JP2011114420A - Amplifier circuit - Google Patents

Amplifier circuit Download PDF

Info

Publication number
JP2011114420A
JP2011114420A JP2009266901A JP2009266901A JP2011114420A JP 2011114420 A JP2011114420 A JP 2011114420A JP 2009266901 A JP2009266901 A JP 2009266901A JP 2009266901 A JP2009266901 A JP 2009266901A JP 2011114420 A JP2011114420 A JP 2011114420A
Authority
JP
Japan
Prior art keywords
fet
terminal
input
gain
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009266901A
Other languages
Japanese (ja)
Other versions
JP5356189B2 (en
Inventor
Koichi Yanagisawa
浩一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2009266901A priority Critical patent/JP5356189B2/en
Publication of JP2011114420A publication Critical patent/JP2011114420A/en
Application granted granted Critical
Publication of JP5356189B2 publication Critical patent/JP5356189B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amplifier circuit which can increase the change amount of a gain. <P>SOLUTION: The amplifier circuit includes: an input resistor 3 whose one end is connected to the inverting input terminal of an operational amplifier 2; an input resistor 4 whose one end is connected to a non-inverting input terminal and other end is connected to the other end of the input resistor 3; a resistor 5 connected between the inverting input terminal and output terminal of the operational amplifier 2; an FET 6 whose drain terminal is connected to the inverting input terminal of the operational amplifier 2 and gate terminal and source terminal are stipulated to a ground potential GND; and an FET 7 of the same type as the FET 6, whose drain terminal is connected to the non-inverting input terminal of the operational amplifier 2 and source terminal is stipulated to the ground potential GND. The respective input resistors 3 and 4 are stipulated to a resistance value larger than a resistance value R<SB>FET</SB>between the drain and the source when the respective FETs 6, 7 are operated, and a control voltage Vc for amplification factor control is input to the gate terminal of the FET 7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電界効果型トランジスタを使用した可変利得型の増幅回路に関するものである。   The present invention relates to a variable gain amplifier circuit using a field effect transistor.

この種の増幅回路として、下記特許文献1に開示された増幅回路が知られている。この場合、この増幅回路(増幅回路51)は、図2に示すように、演算増幅器52、演算増幅器52の出力端子と反転入力端子との間に接続された抵抗53(抵抗値Rr)、および演算増幅器52の反転入力端子と基準電位(グランド電位)に規定された部位との間に接続されたFET(電界効果型トランジスタ。この例では一例としてp型チャネルの電界効果型トランジスタ)54を備え、入力電圧Viを増幅して出力電圧Voとして出力する。   As this type of amplifier circuit, an amplifier circuit disclosed in Patent Document 1 below is known. In this case, as shown in FIG. 2, the amplifier circuit (amplifier circuit 51) includes an operational amplifier 52, a resistor 53 (resistance value Rr) connected between the output terminal and the inverting input terminal of the operational amplifier 52, and An FET (field effect transistor. In this example, a p-type channel field effect transistor) 54 is connected between the inverting input terminal of the operational amplifier 52 and a portion defined by a reference potential (ground potential). The input voltage Vi is amplified and output as the output voltage Vo.

この増幅回路51では、ゲート端子に印加される制御電圧Vcに応じてドレイン端子とソース端子との間の抵抗値RFETが変化するFET54が可変抵抗として機能して、非反転増幅回路に構成された増幅回路51の利得Gが変更される。この場合、利得Gは下記式(1)で表される。
G=(1+Rr/RFET) ・・・・ (1)
In the amplifier circuit 51, the FET 54 whose resistance value R FET changes between the drain terminal and the source terminal according to the control voltage Vc applied to the gate terminal functions as a variable resistor, and is configured as a non-inverting amplifier circuit. The gain G of the amplifier circuit 51 is changed. In this case, the gain G is expressed by the following formula (1).
G = (1 + Rr / R FET ) (1)

特開昭60−90408号公報(第2頁、第1図)JP-A-60-90408 (2nd page, Fig. 1)

ところが、上記の増幅回路51には、以下の解決すべき課題が存在している。すなわち、ゲート端子に印加する制御電圧(この例では、制御電圧Vc)を変化させたときの一般的なFETにおけるドレイン端子とソース端子との間の抵抗値Rdsの変化量(最大抵抗値/最小抵抗値)は5〜10倍程度であることから、上記式(1)で表されるように利得Gの下限値(最小利得)が「1」を超える値に規定され、1未満にできない上記の増幅回路51では、利得Gの変化量(最大利得/最小利得)を大きくすることができないという課題が存在している。   However, the amplifier circuit 51 has the following problems to be solved. That is, the change amount (maximum resistance value / minimum value) of the resistance value Rds between the drain terminal and the source terminal in a general FET when the control voltage (control voltage Vc in this example) applied to the gate terminal is changed. Since the resistance value is about 5 to 10 times, the lower limit value (minimum gain) of the gain G is defined as a value exceeding “1” as expressed by the above formula (1), and cannot be less than 1. In the amplifier circuit 51, there is a problem that the change amount (maximum gain / minimum gain) of the gain G cannot be increased.

本発明は、かかる課題に鑑みてなされたものであり、利得の変化量を大きくさせ得る増幅回路を提供することを主目的とする。   The present invention has been made in view of such a problem, and a main object of the present invention is to provide an amplifier circuit capable of increasing the amount of change in gain.

上記目的を達成すべく請求項1記載の増幅回路は、演算増幅器と、当該演算増幅器の反転入力端子に一端が接続された第1入力抵抗と、前記演算増幅器の非反転入力端子に一端が接続されると共に他端が前記第1入力抵抗の他端に接続された第2入力抵抗と、前記演算増幅器の反転入力端子と出力端子との間に接続された第3抵抗と、前記演算増幅器の反転入力端子にドレイン端子が接続され、かつゲート端子とソース端子とが互いに接続されて基準電位に規定された第1FETと、前記演算増幅器の非反転入力端子にドレイン端子が接続され、かつソース端子が前記基準電位に規定された前記第1FETと同型の第2FETとを備え、前記第1入力抵抗および前記第2入力抵抗が、前記各FETの作動時におけるドレイン・ソース間の抵抗値よりも大きな抵抗値に規定され、前記第2FETのゲート端子に増幅率制御用の制御電圧が入力される。   In order to achieve the above object, an amplifier circuit according to claim 1, an operational amplifier, a first input resistor having one end connected to an inverting input terminal of the operational amplifier, and one end connected to a non-inverting input terminal of the operational amplifier. A second input resistor having the other end connected to the other end of the first input resistor, a third resistor connected between the inverting input terminal and the output terminal of the operational amplifier, and the operational amplifier. A drain terminal is connected to the inverting input terminal, a gate terminal and a source terminal are connected to each other, the first FET is defined as a reference potential, a drain terminal is connected to the non-inverting input terminal of the operational amplifier, and a source terminal Comprises a second FET of the same type as the first FET defined at the reference potential, and the first input resistance and the second input resistance are resistances between drain and source when the FETs are operated. Is defined to a large resistance value than the control voltage for the gain control to the gate terminal of the first 2FET is input.

また、請求項2記載の増幅回路は、請求項1記載の増幅回路において、前記第1入力抵抗および前記第2入力抵抗は、互いに同等の抵抗値に規定されている。   According to a second aspect of the present invention, in the amplifier circuit according to the first aspect, the first input resistance and the second input resistance are defined to have equivalent resistance values.

請求項1記載の増幅回路では、演算増幅器の反転入力端子に第1入力抵抗の一端が接続され、演算増幅器の非反転入力端子に第2入力抵抗の一端が接続されると共に第2入力抵抗の他端が第1入力抵抗の他端に接続され、演算増幅器の反転入力端子と出力端子との間に第3抵抗が接続され、演算増幅器の反転入力端子と基準電位との間に第1FETが接続され、演算増幅器の非反転入力端子と基準電位との間に第2FETが接続され、第1入力抵抗および第2入力抵抗が各FETの作動時におけるドレイン・ソース間の抵抗値よりも大きな抵抗値に規定され、第2FETのゲート端子に増幅率制御用の制御電圧が入力され、各入力抵抗の各他端に入力された入力電圧を制御電圧によって制御された増幅率で増幅して、演算増幅器の出力端子から出力電圧として出力する。   In the amplifier circuit according to claim 1, one end of the first input resistor is connected to the inverting input terminal of the operational amplifier, and one end of the second input resistor is connected to the non-inverting input terminal of the operational amplifier, and the second input resistor The other end is connected to the other end of the first input resistor, a third resistor is connected between the inverting input terminal and the output terminal of the operational amplifier, and the first FET is connected between the inverting input terminal of the operational amplifier and the reference potential. The second FET is connected between the non-inverting input terminal of the operational amplifier and the reference potential, and the first input resistance and the second input resistance are larger than the resistance value between the drain and the source when each FET is activated. The control voltage for amplification factor control is input to the gate terminal of the second FET, and the input voltage input to each other end of each input resistor is amplified by the amplification factor controlled by the control voltage. Output terminal of amplifier To output as an output voltage.

したがって、この増幅回路によれば、利得の最小値(第2FETに対する制御電圧をゼロにしたときの利得)をゼロに近い値に規定することができるため、制御電圧を変化させたときの利得の変化量(最大利得/最小利得)を従来の増幅回路と比較して十分に大きくすることができる。   Therefore, according to this amplifier circuit, since the minimum value of gain (gain when the control voltage for the second FET is zero) can be specified to a value close to zero, the gain when the control voltage is changed can be specified. The amount of change (maximum gain / minimum gain) can be made sufficiently large as compared with the conventional amplifier circuit.

また、請求項2記載の増幅回路によれば、さらに、各入力抵抗の抵抗値を互いに同等の抵抗値としたことにより、制御電圧をゼロにしたときの利得をゼロまたはよりゼロに極めて近い値に制御できるため、制御電圧を変化させたときの利得の変化量を極めて大きくすることができる。   Further, according to the amplifier circuit of the second aspect, the resistance value of each input resistor is set to an equivalent resistance value, so that the gain when the control voltage is zero is zero or a value very close to zero. Therefore, the amount of change in gain when the control voltage is changed can be greatly increased.

増幅回路1の回路図である。1 is a circuit diagram of an amplifier circuit 1. FIG. 増幅回路51の回路図である。3 is a circuit diagram of an amplifier circuit 51. FIG.

以下、増幅回路の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of an amplifier circuit will be described with reference to the accompanying drawings.

最初に、増幅回路1の構成について、図面を参照して説明する。   First, the configuration of the amplifier circuit 1 will be described with reference to the drawings.

図1に示す増幅回路1は、1つの演算増幅器2、第1入力抵抗3(以下、「入力抵抗3」ともいう)、第2入力抵抗4(以下、「入力抵抗4」ともいう)、第3抵抗5(以下、「抵抗5」ともいう)、第1FET6(以下、「FET6」ともいう)、および第2FET7(以下、「FET7」ともいう)を備え、入力電圧Viを増幅して出力電圧Voとして出力する。   1 includes an operational amplifier 2, a first input resistor 3 (hereinafter also referred to as “input resistor 3”), a second input resistor 4 (hereinafter also referred to as “input resistor 4”), 3 resistors 5 (hereinafter also referred to as “resistors 5”), a first FET 6 (hereinafter also referred to as “FET 6”), and a second FET 7 (hereinafter also referred to as “FET 7”), which amplifies the input voltage Vi and outputs an output voltage. Output as Vo.

この場合、入力抵抗3は、その一端が演算増幅器2の反転入力端子に接続されている。入力抵抗4は、その一端が演算増幅器2の非反転入力端子に接続されると共に、その他端が入力抵抗3の他端に接続されている。また、このようにして互いに接続された入力抵抗3,4の各他端は、増幅回路1の入力端子として機能して、入力電圧Viが入力される。抵抗5は、演算増幅器2の反転入力端子と出力端子との間に接続されて、帰還抵抗として機能する。   In this case, one end of the input resistor 3 is connected to the inverting input terminal of the operational amplifier 2. The input resistor 4 has one end connected to the non-inverting input terminal of the operational amplifier 2 and the other end connected to the other end of the input resistor 3. In addition, the other ends of the input resistors 3 and 4 connected to each other in this way function as an input terminal of the amplifier circuit 1 and receive the input voltage Vi. The resistor 5 is connected between the inverting input terminal and the output terminal of the operational amplifier 2 and functions as a feedback resistor.

FET6は、演算増幅器2の反転入力端子にドレイン端子が接続され、かつゲート端子とソース端子とが互いに接続されて基準電位(本例ではグランド電位GND)に規定されている。FET7は、FET6と同型のFET(本例では一例としてp型チャネルのFETであって同じ電気的特性を有している)で構成されて、演算増幅器2の非反転入力端子にドレイン端子が接続され、かつソース端子がグランド電位GNDに規定されている。また、FET7のゲート端子は制御端子として機能して、制御電圧Vcが入力される。また、本例では、各FET6,7は、接合型(ジャンクション型)のFETで構成されている。このように構成された増幅回路1は、利得(増幅率)可変型で、かつ非反転型の増幅回路として機能して、入力電圧Viを利得(増幅率)Gで増幅して、演算増幅器2の出力端子から出力電圧Voとして出力する。   The FET 6 has a drain terminal connected to the inverting input terminal of the operational amplifier 2 and a gate terminal and a source terminal connected to each other, and is defined as a reference potential (in this example, a ground potential GND). The FET 7 is composed of the same type FET as the FET 6 (in this example, it is a p-type channel FET having the same electrical characteristics), and the drain terminal is connected to the non-inverting input terminal of the operational amplifier 2. The source terminal is regulated to the ground potential GND. The gate terminal of the FET 7 functions as a control terminal, and the control voltage Vc is input. In this example, each of the FETs 6 and 7 is a junction type (junction type) FET. The amplifier circuit 1 configured in this manner functions as a variable gain (amplification factor) and non-inverting amplifier circuit, amplifies the input voltage Vi with a gain (amplification factor) G, and an operational amplifier 2. Is output from the output terminal as an output voltage Vo.

この場合、利得Gは、以下のようにして算出される。なお、入力抵抗3の抵抗値をR1で表し、入力抵抗4の抵抗値をR2で表し、抵抗5の抵抗値をR3で表す。また、FET6,7の抵抗値(ドレイン・ソース間抵抗値)についてはRFETで表し、特にゲート端子に入力される電圧がゼロに規定されたときの抵抗値についてはRF0で表すものとする。なお、FET6は上記したようにゲート端子がグランド電位GNDに規定されているため、その抵抗値はRF0となる。また、仮想ショートにより互いに同電位となる演算増幅器2の両入力端子の電圧については、Vxで表すものとする。 In this case, the gain G is calculated as follows. The resistance value of the input resistor 3 is represented by R1, the resistance value of the input resistor 4 is represented by R2, and the resistance value of the resistor 5 is represented by R3. The resistance value of FET6,7 for (drain-source resistance) is expressed by R FET, particularly for resistance value when the voltage input to the gate terminal is defined to zero shall be represented by R F0 . Since the gate terminal of the FET 6 is regulated to the ground potential GND as described above, its resistance value is R F0 . Further, the voltage at both input terminals of the operational amplifier 2 having the same potential due to a virtual short is represented by Vx.

また、各入力抵抗3,4の抵抗値R1,R2については、同等の値(同一値(R1=R2)か、またはほぼ同じ値(つまり、R1≒R2))であるものとする。また、制御電圧Vcによって変化するFET7の作動時の抵抗値RFETは、制御電圧VcがゼロのときのRF0(約200Ωから400Ω程度)を最小値として、最大でも数KΩ程度であるため、各入力抵抗3,4の抵抗値R1,R2を抵抗値RFETに対して大きな値、好ましくは十分に大きな値(例えば数百KΩ以上)に設定することにより、R1,R2≫RFETが成り立つように増幅回路1が構成されているものとする。 The resistance values R1 and R2 of the input resistors 3 and 4 are assumed to be equivalent values (the same value (R1 = R2) or substantially the same value (that is, R1≈R2)). Further, the resistance value R FET at the time of operation of the FET 7 that varies depending on the control voltage Vc is about several KΩ at the maximum with R F0 (about 200Ω to about 400Ω) when the control voltage Vc is zero as a minimum value. large value resistance R1, R2 of each input resistor 3, 4 with respect to the resistance value R FET, by preferably be set to a sufficiently large value (example, several hundred KΩ or higher), R1, holds true R2»R FET It is assumed that the amplifier circuit 1 is configured as described above.

以上のような条件下での増幅回路1において、図1に示すように、抵抗5に流れる電流をIで表し、FET6に流れる電流をIで表し、FET6のドレイン端子と抵抗5の接続点から入力抵抗3に流れる電流をIで表すと、以下の式(2),(3),(4),(5)が成り立つ。
I=(Vo−Vx)/R3 ・・・・ (2)
=Vx/RF0 ・・・・ (3)
=(Vx−Vi)/R1 ・・・・ (4)
Vx=RFET/(R2+RFET)×Vi ・・・・ (5)
In the amplifier circuit 1 under the above conditions, as shown in FIG. 1, the current flowing through the resistor 5 is represented by I, the current flowing through the FET 6 is represented by I 0 , and the connection point between the drain terminal of the FET 6 and the resistor 5 the current flowing through the input resistor 3 is represented by I 1 from the following equation (2), (3), (4), holds true (5).
I = (Vo−Vx) / R3 (2)
I 0 = Vx / R F0 (3)
I 1 = (Vx−Vi) / R1 (4)
Vx = R FET / (R2 + R FET ) × Vi (5)

次いで、上記の各式(2),(3),(4),(5)から増幅回路1の利得Gを算出すると、下記式(6)のように表される。
G=Vo/Vi
=((RF0+R3)×R1×RFET−RF0×R2×R3)/(RF0×R1×(R2+RFET)) ・・・・ (6)
Next, when the gain G of the amplifier circuit 1 is calculated from the above equations (2), (3), (4), and (5), the following equation (6) is obtained.
G = Vo / Vi
= ((R F0 + R3) × R1 × R FET −R F0 × R2 × R3) / (R F0 × R1 × (R2 + R FET )) (6)

この場合、増幅回路1が非反転型の増幅回路として機能するためには、利得Gがゼロ以上(負にならない)、すなわち上記式(6)の分子がゼロ以上となる必要がある。つまり、(RF0+R3)×R1×RFET≧RF0×R2×R3が成り立つ必要があり、また抵抗値RFETの最小値は、ゲート端子に入力される制御電圧Vcがゼロのときの抵抗値RF0であるが、このときにも上記式が成り立つ必要がある。つまり、(RF0+R3)×R1×RF0≧RF0×R2×R3が成り立つ必要がある。よって、抵抗値R1は、R2×R3/(RF0+R3)以上の値に規定される必要がある。本例では、上記したように、抵抗値R1は抵抗値R2と同等の値(同一値(R1=R2)か、またはほぼ同じ値(つまり、R1≒R2))に規定されているため、この条件を満たすように規定されている。 In this case, in order for the amplifier circuit 1 to function as a non-inverting amplifier circuit, the gain G must be zero or more (not negative), that is, the numerator of the above formula (6) needs to be zero or more. That is, (R F0 + R3) × R1 × R FET ≧ R F0 × R2 × R3 must be satisfied, and the minimum value of the resistance value R FET is the resistance when the control voltage Vc input to the gate terminal is zero. Although the value is R F0, it is necessary to hold the above formula also at this time. That is, (R F0 + R3) × R1 × R F0 ≧ R F0 × R2 × R3 needs to be satisfied. Therefore, the resistance value R1 needs to be defined to a value equal to or greater than R2 × R3 / (R F0 + R3). In this example, as described above, the resistance value R1 is defined to be equal to the resistance value R2 (the same value (R1 = R2) or substantially the same value (that is, R1≈R2)). It is stipulated to satisfy the conditions.

また、このように、R1≒R2が成り立っているため、上記式(6)はさらに下記式(7)のように表される。
G=(R3×RFET)/(RF0×(R1+RFET))
+RFET0/(R1+RFET)−R3/(R1+RFET) ・・・・ (7)
さらに、上記したように、R1,R2≫RFETが成り立っているため、上記式(7)は下記式(8)のように表される。
G=R3×RFET/(RF0×R1)+RFET/R1−R3/R1
=(R3/RF0+1)/R1×RFET−R3/R1 ・・・・ (8)
Further, since R1≈R2 holds in this way, the above equation (6) is further expressed as the following equation (7).
G = (R3 × R FET ) / (R F0 × (R1 + R FET ))
+ R FET0 / (R1 + R FET) -R3 / (R1 + R FET) ···· (7)
Furthermore, as described above, since R1, R2 >> R FET is established, the above formula (7) is expressed as the following formula (8).
G = R3 × R FET / (R F0 × R1) + R FET / R1-R3 / R1
= (R3 / R F0 +1) / R1 × R FET −R3 / R1 (8)

この場合、制御電圧Vcをゼロボルトにしたときの利得Gは、FET7の抵抗値RFETがRF0となるため、利得Gは、下記式(9)のように表され、
G=R3×RF0/(RF0×R1)+RF0/R1−R3/R1
=R3/R1+RF0/R1−R3/R1
=RF0/R1 ・・・・ (9)
さらに、上記したように、R1,R2≫RFET(>RF0)であることから、RF0/R1≒0が成り立つ。
In this case, the gain G when the control voltage Vc is set to zero volt is expressed by the following equation (9) because the resistance value R FET of the FET 7 is R F0 .
G = R3 × R F0 / (R F0 × R1) + R F0 / R1−R3 / R1
= R3 / R1 + R F0 / R1-R3 / R1
= R F0 / R1 (9)
Further, as described above, since R1, R2 >> R FET (> R F0 ), R F0 / R1≈0 holds.

このように、利得Gは、上記式(8)で示されるように、FET7の抵抗値RFETを変数とする一次関数として表される。また、抵抗値RFETが制御電圧Vcを変数とするパラメータであり、かつ上記したように、制御電圧Vcをゼロボルトにしたときの利得Gがゼロになることから、利得Gは、制御電圧Vcを変数とし、かつ制御電圧Vcをゼロボルトにしたときに値がゼロとなる関数としても表される。 Thus, the gain G is expressed as a linear function with the resistance value R FET of the FET 7 as a variable, as shown in the above equation (8). Further, since the resistance value R FET is a parameter having the control voltage Vc as a variable, and the gain G when the control voltage Vc is set to zero volts as described above, the gain G becomes zero. It is also expressed as a function whose value is zero when the control voltage Vc is zero volts.

次いで、増幅回路1の動作について説明する。   Next, the operation of the amplifier circuit 1 will be described.

最初に、所望の利得Gとなるように電圧値が規定された制御電圧VcをFET7のゲート端子に入力(印加)する。これにより、FET7の抵抗値RFETは制御電圧Vcの電圧値に応じた抵抗値に規定され、この規定された抵抗値RFETと上記式(8)とにより、利得Gが所望の値に規定される。 First, a control voltage Vc whose voltage value is defined so as to obtain a desired gain G is input (applied) to the gate terminal of the FET 7. Thereby, the resistance value R FET of the FET 7 is defined as a resistance value corresponding to the voltage value of the control voltage Vc, and the gain G is defined as a desired value by the defined resistance value R FET and the above equation (8). Is done.

この状態で入力電圧Viを増幅回路1に入力すると、増幅回路1は、上記のようにして規定された利得Gで入力電圧Viを増幅して、出力電圧Voとして出力する。一方、入力電圧Viを一定にした状態において、制御電圧Vcを変化させたときには、この制御電圧Vcの変化に応じて利得Gが変化するため、増幅回路1は、この利得Gの変化に対応して出力電圧Voを変化させる。この場合、この増幅回路1では、上記したように、制御電圧Vcをゼロにしたときには、利得Gがゼロとなって、出力電圧Voもゼロになる。このように、この増幅回路1では、利得の下限値が「1」に制限される(利得が1未満にならない)従来の増幅回路51とは異なり、利得Gをゼロ(最小利得)にまで変化させることができることから、制御電圧Vcを変化させたときの利得Gの変化量(最大利得/最小利得)を従来の増幅回路51と比較して極めて大きくすることが可能となっている。   When the input voltage Vi is input to the amplifier circuit 1 in this state, the amplifier circuit 1 amplifies the input voltage Vi with the gain G specified as described above, and outputs it as the output voltage Vo. On the other hand, when the control voltage Vc is changed while the input voltage Vi is constant, the gain G changes in accordance with the change in the control voltage Vc, so that the amplifier circuit 1 responds to the change in the gain G. To change the output voltage Vo. In this case, in the amplifier circuit 1, as described above, when the control voltage Vc is zero, the gain G is zero and the output voltage Vo is zero. Thus, in this amplifier circuit 1, the gain G is changed to zero (minimum gain) unlike the conventional amplifier circuit 51 in which the lower limit value of the gain is limited to “1” (the gain is not less than 1). Therefore, the amount of change (maximum gain / minimum gain) of the gain G when the control voltage Vc is changed can be made extremely large as compared with the conventional amplifier circuit 51.

また、この増幅回路1では、従来の増幅回路51とは異なり、演算増幅器2の非反転入力端子と反転入力端子の双方に対して、基準電位(グランド電位GND)との間に同型のFET6,7が接続される構成(FETの配置に関して対称となる構成)を採用しているため、温度変化などによってFETに生じる抵抗値RFETのバラツキを相殺することができる結果、入力電圧Viを良好な状態で、安定して増幅して出力電圧Voとして出力することが可能となっている。 Further, in this amplifier circuit 1, unlike the conventional amplifier circuit 51, the same type FET 6 between the reference potential (ground potential GND) with respect to both the non-inverting input terminal and the inverting input terminal of the operational amplifier 2. 7 is employed (a configuration that is symmetric with respect to the arrangement of the FETs), so that variations in the resistance value R FET that occurs in the FET due to temperature changes or the like can be offset, resulting in a good input voltage Vi. In this state, it is possible to stably amplify and output as the output voltage Vo.

このように、この増幅回路1では、演算増幅器2の反転入力端子に入力抵抗3の一端が接続され、演算増幅器2の非反転入力端子に入力抵抗4の一端が接続されると共に入力抵抗4の他端が入力抵抗3の他端に接続され、演算増幅器2の反転入力端子と出力端子との間に抵抗5が接続され、演算増幅器2の反転入力端子とグランド電位GNDとの間にFET6が接続され、演算増幅器2の非反転入力端子とグランド電位GNDとの間にFET7が接続され、さらに各入力抵抗3,4の抵抗値が、互いに同等の抵抗値で、かつ各FET6,7の作動時におけるドレイン・ソース間の抵抗値RFETよりも大きな(十分に大きな)抵抗値に規定されている。 As described above, in the amplifier circuit 1, one end of the input resistor 3 is connected to the inverting input terminal of the operational amplifier 2, and one end of the input resistor 4 is connected to the non-inverting input terminal of the operational amplifier 2. The other end is connected to the other end of the input resistor 3, a resistor 5 is connected between the inverting input terminal and the output terminal of the operational amplifier 2, and an FET 6 is connected between the inverting input terminal of the operational amplifier 2 and the ground potential GND. The FET 7 is connected between the non-inverting input terminal of the operational amplifier 2 and the ground potential GND, and the resistance values of the input resistors 3 and 4 are equal to each other and the FETs 6 and 7 are operated. The resistance value between drain and source at the time is defined as a resistance value larger (sufficiently larger) than the FET .

したがって、この増幅回路1によれば、制御電圧Vcをゼロにしたときの利得Gをゼロまたはゼロに極めて近い値に制御できるため、利得の下限値が「1」を超える値に制限される従来の増幅回路51とは異なり、制御電圧Vcを変化させたときの利得Gの変化量を従来の増幅回路51と比較して極めて大きくすることができる。   Therefore, according to the amplifier circuit 1, the gain G when the control voltage Vc is zero can be controlled to zero or a value very close to zero, so that the lower limit value of the gain is limited to a value exceeding “1”. Unlike the conventional amplifier circuit 51, the amount of change in the gain G when the control voltage Vc is changed can be made extremely large compared to the conventional amplifier circuit 51.

また、この増幅回路1によれば、演算増幅器2の非反転入力端子と反転入力端子の双方に対して、基準電位(グランド電位GND)との間に同型のFET6,7が接続される構成のため、温度変化などによってFETに生じる抵抗値RFETのバラツキを相殺することができる結果、入力電圧Viを良好な状態で、安定して増幅して出力電圧Voとして出力することができる。 Further, according to the amplifier circuit 1, the FETs 6 and 7 of the same type are connected between the non-inverting input terminal and the inverting input terminal of the operational amplifier 2 between the reference potential (ground potential GND). Therefore, the variation of the resistance value R FET generated in the FET due to a temperature change or the like can be canceled, and as a result, the input voltage Vi can be stably amplified and output as the output voltage Vo.

なお、上記の増幅回路1では、上記した非反転型の増幅回路として機能するための条件と共に、各入力抵抗3,4の抵抗値を、互いに同等の抵抗値に規定し(第1条件)、かつ各FET6,7の作動時におけるドレイン・ソース間の抵抗値RFETよりも大きな(十分に大きな)抵抗値に規定すること(第2条件)により、制御電圧Vcをゼロにしたときの利得Gをゼロまたは極めてゼロに近い値に制御できる好ましい構成を採用したが、増幅回路1の利得Gは、上記式(6)のように表されるため、上記の第1条件および第2条件のうちの第1条件を満たさない構成においても、利得Gの最小値(制御電圧Vcをゼロにしたときの利得G)をゼロに近い値に規定することができ、制御電圧Vcを変化させたときの利得Gの変化量を従来の増幅回路51と比較して十分に大きくすることができる。 In the above amplifier circuit 1, the resistance values of the input resistors 3 and 4 are defined to be equal to each other (first condition), together with the conditions for functioning as the non-inverting amplifier circuit described above. Further, the resistance G between the drain and the source when the FETs 6 and 7 are operated. The gain G when the control voltage Vc is set to zero by defining a resistance value larger (sufficiently larger) than the FET. However, since the gain G of the amplifier circuit 1 is expressed by the above equation (6), the first condition and the second condition described above are used. Even in the configuration that does not satisfy the first condition, the minimum value of the gain G (the gain G when the control voltage Vc is zero) can be defined to a value close to zero, and when the control voltage Vc is changed Increase the amount of change in gain G The width circuit 51 can be made sufficiently large.

例えば、非反転型の増幅回路として機能するための条件および第2条件を満たし、第1条件を満たさない構成として、各FET6,7の抵抗値RFETが制御電圧Vcによって300Ω(=RF0)から3kΩの範囲内で変更可能(抵抗値RFETの変化量(最大抵抗値/最小抵抗値)が10倍の例)であり、抵抗値R1を200kΩ、抵抗値R2を100kΩ、抵抗値R3を5kΩとした構成のときには、利得Gの最小値(抵抗値RFET=300Ωのときの利得G)は、上記式(6)に基づき、ゼロに近い数値「0.028」となり、利得Gの最大値(抵抗値RFET=3kΩのときの利得G)は、上記式(6)に基づき、数値「0.49」となる。このため、制御電圧Vcを変化させたときの利得Gの変化量は、17.5(=0.49/0.028)となる。一方、従来の増幅回路51において、Rrを5kΩとし、FET54の抵抗値RFETを300Ωから3kΩの範囲内で変更可能としたときには、その利得Gの最大値は、(1+5000/300)=17.6であり、利得Gの最小値は、(1+5000/3000)=3.5であることから、利得Gの変化量は、5(=17.6/3.5)となる。したがって、増幅回路1の利得Gの変化量は、従来の増幅回路51の利得Gの変化量と比較して十分に大きな値となる。 For example, as a configuration that satisfies the condition for functioning as a non-inverting amplifier circuit and the second condition and does not satisfy the first condition, the resistance value R FET of each FET 6, 7 is set to 300Ω (= R F0 ) by the control voltage Vc. Can be changed within the range of 3 kΩ to 1 (example of change of resistance value R FET (maximum resistance value / minimum resistance value) 10 times), resistance value R1 is 200 kΩ, resistance value R2 is 100 kΩ, and resistance value R3 is When the configuration is 5 kΩ, the minimum value of the gain G (gain G when the resistance value R FET = 300Ω) is a numerical value “0.028” close to zero based on the above equation (6), and the maximum gain G The value (gain G when resistance value R FET = 3 kΩ) is a numerical value “0.49” based on the above equation (6). For this reason, the amount of change in the gain G when the control voltage Vc is changed is 17.5 (= 0.49 / 0.028). On the other hand, in the conventional amplifier circuit 51, when Rr is 5 kΩ and the resistance value R FET of the FET 54 can be changed within a range of 300Ω to 3 kΩ, the maximum value of the gain G is (1 + 5000/300) = 17. 6. Since the minimum value of the gain G is (1 + 5000/3000) = 3.5, the change amount of the gain G is 5 (= 17.6 / 3.5). Therefore, the change amount of the gain G of the amplifier circuit 1 is a sufficiently large value as compared with the change amount of the gain G of the conventional amplifier circuit 51.

一方、第2条件と共に第1条件を満たす構成(抵抗値R1,R2が100kΩ)のときには、利得Gの最小値(抵抗値RFET=300Ωのときの利得G)は、上記式(6)に基づき、ゼロに極めて近い数値「0.003」となり、利得Gの最大値(抵抗値RFET=3kΩのときの利得G)は、上記式(6)に基づき、数値「0.47」となる。このため、制御電圧Vcを変化させたときの利得Gの変化量は、156(=0.47/0.003)となる。したがって、第1条件および第2条件を満たす構成の増幅回路1では、利得Gの変化量は、従来の増幅回路51の利得Gの変化量と比較して極めて大きな値となる。 On the other hand, when the first condition is satisfied together with the second condition (resistance values R1 and R2 are 100 kΩ), the minimum value of the gain G (gain G when the resistance value R FET = 300Ω) is expressed by the above equation (6). Based on the above equation (6), the numerical value “0.003” is obtained, which is very close to zero, and the maximum value of the gain G (the gain G when the resistance value R FET = 3 kΩ) is “0.47”. . Therefore, the amount of change in the gain G when the control voltage Vc is changed is 156 (= 0.47 / 0.003). Therefore, in the amplifier circuit 1 configured to satisfy the first condition and the second condition, the amount of change in the gain G is extremely large compared to the amount of change in the gain G of the conventional amplifier circuit 51.

なお、各FET6,7として、p型チャネルのFETを使用しているが、n型チャネルのFETを使用する構成を採用することもできる。また、各FET6,7として上記のように接合型のFETを使用した例について上記したが、ゲート接合部の構造が接合型(ジャンクション型)以外の構造のFETを使用することもできる。   In addition, although the p-type channel FET is used as each of the FETs 6 and 7, a configuration using an n-type channel FET can also be adopted. Moreover, although the above description has been made on the example in which the junction type FET is used as each of the FETs 6 and 7, FETs having a gate junction structure other than the junction type (junction type) can be used.

1 増幅回路
2 演算増幅器
3,4 入力抵抗
5 抵抗
6,7 FET
G 利得
FET ドレイン・ソース間の抵抗値
Vc 制御電圧
Vi 入力電圧
Vo 出力電圧
DESCRIPTION OF SYMBOLS 1 Amplifier circuit 2 Operational amplifier 3, 4 Input resistance 5 Resistance 6, 7 FET
G gain R FET drain-source resistance Vc Control voltage Vi Input voltage Vo Output voltage

Claims (2)

演算増幅器と、
当該演算増幅器の反転入力端子に一端が接続された第1入力抵抗と、
前記演算増幅器の非反転入力端子に一端が接続されると共に他端が前記第1入力抵抗の他端に接続された第2入力抵抗と、
前記演算増幅器の反転入力端子と出力端子との間に接続された第3抵抗と、
前記演算増幅器の反転入力端子にドレイン端子が接続され、かつゲート端子とソース端子とが互いに接続されて基準電位に規定された第1FETと、
前記演算増幅器の非反転入力端子にドレイン端子が接続され、かつソース端子が前記基準電位に規定された前記第1FETと同型の第2FETとを備え、
前記第1入力抵抗および前記第2入力抵抗が、前記各FETの作動時におけるドレイン・ソース間の抵抗値よりも大きな抵抗値に規定され、
前記第2FETのゲート端子に増幅率制御用の制御電圧が入力される増幅回路。
An operational amplifier;
A first input resistor having one end connected to the inverting input terminal of the operational amplifier;
A second input resistor having one end connected to the non-inverting input terminal of the operational amplifier and the other end connected to the other end of the first input resistor;
A third resistor connected between the inverting input terminal and the output terminal of the operational amplifier;
A first FET having a drain terminal connected to the inverting input terminal of the operational amplifier and a gate terminal and a source terminal connected to each other and defined as a reference potential;
A drain terminal connected to the non-inverting input terminal of the operational amplifier and a source terminal defined at the reference potential, and a second FET of the same type as the first FET,
The first input resistance and the second input resistance are defined to have a resistance value larger than a resistance value between a drain and a source at the time of operation of each FET,
An amplifier circuit in which a control voltage for gain control is input to the gate terminal of the second FET.
前記第1入力抵抗および前記第2入力抵抗は、互いに同等の抵抗値に規定されている請求項1記載の増幅回路。   The amplifier circuit according to claim 1, wherein the first input resistor and the second input resistor are defined to have equivalent resistance values.
JP2009266901A 2009-11-25 2009-11-25 Amplifier circuit Expired - Fee Related JP5356189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009266901A JP5356189B2 (en) 2009-11-25 2009-11-25 Amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266901A JP5356189B2 (en) 2009-11-25 2009-11-25 Amplifier circuit

Publications (2)

Publication Number Publication Date
JP2011114420A true JP2011114420A (en) 2011-06-09
JP5356189B2 JP5356189B2 (en) 2013-12-04

Family

ID=44236460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266901A Expired - Fee Related JP5356189B2 (en) 2009-11-25 2009-11-25 Amplifier circuit

Country Status (1)

Country Link
JP (1) JP5356189B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292596A (en) * 1978-08-11 1981-09-29 Hitachi, Ltd. Gain control circuit
JPH02266601A (en) * 1989-04-06 1990-10-31 Murata Mfg Co Ltd Differential amplifier
JPH0865103A (en) * 1994-06-13 1996-03-08 Takeshi Ikeda Tuned amplifier
JPH0993064A (en) * 1995-09-27 1997-04-04 Aiwa Co Ltd Sound output device
JPH09223934A (en) * 1995-01-12 1997-08-26 Takeshi Ikeda Tuning circuit
JP2002286573A (en) * 2001-03-27 2002-10-03 Mitsubishi Electric Corp Circuit for generating temperature coefficient, and circuit for compensating temperature using the same
US20060181343A1 (en) * 2005-02-17 2006-08-17 Samsung Electronics Co., Ltd. Gain controlled amplifier and cascoded gain controlled amplifier based on the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292596A (en) * 1978-08-11 1981-09-29 Hitachi, Ltd. Gain control circuit
JPH02266601A (en) * 1989-04-06 1990-10-31 Murata Mfg Co Ltd Differential amplifier
JPH0865103A (en) * 1994-06-13 1996-03-08 Takeshi Ikeda Tuned amplifier
JPH09223934A (en) * 1995-01-12 1997-08-26 Takeshi Ikeda Tuning circuit
JPH0993064A (en) * 1995-09-27 1997-04-04 Aiwa Co Ltd Sound output device
JP2002286573A (en) * 2001-03-27 2002-10-03 Mitsubishi Electric Corp Circuit for generating temperature coefficient, and circuit for compensating temperature using the same
US20060181343A1 (en) * 2005-02-17 2006-08-17 Samsung Electronics Co., Ltd. Gain controlled amplifier and cascoded gain controlled amplifier based on the same

Also Published As

Publication number Publication date
JP5356189B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP4834347B2 (en) Constant current circuit
US7576524B2 (en) Constant voltage generating apparatus with simple overcurrent/short-circuit protection circuit
US8665020B2 (en) Differential amplifier circuit that can change current flowing through a constant-current source according to load variation, and series regulator including the same
JP6205142B2 (en) Constant voltage circuit
JP6211887B2 (en) Voltage regulator
JP2008276611A (en) Overcurrent protection circuit
KR102528632B1 (en) Voltage regulator
CN106066419B (en) Current detection circuit
KR100877626B1 (en) Class AB Amplifier and Input stage circuit for the same
CN108733116B (en) Constant voltage power supply circuit
JP6912350B2 (en) Voltage regulator
CN101651452B (en) RC integrating circuit
JP2016126550A (en) Constant current circuit and sensor device having the same
JP4892366B2 (en) Overcurrent protection circuit and voltage regulator
JP5356189B2 (en) Amplifier circuit
JP6658269B2 (en) Overcurrent detection circuit
JP6246482B2 (en) Bias circuit, amplifier
KR102011651B1 (en) Reference voltage circuit
US8648641B2 (en) Voltage controlled variable resistor suitable for large scale signal application
JP6969884B2 (en) Current detection amplifier
JP4331550B2 (en) Phase compensation circuit
JP7192075B2 (en) current sense amplifier
US9654074B2 (en) Variable gain amplifier circuit, controller of main amplifier and associated control method
US7183848B2 (en) Transconductance amplifier
JP2009140202A (en) Over current protection circuit for voltage regulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5356189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees