JP2011116607A - Method for producing glass hollow body, and glass hollow body - Google Patents

Method for producing glass hollow body, and glass hollow body Download PDF

Info

Publication number
JP2011116607A
JP2011116607A JP2009277475A JP2009277475A JP2011116607A JP 2011116607 A JP2011116607 A JP 2011116607A JP 2009277475 A JP2009277475 A JP 2009277475A JP 2009277475 A JP2009277475 A JP 2009277475A JP 2011116607 A JP2011116607 A JP 2011116607A
Authority
JP
Japan
Prior art keywords
glass
hollow body
glass hollow
glass particles
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009277475A
Other languages
Japanese (ja)
Inventor
Kazumichi Yanagisawa
和道 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Kochi University NUC
Original Assignee
Kyushu University NUC
Kochi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Kochi University NUC filed Critical Kyushu University NUC
Priority to JP2009277475A priority Critical patent/JP2011116607A/en
Publication of JP2011116607A publication Critical patent/JP2011116607A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass hollow body which can exhibit a very high sound isolation effect, a heat insulation effect, a vibration reducing effect, and the like because it has large closed pores in the inner part thereof and has a very low density; to provide a method for producing the same; and to contribute to recycling of waste glass. <P>SOLUTION: The method for producing the glass hollow body includes the steps of: bringing glass particles into contact with water vapor under high-temperature and high-pressure conditions; and surrounding the glass particles with a heat insulating material and irradiating them with microwave. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ガラス中空体を製造するための方法、およびガラス中空体に関するものである。   The present invention relates to a method for producing a glass hollow body, and a glass hollow body.

床材などの構造材には、防音、断熱、振動などの低減のために、中空部が設けられることがある。例えば、主要材料であるコンクリートなどに発泡ポリスチレンを混合し、固化したものがある。かかる構造材は、発泡ポリスチレン部分が中空部となり、振動などの伝播を低減する。   A structural member such as a flooring may be provided with a hollow portion in order to reduce soundproofing, heat insulation, vibration, and the like. For example, there is a concrete in which foamed polystyrene is mixed with concrete, which is a main material, and solidified. In such a structural material, the expanded polystyrene portion becomes a hollow portion, and the propagation of vibration and the like is reduced.

しかし、発泡ポリスチレンは有機材料であるために火災時に溶融または燃焼し、有毒ガスを発する。また、発泡ポリスチレンはコンクリートなどと密着してしまうため、使用後に両者を分離することが難しく、廃材の再利用が困難であるという問題もある。よって、発泡ポリスチレンに代わり得る無機質の中空材が求められていた。   However, since polystyrene foam is an organic material, it melts or burns in a fire and emits toxic gas. In addition, since polystyrene foam is in close contact with concrete and the like, it is difficult to separate them after use, and it is difficult to reuse waste materials. Therefore, an inorganic hollow material that can replace foamed polystyrene has been demanded.

無機質の中空材としては、多孔質ガラスが知られている。かかる多孔質ガラスは、一般的に、ガラス粒子を発泡剤などと共に加熱して製造される(特許文献1など)。   As an inorganic hollow material, porous glass is known. Such porous glass is generally produced by heating glass particles together with a foaming agent or the like (Patent Document 1, etc.).

しかし、このように製造された多孔質ガラスは連通孔を有するため、振動伝播などの低減作用は決して十分ではない。   However, since the porous glass manufactured in this way has communication holes, a reduction effect such as vibration propagation is never sufficient.

そこで、いわゆるシラスバルーンなど、閉気孔を有するガラス中空体が開発されている。かかるガラス中空体は、ガラス粒子を表面処理した後、加熱処理を比較的短時間行って製造されている(特許文献2など)。   Therefore, a glass hollow body having closed pores such as a so-called shirasu balloon has been developed. Such a glass hollow body is manufactured by subjecting glass particles to a surface treatment and then performing a heat treatment for a relatively short time (Patent Document 2, etc.).

また、本発明者は、ガラス粒子に高温高圧水などを接触させることにより内部に水分子を浸透させた上で加熱処理することにより、比較的大きな閉気孔を多数有するガラス発泡体を製造する方法を開発している(特許文献3)。当該方法で得られたガラス発泡体は、板状とすることができるなど、構造材自体などとして使用することが可能である。   In addition, the inventor of the present invention is a method for producing a glass foam having a large number of relatively large closed pores by bringing a water molecule into contact with glass particles to cause water molecules to permeate therein and then performing heat treatment. (Patent Document 3). The glass foam obtained by the method can be used as a structural material itself, such as a plate shape.

