sites, the ejection wave and the reflected wave are separated, and the time difference between the ejection wave and the reflected wave is used to determine the velocity at one measurement site. Japanese Patent Laid-Open No. 2003-010139 discloses a technique for identifying the pulse wave velocity from the pulse wave.

ところで、脈波を検出する方法として、波動による血管の容積変化を検出する容積脈波法があり、光を利用した光電式容積脈波が一般的である。この方式は、LED(発光ダイオード)とPD(フォトダイオード)により構成でき、比較的安価に脈波検出システムを構築することが可能である。   By the way, as a method for detecting a pulse wave, there is a volume pulse wave method for detecting a volume change of a blood vessel due to a wave, and a photoelectric volume pulse wave using light is generally used. This method can be constituted by an LED (light emitting diode) and a PD (photodiode), and a pulse wave detection system can be constructed at a relatively low cost.

また、血管は、内膜,中膜,外膜の3層構造となっており、血管に作用する圧力の大きさにより、血管の弾性特性が変化することが知られている。すなわち、血管の圧‐容積特性は強い非線形性を示し、圧力の変化に比例した容積変化を示さない。例えば、特許文献3に示すように、血管の圧‐容積特性をシグモイド曲線でモデル化する方法が公開されている。   Further, the blood vessel has a three-layer structure of an inner membrane, a middle membrane, and an outer membrane, and it is known that the elastic characteristics of the blood vessel change depending on the pressure acting on the blood vessel. That is, the pressure-volume characteristic of the blood vessel shows a strong non-linearity and does not show a volume change proportional to the pressure change. For example, as shown in Patent Document 3, a method for modeling a pressure-volume characteristic of a blood vessel with a sigmoid curve is disclosed.

ところで、上述したように、特許文献1および特許文献2では、駆出波と反射波を分離する技術が開示されており、特に、特許文献1では、脈波の波形を分類して各々の波形に適切な波形解析を行うことで、駆出波と反射波を適切に分離できる技術が開示されている。   By the way, as described above, Patent Literature 1 and Patent Literature 2 disclose a technique for separating ejection waves and reflected waves. In particular, Patent Literature 1 classifies the waveforms of pulse waves to obtain respective waveforms. A technique is disclosed in which the ejection wave and the reflected wave can be appropriately separated by performing appropriate waveform analysis.

しかしながら、容積脈波において、駆出波と反射波のそれぞれについて、1拍の脈波の中の時間的な位置関係を正しく同定できたとしても、血管の圧‐容積変化の非線形性のために、駆出波と反射波のそれぞれの振幅を比較するに際して正確には比較できない。   However, even in the plethysmogram, even if the temporal positional relationship within one pulse wave can be correctly identified for each of the ejection wave and the reflected wave, the non-linearity of the pressure-volume change of the blood vessel When comparing the amplitudes of the ejection wave and the reflected wave, it cannot be accurately compared.

特開2004‐313468号公報JP 2004-313468 A 特開2003‐10139号公報JP 2003-10139 A 特開2008‐228934号公報JP 2008-228934 A

そこで、この発明の課題は、血管の圧‐容積変化の非線形性に起因する脈波の検出の不正確さを抑制できて脈波の駆出波と反射波の振幅をより高精度に得ることができる脈波解析装置および脈波解析プログラムを提供することにある。   Therefore, an object of the present invention is to suppress the inaccuracy of pulse wave detection caused by the nonlinearity of the pressure-volume change of the blood vessel and to obtain the amplitude of the pulse wave and the reflected wave with higher accuracy. An object is to provide a pulse wave analysis device and a pulse wave analysis program capable of performing the above.

上記課題を解決するため、この発明の脈波解析装置は、生体の或る一部位における脈波を検出する脈波検出部と、
上記脈波検出部で検出した上記一部位における脈波からこの脈波の振幅を検出し、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を制御する血管内外圧差制御部と、
上記脈波検出部で検出した上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅を検出すると共に上記基準時間検出部で検出した上記反射波成分の基準時間に対応する上記脈波の振幅を検出する脈波振幅検出部とを備えることを特徴としている。
In order to solve the above problems, a pulse wave analysis device according to the present invention includes a pulse wave detection unit that detects a pulse wave in a certain part of a living body,
An area in which the amplitude of the pulse wave is detected from the pulse wave at the partial position detected by the pulse wave detection unit, and the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessel is approximately linear Intravascular / external pressure difference control unit that controls the difference between the internal pressure and the external pressure of the partial blood vessels so as to enter,
A reference for detecting a reference time for specifying the ejection wave component included in the pulse wave at the partial position detected by the pulse wave detection unit and a reference time for specifying the reflected wave component included in the pulse wave A time detector;
The amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the reference time detection unit is detected and the pulse wave corresponding to the reference time of the reflected wave component detected by the reference time detection unit is detected. And a pulse wave amplitude detector for detecting the amplitude.

この発明の脈波解析装置によれば、上記血管内外圧差制御部によって、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を調整する。これにより、上記血管の内圧の変化に対する上記脈波の振幅の変化をリニアにかつ大きくできて、上記脈波振幅検出部によって上記脈波の駆出波と反射波の振幅をより高精度に検出できる。   According to the pulse wave analyzing apparatus of the present invention, the intravascular / external pressure difference control unit is configured to enter the region in which the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessels can be regarded as substantially linear. The difference between the internal pressure and the external pressure of the blood vessel at one site is adjusted. As a result, the change in the amplitude of the pulse wave with respect to the change in the internal pressure of the blood vessel can be linearly increased, and the amplitude of the ejection wave and the reflected wave of the pulse wave can be detected with higher accuracy by the pulse wave amplitude detection unit. it can.

また、一実施形態の脈波解析装置では、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域は、上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の変化が最大となる領域を含んでいる。   Further, in the pulse wave analysis device of one embodiment, the region in which the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessel is substantially linear is the internal pressure and the external pressure of the partial blood vessel. A region in which the change in the amplitude of the pulse wave with respect to the change in the difference is maximum is included.

この実施形態の脈波解析装置によれば、上記血管内外圧差制御部によって、上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の変化が最大となる領域を含んでいると共に上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を調整する。これにより、上記血管の内圧の変化に対する上記脈波の振幅の変化の最大化を図れて、上記脈波振幅検出部によって上記脈波の駆出波と反射波の振幅をより高精度に検出できる。   According to the pulse wave analysis device of this embodiment, the intravascular / external pressure difference control unit includes a region where the change in the amplitude of the pulse wave is maximized with respect to the change in the difference between the internal pressure and the external pressure of the partial blood vessels. In addition, the difference between the internal pressure and the external pressure of the partial blood vessel is adjusted so that the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessel is in a substantially linear region. Thereby, the change of the amplitude of the pulse wave with respect to the change of the internal pressure of the blood vessel can be maximized, and the amplitude of the ejection wave and the reflected wave of the pulse wave can be detected with higher accuracy by the pulse wave amplitude detection unit. .

また、一実施形態の脈波解析装置では、上記内外圧差制御部によって上記血管の内圧と外圧との差を変化させて上記内外圧差制御部から得た上記脈波の振幅を表す情報と上記血管の内圧と外圧との差を表す情報とに基づいて、上記血管の圧‐容積変化特性を予め求める血管圧‐容積変化特性モデル化部を有し、
上記脈波振幅検出部は、
上記血管圧‐容積変化特性モデル化部で求めた上記血管の圧‐容積変化特性と、上記内外圧差制御部からの上記血管の内圧と外圧との差を表す情報と、上記脈波検出部で検出した脈波とに基づいて、上記基準時間に対応する脈波の振幅を求める。
In the pulse wave analysis device of one embodiment, the information indicating the amplitude of the pulse wave obtained from the internal / external pressure difference control unit by changing the difference between the internal pressure and the external pressure of the blood vessel by the internal / external pressure difference control unit and the blood vessel A blood pressure-volume change characteristic modeling unit for obtaining in advance the pressure-volume change characteristic of the blood vessel based on information representing the difference between the internal pressure and the external pressure of
The pulse wave amplitude detector is
The blood pressure-volume change characteristic obtained by the blood vessel pressure-volume change characteristic modeling unit, information indicating the difference between the internal pressure and the external pressure of the blood vessel from the internal / external pressure difference control unit, and the pulse wave detection unit Based on the detected pulse wave, the amplitude of the pulse wave corresponding to the reference time is obtained.

この実施形態の脈波解析装置によれば、上記血管圧‐容積変化特性モデル化部が上記脈波の振幅を表す情報と上記血管の内圧と外圧との差を表す情報とに基づいて上記血管の圧‐容積変化特性を予め求める。したがって、上記脈波振幅検出部は、上記脈波検出部で検出した脈波と上記血管の圧‐容積変化特性と上記内外圧差制御部からの上記血管の内圧と外圧との差を表す情報とに基づいて、上記基準時間に対応する脈波の振幅をより正確に求めることができる。   According to the pulse wave analysis device of this embodiment, the blood vessel pressure-volume change characteristic modeling unit is configured to output the blood vessel based on the information indicating the amplitude of the pulse wave and the information indicating the difference between the internal pressure and the external pressure of the blood vessel. The pressure-volume change characteristic of is determined in advance. Therefore, the pulse wave amplitude detection unit includes information representing a difference between the pulse wave detected by the pulse wave detection unit, the pressure-volume change characteristic of the blood vessel, and the internal pressure and external pressure of the blood vessel from the internal / external pressure difference control unit. Based on the above, the amplitude of the pulse wave corresponding to the reference time can be obtained more accurately.

また、一実施形態の脈波解析装置では、上記内外圧差制御部は、上記生体の心臓に対する上記脈波検出部の高さを制御して上記血管の内圧を制御することによって上記血管の内圧と外圧との差を制御する。   In the pulse wave analysis device of one embodiment, the internal / external pressure difference control unit controls the internal pressure of the blood vessel by controlling the internal pressure of the blood vessel by controlling the height of the pulse wave detection unit with respect to the heart of the living body. Controls the difference from external pressure.

この実施形態の脈波解析装置によれば、上記内外圧差制御部は、上記生体の心臓に対する上記脈波検出部の高さを制御することによって上記血管の内圧を制御して上記血管の内圧と外圧との差を制御できる。   According to the pulse wave analysis device of this embodiment, the internal / external pressure difference control unit controls the internal pressure of the blood vessel by controlling the height of the pulse wave detection unit with respect to the heart of the living body, and the internal pressure of the blood vessel. The difference from the external pressure can be controlled.

また、一実施形態の脈波解析装置では、上記内外圧差制御部は、上記脈波検出部による上記血管に対する外圧を制御することで上記血管の内圧と外圧との差を制御する。   In the pulse wave analysis device according to an embodiment, the internal / external pressure difference control unit controls the difference between the internal pressure and the external pressure of the blood vessel by controlling the external pressure applied to the blood vessel by the pulse wave detection unit.

この実施形態の脈波解析装置によれば、上記内外圧差制御部は、上記脈波検出部による上記血管に対する外圧を制御することによって上記血管の内圧と外圧との差を制御できる。   According to the pulse wave analysis device of this embodiment, the internal / external pressure difference control unit can control the difference between the internal pressure and the external pressure of the blood vessel by controlling the external pressure applied to the blood vessel by the pulse wave detection unit.

