JP2011117629A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2011117629A
JP2011117629A JP2009273488A JP2009273488A JP2011117629A JP 2011117629 A JP2011117629 A JP 2011117629A JP 2009273488 A JP2009273488 A JP 2009273488A JP 2009273488 A JP2009273488 A JP 2009273488A JP 2011117629 A JP2011117629 A JP 2011117629A
Authority
JP
Japan
Prior art keywords
refrigerant
outside air
heat exchange
exchange coil
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009273488A
Other languages
Japanese (ja)
Inventor
Yasuhiko Inatomi
泰彦 稲富
Yasuhiro Kashirajima
康博 頭島
Junichi Ito
潤一 伊藤
Noboru Oshima
昇 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009273488A priority Critical patent/JP2011117629A/en
Priority to SG201008799-7A priority patent/SG171566A1/en
Priority to CN2010105706997A priority patent/CN102083298B/en
Priority to EP10193319.0A priority patent/EP2333439A3/en
Priority to US12/957,628 priority patent/US20110127027A1/en
Publication of JP2011117629A publication Critical patent/JP2011117629A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling system which prevents decline in cooling capacity in an evaporator even in winter having low outside air temperature. <P>SOLUTION: In a cooling tower system circulating a refrigerant between the evaporator and a cooling tower 22, the cooling tower 22 includes: a cooling tower body 30 having an intake port 30A of outside air and exhaust port 30B formed therein; a heat exchange coil 28 provided within the cooling tower body 30 and having an inlet/outlet connected to the evaporator; a sprinkler 34 sprinkling water on the heat exchange coil 28; an air blower 36 sending the outside air taken in from the intake port 30A to the heat exchange coil 28 and discharging the outside air from the exhaust port 30B; a circulation duct 38 returning part of discharged outside air discharged from the exhaust port 30B to a portion in the vicinity of the intake port 30A and mixing the discharged outside air with taken-in outside air from the intake prot 30A; a damper device 40 controlling the air quantity of the discharged outside air made to flow in the circulation duct 38; and a control mechanism 42 controlling the damper device 40 so that condensation pressure of refrigerant gas condensed by the heat exchange coil 28 becomes a predetermined pressure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は冷却システムに係り、特に、サーバルームに配設されたコンピュータやサーバ等の電子機器を、蒸発器と凝縮器との間で冷媒を循環させることにより局所的に冷却するための冷却システムであって、凝縮器として外気と散水とを利用した冷却塔を用いる場合の冷却システムの技術改良に関する。   The present invention relates to a cooling system, and in particular, a cooling system for locally cooling electronic equipment such as a computer and a server disposed in a server room by circulating a refrigerant between an evaporator and a condenser. Then, it is related with the technical improvement of the cooling system in the case of using the cooling tower using outside air and watering as a condenser.

サーバルームには、コンピュータやサーバ等の電子機器が集約された状態で多数設置される。電子機器は一般にラックマウント方式、すなわち、電子機器を機能単位別に分割して収納するラック(筐体)をキャビネットに段積みする方式で設置され、キャビネットはサーバルームの床上に多数整列配置される。   A large number of electronic devices such as computers and servers are gathered in the server room. Electronic devices are generally installed in a rack mount system, that is, a system in which racks (casings) for storing electronic devices divided into functional units are stacked in a cabinet, and a large number of cabinets are arranged on the floor of a server room.

これらの電子機器は、正常な動作をするために一定の温度環境が必要とされ、高温状態になるとシステム停止等のトラブルを引き起こすおそれがある。このため、サーバルームは空調機によって一定の温度環境に管理されている。しかし、近年では、電子機器の処理速度や処理能力の急激な上昇に伴い、電子機器からの発熱量が上昇の一途をたどっており、空調機のランニングコストも大幅に増加している。   These electronic devices require a certain temperature environment in order to operate normally, and may cause troubles such as system stoppage when the temperature becomes high. For this reason, the server room is managed by the air conditioner in the fixed temperature environment. However, in recent years, with the rapid increase in the processing speed and processing capacity of electronic devices, the amount of heat generated from electronic devices is steadily increasing, and the running cost of air conditioners has also increased significantly.

このような背景から、電子機器を効率的に冷却するための様々な技術が提案されている。たとえば特許文献1の冷却システムは、蒸発器と、この蒸発器よりも高所の凝縮器とを、ガス配管及び液配管で接続することによって構成されている。そして蒸発器で気化された冷媒気体がガス配管を介して凝縮器に送られ、凝縮器で液化された冷媒液体が液配管を介して蒸発器に送られることによって、冷媒が自然循環され、蒸発器で冷却作用を得ることができる。このような冷媒自然循環型の冷却システムを、サーバの局所冷却に適用することによって、前述したランニングコストを削減することが期待される。たとえば、蒸発器をサーバの排気口の近傍に配置するとともに、凝縮器として建屋の屋上に冷却塔を設置し、この冷却塔で外気を利用して冷媒を冷却することによって、ランニングコストを大幅に削減することが可能となる。   Against this background, various techniques for efficiently cooling electronic devices have been proposed. For example, the cooling system of Patent Document 1 is configured by connecting an evaporator and a condenser at a higher position than the evaporator with a gas pipe and a liquid pipe. The refrigerant gas vaporized by the evaporator is sent to the condenser via the gas pipe, and the refrigerant liquid liquefied by the condenser is sent to the evaporator via the liquid pipe, so that the refrigerant is naturally circulated and evaporated. Cooling action can be obtained with a vessel. It is expected that the running cost described above can be reduced by applying such a refrigerant natural circulation type cooling system to the local cooling of the server. For example, by placing the evaporator near the exhaust port of the server and installing a cooling tower on the roof of the building as a condenser and cooling the refrigerant using outside air in this cooling tower, the running cost is greatly increased It becomes possible to reduce.

また、冷媒を凝縮させる凝縮器として、特許文献2にみられるように、外気や散水を利用した冷却塔タイプのものを用いた方法がある。特許文献2には、アンモニア冷媒を用いて圧縮機、凝縮器であるエバコン(冷却塔タイプのもの)、膨張弁、蒸発器などの冷凍サイクルを形成するアンモニア冷却ユニットが記載される。そして、エバコンは外気と散水を利用して冷媒ガスを凝縮して冷媒液体にする。   Moreover, as a condenser which condenses a refrigerant, there is a method using a cooling tower type one using outside air or water spray, as seen in Patent Document 2. Patent Document 2 describes an ammonia cooling unit that uses an ammonia refrigerant to form a refrigeration cycle such as a compressor, an evaporator (cooling tower type) that is a condenser, an expansion valve, and an evaporator. Then, the evaporator uses the outside air and water spray to condense the refrigerant gas into a refrigerant liquid.

特開2007−127315号公報JP 2007-127315 A 特許3990161号公報Japanese Patent No. 3990161

しかしながら、特許文献2のエバコンは、外気温度が低下すると、熱交換コイルで冷媒ガスを凝縮させる凝縮圧力が低下する。このために、エバコン内部の熱交換コイルに冷媒液体が滞留し、蒸発器に供給する冷媒量が低減するので、蒸発器での冷却能力が低下するという問題がある。特に、蒸発器と凝縮器との間で冷媒を自然循環させる場合には、エバコンの熱交換コイル内に冷媒液体が滞留することにより、液配管内の自然循環の駆動力となる液柱が低くなるために蒸発器に冷媒液体が供給されず、蒸発器での冷却能力が低下する。   However, in the evaporator of Patent Document 2, when the outside air temperature is lowered, the condensation pressure for condensing the refrigerant gas by the heat exchange coil is lowered. For this reason, since the refrigerant liquid stays in the heat exchange coil inside the evaporator and the amount of refrigerant supplied to the evaporator is reduced, there is a problem that the cooling capacity in the evaporator is lowered. In particular, when the refrigerant is naturally circulated between the evaporator and the condenser, the liquid liquid that becomes the driving force for natural circulation in the liquid pipe is lowered by the refrigerant liquid staying in the heat exchange coil of the evaporator. Therefore, the refrigerant liquid is not supplied to the evaporator, and the cooling capacity in the evaporator is reduced.

したがって、外気温度が低下する冬場は、エバコンでの熱量を制御する必要があり、送風機による外気の取り入れ風量を少なくする方法が考えられる。しかし、外気温度が低下した場合には、風量を少なくしても熱交換コイルに接触する外気温度は低いままなので、凝縮圧力の低下が生じる。また、散水機から熱交換コイルに散水する散水量を少なくすることも考えられるが、外気温度が低い場合には、熱量制御に殆ど効果がない。   Therefore, in winter when the outside air temperature decreases, it is necessary to control the amount of heat in the evaporator, and a method of reducing the amount of outside air taken in by the blower can be considered. However, when the outside air temperature is lowered, the outside air temperature in contact with the heat exchange coil remains low even if the air volume is reduced, so that the condensation pressure is lowered. Although it is conceivable to reduce the amount of water sprayed from the water sprayer to the heat exchange coil, there is almost no effect on the heat amount control when the outside air temperature is low.

本発明はこのような事情に鑑みてなされたものであり、冷却塔を凝縮器とし、凝縮器と蒸発器との間に冷媒を循環、特に自然循環させる場合、外気温度が低い冬場であって冷却塔の簡単な構造改良で凝縮圧力を必要以上に下げないようにできるので、蒸発器での冷却能力の低下を防止できる冷却システムを提供することを目的とする。   The present invention has been made in view of such circumstances, and when a cooling tower is used as a condenser and the refrigerant is circulated between the condenser and the evaporator, especially when it is naturally circulated, it is a winter season when the outside air temperature is low. An object of the present invention is to provide a cooling system capable of preventing a decrease in the cooling capacity in the evaporator because the condensing pressure can be prevented from being lowered more than necessary by a simple structural improvement of the cooling tower.

請求項1に記載の発明は前記目的を達成するために、冷媒を気化させる蒸発器と、該蒸発器で気化された冷媒を液化させる凝縮器との間で冷媒を循環させると共に、前記凝縮器として冷却塔を用いた冷却システムにおいて、前記冷却塔は、外気の取込口と排気口とが形成された冷却塔本体と、前記冷却塔本体内に設けられ、入口が前記蒸発器から戻る冷媒ガスが流れるガス配管に接続し、出口が前記蒸発器に供給する冷媒液体が流れる液配管に接続する熱交換コイルと、前記熱交換コイルに散水する散水機と、前記取込口から外気を取り込んで前記熱交換コイルに送風すると共に前記排気口から排気させる送風機と、前記排気口から排気される排気外気の一部を前記取込口近傍に戻して前記取込口からの取込み外気と混合させる循環ダクトと、前記循環ダクトを流れる排気外気の風量を調節する風量調節手段と、前記熱交換コイルで凝縮される冷媒ガスの凝縮圧力が所定圧力になるように、前記風量調節手段を制御する制御機構と、を備えたことを特徴とする冷却システムを提供する。   In order to achieve the above object, the invention according to claim 1 circulates a refrigerant between an evaporator for vaporizing the refrigerant and a condenser for liquefying the refrigerant vaporized by the evaporator, and the condenser. In the cooling system using the cooling tower, the cooling tower includes a cooling tower main body in which an outside air intake port and an exhaust port are formed, and a refrigerant that is provided in the cooling tower main body and the inlet returns from the evaporator. A heat exchange coil connected to a gas pipe through which a gas flows and an outlet connected to a liquid pipe through which a refrigerant liquid supplied to the evaporator flows, a water sprayer for spraying water into the heat exchange coil, and taking in outside air from the intake port The blower that blows air to the heat exchange coil and exhausts from the exhaust port, and returns a part of the exhaust outside air exhausted from the exhaust port to the vicinity of the intake port and mixes it with the intake external air from the intake port With circulation duct An air volume adjusting means for adjusting the air volume of the exhaust outside air flowing through the circulation duct, and a control mechanism for controlling the air volume adjusting means so that the condensation pressure of the refrigerant gas condensed in the heat exchange coil becomes a predetermined pressure. Provided is a cooling system characterized by comprising.

本発明の請求項1によれば、外気と散水とを利用した従来の冷却塔に、上記の循環ダクトと、風量調節手段と、制御機構と、を備えるようにした。これにより、冷却塔本体の取込口から取り込まれた外気は、熱交換コイルに散水された水を蒸発させて熱交換コイル内を流れる冷媒を冷却する一方、自らは温度上昇して排気口から排気される。この温度上昇した排気外気の一部を循環ダクトにより冷却塔本体の取込口近傍に循環させて取込み外気と混合することにより、熱交換コイルに送風する送風外気の温度を取込口から取込まれる外気の温度よりも高くすることができる。どの位高くするかは、風量調節手段により循環ダクトを流れる排気外気の循環量を調整することで制御できる。   According to claim 1 of the present invention, a conventional cooling tower using outside air and water spray is provided with the above-described circulation duct, air volume adjusting means, and control mechanism. As a result, the outside air taken in from the intake port of the cooling tower body evaporates the water sprayed on the heat exchange coil and cools the refrigerant flowing in the heat exchange coil, while the temperature rises itself from the exhaust port. Exhausted. By circulating a part of the exhaust outside air whose temperature has risen to the vicinity of the inlet of the cooling tower main body through a circulation duct and mixing it with the outside air, the temperature of the outside air blown to the heat exchange coil is taken in from the inlet. It can be higher than the outside air temperature. It can be controlled by adjusting the circulation amount of the exhaust outside air flowing through the circulation duct by the air volume adjusting means.

そして、冷却システムにおける冷媒の安定循環に必要な液配管内の液柱を得るための凝縮圧力を所定圧力としたときに、凝縮圧力が所定圧力になるように制御機構で混合外気の温度を制御する。これにより、外気温度が低い冬場であって冷却塔の簡単な構造改良で凝縮圧力を必要以上に下げないようにできるので、蒸発器での冷却能力の低下を防止できる。   Then, when the condensation pressure for obtaining the liquid column in the liquid piping necessary for the stable circulation of the refrigerant in the cooling system is a predetermined pressure, the temperature of the mixed outside air is controlled by the control mechanism so that the condensation pressure becomes the predetermined pressure. To do. Thereby, since it is possible to prevent the condensation pressure from being lowered more than necessary by a simple structural improvement of the cooling tower in the winter when the outside air temperature is low, it is possible to prevent the cooling capacity from being lowered in the evaporator.

請求項2は請求項1において、前記制御機構は、前記熱交換コイル入口の冷媒ガスの圧力を測定する冷媒圧力センサと、前記冷媒圧力センサの測定圧力が前記所定圧力になるように前記風量調整手段を制御するコントローラと、を備えたことを特徴とする。   A second aspect of the present invention is the first aspect of the present invention, wherein the control mechanism includes a refrigerant pressure sensor that measures the pressure of the refrigerant gas at the inlet of the heat exchange coil, and the air volume adjustment so that the measured pressure of the refrigerant pressure sensor becomes the predetermined pressure. And a controller for controlling the means.

請求項2は、凝縮圧力を所定圧力に制御するための制御機構の一態様を示したものであり、冷媒圧力センサで熱交換コイル入口の冷媒ガスを直接測定し、コントローラは測定圧力が所定圧力になるように風量調整手段を制御する。   The second aspect of the present invention shows one aspect of a control mechanism for controlling the condensation pressure to a predetermined pressure, and the refrigerant gas at the inlet of the heat exchange coil is directly measured by the refrigerant pressure sensor, and the controller measures the predetermined pressure. The air volume adjusting means is controlled so that

これにより、熱交換コイルによる冷媒ガスの凝縮圧力を所定圧力に制御することができる。   Thereby, the condensation pressure of the refrigerant gas by the heat exchange coil can be controlled to a predetermined pressure.

請求項3は請求項1において、前記制御機構は、前記送風機によって前記熱交換コイルに送風する送風外気の温度を測定する送風外気温度センサと、前記熱交換コイルで凝縮される冷媒ガスの凝縮圧力を所定圧力にするための送風外気の設定温度が予め入力されており、前記送風外気温度センサの測定温度が前記設定温度になるように前記風量調節手段を制御するコントローラと、を備えたことを特徴とする。   A third aspect of the present invention is the first aspect of the present invention, wherein the control mechanism includes a blower outside air temperature sensor that measures the temperature of the blown outside air that is blown to the heat exchange coil by the blower, and a condensing pressure of refrigerant gas that is condensed by the heat exchange coil. And a controller for controlling the air volume adjusting means so that the measured temperature of the blown outside air temperature sensor becomes the set temperature. Features.

請求項3は、凝縮圧力を所定圧力に制御するための制御機構の別の態様を示したものであり、送風外気温度センサで送風外気の温度を測定し、熱交換コイル入口の冷媒ガスの圧力を所定圧力にするための送風外気の設定温度が予め入力されているコントローラが、送風外気温度センサの測定温度が設定温度になるように風量調節手段を制御する。   The third aspect of the present invention shows another aspect of the control mechanism for controlling the condensation pressure to a predetermined pressure. The temperature of the blown outside air is measured by the blown outside air temperature sensor, and the refrigerant gas pressure at the inlet of the heat exchange coil is measured. The controller in which the set temperature of the blown outside air for setting the pressure to the predetermined pressure is input in advance controls the air volume adjusting means so that the measured temperature of the blown outside air temperature sensor becomes the set temperature.

これにより、熱交換コイルによる冷媒ガスの凝縮圧力を所定圧力に制御することができる。   Thereby, the condensation pressure of the refrigerant gas by the heat exchange coil can be controlled to a predetermined pressure.

請求項4は、請求項1において、前記制御機構は、前記熱交換コイル出口の冷媒液体の温度を測定する冷媒液体温度センサと、前記熱交換コイル入口の冷媒ガスの圧力を所定圧力にするための冷媒液体の設定温度が予め入力されており、前記冷媒液体温度センサの測定温度が前記設定温度になるように前記風量調節手段を制御するコントローラと、を備えたことを特徴とする。   A fourth aspect of the present invention provides the method according to the first aspect, wherein the control mechanism sets a refrigerant liquid temperature sensor for measuring a temperature of the refrigerant liquid at the outlet of the heat exchange coil and a pressure of the refrigerant gas at the inlet of the heat exchange coil to a predetermined pressure. And a controller that controls the air volume adjusting means so that the measured temperature of the refrigerant liquid temperature sensor becomes the set temperature.

請求項4は、凝縮圧力を所定圧力に制御するための制御機構の更に別の態様を示したものであり、冷媒液体温度センサで熱交換コイル出口の冷媒液体を所定圧力にするための冷媒液体の設定温度が予め入力されているコントローラが冷媒液体温度センサの測定温度が設定温度になるように風量調節手段を制御する。   Claim 4 shows still another aspect of the control mechanism for controlling the condensing pressure to a predetermined pressure, and the refrigerant liquid for setting the refrigerant liquid at the outlet of the heat exchange coil to a predetermined pressure by the refrigerant liquid temperature sensor. The controller to which the preset temperature is input in advance controls the air volume adjusting means so that the measured temperature of the refrigerant liquid temperature sensor becomes the preset temperature.

これにより、熱交換コイルによる冷媒ガスの凝縮圧力を所定圧力に制御することができる。   Thereby, the condensation pressure of the refrigerant gas by the heat exchange coil can be controlled to a predetermined pressure.

請求項5は請求項1〜4の何れか1において、前記冷却システムは、サーバルームに配設された電子機器を冷却するシステムであって、前記蒸発器は、前記電子機器からの排熱空気との熱交換によって冷媒を気化させると共に前記サーバルーム内に排気される前記排熱空気を冷却することを特徴とする。   A fifth aspect of the present invention is the system according to any one of the first to fourth aspects, wherein the cooling system is a system for cooling an electronic device disposed in a server room, and the evaporator is exhausted hot air from the electronic device. The refrigerant is vaporized by heat exchange with the air, and the exhaust heat air exhausted into the server room is cooled.

請求項5は、本発明の冷却システムを、サーバルームに配設された電子機器を蒸発器で冷却するためのシステムに適用することが特に有効だからである。   The fifth aspect of the present invention is because it is particularly effective to apply the cooling system of the present invention to a system for cooling electronic equipment disposed in a server room with an evaporator.

請求項6は請求項1〜5の何れか1において、前記冷却塔を前記蒸発器よりも高所に配置して前記冷媒を自然循環させることを特徴とする。   A sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the cooling tower is arranged at a higher position than the evaporator and the refrigerant is naturally circulated.

本発明の冷却システムは、蒸発器と冷却塔との間で冷媒を自然循環するタイプのものに適用することが特に有効だからである。   This is because the cooling system of the present invention is particularly effective when applied to a type in which the refrigerant is naturally circulated between the evaporator and the cooling tower.

以上説明したように本発明の冷却システムによれば、冷却塔を凝縮器とし、凝縮器と蒸発器との間に冷媒を循環、特に自然循環させる場合、外気温度が低い冬場であって冷却塔の簡単な構造改良で凝縮圧力を必要以上に下げないようにできる。これにより、蒸発器での冷却能力の低下を防止できる。   As described above, according to the cooling system of the present invention, when the cooling tower is a condenser and the refrigerant is circulated between the condenser and the evaporator, particularly when it is naturally circulated, it is a winter tower where the outside air temperature is low and the cooling tower With this simple structural improvement, the condensation pressure can be prevented from being lowered more than necessary. Thereby, the fall of the cooling capability in an evaporator can be prevented.

本発明の冷却システムの全体構成を説明する概念図The conceptual diagram explaining the whole structure of the cooling system of this invention 冷却塔の構造及び制御機構の一態様を説明する説明図Explanatory drawing explaining the structure of a cooling tower, and one aspect | mode of a control mechanism 制御機構の別の態様を説明する説明図Explanatory drawing explaining another aspect of a control mechanism 制御機構の更に別の態様を説明する説明図Explanatory drawing explaining another aspect of a control mechanism

以下、添付図面に従って本発明に係る冷却システムの好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a cooling system according to the present invention will be described in detail with reference to the accompanying drawings.

本実施の形態では、本発明の冷却システムを、電子機器の冷却システムに適用した例で以下に説明すると共に、冷媒を自然循環する自然循環サイクルで説明する。   In the present embodiment, the cooling system of the present invention will be described below with an example in which the cooling system of the present invention is applied to a cooling system for electronic equipment, and a natural circulation cycle in which a refrigerant is naturally circulated.

図1は、電子機器の冷却システム10の全体構成を示す概念図である。   FIG. 1 is a conceptual diagram showing the overall configuration of a cooling system 10 for an electronic device.