特開平5−32425号公報JP-A-5-32425 特許第2562788号公報Japanese Patent No. 2562788 特許第3792702号公報Japanese Patent No. 3792702

上述したように、従来、シラスバルーンなど閉気孔を有するガラス中空体が知られていた。しかしシラスバルーンは、その直径がせいぜい数100μmまでと小さなものであり、例えば構造材に添加して防音性能や断熱性能を高めるには、かなりの量を添加しなければならない。その結果、高い防音性能と引き換えに強度が過度に低下してしまい、構造材として利用できなくなる。   As described above, a glass hollow body having closed pores such as a shirasu balloon has been conventionally known. However, the diameter of the shirasu balloon is as small as several hundred μm at most. For example, a considerable amount must be added in order to enhance the soundproofing performance and heat insulation performance by adding to the structural material. As a result, the strength is excessively reduced in exchange for high soundproofing performance, and it cannot be used as a structural material.

また、本発明者は、比較的大きな閉気孔を有するガラス発泡体を開発している。しかし、かかるガラス発泡体は比較的薄いものであり、当該技術では厚いガラス発泡体や比較的大きな球状のガラス発泡体を製造することは難しく、かかるガラス発泡体の比重は十分に小さいわけではない。   The inventor has also developed a glass foam having relatively large closed pores. However, such glass foams are relatively thin, and it is difficult to produce thick glass foams and relatively large spherical glass foams with this technology, and the specific gravity of such glass foams is not small enough. .

これら従来技術に対して、ガラス中空体の重量当りの閉気孔体積を一層高めることができれば、より少ない添加量で高い防音性能などを得ることができると考えられる。   If the closed pore volume per weight of the glass hollow body can be further increased with respect to these conventional techniques, it is considered that a high soundproof performance can be obtained with a smaller addition amount.

本発明は上記のような事情に着目してなされたものであって、その目的は、内部に大きな閉気孔を有し、非常に低密度のものであることから、極めて高い防音作用、断熱作用、振動の低減作用などを発揮し得るガラス中空体と、その製造方法を提供することにある。また、本発明は、廃ガラスのリサイクルにも寄与するものである。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to have a large closed pore inside and to have a very low density, so that it has a very high soundproofing action and heat insulation action. An object of the present invention is to provide a glass hollow body capable of exhibiting a vibration reducing action and a method for producing the same. The present invention also contributes to recycling of waste glass.

本発明者は、上記課題を解決するために、本発明者が既に開発していたガラス発泡体の製造方法をさらに検討した。その結果、飽和水蒸気圧下の水蒸気で水熱処理したガラス粒子を、マイクロ波を吸収しない保温材で囲んだ上でマイクロ波を照射すれば、内表面が溶融した閉気孔を有し、密度が非常に小さなガラス中空体が得られることを見出した。より詳しくは、おそらく水熱処理により取り込まれたガラス粒子内部の水分子がマイクロ波により発熱して、保温材に囲まれたガラス粒子の中心部分の温度が急上昇し、内表面が溶融している比較的大きな閉気孔が形成される一方で、外表面付近の温度はそれほど上がらないため保温材などに融着せず、比較的大きな一塊の低密度ガラス中空体が得られると考えられる。   In order to solve the above-mentioned problems, the present inventor further examined a method for producing a glass foam that the inventor has already developed. As a result, if the glass particles hydrothermally treated with water vapor under saturated water vapor pressure are surrounded by a heat insulating material that does not absorb microwaves and irradiated with microwaves, the inner surface has closed pores that are melted, and the density is very high. It has been found that a small glass hollow body can be obtained. More specifically, the water molecules inside the glass particles, which are probably taken in by hydrothermal treatment, generate heat due to microwaves, the temperature of the central part of the glass particles surrounded by the heat insulating material rises rapidly, and the inner surface is melted. While large closed pores are formed, the temperature in the vicinity of the outer surface does not rise so much, so that it is not fused to a heat insulating material, and a relatively large lump of low-density glass hollow body can be obtained.

本発明に係るガラス中空体の製造方法は、高温高圧下、ガラス粒子と水蒸気を接触させる工程;および、当該ガラス粒子を保温材で囲み、マイクロ波を照射する工程を含むことを特徴とする。   The method for producing a glass hollow body according to the present invention includes a step of bringing glass particles into contact with water vapor under high temperature and pressure; and a step of surrounding the glass particles with a heat insulating material and irradiating with microwaves.

上記本発明方法では、鋳型中のガラス粒子にマイクロ波を照射することが好ましい。かかる態様によれば、所望の形状や大きさを有するガラス中空体を製造し易くなる。   In the method of the present invention, it is preferable to irradiate the glass particles in the mold with microwaves. According to this aspect, it becomes easy to manufacture a glass hollow body having a desired shape and size.

上記保温材としては、レンガを用いることができる。本発明者による実験によれば、保温材としてレンガを用いたところ、ガラス中空体を良好に製造することができた。   Brick can be used as the heat insulating material. According to an experiment by the present inventor, when brick was used as a heat insulating material, a glass hollow body could be produced satisfactorily.

本発明に係るガラス中空体は、閉気孔を有し且つ密度が0.25g/cm3以下であることを特徴とする。 The glass hollow body according to the present invention has closed pores and a density of 0.25 g / cm 3 or less.

本発明に係るガラス中空体は、内部に大きな閉気孔を有し、非常に低密度のものである。従って、本発明のガラス中空体は極めて高い防音作用、断熱作用、振動の低減作用などを発揮し得るので、例えばコンクリートなどに添加すれば、従来の多孔質ガラスやガラス中空体に比して少量でも断熱作用などに優れた構造材とすることができ、且つその強度を実用レベルで維持することが可能になる。その上、本発明のガラス中空体は無機質であることから、例えば発泡ポリスチレンが挿入された従来のコンクリート構造材などと異なり、コンクリートに添加した場合であっても使用後の廃材が無機質のみからなることになるために、その再生利用も容易となり得る。また、本発明に係る製造方法は、かかるガラス中空体を製造できるものとして、同様に非常に有用である。さらに本発明方法では廃ガラスを原料とすることができるので、廃ガラスのリサイクルにも利用できる。また、天然のパーライトへの応用も可能である。よって本発明は、従来よりも優れた断熱材などの提供を可能にし得るものとして、産業上非常に有用である。   The glass hollow body according to the present invention has large closed pores inside and has a very low density. Accordingly, the glass hollow body of the present invention can exhibit extremely high soundproofing action, heat insulation action, vibration reduction action, and the like. Therefore, when added to concrete, for example, a small amount compared to conventional porous glass and glass hollow bodies. However, it is possible to obtain a structural material having an excellent heat insulating effect and to maintain the strength at a practical level. In addition, since the glass hollow body of the present invention is inorganic, for example, unlike conventional concrete structural materials in which foamed polystyrene is inserted, the waste material after use is made of only inorganic matter even when added to concrete. Therefore, its recycling can be facilitated. Moreover, the manufacturing method which concerns on this invention is very useful similarly as what can manufacture this glass hollow body. Furthermore, since waste glass can be used as a raw material in the method of the present invention, it can also be used for recycling waste glass. It can also be applied to natural perlite. Therefore, this invention is very useful industrially as what can provide the heat insulating material etc. superior to the past.

図1は、本発明に係るガラス中空体の断面を模式的に表した図である。FIG. 1 is a diagram schematically showing a cross section of a glass hollow body according to the present invention. 図2は、後述する実施例で用いた珪藻土レンガ製の保温材の写真である。FIG. 2 is a photograph of a heat insulating material made of diatomite brick used in Examples described later. 図3は、後述する実施例で、図2の保温材へ磁性坩堝をはめ込んだ写真である。FIG. 3 is a photograph showing a magnetic crucible inserted into the heat insulating material of FIG. 図4は、後述する実施例で得られたガラス中空体の写真である。FIG. 4 is a photograph of a glass hollow body obtained in an example described later. 図5は、後述する実施例で得られたガラス中空体の断面写真である。FIG. 5 is a cross-sectional photograph of a glass hollow body obtained in an example described later.

本発明方法では、高温高圧下、原料であるガラス粒子と水蒸気とを接触させる、即ち、ガラス粒子を水熱処理する。   In the method of the present invention, glass particles as a raw material are brought into contact with water vapor under high temperature and high pressure, that is, the glass particles are hydrothermally treated.

本発明方法では、原料としてガラス粒子を用いる。   In the method of the present invention, glass particles are used as a raw material.

本発明で用いるガラス粒子の種類は特に制限されず、ケイ酸塩ガラス;ホウ酸塩ガラス;P25、GeO2、TeO2、V25などを主成分とするその他の酸化物ガラスなどからなるものを用いることができる。これらの中でも、水熱処理によりガラス構造中に水分を保持し易いケイ酸塩ガラス粒子を用いることが好ましい。また、Na2Oなどのアルカリ成分を含むガラスは、水熱処理により水分が浸透し易く、ガラスの軟化温度を低下させると共に発泡を容易にできることから、好適に用いられる。 The kind of glass particles used in the present invention is not particularly limited, and silicate glass; borate glass; other oxide glass mainly containing P 2 O 5 , GeO 2 , TeO 2 , V 2 O 5, etc. What consists of etc. can be used. Among these, it is preferable to use silicate glass particles that easily retain moisture in the glass structure by hydrothermal treatment. Further, glass containing an alkali component such as Na 2 O is preferably used because moisture easily permeates through hydrothermal treatment, can lower the softening temperature of the glass and facilitate foaming.

本発明で用いるガラス粒子としては、その粒子径が1mm以下であるものが好ましい。粒子径が大き過ぎるガラス粒子を用いると、水熱処理を行っても水分がガラス粒子の中へ十分に拡散できず、ガラス粒子が十分に水分を保持できなくなるおそれがあり得る。かかる観点から、ガラス粒子としては、その粒子径が500μm以下であるものを用いることがより好ましく、250μm以下のものを用いることがさらに好ましい。一方、用いるガラス粒子の粒子径の下限は特に制限されないが、過剰に細かい粒子を調製するのは技術的に困難であり得ることから、その粒子径が10μm以上であるものを用いることが好ましい。また、できる限り均質なガラス中空体を得るために、粒子分布の狭いガラス粒子を用いることが好ましい。   The glass particles used in the present invention preferably have a particle diameter of 1 mm or less. If glass particles having a particle size that is too large are used, moisture may not be sufficiently diffused into the glass particles even if hydrothermal treatment is performed, and the glass particles may not be able to sufficiently retain moisture. From this viewpoint, it is more preferable to use glass particles having a particle size of 500 μm or less, and it is more preferable to use glass particles having a particle size of 250 μm or less. On the other hand, the lower limit of the particle size of the glass particles to be used is not particularly limited. However, it may be technically difficult to prepare excessively fine particles, and therefore it is preferable to use those having a particle size of 10 μm or more. In order to obtain a glass hollow body that is as homogeneous as possible, it is preferable to use glass particles having a narrow particle distribution.

所望の粒子径範囲のガラス粒子は、粉砕したガラスを適切なメッシュの篩で篩過することにより選別することができる。但し、使用したガラス粒子が市販品などであり、粒子径のカタログ値があるのであれば、その値を参考にしてもよい。   Glass particles in a desired particle size range can be selected by sieving the crushed glass with a suitable mesh sieve. However, if the glass particles used are commercial products and there is a catalog value of the particle diameter, the value may be referred to.

ガラス粒子は、市販のものがあればそれを用いてもよいし、調製してもよい。例えば、廃ガラスを粉砕した上で、篩などを用いて所望の粒子径のものを得てもよい。   If there are commercially available glass particles, they may be used or prepared. For example, waste glass may be crushed and a desired particle size may be obtained using a sieve or the like.

ガラス粒子を水熱処理する条件は適宜調整すればよいが、例えば、温度を140℃以上、340℃以下程度、圧力を0.35MPa以上、15MPa以下程度、処理時間を5時間以上、48時間以下程度とすることができる。当該温度は160℃以上、260℃以下程度がより好ましく、圧力は0.62MPa以上、4.7MPa以下程度がより好ましく、処理時間は8時間以上、20時間以下程度がより好ましい。   The conditions for the hydrothermal treatment of the glass particles may be appropriately adjusted. For example, the temperature is about 140 ° C. or higher and 340 ° C. or lower, the pressure is about 0.35 MPa or higher and 15 MPa or lower, and the treatment time is about 5 hours or longer and 48 hours or shorter. It can be. The temperature is more preferably about 160 ° C. to 260 ° C., the pressure is more preferably about 0.62 MPa to 4.7 MPa, and the treatment time is more preferably about 8 hours to 20 hours.

水熱処理で用いる水の量も適宜調節すればよいが、例えば、バッチ式の小型オートクレーブを用いる場合、ガラス粒子1gに対して0.1mL以上、1.0mL以下程度の割合とすることができる。当該割合が0.1mL以上であれば、水熱処理により水分が十分にガラス粒子中に拡散でき、ガラス粒子を良好に発泡させることがより確実になる。一方、当該割合が大き過ぎると、水熱処理中に液体として存在する水分量が多くなり過ぎ、ガラス粒子表面で副反応が起こってガラスの網目構造中に水分が十分拡散できなくなるおそれがあり得るので、当該割合としては1.0mL以下が好ましい。当該割合としては、0.1mL以上、0.5mL以下がより好ましく、0.12mL以上、0.4mL以下がさらに好ましく、0.15mL以上、0.2mL以下が特に好ましい。   The amount of water used in the hydrothermal treatment may be appropriately adjusted. For example, when a batch-type small autoclave is used, the ratio can be set to about 0.1 mL or more and 1.0 mL or less with respect to 1 g of glass particles. If the said ratio is 0.1 mL or more, a water | moisture content can fully be spread | diffused in a glass particle by a hydrothermal treatment, and it becomes more reliable that a glass particle is made to foam favorable. On the other hand, if the ratio is too large, the amount of water present as a liquid during hydrothermal treatment may increase so much that side reactions may occur on the surface of the glass particles and the water may not be sufficiently diffused into the glass network structure. The ratio is preferably 1.0 mL or less. As the said ratio, 0.1 mL or more and 0.5 mL or less are more preferable, 0.12 mL or more and 0.4 mL or less are more preferable, 0.15 mL or more and 0.2 mL or less are especially preferable.

ガラス粒子の水熱処理に用いる装置は、高温高圧処理が可能なものであれば特に制限されない。例えば、密閉室を有するバッチ式のものでも連続式のものでもよく、オートクレーブ、ボックス炉、シャットルキルン、ローラーハースキルン、トンネル式加熱炉などを用いることができる。また、当該装置は、所望のガラス中空体に合わせ、小型のものでも工業的な大型のものでもよい。   The apparatus used for the hydrothermal treatment of glass particles is not particularly limited as long as it can perform high-temperature and high-pressure treatment. For example, a batch type or a continuous type having a sealed chamber may be used, and an autoclave, a box furnace, a shuttle kiln, a roller hearth kiln, a tunnel heating furnace, or the like can be used. The apparatus may be small or industrially large in accordance with a desired glass hollow body.

本発明方法では、水熱処理したガラス粒子を保温材で囲んだ上で、ガラス粒子にマイクロ波を照射する。   In the method of the present invention, hydrothermally treated glass particles are surrounded by a heat insulating material, and then the glass particles are irradiated with microwaves.

保温材は、マイクロ波がガラス粒子中の水分子に照射されることにより発生する熱が過剰に放散されないようにするものであり、ガラス中空体内部に大きな閉気孔を生成させる上で重要なものである。   The heat insulating material is to prevent the heat generated by the microwaves from irradiating water molecules in the glass particles from being excessively dissipated, and is important for generating large closed pores inside the glass hollow body. It is.

保温材の材質は、マイクロ波の吸収性が低く且つ断熱性を有するものであれば特に制限されない。例えば、レンガ、セラミック、グラスウール、ロックウールなどを用いることができる。   The material of the heat insulating material is not particularly limited as long as it has low microwave absorption and heat insulation. For example, brick, ceramic, glass wool, rock wool or the like can be used.

保温材の厚さは、材質などに応じて適宜決定すればよい。例えば、レンガを用いた場合には、ガラス粒子を囲む部分が1cm以上、5cm以下程度となる厚さのものを用いることができる。   What is necessary is just to determine the thickness of a heat insulating material suitably according to a material etc. For example, when a brick is used, the thickness of the portion surrounding the glass particles can be about 1 cm or more and 5 cm or less.

水熱処理したガラス粒子にマイクロ波を照射するに当っては、ガラス粒子を鋳型中に挿入した状態で行ってもよい。かかる態様によれば、所望の形状を有するガラス中空体を製造し易くなる。   When the hydrothermally treated glass particles are irradiated with microwaves, the glass particles may be inserted in a mold. According to this aspect, it becomes easy to manufacture a glass hollow body having a desired shape.

かかる鋳型の材質は、保温材と同様のものであってもよい。即ち、例えば、二枚の板状保温材を用意し、それぞれを所定の形状にくり抜いて、一方に水熱処理したガラス粒子を挿入し、くり抜いた部分が重なるように両者を重ね合わせた後、固定してもよい。また、鋳型を、磁性坩堝など断熱性を有しないものとしてもよい。この場合には、鋳型を保温材で囲むようにする。   The material of the mold may be the same as that of the heat insulating material. That is, for example, two plate-shaped heat insulating materials are prepared, each of which is cut out into a predetermined shape, glass particles that have been subjected to hydrothermal treatment are inserted into one, the two are overlapped so that the cut-out portions overlap, and then fixed. May be. Moreover, it is good also as what does not have heat insulation, such as a magnetic crucible, for a casting_mold | template. In this case, the mold is surrounded by a heat insulating material.

なお、特に鋳型を用いる場合には、鋳型の空間部形状に比してガラス粒子の使用量が少な過ぎると所望の形状のガラス中空体が得られないおそれがあることから、ガラス粒子の使用量は適宜調節する必要がある。   In particular, when a mold is used, the amount of glass particles used may not be obtained if the amount of glass particles used is too small compared to the shape of the space of the mold. Should be adjusted accordingly.

マイクロ波の照射条件は、予備実験などにより適宜決定すればよいが、通常、例えばマイクロ波の周波数は工業用に定められているので、例えば、IMSバンド周波数で915MHzや2450MHzのものを用いればよい。また、マイクロ波の照射時間は、用いるガラス粒子の量やマイクロ波により異なるが、通常、5分間以上、20分間以下程度とすればよい。   The microwave irradiation conditions may be appropriately determined by a preliminary experiment or the like. Usually, for example, the microwave frequency is determined for industrial use, and for example, an IMS band frequency of 915 MHz or 2450 MHz may be used. . The microwave irradiation time varies depending on the amount of glass particles used and the microwave, but is usually about 5 minutes to 20 minutes.

上記で説明した本発明方法で得られるガラス中空体は、図1に示す模式図のように、その内部表面が溶融している大きな閉気孔を有し、非常に低密度なものである。より具体的には、0.25g/cm3以下という密度を有する。かかる大きな閉気孔のために、本発明のガラス中空体は水に浮き、内部に水が浸透することはない。このように低密度のガラス中空体や多孔質ガラスは、従来存在しなかった。一方、密度が低過ぎると使用目的に応じた実用強度を満たさなくなるおそれがあるので、密度としては0.05g/cm3以上が好適である。 The glass hollow body obtained by the method of the present invention described above has very closed pores having large closed pores whose inner surface is melted, as shown in the schematic view of FIG. More specifically, it has a density of 0.25 g / cm 3 or less. Due to such large closed pores, the glass hollow body of the present invention floats on water and does not penetrate into the inside. Thus, a low-density glass hollow body and porous glass have not existed conventionally. On the other hand, if the density is too low, the practical strength according to the purpose of use may not be satisfied, so that the density is preferably 0.05 g / cm 3 or more.

上記に対して、本発明に係るガラス中空体は、その外表面は溶融していない。よって、マイクロ波照射直後であっても、保温材や鋳型から容易に取り出せる。   In contrast, the outer surface of the hollow glass body according to the present invention is not melted. Therefore, even immediately after the microwave irradiation, it can be easily taken out from the heat insulating material or the mold.

上記のとおり、本発明に係るガラス中空体は、大きな閉気孔を有し、非常に低密度のものである。従って、極めて高い防音作用、断熱作用、振動の低減作用などを発揮し得るので、例えばコンクリートなどに添加すれば、従来の多孔質ガラスやガラス中空体に比して少量でも断熱作用などに優れた構造材とすることができ、その強度を実用レベルで維持することが可能になるなど、非常に有用なものである。   As described above, the glass hollow body according to the present invention has large closed pores and has a very low density. Therefore, since it can exhibit extremely high soundproofing action, heat insulation action, vibration reduction action, etc., if added to concrete, for example, it has excellent heat insulation action even in a small amount compared to conventional porous glass or glass hollow body It can be used as a structural material, and is very useful because it can maintain its strength at a practical level.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
(1) 廃棄ガラスビンを粉砕した粉末(トヨシステムプラント社製)を60メッシュの篩で分級し、その粒子径を250μm未満とした。当該ガラス粉末(40g)を水(6mL)と共に内容積80mLのオートクレーブに入れ、180℃で12時間水熱処理した。
Example 1
(1) The powder (Toyo System Plant Co., Ltd.) obtained by pulverizing the waste glass bottle was classified with a 60-mesh sieve, and the particle size was made less than 250 μm. The glass powder (40 g) was placed in an autoclave with an internal volume of 80 mL together with water (6 mL) and hydrothermally treated at 180 ° C. for 12 hours.

別途、外径5.5cm、高さ4.5cmの磁性坩堝を挿入できるよう、図2に示すように、高さ6.5cm、11cm角と、高さ6.5cm、対角線長さ11cmの八角形の珪藻土レンガをくりぬいた。図3に示すように、外径5.5cm、高さ4.5cmの坩堝を八角形の珪藻土レンガにはめ込み、当該坩堝内に上記ガラス粉末(8.0g)挿入し、坩堝に蓋をした。さらに、角形珪藻土レンガを重ねて磁性坩堝を囲み、電子レンジ(シャープ社製,製品名「RE6300」)に入れ、2450MHzのマイクロ波を、出力570Wで8分間照射した。   Separately, as shown in FIG. 2, a 6.5 cm, 11 cm square, 6.5 cm high, and 11 cm diagonal length can be inserted into a magnetic crucible having an outer diameter of 5.5 cm and a height of 4.5 cm. A square diatomite brick was hollowed out. As shown in FIG. 3, a crucible having an outer diameter of 5.5 cm and a height of 4.5 cm was fitted into an octagonal diatomaceous earth brick, the glass powder (8.0 g) was inserted into the crucible, and the crucible was covered. Further, square diatomaceous earth bricks were stacked to surround the magnetic crucible, placed in a microwave oven (manufactured by Sharp Corporation, product name “RE6300”), and irradiated with 2450 MHz microwaves at an output of 570 W for 8 minutes.

その結果、坩堝中には、図4に示すとおり、直径約4cmのガラス球体が生成していた。当該ガラス球体の表面は乾燥しており、坩堝内表面と固着することはなく、容易に取り出すことができた。当該ガラス球体の質量は約6.0gであり、当該値から算出された密度は約0.18g/cm3であった。当該ガラス球体をダイヤモンドカッターで半分に切断したところ、図5のとおり内部は空洞になっており、その内部表面は溶融しており、完全な閉気孔となっていた。 As a result, as shown in FIG. 4, glass spheres having a diameter of about 4 cm were generated in the crucible. The surface of the glass sphere was dry and did not adhere to the inner surface of the crucible and could be easily taken out. The mass of the glass sphere was about 6.0 g, and the density calculated from the value was about 0.18 g / cm 3 . When the glass sphere was cut in half with a diamond cutter, the interior was hollow as shown in FIG. 5, and the inner surface was melted and became completely closed pores.

以上のとおり、本発明方法によれば、従来のガラス中空体に比べて顕著に密度が低く、閉気孔を有する、比較的大きなガラス中空体を得られることが実証された。   As described above, according to the method of the present invention, it was demonstrated that a relatively large glass hollow body having a remarkably low density and having closed pores can be obtained as compared with the conventional glass hollow body.

比較例1
上記実施例1において、ガラス粉末を入れた磁性坩堝を保温材で囲むことなくそのまま電子レンジに入れ、照射時間を合計20分間まで延長した以外は同様にして、水熱処理したガラス粉末にマイクロ波を照射した。しかし、ガラス粉末は全く発泡せず、そのままの状態であった。
Comparative Example 1
In Example 1 above, the microwave crucible containing the glass powder was put in a microwave oven without being surrounded by a heat insulating material, and microwaves were applied to the hydrothermally treated glass powder in the same manner except that the irradiation time was extended to a total of 20 minutes. Irradiated. However, the glass powder did not foam at all and remained as it was.

その理由としては、ガラス粉末内の水分にマイクロ波が照射されても、断熱材を用いなかったため生じた熱が外部に放散されてしまったために、ガラス粉末の溶融も発泡も起こらなかったことが考えられる。   The reason for this is that even if microwaves were irradiated to the moisture in the glass powder, the heat generated was not used because the heat insulating material was not used, so the glass powder did not melt or foam. Conceivable.

Claims (4)

ガラス中空体を製造するための方法であって、
高温高圧下、ガラス粒子と水蒸気を接触させる工程;および、
当該ガラス粒子を保温材で囲み、マイクロ波を照射する工程;
を含むことを特徴とするガラス中空体の製造方法。
A method for producing a glass hollow body,
Contacting glass particles with water vapor under high temperature and pressure; and
A step of surrounding the glass particles with a heat insulating material and irradiating with microwaves;
The manufacturing method of the glass hollow body characterized by including.
鋳型中のガラス粒子にマイクロ波を照射する請求項1に記載のガラス中空体の製造方法。   The method for producing a glass hollow body according to claim 1, wherein the glass particles in the mold are irradiated with microwaves. 保温材としてレンガを用いる請求項1または2に記載のガラス中空体の製造方法。   The manufacturing method of the glass hollow body of Claim 1 or 2 using a brick as a heat insulating material. 閉気孔を有し且つ密度が0.25g/cm3以下であることを特徴とするガラス中空体。 A hollow glass body having closed pores and a density of 0.25 g / cm 3 or less.
JP2009277475A 2009-12-07 2009-12-07 Method for producing glass hollow body, and glass hollow body Pending JP2011116607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277475A JP2011116607A (en) 2009-12-07 2009-12-07 Method for producing glass hollow body, and glass hollow body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277475A JP2011116607A (en) 2009-12-07 2009-12-07 Method for producing glass hollow body, and glass hollow body

Publications (1)

Publication Number Publication Date
JP2011116607A true JP2011116607A (en) 2011-06-16

Family

ID=44282394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277475A Pending JP2011116607A (en) 2009-12-07 2009-12-07 Method for producing glass hollow body, and glass hollow body

Country Status (1)

Country Link
JP (1) JP2011116607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129049A (en) * 2017-05-25 2018-12-05 이장희 Heat holding fiber coating composition and manufacturing method therfor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275927A (en) * 1990-12-20 1992-10-01 W R Grace & Co Method for production of small hollow spherical glass particles
JPH07223837A (en) * 1993-12-17 1995-08-22 Bayer Ag Heat resistant hollow beads, its manufacturing and use
JP2003095763A (en) * 2001-09-25 2003-04-03 Techno Network Shikoku Co Ltd Porous glass and method of manufacturing the same
JP2004300025A (en) * 2003-03-20 2004-10-28 Kazumichi Yanagisawa Foamed body of glass, heat insulating material using the same, and method for producing foamed glass
JP2005255443A (en) * 2004-03-10 2005-09-22 Chube Univ Proton conductor, its producing method, phosphate glass, and its producing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275927A (en) * 1990-12-20 1992-10-01 W R Grace & Co Method for production of small hollow spherical glass particles
JPH07223837A (en) * 1993-12-17 1995-08-22 Bayer Ag Heat resistant hollow beads, its manufacturing and use
JP2003095763A (en) * 2001-09-25 2003-04-03 Techno Network Shikoku Co Ltd Porous glass and method of manufacturing the same
JP2004300025A (en) * 2003-03-20 2004-10-28 Kazumichi Yanagisawa Foamed body of glass, heat insulating material using the same, and method for producing foamed glass
JP2005255443A (en) * 2004-03-10 2005-09-22 Chube Univ Proton conductor, its producing method, phosphate glass, and its producing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN4004009692; 柳澤和道他: '水熱反応を利用したガラス発泡体の作成' 無機マテリアル学会第107回学術講演会講演要旨集 , 20031106, 56-57, 無機マテリアル学会 *
JPN4004009693; 柳澤和道他: '廃ガラスからの水熱ホットプレス法を利用したガラス多孔体の作成' 第14回秋季シンポジウム講演予稿集 , 20010926, 217, 日本セラミックス協会 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129049A (en) * 2017-05-25 2018-12-05 이장희 Heat holding fiber coating composition and manufacturing method therfor
KR102042313B1 (en) 2017-05-25 2019-12-02 이장희 Heat holding fiber coating composition and manufacturing method therfor

Similar Documents

Publication Publication Date Title
Siddika et al. Powder sintering and gel casting methods in making glass foam using waste glass: A review on parameters, performance, and challenges
KR101842000B1 (en) Quasi-noncombustible recycled foam insulation
WO2013154499A1 (en) A method for producing a foam glass with high open pore content
DE102014003104A1 (en) Alkali aluminosilicate foam or slurry compositions or bodies and process for their preparation and their use
JPH07115963B2 (en) Inorganic foam and method for producing the same
CN104609888A (en) Production process of foamed ceramics
CN103073243A (en) Glazed hollow bead insulation board and preparation method thereof
JP2007506535A5 (en)
US10875978B2 (en) Template-assisted production of porous materials
KR20010061337A (en) Method for manufacturing lightweight heat insulating forming glass by direct forming
Rashid et al. Light weight low thermal conductive fly ash foams through microwave irradiation for insulative, agricultural and self-healing purposes
KR101157956B1 (en) Method for manufacturing foamed glass from waste glass
JP2005239467A (en) Ceramic sintered compact with binary structure pores and its production method
KR101600457B1 (en) Manufacturing method of porous molded ceramic having excellent mechanical property
JP2011116607A (en) Method for producing glass hollow body, and glass hollow body
RU2606539C1 (en) Charge composition and method of producing foamed heat-insulating material
RU2187473C2 (en) Method of manufacturing block expanded glass
RU2346906C1 (en) Composition and method of obtaining foam silicate material
dos Santos et al. Use of sodium metasilicate as silica source and stabilizing agent in two-part metakaolin–H2O2 geopolymer foams
CN111572125A (en) Composite board
KR101282988B1 (en) Manufacuring method of foamed glass have nano structure
JP3792702B2 (en) Glass foam and method for producing glass foam
RU2268248C1 (en) Foamed material and method for production thereof
CN108892406A (en) A kind of porous hollow lightweight aggregate and preparation method thereof
RU2528755C1 (en) Method of production of block cellular glass from crushed glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121105

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20131016

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311