また、一実施形態の脈波解析プログラムでは、生体の或る一部位における脈波からこの脈波の振幅を検出し、上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の変化が線形と見なせる領域に上記一部位の血管の内圧と外圧との差を制御する血管内外圧差制御機能と、
上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを求める基準時間導出機能と、
上記駆出波成分の基準時間に対応する上記脈波の振幅を求めると共に上記反射波成分の基準時間に対応する上記脈波の振幅を求める脈波振幅導出機能とをコンピュータに実行させる。
In the pulse wave analysis program of one embodiment, the amplitude of the pulse wave is detected from the pulse wave at a certain part of the living body, and the pulse wave is detected with respect to the change in the difference between the internal pressure and the external pressure of the blood vessel at the part. Intravascular / external pressure difference control function for controlling the difference between the internal pressure and the external pressure of the blood vessels in the above-mentioned part of the region where the change in amplitude can be regarded as linear,
A reference time deriving function for obtaining a reference time for specifying the ejection wave component included in the pulse wave at the partial position and a reference time for specifying the reflected wave component included in the pulse wave;
A computer is caused to execute a pulse wave amplitude deriving function for obtaining an amplitude of the pulse wave corresponding to the reference time of the ejection wave component and obtaining an amplitude of the pulse wave corresponding to the reference time of the reflected wave component.

この実施形態の脈波解析プログラムによれば、上記血管内外圧差制御機能によって、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を調整する。これにより、上記血管の内圧の変化に対する上記脈波の振幅の変化の極大化を図れて、上記脈波振幅導出機能によって上記脈波の駆出波と反射波の振幅をより高精度に検出できる。   According to the pulse wave analysis program of this embodiment, the relationship between the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessels falls within a region where the difference can be regarded as substantially linear by the intravascular external pressure difference control function. The difference between the internal pressure and the external pressure of the partial blood vessels is adjusted. Thereby, the change of the amplitude of the pulse wave with respect to the change of the internal pressure of the blood vessel can be maximized, and the amplitude of the pulse wave ejected wave and the reflected wave can be detected with higher accuracy by the pulse wave amplitude deriving function. .

また、一実施形態の脈波解析プログラムでは、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域は、上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の変化が最大となる領域を含んでいる。   Further, in the pulse wave analysis program of one embodiment, the region in which the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessel is substantially linear is the internal pressure and the external pressure of the partial blood vessel. A region in which the change in the amplitude of the pulse wave with respect to the change in the difference is maximum is included.

この実施形態の脈波解析プログラムによれば、上記血管内外圧差制御機能によって、上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の変化が最大となる領域を含んでいると共に上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を調整する。これにより、上記血管の内圧の変化に対する上記脈波の振幅の変化の極大化を図れて、上記脈波振幅検出機能によって上記脈波の駆出波と反射波の振幅をより高精度に検出できる。   According to the pulse wave analysis program of this embodiment, the intravascular external pressure difference control function includes a region in which the change in the amplitude of the pulse wave with respect to the change in the difference between the internal pressure and the external pressure of the partial blood vessels is maximized. At the same time, the difference between the internal pressure and the external pressure of the partial blood vessel is adjusted so that the relationship of the amplitude of the pulse wave with respect to the change in the difference between the internal pressure and the external pressure of the partial blood vessel falls within a substantially linear range. Thereby, the change of the amplitude of the pulse wave with respect to the change of the internal pressure of the blood vessel can be maximized, and the amplitude of the pulse wave and the reflected wave can be detected with higher accuracy by the pulse wave amplitude detection function. .

また、一実施形態の脈波解析プログラムでは、上記内外圧差制御機能によって上記血管の内圧と外圧との差を変化させて上記内外圧差制御機能から得た上記脈波の振幅を表す情報と上記血管の内圧と外圧との差を表す情報とに基づいて、上記血管の圧‐容積変化特性を予め求める血管圧‐容積変化特性モデル化機能をコンピュータに実行させ、
上記脈波振幅導出機能により、上記血管圧‐容積変化特性モデル化機能で求めた上記血管の圧‐容積変化特性と、上記内外圧差制御機能からの上記血管の内圧と外圧との差を表す情報とに基づいて、上記基準時間に対応する脈波の振幅を求める。
In the pulse wave analysis program of one embodiment, the information indicating the amplitude of the pulse wave obtained from the internal / external pressure difference control function by changing the difference between the internal pressure and the external pressure of the blood vessel by the internal / external pressure difference control function and the blood vessel Based on the information representing the difference between the internal pressure and the external pressure of the blood vessel, the computer executes a blood vessel pressure-volume change characteristic modeling function for obtaining the blood pressure-volume change characteristic in advance,
Information indicating the difference between the blood pressure-volume change characteristic of the blood vessel obtained by the blood vessel pressure-volume change characteristic modeling function and the internal pressure and the external pressure of the blood vessel from the internal / external pressure difference control function by the pulse wave amplitude derivation function Based on the above, the pulse wave amplitude corresponding to the reference time is obtained.

この実施形態の脈波解析プログラムによれば、上記血管圧‐容積変化特性モデル化機能で上記脈波の振幅を表す情報と上記血管の内圧と外圧との差を表す情報とに基づいて上記血管の圧‐容積変化特性を予め求め、上記脈波振幅検出機能で上記血管の圧‐容積変化特性と上記内外圧差制御部からの上記血管の内圧と外圧との差を表す情報と上記脈波検出部で検出した脈波とに基づいて、上記基準時間に対応する脈波の振幅をより正確に求めることができる。   According to the pulse wave analysis program of this embodiment, based on the information indicating the amplitude of the pulse wave and the information indicating the difference between the internal pressure and the external pressure of the blood vessel by the blood vessel pressure-volume change characteristic modeling function, The pressure-volume change characteristic of the blood vessel is obtained in advance, and the pulse wave amplitude detection function is used to detect the pulse wave and information indicating the difference between the blood pressure-volume change characteristic of the blood vessel and the internal / external pressure from the internal / external pressure difference control unit. Based on the pulse wave detected by the unit, the amplitude of the pulse wave corresponding to the reference time can be obtained more accurately.

また、一実施形態の脈波解析プログラムでは、上記内外圧差制御機能は、
上記生体の或る一部位における脈波を検出する脈波検出部の上記生体の心臓に対する高さを制御して上記血管の内圧を制御することによって上記血管の内圧と外圧との差を制御する。
In the pulse wave analysis program of one embodiment, the internal / external pressure difference control function is
The difference between the internal pressure and the external pressure of the blood vessel is controlled by controlling the internal pressure of the blood vessel by controlling the height of the biological wave with respect to the heart of the living body by detecting the pulse wave at a certain part of the living body. .

この実施形態の脈波解析プログラムによれば、上記内外圧差制御機能で、上記生体の心臓に対する上記脈波検出部の高さを制御することによって上記血管の内圧を制御して上記血管の内圧と外圧との差を制御できる。   According to the pulse wave analysis program of this embodiment, the internal / external pressure difference control function controls the internal pressure of the blood vessel by controlling the height of the pulse wave detector with respect to the heart of the living body to The difference from the external pressure can be controlled.

また、一実施形態の脈波解析プログラムでは、上記内外圧差制御機能は、
上記生体の或る一部位における脈波を検出する脈波検出部による上記一部位の血管に対する外圧を制御することで上記血管の内圧と外圧との差を制御する。
In the pulse wave analysis program of one embodiment, the internal / external pressure difference control function is
The difference between the internal pressure and the external pressure of the blood vessel is controlled by controlling the external pressure with respect to the blood vessel of the partial position by the pulse wave detection unit that detects the pulse wave at a certain partial position of the living body.

この実施形態の脈波解析プログラムによれば、上記内外圧差制御機能で、上記血管に対する上記脈波検出部の外圧を制御することによって上記血管の内圧と外圧との差を制御できる。   According to the pulse wave analysis program of this embodiment, the difference between the internal pressure and the external pressure of the blood vessel can be controlled by controlling the external pressure of the pulse wave detecting unit with respect to the blood vessel by the internal / external pressure difference control function.

この発明の脈波解析装置によれば、血管内外圧差制御部によって、生体の或る一部位の血管の内圧と外圧との差に対する脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を調整する。これにより、上記血管の内圧の変化に対する上記脈波の振幅の変化をリニアにかつ大きくできて、脈波振幅検出部によって脈波の駆出波と反射波の振幅をより高精度に検出できる。   According to the pulse wave analysis apparatus of the present invention, the intravascular / external pressure difference control unit enters a region in which the relationship of the amplitude of the pulse wave to the difference between the internal pressure and the external pressure of a certain partial blood vessel of the living body can be regarded as substantially linear. The difference between the internal pressure and the external pressure of the partial blood vessels is adjusted. Thereby, the change in the amplitude of the pulse wave with respect to the change in the internal pressure of the blood vessel can be linearly increased, and the amplitude of the pulse wave ejection wave and the reflected wave can be detected with higher accuracy by the pulse wave amplitude detector.

この発明の脈波解析装置の第1実施形態を示すブロック図である。1 is a block diagram showing a first embodiment of a pulse wave analysis device of the present invention. 上記実施形態の脈波検出部で検出した脈波の波形を(A)欄に示し、上記脈波の加速度波形を(B)欄に示す波形図である。FIG. 4 is a waveform diagram showing a pulse wave waveform detected by the pulse wave detection unit of the embodiment in a column (A) and an acceleration waveform of the pulse wave in a column (B). 上記脈波検出部で検出した脈波の3回微分波形を(A)欄に示し、上記脈波の4回微分波形を(B)欄に示す波形図である。It is a wave form diagram which shows the 3rd derivative waveform of the pulse wave detected by the above-mentioned pulse wave detection part in the (A) column, and shows the 4th derivative waveform of the above-mentioned pulse wave in the (B) column. 上記脈波の波形および上記脈波の基準点Q1,Q2での脈波の振幅W1,W2を示す波形図である。It is a waveform diagram showing the pulse wave amplitude and pulse wave amplitudes W1 and W2 at the reference points Q1 and Q2 of the pulse wave. 血管の内圧と外圧との差と血管容積との関係を示す特性図である。It is a characteristic view which shows the relationship between the difference of the internal pressure of a blood vessel, and an external pressure, and the blood vessel volume. 脈波振幅最大点のサーチ時に圧力制御部8により上記脈波を測定する部位に加える圧力Pと脈波振幅Wと例示するグラフである。7 is a graph illustrating pressure P and pulse wave amplitude W applied to a portion where the pulse wave is measured by the pressure control unit 8 when searching for a pulse wave amplitude maximum point. この発明の脈波解析装置の第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the pulse-wave analyzer of this invention. この発明の脈波解析装置の第3実施形態を示すブロック図である。It is a block diagram which shows 3rd Embodiment of the pulse-wave analyzer of this invention. 上記第2実施形態の内圧制御部を説明する模式図である。It is a schematic diagram explaining the internal pressure control part of the said 2nd Embodiment. 上記第1実施形態の血管内外圧差制御部が脈波振幅が最大となる点をサーチする動作を説明するフローチャートである。It is a flowchart explaining the operation | movement which searches the point where the pulse wave amplitude becomes the maximum by the intravascular external pressure difference control part of the said 1st Embodiment. 上記第2実施形態で血管圧‐容積変化特性モデル化部29が上記血管の圧‐容積変化特性を作成する過程を説明するためのグラフである。It is a graph for demonstrating the process in which the vascular pressure-volume change characteristic modeling part 29 produces the said blood pressure-volume change characteristic in the said 2nd Embodiment. 上記過程を説明するための、内外圧差(mmHg)と1mmHg当たりの振幅(V/mmHg)との関係を示すグラフである。It is a graph which shows the relationship between the internal / external pressure difference (mmHg) and the amplitude per 1 mmHg (V / mmHg) for demonstrating the said process. 上記第2実施形態で上記脈波振幅検出部26が反射波成分の基準時間T2での脈波振幅を検出する過程を説明するためのグラフである。It is a graph for demonstrating the process in which the said pulse wave amplitude detection part 26 detects the pulse wave amplitude in the reference time T2 of a reflected wave component in the said 2nd Embodiment. 上記過程を説明するための、脈波波形を模式的に示す図である。It is a figure which shows typically a pulse wave waveform for demonstrating the said process.

以下、この発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

(第1の実施の形態)
図1は、この発明の脈波解析装置の第1実施形態のブロック図である。この第1実施形態の脈波解析装置10は、人間の生体の或る一部位における脈波を検出する脈波検出部1と、血管内外圧差制御部2と、駆出波・反射波特徴情報抽出部3とを備える。
(First embodiment)
FIG. 1 is a block diagram of a first embodiment of the pulse wave analysis apparatus of the present invention. The pulse wave analysis device 10 of the first embodiment includes a pulse wave detection unit 1 that detects a pulse wave in a certain part of a human living body, an intravascular external pressure difference control unit 2, and ejection wave / reflected wave characteristic information. And an extraction unit 3.

上記脈波検出部1としては、例えば、発光素子から出力される赤外光が血管内の血液量に応じて反射あるいは吸収される度合いを受光素子で測定する光電容積脈波法を用いるものなどがある。また、上記脈波検出部1で脈波を測定する生体部位は、特に大きな制限事項があるわけではないが、できるならば、非侵襲・非拘束の部位であることが望ましく、例えば、指尖・手首・耳朶などが好ましい。   As the pulse wave detection unit 1, for example, a device using a photoelectric volume pulse wave method in which the degree of reflection or absorption of infrared light output from a light emitting element according to the blood volume in a blood vessel is measured by a light receiving element is used. There is. In addition, the body part for measuring the pulse wave by the pulse wave detector 1 is not particularly limited, but is preferably a non-invasive / non-constrained part. -Wrist and earlobe are preferred.

また、上記駆出波・反射波特徴情報抽出部3は、基準時間検出部5と脈波振幅検出部6とを有する。この基準時間検出部5は、上記脈波検出部1で検出した上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する。この基準時間の検出については、後述する。また、上記脈波振幅検出部6は、上記基準時間検出部5で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅を検出すると共に上記基準時間検出部5で検出した上記反射波成分の基準時間に対応する上記脈波の振幅を検出する。   The ejection wave / reflected wave feature information extraction unit 3 includes a reference time detection unit 5 and a pulse wave amplitude detection unit 6. The reference time detection unit 5 specifies a reference time for specifying the ejection wave component included in the pulse wave at the partial position detected by the pulse wave detection unit 1 and the reflected wave component included in the pulse wave. And a reference time for detecting. The detection of the reference time will be described later. The pulse wave amplitude detector 6 detects the amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the reference time detector 5 and detects the amplitude detected by the reference time detector 5. The amplitude of the pulse wave corresponding to the reference time of the reflected wave component is detected.

また、血管内外圧差制御部2は、脈波検出部1で検出した上記一部位における脈波からこの脈波の振幅を検出する脈波振幅情報検出部7と、上記一部位の血管の内圧と外圧との差を制御する圧力制御部8とを有する。この圧力制御部8は、上記脈波振幅情報検出部7で検出した脈波の振幅を上記一部位の血管の内圧と外圧との差との関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を制御する。この一部位の血管の内圧と外圧との差を制御する方法については、後述する。   The intravascular / external pressure difference control unit 2 includes a pulse wave amplitude information detection unit 7 that detects the amplitude of the pulse wave from the pulse wave at the partial position detected by the pulse wave detection unit 1, and the internal pressure of the partial blood vessel. A pressure control unit 8 for controlling a difference from the external pressure. The pressure control unit 8 is configured so that the pulse wave amplitude detected by the pulse wave amplitude information detection unit 7 falls within a region where the relationship between the difference between the internal pressure and the external pressure of the partial blood vessels can be regarded as substantially linear. The difference between the internal pressure and the external pressure of the blood vessel at the site is controlled. A method for controlling the difference between the internal pressure and the external pressure of the partial blood vessels will be described later.

上記構成の脈波解析装置10において、上記基準時間検出部5が上記基準時間を求める過程の一例を以下に説明する。   In the pulse wave analyzing apparatus 10 having the above configuration, an example of a process in which the reference time detection unit 5 obtains the reference time will be described below.

まず、図2Aの(A)欄に、上記脈波検出部1で検出した脈波の波形の一例を示す。図2Aの(A)欄における縦軸は脈波の振幅に対応する圧力(mmHg)に対応する測定電圧値(V)である。この実施形態の脈波伝搬速度測定装置10では、一例として、一般的なカフ式血圧計で測定される血圧(mmHg)でもって、脈波検出部1で測定した電圧値(V)が脈波の振幅に対応する圧力(mmHg)にどう対応するかの補正(キャリブレーション)を行っている。なお、この補正(キャリブレーション)は、後述するように、血管内外圧差制御部2が圧力制御部8を制御して、上記脈波検出部1が脈波を測定する部位に圧力制御部8が加える外圧を上記部位の血管の内圧に近くなるように設定した後に行えばよく、その後の測定では上記キャリブレーションの結果を用いればよい。   First, an example of a pulse wave waveform detected by the pulse wave detector 1 is shown in the (A) column of FIG. 2A. The vertical axis in the column (A) of FIG. 2A represents the measured voltage value (V) corresponding to the pressure (mmHg) corresponding to the amplitude of the pulse wave. In the pulse wave propagation velocity measuring apparatus 10 of this embodiment, as an example, the voltage value (V) measured by the pulse wave detector 1 with the blood pressure (mmHg) measured by a general cuff sphygmomanometer is the pulse wave. Correction (calibration) of how to correspond to the pressure (mmHg) corresponding to the amplitude of. As will be described later, this correction (calibration) is performed by the pressure controller 8 at a site where the intravascular pressure difference controller 2 controls the pressure controller 8 and the pulse wave detector 1 measures the pulse wave. It may be performed after the external pressure to be applied is set so as to be close to the internal pressure of the blood vessel in the region, and the result of the calibration may be used in the subsequent measurement.

上記基準時間検出部5は、例えば、上記脈波が、Murgoらによる血圧波形分類のTypeCの場合は、図2Aの(A)欄に示される脈波の波形における収縮期の極大点Q1の時間T1を駆出波成分の基準時間T1として検出する。図2Aの(B)欄には、上記脈波の加速度波を示し、図2Bの(A)欄には、上記脈波の3回微分波を示している。そして、上記基準時間検出部5は、例えば、上記脈波が、Murgoらによる血圧波形分類のTypeCの場合は、図2Bの(B)欄に示される脈波の4次微分波の第3ゼロクロスポイントQ2を反射波成分の基準時間T2として検出する。なお、この第3ゼロクロスポイントQ2は、図2A(A)に示す脈波が極小値になった以降に、図2B(B)に示す4回微分波形が3回目に下向きにゼロクロスするポイントを意味する。   For example, when the pulse wave is Type C of the blood pressure waveform classification by Murgo et al., The reference time detection unit 5 is the time of the systolic maximum point Q1 in the pulse wave waveform shown in the (A) column of FIG. 2A. T1 is detected as the reference time T1 of the ejection wave component. The (B) column of FIG. 2A shows the acceleration wave of the pulse wave, and the (A) column of FIG. 2B shows the triple differential wave of the pulse wave. For example, when the pulse wave is Type C of blood pressure waveform classification by Murgo et al., The reference time detection unit 5 performs the third zero cross of the fourth-order differential wave of the pulse wave shown in the (B) column of FIG. 2B. The point Q2 is detected as the reference time T2 of the reflected wave component. The third zero-cross point Q2 means a point at which the fourth differential waveform shown in FIG. 2B (B) zero-crosses downward for the third time after the pulse wave shown in FIG. 2A (A) has reached the minimum value. To do.

尚、上述の説明では、上記検出した脈波が上記血圧波形分類のTypeCである場合について説明したが、上記検出した脈波が上記血圧波形分類のTypeC以外の波形形状である場合には、より好適に脈波の駆出波成分の基準時間と反射波成分の基準時間を特定できる手法があればそれを採用してもよい。例えば、脈波は、大きな血圧変動がなければ、基本的にそれほど大きな波形変化を示すわけではないので、測定した複数の脈波を重ね合わせる(加算平均)ことで、脈波検出精度の改善を図ることが可能になる。   In the above description, the case where the detected pulse wave is Type C of the blood pressure waveform classification has been described. However, when the detected pulse wave has a waveform shape other than Type C of the blood pressure waveform classification, If there is a method that can suitably specify the reference time of the ejection wave component of the pulse wave and the reference time of the reflected wave component, it may be adopted. For example, if the pulse wave does not show a large blood pressure fluctuation, it basically does not show a very large waveform change, so by superimposing a plurality of measured pulse waves (addition averaging), the pulse wave detection accuracy can be improved. It becomes possible to plan.

また、脈波は、ノイズレベル、年齢・性別・疾病の有無・体調などに応じて、様々な波形形状を示すことから、より好適に脈波の駆出波成分の基準時間と反射波成分の基準時間を特定できる手法があればそれを採用してもよい。例えば、検出した脈波を、その時点の被測定者の状態と合わせて履歴として残すことで、脈波の駆出波成分の基準時間と反射波成分の基準時間を特定する精度の改善を図れる。   In addition, since the pulse wave shows various waveform shapes depending on the noise level, age, sex, presence / absence of disease, physical condition, etc., the reference time of the ejection wave component of the pulse wave and the reflected wave component are more preferably If there is a method that can specify the reference time, it may be adopted. For example, it is possible to improve the accuracy of specifying the reference time of the ejection wave component of the pulse wave and the reference time of the reflected wave component by leaving the detected pulse wave as a history together with the state of the measurement subject at that time. .

また、この脈波解析装置10が備える上記脈波振幅検出部6は、図3の波形図に例示するように、上記基準時間検出部5で検出した上記駆出波成分の基準時間T1に対応する上記脈波Sの振幅W1を検出すると共に上記基準時間検出部5で検出した上記反射波成分の基準時間T2に対応する上記脈波Sの振幅W2を検出する。このようにして、脈波Sの駆出波成分,反射波成分の基準時間T1,T2に対応する脈波Sの振幅W1,W2を求める手法は、近年、循環器系の診断指標として利用されているAI(Augumentation Index)で採用されている手法である。   Further, the pulse wave amplitude detector 6 included in the pulse wave analyzer 10 corresponds to the reference time T1 of the ejection wave component detected by the reference time detector 5 as illustrated in the waveform diagram of FIG. The amplitude W1 of the pulse wave S is detected, and the amplitude W2 of the pulse wave S corresponding to the reference time T2 of the reflected wave component detected by the reference time detector 5 is detected. In this way, a method for obtaining the amplitudes W1 and W2 of the pulse wave S corresponding to the reference time T1 and T2 of the ejection wave component and the reflected wave component of the pulse wave S has recently been used as a diagnostic index for the circulatory system. It is a technique adopted in the AI (Augmentation Index).

さらに、この脈波解析装置10において、上記血管内外圧差制御部2が有する圧力制御部8が、上記脈波振幅情報検出部7で検出した脈波の振幅を上記一部位の血管の内圧と外圧との差との関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を制御する手法の一例を以下に説明する。   Further, in this pulse wave analysis device 10, the pressure control unit 8 included in the intravascular / external pressure difference control unit 2 converts the amplitude of the pulse wave detected by the pulse wave amplitude information detection unit 7 into the internal pressure and the external pressure of the partial blood vessels. An example of a method for controlling the difference between the internal pressure and the external pressure of the partial blood vessels so as to fall within a region where the relationship with the difference can be regarded as substantially linear will be described below.

図4は、血管の内圧と外圧との差と血管容積との関係を示す特性図である。図4に示すように、血管の内圧と外圧との差と血管容積との関係は、全体として非線形な関係になる。上記外圧は、脈波検出部1が血管に加える圧力である。   FIG. 4 is a characteristic diagram showing the relationship between the difference between the internal pressure and the external pressure of the blood vessel and the blood vessel volume. As shown in FIG. 4, the relationship between the difference between the internal pressure and the external pressure of the blood vessel and the blood vessel volume is a non-linear relationship as a whole. The external pressure is a pressure applied to the blood vessel by the pulse wave detector 1.

図4において、例えば、領域(a)は、外圧が弱く、外圧が内圧よりも小さい場合に対応しており、領域(c)は、外圧が強く、外圧が内圧よりも大きい場合に対応している。また、領域(b)は、領域(a),領域(c)に比べて、外圧と内圧とが近い値の場合に対応している。また、符号Jで示す一点鎖線は、外圧と内圧とが等しい場合を示している。   In FIG. 4, for example, region (a) corresponds to the case where the external pressure is weak and the external pressure is smaller than the internal pressure, and region (c) corresponds to the case where the external pressure is strong and the external pressure is greater than the internal pressure. Yes. The region (b) corresponds to the case where the external pressure and the internal pressure are close to each other as compared with the regions (a) and (c). Moreover, the dashed-dotted line shown with the code | symbol J has shown the case where an external pressure and an internal pressure are equal.

外圧が弱い図4の領域(a)では、血管に加わる内圧変化に対して、血管の容積変化は非線形な特性を示すことがわかる。また、外圧が強い図4の領域(c)でも、血管に加わる内圧変化に対して、血管の容積変化は非線形な特性を示す。この外圧が大きい領域(c)は、血管がほとんどつぶれてしまい、血管の容積変化がほとんど起こらない領域である。   In the region (a) in FIG. 4 where the external pressure is weak, it can be seen that the change in volume of the blood vessel exhibits nonlinear characteristics with respect to the change in internal pressure applied to the blood vessel. Further, even in the region (c) in FIG. 4 where the external pressure is strong, the change in the volume of the blood vessel exhibits nonlinear characteristics with respect to the change in the internal pressure applied to the blood vessel. The region (c) where the external pressure is large is a region where the blood vessel is almost crushed and the volume of the blood vessel hardly changes.

一方、図4の領域(b)では、外圧と内圧との差が小さく、この内外圧差が0mmHg付近のとき、内圧の変化に対する血管容積変化が最も大きくなる。つまり、この領域(b)は、血管が柔らかい領域となる。また、この内外圧差が0mmHg付近では、圧力変化に対する容積変化がほとんど線形な領域と仮定できる。したがって、上記脈波検出部1が脈波を測定する部位に上記圧力制御部8が加える外圧を予め調整して、この外圧が上記血管の内圧に近くなるように設定しておくことにより、血管の内圧と外圧との差と血管容積との関係を図4の領域(b)のように略線形と見なせる領域に入れることができる。   On the other hand, in the region (b) of FIG. 4, the difference between the external pressure and the internal pressure is small, and when this internal / external pressure difference is around 0 mmHg, the change in blood vessel volume with respect to the change in internal pressure is the largest. That is, this region (b) is a region where the blood vessel is soft. Further, when the internal / external pressure difference is around 0 mmHg, it can be assumed that the volume change with respect to the pressure change is almost linear. Therefore, by adjusting in advance the external pressure applied by the pressure control unit 8 to the part where the pulse wave detecting unit 1 measures the pulse wave, and setting the external pressure close to the internal pressure of the blood vessel, The relationship between the difference between the internal pressure and the external pressure and the blood vessel volume can be placed in a region that can be regarded as being substantially linear as shown in region (b) of FIG.

例えば、以下に、図9のフローチャートを参照して説明するようにして、上記圧力制御部8により上記脈波を測定する部位に加わる圧力(外圧)を変化させ、上記脈波振幅情報検出部7により脈波振幅が最大となる点をサーチする。また、このサーチ時に、圧力制御部8により上記脈波を測定する部位に加わる圧力(外圧)Pと上記脈波振幅Wを示す波形を図5に例示する。なお、上記圧力制御部8で上記外圧を変化させる方法としては、従来血圧値を測定するのに用いられているオシロメトリック法のようにカフ圧を制御することにより行う。   For example, as described below with reference to the flowchart of FIG. 9, the pressure (external pressure) applied to the portion for measuring the pulse wave by the pressure control unit 8 is changed, and the pulse wave amplitude information detection unit 7 is changed. To search for a point where the pulse wave amplitude is maximum. Further, FIG. 5 illustrates a waveform indicating the pressure (external pressure) P applied to the portion where the pulse wave is measured by the pressure control unit 8 and the pulse wave amplitude W during the search. In addition, as a method of changing the external pressure by the pressure control unit 8, the cuff pressure is controlled as in the oscillometric method conventionally used for measuring the blood pressure value.

まず、図9のフローチャートに示すステップS1で、圧力制御部8が血管に加える初期圧力を設定し、次に、ステップS2で、この初期圧力時に脈波検出部1が検出した脈波から脈波振幅情報検出部7が振幅情報を算出する。次に、ステップS3で、血管内外圧差制御部2は、上記振幅情報と外圧情報とを記録する。次に、ステップS4で、圧力制御部8は、上記血管に加える外圧を予め定められた値だけ増加させる。次に、ステップS5で、血管内外圧差制御部2は、上記増加させた外圧における振幅情報と外圧情報とを記録する。次に、ステップS6で、血管内外圧差制御部2は、脈波検出部1からの現在の脈波情報による脈波振幅が1つ前の脈波情報による脈波振幅よりも小さいか否かを判断し、小さいと判断すると、次のステップS7に進み、小さくないと判断するとステップS4に戻る。ステップS7では、圧力制御部8が脈波を測定する部位に加える外圧を上記1つ前の脈波振幅に対応する圧力値に設定する。   First, in step S1 shown in the flowchart of FIG. 9, the initial pressure applied to the blood vessel by the pressure control unit 8 is set. Next, in step S2, the pulse wave is detected from the pulse wave detected by the pulse wave detection unit 1 at the initial pressure. The amplitude information detector 7 calculates amplitude information. Next, in step S3, the intravascular / external pressure difference control unit 2 records the amplitude information and the external pressure information. Next, in step S4, the pressure control unit 8 increases the external pressure applied to the blood vessel by a predetermined value. Next, in step S5, the intravascular / external pressure difference control unit 2 records amplitude information and external pressure information on the increased external pressure. Next, in step S6, the intravascular external pressure difference control unit 2 determines whether or not the pulse wave amplitude based on the current pulse wave information from the pulse wave detection unit 1 is smaller than the pulse wave amplitude based on the previous pulse wave information. If it is determined that it is small, the process proceeds to the next step S7, and if it is not small, the process returns to step S4. In step S7, the external pressure applied to the part where the pressure control unit 8 measures the pulse wave is set to a pressure value corresponding to the previous pulse wave amplitude.

このようにして、上記脈波振幅が最大となる点で、圧力制御部8が脈波測定部位に加える圧力(外圧)を保持することにより、圧‐容積変化特性を図4の領域(b)に示すような線形な領域に設定することが可能である。圧‐容積変化特性をこの線形な領域(b)に設定しておくことにより、AIなどの駆出波と反射波の振幅の大きさを比較する場合において、その比率を精度よく検出することが可能である。   In this way, the pressure control unit 8 maintains the pressure (external pressure) applied to the pulse wave measurement site at the point where the pulse wave amplitude is maximized, and thus the pressure-volume change characteristic is shown in the region (b) of FIG. It is possible to set a linear region as shown in FIG. By setting the pressure-volume change characteristic in this linear region (b), the ratio of the amplitude of the ejected wave such as AI and the reflected wave can be accurately detected. Is possible.

尚、上述のように、上記血管内外圧差制御部2が、生体の或る一部位における脈波からこの脈波の振幅を検出し、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を制御する血管内外圧差制御機能と、上記基準時間検出部5が上記基準時間T1とT2を求める基準時間導出機能と、上記脈波振幅検出部6が上記基準時間T1,T2に対応する脈波Sの振幅W1,W2を求める脈波振幅導出機能とを脈波解析プログラムによってコンピュータに実行させてもよい。   As described above, the intravascular / external pressure difference control unit 2 detects the amplitude of the pulse wave from the pulse wave at a certain partial position of the living body, and the pulse with respect to the difference between the internal pressure and the external pressure of the partial blood vessel is detected. An intravascular / external pressure difference control function for controlling the difference between the internal pressure and the external pressure of the partial blood vessels so that the relationship of wave amplitudes can be regarded as substantially linear, and the reference time detection unit 5 includes the reference times T1 and T2 And a pulse wave amplitude deriving function in which the pulse wave amplitude detection unit 6 obtains the amplitudes W1 and W2 of the pulse wave S corresponding to the reference times T1 and T2 is executed by a computer using a pulse wave analysis program. You may let them.

(第2の実施の形態)
図6は、この発明の脈波解析装置の第2実施形態のブロック図である。この第2実施形態の脈波解析装置20は、人間の生体の或る一部位における脈波を検出する脈波検出部21と、血管内外圧差制御部22と、駆出波・反射波特徴情報抽出部23と、血管圧‐容積変化特性モデル化部29を備える。この第2実施形態の脈波解析装置20が備える脈波検出部21は、前述の第1実施形態が備える脈波検出部1と同様の構成である。
(Second embodiment)
FIG. 6 is a block diagram of a second embodiment of the pulse wave analyzer of the present invention. The pulse wave analysis device 20 according to the second embodiment includes a pulse wave detection unit 21 that detects a pulse wave in a certain part of a human body, an intravascular external pressure difference control unit 22, and ejection wave / reflected wave characteristic information. An extraction unit 23 and a vascular pressure-volume change characteristic modeling unit 29 are provided. The pulse wave detection unit 21 included in the pulse wave analysis device 20 of the second embodiment has the same configuration as the pulse wave detection unit 1 included in the first embodiment.