同図に示す冷却システム10は、上下2階のサーバルーム12X、12Yに設けられたサーバ14の近傍を局所的に冷却するシステムである。尚、以下の説明で符号に付すXは下層階の冷却システムに係わる部材であり、Yは上層階の冷却システムに係わる部材である。また、図1では、各サーバルーム12X、12Yに、1台のサーバ14を図示しているが、実際には、多数のサーバ14が配置されている。更に、サーバ14は通常、サーバラック(図示せず)に段積み収納されることによって、サーバルーム12X、12Y内に設置される。   The cooling system 10 shown in the figure is a system that locally cools the vicinity of the server 14 provided in the server rooms 12X and 12Y on the upper and lower two floors. In the following description, X is a member related to the cooling system of the lower floor, and Y is a member related to the cooling system of the upper floor. In FIG. 1, one server 14 is illustrated in each of the server rooms 12X and 12Y, but in reality, a large number of servers 14 are arranged. Further, the servers 14 are usually installed in server rooms 12X and 12Y by being stacked and stored in a server rack (not shown).

サーバ14は、エアの吸引口14A及び排気口14Bを備えるとともに、内部にファン14Cを備え、このファン14Cを駆動することによって、吸引口14Aからエアが吸引され、排気口14Bからサーバ14の排熱を伴った排熱空気が排気される。これにより、サーバ14を冷却することができる。一方、排熱空気をそのままサーバルーム12X、12Yに排気すると、サーバルーム12X、12Yの室温が上昇し、サーバ14に吸い込む空気温度が高くなってしまう。したがって、排熱空気を蒸発器20X、20Yで冷却してからサーバルーム12X、12Yに排気する必要がある。   The server 14 includes an air suction port 14A and an exhaust port 14B, and an internal fan 14C. By driving the fan 14C, air is sucked from the suction port 14A and exhausted from the exhaust port 14B. Exhaust heat air accompanied by heat is exhausted. Thereby, the server 14 can be cooled. On the other hand, if the exhaust heat air is exhausted to the server rooms 12X and 12Y as it is, the room temperature of the server rooms 12X and 12Y rises and the temperature of the air sucked into the server 14 becomes high. Therefore, it is necessary to cool the exhaust heat air with the evaporators 20X and 20Y and then exhaust it to the server rooms 12X and 12Y.

各サーバルーム12X、12Yの床面13の下には床下チャンバ18X、18Yが形成されており、床面13に形成された複数の吹出口(不図示)を介して床下チャンバ18X、18Yとサーバルーム12X、12Yが連通される。床下チャンバ18X、18Yには、パッケージ空調機等(不図示)で冷却された空調エアが給気され、この空調エアが吹出口からサーバルーム12X、12Yに吹き出される。尚、吹出口は、サーバ14の吸引口14Aの近傍に形成されており、この空調エアがサーバ14に吸引されることによって、サーバ14を効率よく冷却することができる。   Underfloor chambers 18X and 18Y are formed under the floor surface 13 of each of the server rooms 12X and 12Y, and the underfloor chambers 18X and 18Y and the server are connected via a plurality of outlets (not shown) formed in the floor surface 13. The rooms 12X and 12Y are communicated. The underfloor chambers 18X and 18Y are supplied with air-conditioned air cooled by a package air conditioner or the like (not shown), and the air-conditioned air is blown out from the outlet to the server rooms 12X and 12Y. The air outlet is formed in the vicinity of the suction port 14A of the server 14, and the air-conditioned air is sucked into the server 14 so that the server 14 can be efficiently cooled.

更に、サーバ14は、冷却システム10によって局所的に冷却される。   Further, the server 14 is locally cooled by the cooling system 10.

冷却システム10は、主として蒸発器20X、20Y、凝縮器としての冷却塔22、冷媒液体が流れる液配管24、冷媒ガスが流れるガス配管26からなる冷媒の自然循環サイクルを構成する。   The cooling system 10 constitutes a natural circulation cycle of a refrigerant mainly including evaporators 20X and 20Y, a cooling tower 22 as a condenser, a liquid pipe 24 through which a refrigerant liquid flows, and a gas pipe 26 through which a refrigerant gas flows.

蒸発器20X、20Yはそれぞれ、サーバ排気口14Bの近傍に設けられ、蒸発器20X、20Yの内部には不図示のコイルが設けられる。このコイルの外側を、サーバ排気口14Bから排出された排熱空気が流れ、コイルの内側を冷媒液体が流れて熱交換される。この結果、コイル内の冷媒液体が排熱空気から気化熱を奪って蒸発するので、サーバルーム12X、12Yに排気される排気空気が冷却される。これにより、吹出口からサーバルーム12X、12Yに吹き出される空調エアと相まって、サーバルーム12X、12Yの温度環境を、サーバ14が正常に動作をするために必要な温度環境に設定できる。   The evaporators 20X and 20Y are respectively provided in the vicinity of the server exhaust port 14B, and coils (not shown) are provided inside the evaporators 20X and 20Y. Exhaust hot air discharged from the server exhaust port 14B flows outside the coil, and refrigerant liquid flows inside the coil to exchange heat. As a result, the refrigerant liquid in the coil takes the heat of vaporization from the exhaust heat air and evaporates, so that the exhaust air exhausted to the server rooms 12X and 12Y is cooled. Thus, the temperature environment of the server rooms 12X and 12Y can be set to a temperature environment necessary for the server 14 to operate normally in combination with the air-conditioning air blown from the outlet to the server rooms 12X and 12Y.

冷却塔22は、蒸発器20X、20Yで気化した冷媒を冷却して凝縮させる装置であり、蒸発器20X、20Yよりも高い位置、例えばサーバルーム12の建屋屋上等に設置される。なお、図1に示す冷却塔22は概略図なので、詳しい構造については図2〜図4で説明する。   The cooling tower 22 is a device that cools and condenses the refrigerant vaporized by the evaporators 20X and 20Y, and is installed at a position higher than the evaporators 20X and 20Y, for example, on the building rooftop of the server room 12. Since the cooling tower 22 shown in FIG. 1 is a schematic diagram, the detailed structure will be described with reference to FIGS.

蒸発器20X、20Yと冷却塔22は、液配管24(分岐管24X、24Yを含む)とガス配管26(分岐管26X、26Yを含む)によって接続される。ガス配管26の上端は冷却塔22内の熱交換コイル28の入口に接続されており、ガス配管26の下端は、分岐管26X、26Yに分岐され、その分岐管26X、26Yが蒸発器20X、20Yのコイル(不図示)の一端に接続されている。一方、液配管24の上端は、冷却塔22内の熱交換コイル28の出口に接続されており、液配管24の下端は、分岐管24X、24Yに分岐され、その分岐管24X、24Yが蒸発器20X、20Yのコイル(不図示)の他端に接続されている。したがって、蒸発器20X、20Yで気化された冷媒ガスはガス配管26を上昇して冷却塔22に自然に送られ、この冷却塔22で液化された後、液化された冷媒は液配管24を流下して蒸発器20X、20Yに自然に送られる。これにより、冷媒の自然循環が行われる。   The evaporators 20X and 20Y and the cooling tower 22 are connected by a liquid pipe 24 (including branch pipes 24X and 24Y) and a gas pipe 26 (including branch pipes 26X and 26Y). The upper end of the gas pipe 26 is connected to the inlet of the heat exchange coil 28 in the cooling tower 22, and the lower end of the gas pipe 26 is branched into branch pipes 26X and 26Y. The branch pipes 26X and 26Y are connected to the evaporator 20X, It is connected to one end of a 20Y coil (not shown). On the other hand, the upper end of the liquid pipe 24 is connected to the outlet of the heat exchange coil 28 in the cooling tower 22, and the lower end of the liquid pipe 24 is branched into branch pipes 24X and 24Y, and the branch pipes 24X and 24Y evaporate. The other ends of the coils (not shown) of the containers 20X and 20Y are connected. Accordingly, the refrigerant gas vaporized by the evaporators 20X and 20Y rises up the gas pipe 26 and is naturally sent to the cooling tower 22, and after being liquefied by the cooling tower 22, the liquefied refrigerant flows down the liquid pipe 24. Then, it is naturally sent to the evaporators 20X and 20Y. Thereby, natural circulation of a refrigerant is performed.

循環する冷媒としては、フロン、あるいは代替フロンとしてのHFC(ハイドロフロロカーボン)等を使用することができる。また、大気圧よりも低い圧力で使用するならば、水を使用することも可能である。   As the circulating refrigerant, chlorofluorocarbon or HFC (hydrofluorocarbon) as an alternative chlorofluorocarbon can be used. In addition, water can be used if it is used at a pressure lower than atmospheric pressure.

そして、自然循環する冷媒の流量を制御することにより、サーバ14から排気された高温空気を蒸発器20X、20Yで冷却した後の空気温度(サーバ14から蒸発器20X、20Yを介してサーバルーム12X,12Yに排気される排気空気の温度)を冷却し、サーバルーム12X,12Yをサーバ14に適した温度環境に維持する。すなわち、各蒸発器20X、20Yからサーバルーム12X,12Yに排気される排気空気21の出口近傍には、温度センサ23X,23Yが設けられると共に、液配管24の分岐管24X、24Yには、冷媒液体の流量を調整する流量調整バルブ25X,25Yが設けられる。そして、温度センサ23X,23Yで測定された測定温度はコントローラ17に入力され、コントローラ17は測定温度に基づいて流量調整バルブ25X,25Yの開度をそれぞれ制御する。これにより、上層階と下層階の高さのことなる蒸発器20X、20Yに対して排気空気温度が同じになるための適切な冷媒流量を供給することができる。この結果、サーバ14から蒸発器20X、20Yを介してサーバルーム12X,12Yに排気される排気温度をサーバ14の運転に適した温度環境に調整することができる。   Then, by controlling the flow rate of the naturally circulating refrigerant, the air temperature after the high-temperature air exhausted from the server 14 is cooled by the evaporators 20X and 20Y (from the server 14 to the server room 12X via the evaporators 20X and 20Y). , 12Y), and the server rooms 12X, 12Y are maintained in a temperature environment suitable for the server 14. That is, temperature sensors 23X and 23Y are provided in the vicinity of the outlet of the exhaust air 21 exhausted from the evaporators 20X and 20Y to the server rooms 12X and 12Y, and the branch pipes 24X and 24Y of the liquid pipe 24 are provided with refrigerant. Flow rate adjusting valves 25X and 25Y for adjusting the flow rate of the liquid are provided. The measured temperatures measured by the temperature sensors 23X and 23Y are input to the controller 17, and the controller 17 controls the opening degree of the flow rate adjusting valves 25X and 25Y based on the measured temperature. Thereby, it is possible to supply an appropriate refrigerant flow rate for the exhaust air temperature to be the same to the evaporators 20X and 20Y having different heights of the upper floor and the lower floor. As a result, the exhaust temperature exhausted from the server 14 to the server rooms 12X and 12Y via the evaporators 20X and 20Y can be adjusted to a temperature environment suitable for the operation of the server 14.

次に、図2により、本発明における冷却塔22の構造を説明する。   Next, the structure of the cooling tower 22 in the present invention will be described with reference to FIG.

図2に示すように、冷却塔22は、冷却塔本体(ケーシング)30が横型に配設され、冷却塔本体30の一端側に外気を取り込む取込口30Aが形成され、他端側に外気の排気口30Bが形成される。冷却塔本体30内には熱交換コイル28が設けられ、熱交換コイル28の入口が蒸発器20X,20Yから戻る冷媒ガスが流れるガス配管26に接続し、熱交換コイル28の出口が蒸発器20X,20Yに供給する冷媒液体が流れる液配管24に接続する。熱交換コイル28とガス配管26及び液配管24は連結部材32を介して連結される。また、熱交換コイル28の取込口30A側には散水機34が設けられると共に、散水機34の更に取込口30A側には送風ファン36が設けられる。そして、送風ファン36によって冷却塔本体30の取込口30Aから取り込まれた外気を熱交換コイル28に送風すると共に、散水機34から熱交換コイル28に散水する。これにより、熱交換コイル28を流れる冷媒ガスが外気や散水により冷却されて凝縮し、冷媒液体に液化される。一方、冷却塔本体30内に取り込まれた取込み外気Xは、熱交換コイル28を流れる冷媒ガスから熱を奪って温度が上昇し、排気口30Bから排気外気Yとして排出される。   As shown in FIG. 2, the cooling tower 22 has a cooling tower body (casing) 30 arranged in a horizontal shape, an intake port 30 </ b> A for taking in outside air is formed on one end side of the cooling tower body 30, and outside air is placed on the other end side. The exhaust port 30B is formed. A heat exchanging coil 28 is provided in the cooling tower main body 30, the inlet of the heat exchanging coil 28 is connected to the gas pipe 26 through which the refrigerant gas returning from the evaporators 20X and 20Y flows, and the outlet of the heat exchanging coil 28 is the evaporator 20X. , 20Y is connected to a liquid pipe 24 through which a refrigerant liquid to be supplied flows. The heat exchange coil 28, the gas pipe 26 and the liquid pipe 24 are connected via a connecting member 32. In addition, a sprinkler 34 is provided on the intake port 30 </ b> A side of the heat exchange coil 28, and a blower fan 36 is further provided on the intake port 30 </ b> A side of the sprinkler 34. Then, the outside air taken in from the intake port 30 </ b> A of the cooling tower body 30 by the blower fan 36 is blown to the heat exchange coil 28, and water is sprinkled from the sprinkler 34 to the heat exchange coil 28. Thereby, the refrigerant gas flowing through the heat exchange coil 28 is cooled and condensed by the outside air or water spray, and is liquefied into a refrigerant liquid. On the other hand, the intake outside air X taken into the cooling tower body 30 is deprived of heat from the refrigerant gas flowing through the heat exchange coil 28, rises in temperature, and is discharged as exhaust outside air Y from the exhaust port 30B.

また、冷却塔本体30の取込口30A側の側面に連結孔30Cが開口されると共に、排気口30Bの一部と連結孔30Cとが循環ダクト38によって連結される。これにより、排気口30Bから排気される温度上昇した排気外気Yの一部が循環ダクト38を通って取込口30A近傍に循環されるので、排気外気Yと取込み外気Xとが混合される。この結果、送風ファン36によって、熱交換コイル28に送風される送風外気Zの外気温度が上昇する。   In addition, a connection hole 30C is opened on the side surface of the cooling tower body 30 on the intake port 30A side, and a part of the exhaust port 30B and the connection hole 30C are connected by a circulation duct 38. Thus, a portion of the exhaust outside air Y whose temperature has risen exhausted from the exhaust port 30B is circulated in the vicinity of the intake port 30A through the circulation duct 38, so that the exhaust outside air Y and the intake outside air X are mixed. As a result, the blower fan 36 increases the outside air temperature of the blown outside air Z blown to the heat exchange coil 28.

また、循環ダクト38の途中にはダンパー装置40が設けられ、ダンパー装置40の開度を調節(開度ゼロも含む)することにより、取込み外気Xに混合される排気外気Yの混合量(混合量ゼロも含む)が調整される。   Further, a damper device 40 is provided in the middle of the circulation duct 38, and the mixing amount (mixing) of the exhaust outside air Y mixed with the intake outside air X is adjusted by adjusting the opening degree of the damper device 40 (including zero opening degree). (Including zero).

更に、冷却塔22には、熱交換コイル28で凝縮される冷媒ガスの凝縮圧力が所定圧力になるように、ダンパー装置40により循環ダクト38を流れる排気外気Yの風量を制御する制御機構42が設けられる。ここで、所定圧力とは、例えば、本発明の冷却システムにおいて、蒸発器20X,20Yと冷却塔22との間を冷媒が安定して循環するのに必要な液柱を得るための凝縮圧力とすることができる。   Further, the cooling tower 22 has a control mechanism 42 for controlling the air volume of the exhaust outside air Y flowing through the circulation duct 38 by the damper device 40 so that the condensation pressure of the refrigerant gas condensed by the heat exchange coil 28 becomes a predetermined pressure. Provided. Here, the predetermined pressure is, for example, a condensation pressure for obtaining a liquid column necessary for stable circulation of the refrigerant between the evaporators 20X and 20Y and the cooling tower 22 in the cooling system of the present invention. can do.

制御機構42は、熱交換コイル28入口における冷媒ガスの圧力を測定する冷媒圧力センサ44と、冷媒圧力センサ44の測定圧力が所定圧力になるようにダンパー装置40を制御するコントローラ46と、で構成することができる。このコントローラ46としては、図1で示したコントローラ17を兼用してもよく、図2のように、冷却塔22のためのコントローラ46を別途設けてもよい。本実施の形態では、別途設けた場合で説明する。   The control mechanism 42 includes a refrigerant pressure sensor 44 that measures the pressure of the refrigerant gas at the inlet of the heat exchange coil 28, and a controller 46 that controls the damper device 40 so that the measured pressure of the refrigerant pressure sensor 44 becomes a predetermined pressure. can do. As the controller 46, the controller 17 shown in FIG. 1 may be used, or a controller 46 for the cooling tower 22 may be separately provided as shown in FIG. In this embodiment, a case where it is provided separately will be described.

次に、上記の如く構成された冷却システムにおける冷却塔22の作用について説明する。   Next, the operation of the cooling tower 22 in the cooling system configured as described above will be described.

なお、上述したように、取込み外気X、排気外気Y、送風外気Zの3種類の外気が登場するが、以下のように使い分けることにする。すなわち、取込み外気Xは、取込口30Aから取り込まれたままの外気を言う。送風外気Zは、送風ファン36で熱交換コイル28に送風される外気を言い、取込み外気Xのみと、取込み外気Xと排気外気Yとの混合された外気との両方を含む。排気外気Yとは、送風外気Zが熱交換コイル28に接触して熱交換した後の温度上昇した外気を言う。   As described above, three types of outside air, intake outside air X, exhaust outside air Y, and blown outside air Z, appear. That is, the intake outside air X refers to the outside air that has been taken in from the intake port 30A. The blown outside air Z refers to the outside air blown to the heat exchange coil 28 by the blower fan 36, and includes both the intake outside air X and the outside air mixed with the intake outside air X and the exhaust outside air Y. The exhaust outside air Y refers to outside air whose temperature has risen after the blown outside air Z contacts the heat exchange coil 28 and exchanges heat.

冷却システム10の運転開始前は、ダンパー装置40の開度をゼロ(閉成状態)の状態にしておき、この状態で運転を開始する。すなわち、ガス配管26によって蒸発器20X,20Yから冷却塔22に戻る冷媒ガスは、冷却塔22内の熱交換コイル28を流れつつ、送風ファン36によって取込口30Aから取り込まれた取込み外気Xと散水機34からの散水によって冷却されて凝縮する。これにより、冷媒ガスは液化して冷媒液体となり、液配管24を流れて蒸発器20X,20Yに供給される。一方、熱交換コイル28に接触した送風外気Zは、冷媒ガスから熱を奪って温度上昇し、排気外気Yとなって排気口30Bから排気される。   Before the operation of the cooling system 10 is started, the opening degree of the damper device 40 is set to zero (closed state), and the operation is started in this state. That is, the refrigerant gas returning from the evaporators 20X and 20Y to the cooling tower 22 by the gas pipe 26 flows through the heat exchange coil 28 in the cooling tower 22 and the intake outside air X taken in from the intake port 30A by the blower fan 36. It cools and condenses by the water from the sprinkler 34. Thereby, the refrigerant gas is liquefied to become a refrigerant liquid, flows through the liquid pipe 24, and is supplied to the evaporators 20X and 20Y. On the other hand, the blown outside air Z in contact with the heat exchange coil 28 takes heat from the refrigerant gas, rises in temperature, becomes exhaust outside air Y, and is exhausted from the exhaust port 30B.

また、熱交換コイル28内の冷媒ガスは、熱交換コイル28入口で冷媒圧力センサ44により測定され、測定圧力がコントローラ46に逐次送信される。コントローラ46は、冷媒ガスの測定圧力が所定圧力よりも低い場合には、ダンパー装置40を開いて、温度上昇した排気外気Yの一部を循環ダクト38を介して取込口30A近傍に循環して取込み外気Xに混合すると共に、ダンパー装置40の開度制御により、冷媒圧力センサ44により測定される測定圧力が所定圧力になるように、循環ダクト38を流れる排気外気Yの風量を制御する。すなわち、冷媒ガスの測定圧力を大きく上昇させたい場合には、ダンパー装置40の開度を大きくし、小さく上昇させたい場合には、ダンパー装置40の開度を小さくする。   The refrigerant gas in the heat exchange coil 28 is measured by the refrigerant pressure sensor 44 at the inlet of the heat exchange coil 28, and the measured pressure is sequentially transmitted to the controller 46. When the measured pressure of the refrigerant gas is lower than the predetermined pressure, the controller 46 opens the damper device 40 and circulates a part of the exhaust outside air Y whose temperature has risen to the vicinity of the intake port 30A via the circulation duct 38. Then, the air volume of the exhaust outside air Y flowing through the circulation duct 38 is controlled so that the measured pressure measured by the refrigerant pressure sensor 44 becomes a predetermined pressure by controlling the opening degree of the damper device 40. That is, when the measured pressure of the refrigerant gas is to be increased greatly, the opening degree of the damper device 40 is increased, and when it is desired to increase the measured pressure, the opening degree of the damper device 40 is decreased.

これにより、外気温度が低い冬場であって冷却塔22の簡単な構造改良で、冷却塔22における凝縮圧力を必要以上に下げないようにできるので、蒸発器20X,20Yでの冷却能力の低下を防止できる。   Thereby, it is possible to prevent the condensing pressure in the cooling tower 22 from being lowered more than necessary by a simple structural improvement of the cooling tower 22 in winter when the outside air temperature is low, so that the cooling capacity of the evaporators 20X and 20Y is reduced. Can be prevented.

図3は、制御機構42の別態様を示すものである。なお、図2と同様の部材や装置には同符号を付して説明する。   FIG. 3 shows another aspect of the control mechanism 42. In addition, the same code | symbol is attached | subjected and demonstrated to the member and apparatus similar to FIG.

図3に示すように、取込み外気Xと排気外気Yとが混合した後の送風外気Zの温度を測定する送風外気温度センサ48が設けられる。また、コントローラ46には、前述した熱交換コイル28入口における冷媒ガスの所定圧力と送風外気Zの設定温度との相関データ、すなわち送風外気Zを何度にしたら冷媒ガスが所定圧力になるかの相関データが予め入力されている。相関データの作成は予備試験等により求めることができる。   As shown in FIG. 3, a blown outside air temperature sensor 48 that measures the temperature of the blown outside air Z after the intake outside air X and the exhaust outside air Y are mixed is provided. Further, the controller 46 provides correlation data between the predetermined pressure of the refrigerant gas at the inlet of the heat exchange coil 28 and the set temperature of the blown outside air Z, that is, how many times the refrigerant gas reaches the predetermined pressure when the blown outside air Z is increased. Correlation data is input in advance. The creation of correlation data can be obtained by a preliminary test or the like.

そして、コントローラ46は、相関データに基づいて送風外気温度センサ48の測定温度が設定温度になるようにダンパー装置40の開度を制御する。   Then, the controller 46 controls the opening degree of the damper device 40 based on the correlation data so that the measured temperature of the blower outside air temperature sensor 48 becomes the set temperature.

これにより、外気温度が低い冬場であって冷却塔22の簡単な構造改良で、冷却塔22における凝縮圧力を必要以上に下げないようにできるので、蒸発器20X,20Yでの冷却能力の低下を防止できる。   Thereby, it is possible to prevent the condensing pressure in the cooling tower 22 from being lowered more than necessary by a simple structural improvement of the cooling tower 22 in winter when the outside air temperature is low, so that the cooling capacity of the evaporators 20X and 20Y is reduced. Can be prevented.

図4は、制御機構の更に別態様を示すものである。なお、図2及び図3と同様の部材や装置には同符号を付して説明する。   FIG. 4 shows still another aspect of the control mechanism. In addition, the same code | symbol is attached | subjected and demonstrated to the member and apparatus similar to FIG.2 and FIG.3.

図4に示すように、熱交換コイル28で液化した冷媒液体の温度を測定する冷媒液体温度センサ45が熱交換コイル28出口に設けられ、測定温度が逐次コントローラ46に送信される。また、コントローラ46には、冷媒の圧力と温度との相関データが予め入力されている。相関データは冷凍空調便覧等を参考とすることができる。そして、コントローラ46は、相関データに基づいて冷媒液体温度センサ45の測定温度が設定温度になるようにダンパー装置40の開度を制御する。   As shown in FIG. 4, a refrigerant liquid temperature sensor 45 that measures the temperature of the refrigerant liquid liquefied by the heat exchange coil 28 is provided at the outlet of the heat exchange coil 28, and the measured temperature is sequentially transmitted to the controller 46. The controller 46 is preliminarily input with correlation data between the refrigerant pressure and temperature. The correlation data can be referred to a freezing air-conditioning handbook. Then, the controller 46 controls the opening degree of the damper device 40 so that the measured temperature of the refrigerant liquid temperature sensor 45 becomes the set temperature based on the correlation data.

これにより、外気温度が低い冬場であっても冷却塔22の簡単な構造改良で、冷却塔22における凝縮圧力を必要以上に下げないようにできるので、蒸発器20X,20Yでの冷却能力の低下を防止できる。   This makes it possible to prevent the condensation pressure in the cooling tower 22 from being lowered more than necessary by simply improving the structure of the cooling tower 22 even in winter when the outside air temperature is low, so that the cooling capacity of the evaporators 20X and 20Y is reduced. Can be prevented.

図3及び図4の制御機構42は、所定圧力に制御したい熱交換コイル28入口の冷媒ガスの圧力を、送風外気の温度や冷媒液体の温度を測定することにより間接的に制御するものである。   The control mechanism 42 in FIGS. 3 and 4 indirectly controls the refrigerant gas pressure at the inlet of the heat exchange coil 28 to be controlled to a predetermined pressure by measuring the temperature of the blown outside air and the temperature of the refrigerant liquid. .

なお、本実施の形態では、冷媒が自然循環を行う冷却システム10の例で説明したが、冷媒を強制循環させる冷却システムにも適用できる。また、蒸発器20X,20Yで冷却する対象物はサーバ等の電子機器に限定されず、冷却する必要のある発熱体に適用できる。   In the present embodiment, the example of the cooling system 10 in which the refrigerant naturally circulates has been described. However, the present invention can also be applied to a cooling system in which the refrigerant is forcedly circulated. The object to be cooled by the evaporators 20X and 20Y is not limited to electronic devices such as servers, and can be applied to a heating element that needs to be cooled.

10…電子機器の冷却システム、12X、12Y…サーバルーム、13…床面、14…サーバ、15…冷却装置、17…コントローラ、18X、18Y…床下チャンバ、20X、20Y…蒸発器、22…凝縮器、23X,23Y…温度センサ、24…液配管、24X、24Y…分岐管、25X、25Y…流量調整バルブ、26…ガス配管、26X、26Y…分岐管、28…熱交換コイル、30…冷却塔本体、32…連結手段、34…散水機、36…送風ファン、38…循環ダクト、40…ダンパー装置、42…制御機構、44…冷媒圧力センサ、45…冷媒液体温度センサ、46…コントローラ、48…送風外気温度センサ、50…冷媒ガス熱量測定手段、52…演算手段、X…取込み外気、Y…排気外気、Z…送風外気   DESCRIPTION OF SYMBOLS 10 ... Cooling system of electronic equipment, 12X, 12Y ... Server room, 13 ... Floor surface, 14 ... Server, 15 ... Cooling device, 17 ... Controller, 18X, 18Y ... Underfloor chamber, 20X, 20Y ... Evaporator, 22 ... Condensation 23X, 23Y ... temperature sensor, 24 ... liquid piping, 24X, 24Y ... branch pipe, 25X, 25Y ... flow control valve, 26 ... gas pipe, 26X, 26Y ... branch pipe, 28 ... heat exchange coil, 30 ... cooling Tower body 32. Connecting means 34 34 Sprinkler 36 36 Fan, 38 Circulating duct 40 Damper device 42 Control mechanism 44 Refrigerant pressure sensor 45 Refrigerant liquid temperature sensor 46 Controller 48 ... Blower outside temperature sensor, 50 ... Refrigerant gas calorie measuring means, 52 ... Calculation means, X ... Intake outside air, Y ... Exhaust outside air, Z ... Blast outside air

Claims (6)

冷媒を気化させる蒸発器と、該蒸発器で気化された冷媒を液化させる凝縮器との間で冷媒を循環させると共に、前記凝縮器として冷却塔を用いた冷却システムにおいて、
前記冷却塔は、
外気の取込口と排気口とが形成された冷却塔本体と、
前記冷却塔本体内に設けられ、入口が前記蒸発器から戻る冷媒ガスが流れるガス配管に接続し、出口が前記蒸発器に供給する冷媒液体が流れる液配管に接続する熱交換コイルと、
前記熱交換コイルに散水する散水機と、
前記取込口から外気を取り込んで前記熱交換コイルに送風すると共に前記排気口から排気させる送風機と、
前記排気口から排気される排気外気の一部を前記取込口近傍に戻して前記取込口からの取込み外気と混合させる循環ダクトと、
前記循環ダクトを流れる排気外気の風量を調節する風量調節手段と、
前記熱交換コイルで凝縮される冷媒ガスの凝縮圧力が所定圧力になるように、前記風量調節手段を制御する制御機構と、を備えたことを特徴とする冷却システム。
In the cooling system using the cooling tower as the condenser, while circulating the refrigerant between the evaporator that vaporizes the refrigerant and the condenser that liquefies the refrigerant vaporized by the evaporator,
The cooling tower is
A cooling tower body in which an outside air intake port and an exhaust port are formed;
A heat exchange coil provided in the cooling tower main body, connected to a gas pipe through which refrigerant gas flowing back from the evaporator flows through an inlet and connected to a liquid pipe through which refrigerant liquid supplied to the evaporator flows out from the evaporator;
A watering machine for watering the heat exchange coil;
A blower that takes in outside air from the intake port and blows air to the heat exchange coil and exhausts air from the exhaust port;
A circulation duct for returning a part of the exhaust outside air exhausted from the exhaust port to the vicinity of the intake port and mixing it with the intake external air from the intake port;
An air volume adjusting means for adjusting the air volume of the exhaust outside air flowing through the circulation duct;
And a control mechanism for controlling the air volume adjusting means so that the condensing pressure of the refrigerant gas condensed by the heat exchange coil becomes a predetermined pressure.
前記制御機構は、
前記熱交換コイル入口の冷媒ガスの圧力を測定する冷媒圧力センサと、
前記冷媒圧力センサの測定圧力が前記所定圧力になるように前記風量調整手段を制御するコントローラと、を備えたことを特徴とする請求項1の冷却システム。
The control mechanism is
A refrigerant pressure sensor for measuring the pressure of the refrigerant gas at the inlet of the heat exchange coil;
The cooling system according to claim 1, further comprising a controller that controls the air volume adjusting means so that a measured pressure of the refrigerant pressure sensor becomes the predetermined pressure.
前記制御機構は、
前記送風機によって前記熱交換コイルに送風する送風外気の温度を測定する送風外気温度センサと、
前記熱交換コイルで凝縮される冷媒ガスの凝縮圧力を所定圧力にするための送風外気の設定温度が予め入力されており、前記送風外気温度センサの測定温度が前記設定温度になるように前記風量調節手段を制御するコントローラと、を備えたことを特徴とする請求項1の冷却システム。
The control mechanism is
A blower outside air temperature sensor that measures the temperature of the blown outside air that is blown to the heat exchange coil by the blower,
A set temperature of the blown outside air for setting the condensation pressure of the refrigerant gas condensed in the heat exchange coil to a predetermined pressure is input in advance, and the air volume is adjusted so that the measured temperature of the blown outside air temperature sensor becomes the set temperature. 2. The cooling system according to claim 1, further comprising a controller for controlling the adjusting means.
前記制御機構は、
前記熱交換コイル出口の冷媒液体の温度を測定する冷媒液体温度センサと、
前記熱交換コイル入口の冷媒ガスの圧力を所定圧力にするための冷媒液体の設定温度が予め入力されており、前記冷媒液体温度センサの測定温度が前記設定温度になるように前記風量調節手段を制御するコントローラと、を備えたことを特徴とする請求項1の冷却システム。
The control mechanism is
A refrigerant liquid temperature sensor for measuring the temperature of the refrigerant liquid at the outlet of the heat exchange coil;
A preset temperature of the refrigerant liquid for setting the pressure of the refrigerant gas at the inlet of the heat exchange coil to a predetermined pressure is input in advance, and the air volume adjusting means is set so that the measured temperature of the refrigerant liquid temperature sensor becomes the set temperature. The cooling system according to claim 1, further comprising a controller for controlling the cooling system.
前記冷却システムは、サーバルームに配設された電子機器を冷却するシステムであって、前記蒸発器は、前記電子機器からの排熱空気との熱交換によって冷媒を気化させると共に前記サーバルーム内に排気される前記排熱空気を冷却することを特徴とする請求項1〜4の何れか1の冷却システム。   The cooling system is a system for cooling an electronic device disposed in a server room, and the evaporator vaporizes a refrigerant by exchanging heat with exhaust heat air from the electronic device, and in the server room. The cooling system according to any one of claims 1 to 4, wherein the exhaust heat air to be exhausted is cooled. 前記冷却塔を前記蒸発器よりも高所に配置して前記冷媒を自然循環させることを特徴とする請求項1〜5の何れか1の冷却システム。   The cooling system according to any one of claims 1 to 5, wherein the cooling tower is disposed higher than the evaporator and the refrigerant is naturally circulated.
JP2009273488A 2009-12-01 2009-12-01 Cooling system Pending JP2011117629A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009273488A JP2011117629A (en) 2009-12-01 2009-12-01 Cooling system
SG201008799-7A SG171566A1 (en) 2009-12-01 2010-11-29 Cooling method and cooling system of electronic device
CN2010105706997A CN102083298B (en) 2009-12-01 2010-11-30 Cooling system of electronic device
EP10193319.0A EP2333439A3 (en) 2009-12-01 2010-12-01 Cooling method and cooling system of electronic device
US12/957,628 US20110127027A1 (en) 2009-12-01 2010-12-01 Cooling method and cooling system of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273488A JP2011117629A (en) 2009-12-01 2009-12-01 Cooling system

Publications (1)

Publication Number Publication Date
JP2011117629A true JP2011117629A (en) 2011-06-16

Family

ID=44283163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273488A Pending JP2011117629A (en) 2009-12-01 2009-12-01 Cooling system

Country Status (1)

Country Link
JP (1) JP2011117629A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037927B2 (en) 2012-10-04 2015-05-19 Hitachi, Ltd. Event notification system, event information aggregation server, and event notification method
CN106839576A (en) * 2017-02-08 2017-06-13 上海原能细胞医学技术有限公司 Refrigerating plant
CN110571684A (en) * 2019-09-06 2019-12-13 中国电力工程顾问集团西北电力设计院有限公司 Electric switch cabinet cooling system and control method
CN113858522A (en) * 2021-09-24 2021-12-31 南通大学 Hot pressing plate for hot press with uniform heating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613698U (en) * 1979-07-05 1981-02-05
JPH1019305A (en) * 1996-06-28 1998-01-23 Furukawa Electric Co Ltd:The Cooling system
JP2006234293A (en) * 2005-02-25 2006-09-07 Taikisha Ltd Heat pump type cooling device, air conditioner using the same, and heat pump type heating device
JP2009231529A (en) * 2008-03-24 2009-10-08 Hitachi Plant Technologies Ltd Cooling system for electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613698U (en) * 1979-07-05 1981-02-05
JPH1019305A (en) * 1996-06-28 1998-01-23 Furukawa Electric Co Ltd:The Cooling system
JP2006234293A (en) * 2005-02-25 2006-09-07 Taikisha Ltd Heat pump type cooling device, air conditioner using the same, and heat pump type heating device
JP2009231529A (en) * 2008-03-24 2009-10-08 Hitachi Plant Technologies Ltd Cooling system for electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037927B2 (en) 2012-10-04 2015-05-19 Hitachi, Ltd. Event notification system, event information aggregation server, and event notification method
CN106839576A (en) * 2017-02-08 2017-06-13 上海原能细胞医学技术有限公司 Refrigerating plant
CN110571684A (en) * 2019-09-06 2019-12-13 中国电力工程顾问集团西北电力设计院有限公司 Electric switch cabinet cooling system and control method
CN110571684B (en) * 2019-09-06 2024-02-06 中国电力工程顾问集团西北电力设计院有限公司 Electrical switch cabinet cooling system and control method
CN113858522A (en) * 2021-09-24 2021-12-31 南通大学 Hot pressing plate for hot press with uniform heating

Similar Documents

Publication Publication Date Title
JP2011237887A (en) Cooling method and cooling system for electronic equipment
EP2503866B1 (en) Cooling system for electronic equipment
EP2333439A2 (en) Cooling method and cooling system of electronic device
JP5351097B2 (en) Refrigerant circulation device
JP2009216295A (en) Cooling system of electronic device and its operating method
JP2011171499A (en) Cooling method and cooling system of electronic apparatus
JP2012007865A (en) Cooling system
JP2010190553A (en) Cooling system for electronic apparatus
JP5615963B2 (en) Electronic equipment cooling system
JP5491923B2 (en) Electronic equipment cooling system
JP5331012B2 (en) Electronic equipment cooling system
JP5041342B2 (en) Electronic equipment cooling system
JP2011117629A (en) Cooling system
JP4993415B2 (en) Air conditioning system and operation method thereof
JP4941676B2 (en) Air conditioning system
JP2012146331A (en) Cooling system for electronic equipment
JP3244582U (en) Converter cabinet condensation prevention system
JP2008209096A (en) Air conditioning system
JP2012059276A (en) Cooling system for electronic apparatus
JP2012142026A (en) Cooling system for electronic apparatus
KR20050122428A (en) Air conditioner without outdoor heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131003