また、この第2実施形態の脈波解析装置20が備える血管内外圧差制御部22は、脈波検出部21で検出した上記一部位における脈波からこの脈波の振幅を検出する脈波振幅情報検出部27と、上記生体の心臓に対する上記脈波検出部21の高さを制御して上記血管の内圧を制御する内圧制御部28とを有する。   In addition, the intravascular external pressure difference control unit 22 included in the pulse wave analysis device 20 of the second embodiment detects pulse wave amplitude information from the pulse wave at the partial position detected by the pulse wave detection unit 21. It has a detection unit 27 and an internal pressure control unit 28 that controls the internal pressure of the blood vessel by controlling the height of the pulse wave detection unit 21 with respect to the heart of the living body.

この内圧制御部28は、例えば、図8に示すように、生体の腕80に装着された脈波検出部21を、昇降装置83で昇降させることで、生体の心臓81に対する高さhを制御できるようにしている。内圧制御部28は、上記昇降装置83で心臓81に対する脈波検出部21の高さhを変化させることによる静水圧変化を利用して、血管内圧を変化させる。なお、予め得られた最高血圧および最低血圧から、脈圧=(最高血圧−最低血圧)と平均血圧(最低血圧+脈圧/3)とを算出する。この算出した平均血圧と脈圧の情報を基に、内圧を変化させる。
内圧制御部として昇降装置を用いて高さを制御しているが、より好適に高さを制御・検出できる手法があればそれを採用しても良い。例えば、脈波検出部に加速度センサを実装し、腕の長さと加速度センサの出力値から心臓の高さを推定できる。
For example, as shown in FIG. 8, the internal pressure control unit 28 controls the height h of the living body heart 81 with respect to the living body heart 81 by moving the pulse wave detection unit 21 attached to the living body arm 80 up and down with an elevating device 83. I can do it. The internal pressure control unit 28 changes the intravascular pressure using the hydrostatic pressure change caused by changing the height h of the pulse wave detection unit 21 with respect to the heart 81 by the lifting device 83. Note that pulse pressure = (maximum blood pressure−minimum blood pressure) and average blood pressure (minimum blood pressure + pulse pressure / 3) are calculated from the maximum blood pressure and minimum blood pressure obtained in advance. The internal pressure is changed based on the calculated average blood pressure and pulse pressure information.
Although the height is controlled using an elevating device as the internal pressure control unit, if there is a method that can control and detect the height more suitably, it may be adopted. For example, an acceleration sensor is mounted on the pulse wave detector, and the height of the heart can be estimated from the arm length and the output value of the acceleration sensor.

そして、血管圧‐容積変化特性モデル化部29は、上記内圧制御部28から上記脈波検出部21の心臓81からの高さhを表す情報を得て、この高さの変化量Δhから、次式(1)により、血管の内圧変化量ΔPinを算出する。
ΔPin = ρ×g×Δh … (1)
Then, the vascular pressure-volume change characteristic modeling unit 29 obtains information representing the height h from the heart 81 of the pulse wave detection unit 21 from the internal pressure control unit 28, and from the change amount Δh of the height, The internal pressure change amount ΔPin of the blood vessel is calculated by the following equation (1).
ΔPin = ρ × g × Δh (1)

上式(1)において、
ΔPin:血管の内圧変化量
ρ:血液の密度
g:重力加速度
Δh:心臓から測定部位までの高さ変化量
である。
In the above equation (1),
ΔPin: change in internal pressure of blood vessel ρ: density of blood g: acceleration of gravity Δh: change in height from the heart to the measurement site.

そして、この実施形態では、外圧(脈波検出部21が上記血管に加える圧力)を一定値としているので、上記血管圧‐容積変化特性モデル化部29が上式(1)により算出した内圧変化量ΔPinが、血管内外圧差の変化量となる。   In this embodiment, since the external pressure (pressure applied by the pulse wave detection unit 21 to the blood vessel) is a constant value, the internal pressure change calculated by the blood vessel pressure-volume change characteristic modeling unit 29 using the above equation (1). The amount ΔPin is the amount of change in the intravascular / external pressure difference.

よって、上記血管圧‐容積変化特性モデル化部29は、血管内外圧差の変化量と、上記血管内外圧差の変化に対応して上記脈波振幅情報検出部27が検出した脈波振幅の変化量の情報とから、血管内外圧差の変化量と脈波振幅の変化量との関係特性を作成する。そして、血管圧‐容積変化特性モデル化部29は、上記血管内外圧差の変化量と脈波振幅の変化量との関係特性から、上記血管の圧‐容積変化特性を作成する。   Therefore, the vascular pressure-volume change characteristic modeling unit 29 changes the intravascular external pressure difference and the pulse wave amplitude change detected by the pulse wave amplitude information detection unit 27 corresponding to the intravascular external pressure difference. From the above information, a relational characteristic between the change amount of the intravascular external pressure difference and the change amount of the pulse wave amplitude is created. Then, the vascular pressure-volume change characteristic modeling unit 29 creates the pressure-volume change characteristic of the blood vessel from the relational characteristic between the change amount of the intravascular external pressure difference and the change amount of the pulse wave amplitude.

ここで、上記血管圧‐容積変化特性モデル化部29が、上記血管内外圧差の変化量と脈波振幅の変化量との関係特性から、上記血管の圧‐容積変化特性を求める過程を説明する。
図10に示すように、各内圧変化量Pv(ΔPin)の時の脈波波形の測定電圧値(V)から、脈波の極大値から極小値までの差分としての脈波振幅(V)を求める。次に、この脈波振幅(V)を、前述の予め得られた脈圧=(最高血圧−最低血圧)で除算する。これにより、或る内外圧差(mmHg)における1mmHg当たりの振幅(V/mmHg)が求まる。
こうして求めた内外圧差(mmHg)と1mmHg当たりの振幅(V/mmHg)との関係をグラフ化すると、図11に示すグラフが得られる。図11のグラフは、上記血管の圧‐容積変化特性のモデル式を微分したグラフとなる。例えば、次式(2)に示すようなシグモイド関数によるモデル式を微分することにより、次式(3)が得られる。そして、図11に示すグラフを次式(3)でカーブフィッティングを行うことにより、係数A、α、βを求める。これにより、血管の圧‐容積変化特性のモデル式(2)の係数A、α、βが導出される。次式(2)において、Pは内外圧差(mmHg)、V(P)は血管容積に対応する信号値である。
V(P)=A/(1+exp(α・P+β)) … (2)
dV/dP=Aαexp(α・P+β)/(1+exp(α・P+β)) … (3)
Here, a process in which the vascular pressure-volume change characteristic modeling unit 29 obtains the vascular pressure-volume change characteristic from the relational characteristic between the change amount of the intravascular external pressure difference and the change amount of the pulse wave amplitude will be described. .
As shown in FIG. 10, the pulse wave amplitude (V) as a difference from the measured value (V) of the pulse wave waveform at each internal pressure change amount Pv (ΔPin) to the minimum value of the pulse wave is obtained. Ask. Next, the pulse wave amplitude (V) is divided by the previously obtained pulse pressure = (maximum blood pressure−minimum blood pressure). Thereby, the amplitude (V / mmHg) per 1 mmHg in a certain internal / external pressure difference (mmHg) is obtained.
When the relationship between the internal / external pressure difference (mmHg) thus obtained and the amplitude per 1 mmHg (V / mmHg) is graphed, the graph shown in FIG. 11 is obtained. The graph of FIG. 11 is a graph obtained by differentiating the model expression of the pressure-volume change characteristic of the blood vessel. For example, the following equation (3) is obtained by differentiating a model equation based on a sigmoid function as shown in the following equation (2). Then, the coefficients A, α, and β are obtained by performing curve fitting on the graph shown in FIG. 11 with the following equation (3). As a result, the coefficients A, α, and β of the model equation (2) of the blood pressure-volume change characteristic are derived. In the following equation (2), P is the internal / external pressure difference (mmHg), and V (P) is a signal value corresponding to the blood vessel volume.
V (P) = A / (1 + exp (α · P + β)) (2)
dV / dP = Aαexp (α · P + β) / (1 + exp (α · P + β)) 2 (3)

そして、血管圧‐容積特性モデル化部29によって特定された圧‐容積変化特性のモデル式(2)の情報は、上記血管圧‐容積特性モデル化部29から、駆出波・反射波特徴情報抽出部23の脈波振幅検出部26に入力される。   The information of the model expression (2) of the pressure-volume change characteristic specified by the vascular pressure-volume characteristic modeling unit 29 is obtained from the vascular pressure-volume characteristic modeling unit 29 by the ejection wave / reflected wave characteristic information. This is input to the pulse wave amplitude detector 26 of the extractor 23.

この駆出波・反射波特徴情報抽出部23では、基準時間検出部25は、前述の第1実施形態の基準時間検出部5と同様にして、上記脈波検出部21で検出した脈波の駆出波成分の基準時間T1と反射波成分の基準時間T2を検出する。そして、上記脈波振幅検出部26には、上記脈波検出部21で検出した脈波の振幅に対応する圧力を表す圧力信号が入力される。この脈波振幅検出部26は、上記脈波の駆出波成分の基準時間T1での上記圧力信号が表す圧力から血管内外圧差Pを算出する。さらに、上記脈波振幅検出部26は、駆出波成分の基準時間T1での脈波振幅値を脈圧(最高血圧−最低血圧)とする。この脈波振幅値は、前述したように、予め一般的なカフ式血圧計で測定された血圧(mmHg)により圧力信号への対応がキャリブレーションされている。   In the ejected wave / reflected wave feature information extraction unit 23, the reference time detection unit 25 performs the pulse wave detection by the pulse wave detection unit 21 in the same manner as the reference time detection unit 5 of the first embodiment described above. The reference time T1 of the ejection wave component and the reference time T2 of the reflected wave component are detected. The pulse wave amplitude detector 26 receives a pressure signal representing a pressure corresponding to the amplitude of the pulse wave detected by the pulse wave detector 21. The pulse wave amplitude detector 26 calculates the intravascular external pressure difference P from the pressure represented by the pressure signal at the reference time T1 of the ejection wave component of the pulse wave. Further, the pulse wave amplitude detection unit 26 sets the pulse wave amplitude value at the reference time T1 of the ejection wave component as the pulse pressure (maximum blood pressure−minimum blood pressure). As described above, this pulse wave amplitude value is calibrated to correspond to a pressure signal based on blood pressure (mmHg) measured in advance with a general cuff sphygmomanometer.

また、上記脈波振幅検出部26は、上記脈波の反射波成分の基準時間T2での上記圧力信号が表す圧力から、上記圧‐容積変化特性としての式(2)を使用して、反射波成分の基準時間T2での脈波振幅を検出する。
ここで、図12,図13を参照して、上記脈波振幅検出部26が、上記シグモイド関数による血管の圧‐容積変化特性のモデル式(2)を使用して、上記反射波成分基準時間T2での脈波振幅値を導出する過程を説明する。
(i) まず、予め得た最高血圧値Pmaxから、測定部位に加えている外圧Pexを差分することにより内外圧差(Pmax−Pex)を求める。次に、圧−容積変化特性モデル化部29によって求められた上記血管の圧‐容積変化特性のモデル式(2)に、内外圧差P(mmHg)として上記内外圧差(Pmax−Pex)を代入することにより、血管容積に対応する信号値Vfを求める(図12参照)。
(ii) 次に、図13に示すように、駆出波・反射波特徴情報抽出部23から得られた駆出波成分の測定電圧値mfから反射波成分の測定電圧値mrを差分した値ms(=mf−mr)を求める。この反射波成分の測定電圧値mrは、脈波検出部21が基準時間T2に検出した脈波振幅に相当している。また、上記駆出波成分の測定電圧値mfは、脈波検出部21が基準時間T1に検出した脈波振幅に相当している。
(iii) 次に、前項(i)で血管の圧‐容積変化特性のモデル式(2)から求めた血管容積に対応する信号値Vfから前項(ii)で求めた差分測定値msを減算した減算値(Vf−ms)を、上記血管の圧‐容積変化特性のモデル式(2)のV(P)に代入して、内外圧差Ptmrを求める。最後に、この内外圧差Ptmrから最低血圧を減算することにより、反射波の脈波振幅が何mmHgの血圧に対応するかを求めることができる。
Further, the pulse wave amplitude detector 26 uses the expression (2) as the pressure-volume change characteristic to reflect the pressure represented by the pressure signal at the reference time T2 of the reflected wave component of the pulse wave. The pulse wave amplitude at the reference time T2 of the wave component is detected.
Here, referring to FIGS. 12 and 13, the pulse wave amplitude detection unit 26 uses the model expression (2) of the blood pressure-volume change characteristic by the sigmoid function to calculate the reflected wave component reference time. The process of deriving the pulse wave amplitude value at T2 will be described.
(i) First, an internal / external pressure difference (Pmax−Pex) is obtained by subtracting an external pressure Pex applied to a measurement site from a pre-obtained maximum blood pressure value Pmax. Next, the internal / external pressure difference (Pmax−Pex) is substituted as the internal / external pressure difference P (mmHg) into the model equation (2) of the blood pressure-volume change characteristic obtained by the pressure-volume change characteristic modeling unit 29. Thus, a signal value Vf corresponding to the blood vessel volume is obtained (see FIG. 12).
(ii) Next, as shown in FIG. 13, a value obtained by subtracting the measured voltage value mr of the reflected wave component from the measured voltage value mf of the ejected wave component obtained from the ejected wave / reflected wave feature information extraction unit 23. ms (= mf−mr) is obtained. The measured voltage value mr of the reflected wave component corresponds to the pulse wave amplitude detected by the pulse wave detector 21 at the reference time T2. The measured voltage value mf of the ejection wave component corresponds to the pulse wave amplitude detected by the pulse wave detector 21 at the reference time T1.
(iii) Next, the difference measurement value ms obtained in the previous item (ii) is subtracted from the signal value Vf corresponding to the blood vessel volume obtained from the model equation (2) of the blood pressure-volume change characteristic in the previous item (i). The subtraction value (Vf−ms) is substituted into V (P) of the model equation (2) of the blood pressure-volume change characteristic to obtain the internal / external pressure difference Ptmr. Finally, by subtracting the minimum blood pressure from this internal / external pressure difference Ptmr, it is possible to determine how many mmHg of blood pressure the reflected wave amplitude corresponds to.

このように、この第2実施形態の脈波解析装置20によれば、上記脈波振幅検出部26は、上記脈波検出部21で検出した脈波と上記血管の圧‐容積変化特性のモデル式(2)で表されるような上記血管の圧‐容積変化特性とに基づいて、各基準時間T1,T2に対応する脈波の振幅をより正確に求めることができる。   Thus, according to the pulse wave analysis device 20 of the second embodiment, the pulse wave amplitude detection unit 26 is a model of the pulse wave detected by the pulse wave detection unit 21 and the pressure-volume change characteristic of the blood vessel. Based on the pressure-volume change characteristic of the blood vessel as expressed by the equation (2), the amplitude of the pulse wave corresponding to each of the reference times T1 and T2 can be obtained more accurately.

尚、上記血管内外圧差制御部22に対応する血管内外圧差制御機能と、上記血管圧‐容積変化特性モデル化部29に対応する血管圧‐容積変化特性モデル化機能とを脈波解析プログラムによってコンピュータに実行させてもよい。   The intravascular / external pressure difference control function corresponding to the intravascular / external pressure difference control unit 22 and the vascular pressure / volume change characteristic modeling function corresponding to the vascular pressure / volume change characteristic modeling unit 29 are computerized by a pulse wave analysis program. May be executed.

(第3の実施の形態)
図7は、この発明の脈波解析装置の第3実施形態のブロック図である。この第3実施形態の脈波解析装置70は、人間の生体の或る一部位における脈波を検出する脈波検出部71と、血管内外圧差制御部72と、駆出波・反射波特徴情報抽出部73と、血管圧‐容積変化特性モデル化部75を備える。この第3実施形態の脈波解析装置70が備える脈波検出部71は、前述の第1実施形態が備える脈波検出部1と同様の構成である。
(Third embodiment)
FIG. 7 is a block diagram of a third embodiment of the pulse wave analyzer of the present invention. The pulse wave analysis device 70 according to the third embodiment includes a pulse wave detection unit 71 that detects a pulse wave in a certain part of a human body, an intravascular external pressure difference control unit 72, and ejection wave / reflected wave characteristic information. An extraction unit 73 and a vascular pressure-volume change characteristic modeling unit 75 are provided. The pulse wave detection unit 71 included in the pulse wave analysis device 70 of the third embodiment has the same configuration as the pulse wave detection unit 1 included in the first embodiment.

また、この第3実施形態が備える血管内外圧差制御部72は、脈波検出部71で検出した上記一部位における脈波からこの脈波の振幅を検出する脈波振幅情報検出部77と、上記一部位の血管の内圧と外圧との差を制御する圧力制御部78とを有する。この圧力制御部78は、前述の第1実施形態の圧力制御部8と同様の構成である。よって、この圧力制御部78は、前述の第1実施形態の圧力制御部8と同様にして、上記脈波振幅情報検出部77で検出した脈波の振幅を上記一部位の血管の内圧と外圧との差との関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を制御する。   Further, the intravascular external pressure difference control unit 72 included in the third embodiment includes a pulse wave amplitude information detection unit 77 that detects the amplitude of the pulse wave from the pulse wave at the partial position detected by the pulse wave detection unit 71, and the above A pressure control unit 78 for controlling the difference between the internal pressure and the external pressure of the blood vessel at one site. The pressure control unit 78 has the same configuration as the pressure control unit 8 of the first embodiment described above. Therefore, the pressure control unit 78 uses the pulse wave amplitude detected by the pulse wave amplitude information detection unit 77 in the same way as the pressure control unit 8 of the first embodiment described above to determine the internal pressure and external pressure of the partial blood vessels. The difference between the internal pressure and the external pressure of the partial blood vessels is controlled such that the relationship with the difference is within a region that can be regarded as substantially linear.

また、この第3実施形態では、上記圧力制御部78は、脈波振幅情報検出部77による制御によって、脈波検出部71が血管に対して加える圧力を徐々に増加させる。これにより、上記圧力制御部78は、血管内外圧差を血管がつぶれる領域(脈波振幅が最小になる領域)まで加圧する。この加圧の期間において、血管内外圧差制御部72は、血管内外圧差とそれに対応する脈波振幅を測定する。   In the third embodiment, the pressure controller 78 gradually increases the pressure applied to the blood vessel by the pulse wave detector 71 under the control of the pulse wave amplitude information detector 77. As a result, the pressure control unit 78 pressurizes the intra-vascular external pressure difference to a region where the blood vessel collapses (region where the pulse wave amplitude is minimized). During this pressurization period, the intravascular / external pressure difference control unit 72 measures the intravascular / external pressure difference and the corresponding pulse wave amplitude.

上記圧力制御部78は、例えば、血管の測定部位に加えるカフ圧を変化させることにより、上記血管の測定部位に対する外圧を変化させる。この外圧の値は、カフの制御値を用いることにより検出できる。そして、血管内外圧差制御部72は、予め算出された血圧値からカフの制御値を用いて検出した外圧の値を差分することにより、血管内外圧差を算出する。この予め算出された血圧値とは、前述したように、予め一般的なカフ式血圧計で測定された血圧値(mmHg)である。
ここで、上記血管圧‐容積変化特性モデル化部75が、上記血管内外圧差の変化量と脈波振幅の変化量との関係特性から、上記血管の圧‐容積変化特性を求める過程を説明する。
上記血管圧‐容積変化特性モデル化部75は、各外圧変化量の時の脈波波形の測定電圧値(V)から、脈波の極大値から極小値までの差分としての脈波振幅(mV)を求める。次に、この脈波振幅(mV)を、前述の予め得られた脈圧=(最高血圧−最低血圧)で除算する。これにより、或る内外圧差(mmHg)における1mmHg当たりの振幅(V/mmHg)が求まる。
こうして求めた内外圧差(mmHg)と1mmHg当たりの振幅(V/mmHg)との関係をグラフ化すると、前述の第2実施形態で説明したのと同様の図11に示す様なグラフが得られる。図11のグラフは、上記血管の圧‐容積変化特性のモデル式を微分したグラフとなる。例えば、次式(2)に示すようなシグモイド関数によるモデル式を微分することにより、次式(3)が得られる。そして、図11に示すグラフを次式(3)でカーブフィッティングを行うことにより、係数A、α、βを求める。これにより、血管の圧‐容積変化特性のモデル式(2)の係数A、α、βが導出される。次式(2)において、Pは内外圧差(mmHg)、V(P)は血管容積に対応する信号値である。
V(P)=A/(1+exp(α・P+β)) … (2)
dV/dP=Aαexp(α・P+β)/(1+exp(α・P+β)) … (3)
The pressure control unit 78 changes the external pressure applied to the blood vessel measurement site by, for example, changing the cuff pressure applied to the blood vessel measurement site. The value of the external pressure can be detected by using the cuff control value. Then, the intravascular / external pressure difference control unit 72 calculates the intravascular / external pressure difference by subtracting the value of the external pressure detected using the cuff control value from the previously calculated blood pressure value. The blood pressure value calculated in advance is a blood pressure value (mmHg) measured in advance with a general cuff sphygmomanometer, as described above.
Here, a process in which the vascular pressure-volume change characteristic modeling unit 75 obtains the vascular pressure-volume change characteristic from the relational characteristic between the change amount of the intravascular external pressure difference and the change amount of the pulse wave amplitude will be described. .
The vascular pressure-volume change characteristic modeling unit 75 calculates the pulse wave amplitude (mV) as a difference from the measured voltage value (V) of the pulse wave waveform at each external pressure change amount to the maximum value to the minimum value of the pulse wave. ) Next, the pulse wave amplitude (mV) is divided by the previously obtained pulse pressure = (maximum blood pressure−minimum blood pressure). Thereby, the amplitude (V / mmHg) per 1 mmHg in a certain internal / external pressure difference (mmHg) is obtained.
When the relationship between the internal / external pressure difference (mmHg) thus obtained and the amplitude per 1 mmHg (V / mmHg) is graphed, a graph as shown in FIG. 11 similar to that described in the second embodiment is obtained. The graph of FIG. 11 is a graph obtained by differentiating the model expression of the pressure-volume change characteristic of the blood vessel. For example, the following equation (3) is obtained by differentiating a model equation based on a sigmoid function as shown in the following equation (2). Then, the coefficients A, α, and β are obtained by performing curve fitting on the graph shown in FIG. 11 with the following equation (3). As a result, the coefficients A, α, and β of the model equation (2) of the blood pressure-volume change characteristic are derived. In the following equation (2), P is the internal / external pressure difference (mmHg), and V (P) is a signal value corresponding to the blood vessel volume.
V (P) = A / (1 + exp (α · P + β)) (2)
dV / dP = Aαexp (α · P + β) / (1 + exp (α · P + β)) 2 (3)

そして、圧‐容積特性モデル化部75によって得られた圧‐容積変化特性のモデル式(2)の情報は、上記圧‐容積特性モデル化部75から、駆出波・反射波特徴情報抽出部73の脈波振幅検出部79に入力される。   The information of the pressure-volume change characteristic model equation (2) obtained by the pressure-volume characteristic modeling unit 75 is sent from the pressure-volume characteristic modeling unit 75 to the ejection wave / reflected wave characteristic information extraction unit. 73 is input to the pulse wave amplitude detector 79.

この駆出波・反射波特徴情報抽出部73では、基準時間検出部76は、前述の第1実施形態の基準時間検出部5と同様にして、上記脈波検出部1で検出した脈波の駆出波成分の基準時間T1と反射波成分の基準時間T2を検出する。そして、脈波振幅検出部79には、脈波検出部71で検出した脈波の振幅に対応する圧力を表す圧力信号が入力される。上記脈波振幅検出部79は、上記脈波の駆出波成分の基準時間T1での上記圧力信号が表す圧力から血管内外圧差Pを算出する。さらに、上記脈波振幅検出部79は、駆出波成分の基準時間T1での脈波振幅値を脈圧(最高血圧−最低血圧)とする。この脈波振幅値は、前述したように、予め一般的なカフ式血圧計で測定された血圧(mmHg)により圧力信号への対応がキャリブレーションされている。   In the ejected wave / reflected wave feature information extraction unit 73, the reference time detection unit 76 performs the pulse wave detection by the pulse wave detection unit 1 in the same manner as the reference time detection unit 5 of the first embodiment described above. The reference time T1 of the ejection wave component and the reference time T2 of the reflected wave component are detected. The pulse wave amplitude detector 79 receives a pressure signal representing a pressure corresponding to the amplitude of the pulse wave detected by the pulse wave detector 71. The pulse wave amplitude detector 79 calculates the intra-vascular external pressure difference P from the pressure represented by the pressure signal at the reference time T1 of the ejection wave component of the pulse wave. Further, the pulse wave amplitude detection unit 79 sets the pulse wave amplitude value at the reference time T1 of the ejection wave component as the pulse pressure (maximum blood pressure−minimum blood pressure). As described above, this pulse wave amplitude value is calibrated to correspond to a pressure signal based on blood pressure (mmHg) measured in advance with a general cuff sphygmomanometer.

また、上記脈波振幅検出部79は、上記脈波の反射波成分の基準時間T2での上記圧力信号が表す圧力を上記圧‐容積変化特性のモデル式(2)を使用して、反射波成分の基準時間T2での脈波振幅を検出する。この脈波振幅検出部79が、上記シグモイド関数による血管の圧‐容積変化特性のモデル式(2)を使用して、上記反射波成分基準時間T2での脈波振幅値を導出する過程は、前述の第2実施形態において、図12,図13を参照して説明したのと同様であるので、説明を省略する。   Further, the pulse wave amplitude detector 79 uses the model equation (2) of the pressure-volume change characteristic to express the pressure represented by the pressure signal at the reference time T2 of the reflected wave component of the pulse wave. The pulse wave amplitude at the component reference time T2 is detected. The process in which the pulse wave amplitude detecting unit 79 derives the pulse wave amplitude value at the reflected wave component reference time T2 using the model equation (2) of the blood pressure-volume change characteristic by the sigmoid function is as follows: The second embodiment described above is the same as that described with reference to FIGS.

このように、この第3実施形態の脈波解析装置70によれば、上記脈波振幅検出部79は、上記脈波検出部71で検出した脈波と上記圧‐容積変化特性のモデル式(2)で表されるような上記血管の圧‐容積変化特性とに基づいて、各基準時間T1,T2に対応する脈波の振幅をより正確に求めることができる。   Thus, according to the pulse wave analysis device 70 of the third embodiment, the pulse wave amplitude detection unit 79 is a model equation for the pulse wave detected by the pulse wave detection unit 71 and the pressure-volume change characteristic ( Based on the pressure-volume change characteristic of the blood vessel as represented by 2), the amplitude of the pulse wave corresponding to each of the reference times T1 and T2 can be obtained more accurately.

尚、上記血管内外圧差制御部72に対応する血管内外圧差制御機能と、上記血管圧‐容積変化特性モデル化部75に対応する血管圧‐容積変化特性モデル化機能とを脈波解析プログラムによってコンピュータに実行させてもよい。また、上記第2、第3実施形態では、上記圧‐容積変化特性のモデルとして、次式(2)に示すようなシグモイド関数を採用したが、上記圧‐容積変化特性のモデルとする式がシグモイド関数に限られるものではなく、その他の好ましい所望のモデル式を採用できるのは勿論である。   The intravascular / external pressure difference control function corresponding to the intravascular / external pressure difference control unit 72 and the vascular pressure / volume change characteristic modeling function corresponding to the vascular pressure / volume change characteristic modeling unit 75 are computerized by a pulse wave analysis program. May be executed. In the second and third embodiments, the sigmoid function shown in the following equation (2) is adopted as the model of the pressure-volume change characteristic. Of course, the present invention is not limited to the sigmoid function, and other desirable desired model formulas can be adopted.

この発明の脈波解析装置は、生体の脈波に含まれている駆出波と反射波を高精度に同定することが求められる用途に適しており、脈波の駆出波と反射波を利用した新たな生体指標を得るのに有用である。一例として、脈波に含まれている駆出波成分と反射波成分の比率を求めることで、全身の動脈硬化度の定量的な評価や、中心動脈圧の推定などに用いられているAI(Augmentation Index)等の、生体の状態を把握する上で有用となる生体指標を得るのにも利用可能である。   The pulse wave analysis device of the present invention is suitable for an application where it is required to identify the ejection wave and the reflected wave included in the pulse wave of a living body with high accuracy. This is useful for obtaining new biometric indices. As an example, by calculating the ratio of the ejection wave component and the reflected wave component contained in the pulse wave, the AI (used for quantitative evaluation of the degree of arteriosclerosis in the whole body, estimation of central arterial pressure, etc. (Augmentation Index) can also be used to obtain a biological index useful for grasping the state of the living body.

1、21、71 脈波検出部
2、22、72 血管内外圧差制御部
3、23、73 駆出波・反射波特徴情報抽出部
5、25、75 基準時間検出部
6、26、79 脈波振幅検出部
7、27、77 脈波振幅情報検出部
8、78 圧力制御部
10、20、70 脈波解析装置
28 血管内圧制御部
1, 21, 71 Pulse wave detection unit 2, 22, 72 Intravascular / external pressure difference control unit 3, 23, 73 Ejection wave / reflected wave feature information extraction unit 5, 25, 75 Reference time detection unit 6, 26, 79 Pulse wave Amplitude detectors 7, 27, 77 Pulse wave amplitude information detectors 8, 78 Pressure controller 10, 20, 70 Pulse wave analyzer 28 Intravascular pressure controller

Claims (10)

生体の或る一部位における脈波を検出する脈波検出部と、
上記脈波検出部で検出した上記一部位における脈波からこの脈波の振幅を検出し、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を制御する血管内外圧差制御部と、
上記脈波検出部で検出した上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを検出する基準時間検出部と、
上記基準時間検出部で検出した上記駆出波成分の基準時間に対応する上記脈波の振幅を検出すると共に上記基準時間検出部で検出した上記反射波成分の基準時間に対応する上記脈波の振幅を検出する脈波振幅検出部とを備えることを特徴とする脈波解析装置。
A pulse wave detector for detecting a pulse wave in a certain part of the living body;
An area in which the amplitude of the pulse wave is detected from the pulse wave at the partial position detected by the pulse wave detection unit, and the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessel is approximately linear Intravascular / external pressure difference control unit that controls the difference between the internal pressure and the external pressure of the partial blood vessels so as to enter,
A reference for detecting a reference time for specifying the ejection wave component included in the pulse wave at the partial position detected by the pulse wave detection unit and a reference time for specifying the reflected wave component included in the pulse wave A time detector;
The amplitude of the pulse wave corresponding to the reference time of the ejection wave component detected by the reference time detection unit is detected and the pulse wave corresponding to the reference time of the reflected wave component detected by the reference time detection unit is detected. A pulse wave analysis device comprising: a pulse wave amplitude detection unit for detecting an amplitude.
請求項1に記載の脈波解析装置において、
上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域は、上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の変化が最大となる領域を含んでいることを特徴とする脈波解析装置。
In the pulse wave analysis device according to claim 1,
The region in which the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessel can be regarded as substantially linear is the change in the amplitude of the pulse wave with respect to the change in the difference between the internal pressure and the external pressure of the partial blood vessel. A pulse wave analysis device characterized by including a region where the maximum is.
請求項1または2に記載の脈波解析装置において、
上記内外圧差制御部によって上記血管の内圧と外圧との差を変化させて上記内外圧差制御部から得た上記脈波の振幅を表す情報と上記血管の内圧と外圧との差を表す情報とに基づいて、上記血管の圧‐容積変化特性を予め求める血管圧‐容積変化特性モデル化部を有し、
上記脈波振幅検出部は、
上記脈波検出部で検出した脈波と、上記血管圧‐容積変化特性モデル化部で求めた上記血管の圧‐容積変化特性と、上記内外圧差制御部からの上記血管の内圧と外圧との差を表す情報とに基づいて、上記基準時間に対応する脈波の振幅を求めることを特徴とする脈波解析装置。
In the pulse wave analysis device according to claim 1 or 2,
Information indicating the amplitude of the pulse wave obtained from the internal / external pressure difference control unit by changing the difference between the internal pressure and the external pressure of the blood vessel by the internal / external pressure difference control unit and information indicating the difference between the internal pressure and the external pressure of the blood vessel Based on the vascular pressure-volume change characteristic modeling unit for obtaining the blood pressure-volume change characteristic in advance,
The pulse wave amplitude detector is
The pulse wave detected by the pulse wave detection unit, the blood pressure-volume change characteristic of the blood vessel obtained by the blood vessel pressure-volume change characteristic modeling unit, and the internal pressure and external pressure of the blood vessel from the internal / external pressure difference control unit A pulse wave analysis device characterized in that an amplitude of a pulse wave corresponding to the reference time is obtained based on information representing a difference.
請求項1から3のいずれか1つに記載の脈波解析装置において、
上記内外圧差制御部は、
上記生体の心臓に対する上記脈波検出部の高さを制御して上記血管の内圧を制御することによって上記血管の内圧と外圧との差を制御することを特徴とする脈波解析装置。
In the pulse wave analysis device according to any one of claims 1 to 3,
The internal / external pressure difference control unit
A pulse wave analyzing apparatus characterized by controlling a difference between an internal pressure and an external pressure of the blood vessel by controlling a height of the pulse wave detecting unit with respect to the heart of the living body to control an internal pressure of the blood vessel.
請求項1から3のいずれか1つに記載の脈波解析装置において、
上記内外圧差制御部は、
上記脈波検出部による上記血管に対する外圧を制御することで上記血管の内圧と外圧との差を制御することを特徴とする脈波解析装置。
In the pulse wave analysis device according to any one of claims 1 to 3,
The internal / external pressure difference control unit
A pulse wave analysis device that controls a difference between an internal pressure and an external pressure of the blood vessel by controlling an external pressure applied to the blood vessel by the pulse wave detection unit.
生体の或る一部位における脈波からこの脈波の振幅を検出し、上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域に入るように上記一部位の血管の内圧と外圧との差を制御する血管内外圧差制御機能と、
上記一部位における脈波に含まれる駆出波成分を特定するための基準時間と上記脈波に含まれる反射波成分を特定するための基準時間とを求める基準時間導出機能と、
上記駆出波成分の基準時間に対応する上記脈波の振幅を求めると共に上記反射波成分の基準時間に対応する上記脈波の振幅を求める脈波振幅導出機能とをコンピュータに実行させることを特徴とする脈波解析プログラム。
The amplitude of this pulse wave is detected from the pulse wave at a certain part of the living body, and the relation of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the blood vessel at the part of the living body is in a region that can be regarded as substantially linear. Intravascular / external pressure difference control function for controlling the difference between the internal pressure and external pressure of a blood vessel in one site,
A reference time deriving function for obtaining a reference time for specifying the ejection wave component included in the pulse wave at the partial position and a reference time for specifying the reflected wave component included in the pulse wave;
A pulse wave amplitude deriving function for obtaining the amplitude of the pulse wave corresponding to the reference time of the ejection wave component and obtaining the amplitude of the pulse wave corresponding to the reference time of the reflected wave component is executed by a computer. A pulse wave analysis program.
請求項6に記載の脈波解析プログラムにおいて、
上記一部位の血管の内圧と外圧との差に対する上記脈波の振幅の関係が略線形と見なせる領域は、上記一部位の血管の内圧と外圧との差の変化に対する上記脈波の振幅の変化が最大となる領域を含んでいることを特徴とする脈波解析プログラム。
In the pulse wave analysis program according to claim 6,
The region in which the relationship of the amplitude of the pulse wave with respect to the difference between the internal pressure and the external pressure of the partial blood vessel can be regarded as substantially linear is the change in the amplitude of the pulse wave with respect to the change in the difference between the internal pressure and the external pressure of the partial blood vessel. A pulse wave analysis program characterized by including a region in which is maximized.
請求項6または7に記載の脈波解析プログラムにおいて、
上記内外圧差制御機能によって上記血管の内圧と外圧との差を変化させて上記内外圧差制御機能から得た上記脈波の振幅を表す情報と上記血管の内圧と外圧との差を表す情報とに基づいて、上記血管の圧‐容積変化特性を予め求める血管圧‐容積変化特性モデル化機能をコンピュータに実行させ、
上記脈波振幅導出機能により、上記血管圧‐容積変化特性モデル化機能で求めた上記血管の圧‐容積変化特性と、上記内外圧差制御機能からの上記血管の内圧と外圧との差を表す情報とに基づいて、上記基準時間に対応する脈波の振幅を求めることを特徴とする脈波解析プログラム。
In the pulse wave analysis program according to claim 6 or 7,
Information indicating the amplitude of the pulse wave obtained from the internal / external pressure difference control function by changing the difference between the internal pressure and the external pressure of the blood vessel by the internal / external pressure difference control function and information indicating the difference between the internal pressure and the external pressure of the blood vessel Based on the above, the computer is caused to execute a blood pressure-volume change characteristic modeling function for obtaining the blood pressure-volume change characteristic in advance,
Information indicating the difference between the blood pressure-volume change characteristic of the blood vessel obtained by the blood vessel pressure-volume change characteristic modeling function and the internal pressure and the external pressure of the blood vessel from the internal / external pressure difference control function by the pulse wave amplitude derivation function Based on the above, the pulse wave analysis program for obtaining the amplitude of the pulse wave corresponding to the reference time.
請求項6から8のいずれか1つに記載の脈波解析プログラムにおいて、
上記内外圧差制御機能は、
上記生体の或る一部位における脈波を検出する脈波検出部の上記生体の心臓に対する高さを制御して上記血管の内圧を制御することによって上記血管の内圧と外圧との差を制御することを特徴とする脈波解析プログラム。
In the pulse wave analysis program according to any one of claims 6 to 8,
The internal / external pressure difference control function
The difference between the internal pressure and the external pressure of the blood vessel is controlled by controlling the internal pressure of the blood vessel by controlling the height of the biological wave with respect to the heart of the living body by detecting the pulse wave at a certain part of the living body. A pulse wave analysis program characterized by that.
請求項6から8のいずれか1つに記載の脈波解析プログラムにおいて、
上記内外圧差制御機能は、
上記生体の或る一部位における脈波を検出する脈波検出部による上記一部位の血管に対する外圧を制御することで上記血管の内圧と外圧との差を制御することを特徴とする脈波解析プログラム。
In the pulse wave analysis program according to any one of claims 6 to 8,
The internal / external pressure difference control function
A pulse wave analysis characterized by controlling a difference between an internal pressure and an external pressure of the blood vessel by controlling an external pressure with respect to the blood vessel of the partial position by a pulse wave detection unit that detects a pulse wave at a certain partial position of the living body. program.
JP2009297556A 2009-12-28 2009-12-28 Pulse wave analyzer and pulse wave analysis program Expired - Fee Related JP5328635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297556A JP5328635B2 (en) 2009-12-28 2009-12-28 Pulse wave analyzer and pulse wave analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297556A JP5328635B2 (en) 2009-12-28 2009-12-28 Pulse wave analyzer and pulse wave analysis program

Publications (2)

Publication Number Publication Date
JP2011136018A true JP2011136018A (en) 2011-07-14
JP5328635B2 JP5328635B2 (en) 2013-10-30

Family

ID=44348087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297556A Expired - Fee Related JP5328635B2 (en) 2009-12-28 2009-12-28 Pulse wave analyzer and pulse wave analysis program

Country Status (1)

Country Link
JP (1) JP5328635B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113180622A (en) * 2021-05-07 2021-07-30 深圳市汇顶科技股份有限公司 Biological information measuring method, apparatus, device, storage medium, and program product
CN113226161A (en) * 2018-12-18 2021-08-06 皇家飞利浦有限公司 Control unit for deriving a measure of arterial compliance

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010139A (en) * 2001-07-02 2003-01-14 Nippon Colin Co Ltd Measuring device for information on pulse wave propagation speed
JP2003199718A (en) * 2002-01-09 2003-07-15 Nippon Colin Co Ltd Arterial sclerosis evaluation apparatus
JP2003305012A (en) * 2002-04-17 2003-10-28 Nippon Colin Co Ltd Amplitude augmentation index measuring apparatus
JP2003305011A (en) * 2002-04-17 2003-10-28 Nippon Colin Co Ltd Amplitude augmentation index measuring apparatus
JP2005349116A (en) * 2004-06-14 2005-12-22 Omron Healthcare Co Ltd Pulse wave analyzer and pulse wave analysis program
JP2006043146A (en) * 2004-08-04 2006-02-16 Sony Corp Pulse wave analysis method and apparatus
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus
JP2007522857A (en) * 2004-02-18 2007-08-16 ミクロス・イリエス Apparatus and method for measuring hemodynamic parameters

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010139A (en) * 2001-07-02 2003-01-14 Nippon Colin Co Ltd Measuring device for information on pulse wave propagation speed
JP2003199718A (en) * 2002-01-09 2003-07-15 Nippon Colin Co Ltd Arterial sclerosis evaluation apparatus
JP2003305012A (en) * 2002-04-17 2003-10-28 Nippon Colin Co Ltd Amplitude augmentation index measuring apparatus
JP2003305011A (en) * 2002-04-17 2003-10-28 Nippon Colin Co Ltd Amplitude augmentation index measuring apparatus
JP2007522857A (en) * 2004-02-18 2007-08-16 ミクロス・イリエス Apparatus and method for measuring hemodynamic parameters
JP2005349116A (en) * 2004-06-14 2005-12-22 Omron Healthcare Co Ltd Pulse wave analyzer and pulse wave analysis program
JP2006043146A (en) * 2004-08-04 2006-02-16 Sony Corp Pulse wave analysis method and apparatus
JP2007007075A (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co Ltd Blood pressure measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226161A (en) * 2018-12-18 2021-08-06 皇家飞利浦有限公司 Control unit for deriving a measure of arterial compliance
CN113226161B (en) * 2018-12-18 2024-06-11 皇家飞利浦有限公司 Control unit for deriving a measure of arterial compliance
CN113180622A (en) * 2021-05-07 2021-07-30 深圳市汇顶科技股份有限公司 Biological information measuring method, apparatus, device, storage medium, and program product
CN113180622B (en) * 2021-05-07 2024-06-11 深圳市汇顶科技股份有限公司 Biological information measuring method, apparatus, device, storage medium, and program product

Also Published As

Publication number Publication date
JP5328635B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2020007041A1 (en) Blood pressure measurement apparatus and method, electronic device, and computer readable storage medium
JP5318810B2 (en) Pulse wave velocity measuring device, pulse wave velocity measuring method, and pulse wave velocity measuring program
US10709424B2 (en) Method and system for cuff-less blood pressure (BP) measurement of a subject
US9445727B2 (en) Apparatus for evaluating vascular endothelial function
US9161695B2 (en) Apparatus for evaluating vascular endothelial function
JP2004531342A (en) Signal component processor
CN107809948A (en) Method and apparatus for knowing blood pressure trend
CN1925785A (en) Arterial pressure-based, automatic determination of a cardiovascular parameter
WO2009099833A2 (en) Real-time detection of vascular conditions of a subject using arterial pressure waveform analysis
JP2012517291A (en) Calculation of cardiovascular parameters
KR101593412B1 (en) Acceleration plethysmography analysis apparatus and method using wave form frequency distribution
JP5573550B2 (en) Blood pressure information measuring device and blood pressure information measuring method
CA2751754A1 (en) Detection of vascular conditions using arterial pressure waveform data
JP5328613B2 (en) Pulse wave velocity measuring device and pulse wave velocity measuring program
CN115135236A (en) Improved personal health data collection
IL189943A (en) Signal processing for pulse oximetry
JP5584111B2 (en) Automatic blood pressure measurement device
US8864678B2 (en) Blood pressure measuring method and blood pressure manometer
KR101912215B1 (en) Device for evaluating vascular elasticity
JP5328635B2 (en) Pulse wave analyzer and pulse wave analysis program
JP5681434B2 (en) Pulse wave velocity measuring device and pulse wave velocity measuring program
CN102413760A (en) Monitoring peripheral decoupling
JP6474299B2 (en) Pulse wave measuring device
CN116602633A (en) Human health information detection and early warning system and method
JP5328614B2 (en) Pulse wave analyzer and pulse wave analysis program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees