JP2011112851A - Variable power optical system, method of manufacturing optical instrument and variable power optical system - Google Patents

Variable power optical system, method of manufacturing optical instrument and variable power optical system Download PDF

Info

Publication number
JP2011112851A
JP2011112851A JP2009268886A JP2009268886A JP2011112851A JP 2011112851 A JP2011112851 A JP 2011112851A JP 2009268886 A JP2009268886 A JP 2009268886A JP 2009268886 A JP2009268886 A JP 2009268886A JP 2011112851 A JP2011112851 A JP 2011112851A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
group
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268886A
Other languages
Japanese (ja)
Other versions
JP5541567B2 (en
Inventor
Satoshi Hayakawa
聡 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009268886A priority Critical patent/JP5541567B2/en
Publication of JP2011112851A publication Critical patent/JP2011112851A/en
Application granted granted Critical
Publication of JP5541567B2 publication Critical patent/JP5541567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable power optical system fully correcting its chromatic aberrations and having an excellent optical characteristics; and also to provide a method for manufacturing an optical instrument and a variable power optical system. <P>SOLUTION: The variable power optical system has at least a lens group G6, a first to sixth lens groups G1-G6 sequentially arranged from the object side, and each of the first to sixth lens groups G1 to G6 has a cemented lens. When the focal distance of the first lens group G1 is represented by f1, and the focal distance of the second lens group G2 by f2, this variable power optical system satisfies the conditions of the following formula: -(f1/f2)<3.98. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、変倍光学系、光学機器及び変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来より、2枚以上の凸レンズと凹レンズとを組み合わせることで、色収差を補正する方法が知られている。また、これら凸レンズと凹レンズを設ける際には接合レンズとすることで、単レンズで設ける場合に比べ、偏芯に対する性能低下の影響を抑えることができることも知られている。   Conventionally, a method for correcting chromatic aberration by combining two or more convex lenses and concave lenses is known. In addition, it is also known that when a convex lens and a concave lens are provided, by using a cemented lens, it is possible to suppress the influence of the performance deterioration with respect to decentration as compared with a case where a single lens is provided.

ところで、変倍光学系は、2つ以上のレンズ群を有して構成されている。従来より、変倍光学系を構成する各レンズ群に凸レンズと凹レンズからなる接合レンズを配置し、各レンズ群の収差を補正することで、光学系全体としての収差補正を行っているものが開示されている(例えば、特許文献1〜3を参照)。   By the way, the variable magnification optical system has two or more lens groups. Conventionally, a lens that constitutes a variable magnification optical system is provided with a cemented lens composed of a convex lens and a concave lens in each lens group, and the aberration correction of the entire optical system is performed by correcting the aberration of each lens group. (For example, see Patent Documents 1 to 3).

特許第4051731号公報Japanese Patent No. 4051731 特開2005−242015号公報JP-A-2005-242015 特開2008−304857号公報JP 2008-304857 A

しかしながら、特許文献1に記載の光学系では、軸上色収差及び倍率色収差の補正が十分ではない、という問題があった。また、特許文献2に記載の光学系では、軸上色収差の補正が十分ではない、という問題があった。また、特許文献3に記載の光学系では、軸上色収差の補正が十分ではない、という問題があった。   However, the optical system described in Patent Document 1 has a problem that axial chromatic aberration and lateral chromatic aberration are not sufficiently corrected. Further, the optical system described in Patent Document 2 has a problem that axial chromatic aberration is not sufficiently corrected. Further, the optical system described in Patent Document 3 has a problem that axial chromatic aberration is not sufficiently corrected.

すなわち、従来の変倍光学系においては、構成する各レンズ群に接合レンズを配置しているが、色収差の補正が十分ではない、という問題があった。   That is, in the conventional variable magnification optical system, a cemented lens is disposed in each lens group that constitutes, but there is a problem that correction of chromatic aberration is not sufficient.

本発明は、このような問題に鑑みてなされたものであり、色収差が十分に補正され、良好な光学性能を有する、変倍光学系、光学機器及び変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and provides a variable magnification optical system, an optical apparatus, and a variable magnification optical system manufacturing method in which chromatic aberration is sufficiently corrected and good optical performance is provided. With the goal.

このような目的を達成するため、本発明の変倍光学系は、少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有し、前記第1レンズ群〜前記第6レンズ群はそれぞれ接合レンズを有し、前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式 −(f1/f2)<3.98 の条件を満足する。   In order to achieve such an object, the variable magnification optical system of the present invention has at least a first lens group to a sixth lens group arranged in order from the object side, and the first lens group to the sixth lens group have Each has a cemented lens, and when the focal length of the first lens group is f1, and the focal length of the second lens group is f2, the following equation − (f1 / f2) <3.98 is satisfied. .

なお、前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4としたとき、次式 0.61<−(f3/f4)<0.98 の条件を満足することが好ましい。   When the focal length of the third lens group is f3 and the focal length of the fourth lens group is f4, the following condition 0.61 <− (f3 / f4) <0.98 is satisfied. Is preferred.

また、前記第5レンズ群の焦点距離をf5としたとき、次式 0.00<f1/f5<2.80 の条件を満足することが好ましい。   Further, when the focal length of the fifth lens group is f5, it is preferable to satisfy the following condition: 0.00 <f1 / f5 <2.80.

また、本発明の変倍光学系は、少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有し、前記第1レンズ群〜前記第6レンズ群はそれぞれ接合レンズを有し、前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4としたとき、次式 0.61<−(f3/f4)<0.98 の条件を満足する。   Further, the variable magnification optical system of the present invention has at least a first lens group to a sixth lens group arranged in order from the object side, and each of the first lens group to the sixth lens group has a cemented lens, When the focal length of the third lens group is f3 and the focal length of the fourth lens group is f4, the following condition 0.61 <− (f3 / f4) <0.98 is satisfied.

なお、前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式 −(f1/f2)<3.98 の条件を満足することが好ましい。   When the focal length of the first lens group is f1 and the focal length of the second lens group is f2, it is preferable to satisfy the following condition: − (f1 / f2) <3.98.

また、前記第1レンズ群の焦点距離をf1とし、前記第5レンズ群の焦点距離をf5としたとき、次式 0.00<f1/f5<2.80 の条件を満足することが好ましい。   Further, when the focal length of the first lens group is f1 and the focal length of the fifth lens group is f5, it is preferable that the following expression 0.00 <f1 / f5 <2.80 is satisfied.

また、本発明の変倍光学系は、少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有し、前記第1レンズ群〜前記第6レンズ群はそれぞれ接合レンズを有し、前記第1レンズ群の焦点距離をf1とし、前記第5レンズ群の焦点距離をf5としたとき、次式 0.00<f1/f5<2.80 の条件を満足する。   Further, the variable magnification optical system of the present invention has at least a first lens group to a sixth lens group arranged in order from the object side, and each of the first lens group to the sixth lens group has a cemented lens, When the focal length of the first lens group is f1, and the focal length of the fifth lens group is f5, the following condition is satisfied: 0.00 <f1 / f5 <2.80.

なお、前記第2レンズ群の焦点距離をf2としたとき、次式 −(f1/f2)<3.98 の条件を満足することが好ましい。   When the focal length of the second lens group is f2, it is preferable to satisfy the following condition: − (f1 / f2) <3.98.

また、前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4としたとき、次式 0.61<−(f3/f4)<0.98 の条件を満足することが好ましい。   Further, when the focal length of the third lens unit is f3 and the focal length of the fourth lens unit is f4, the following condition 0.61 <− (f3 / f4) <0.98 is satisfied. Is preferred.

さらに、前記第1レンズ群は、少なくとも2つの分割群に分割され、前記分割群のうちいずれか1つの分割群を合焦群とすることが好ましい。   Furthermore, it is preferable that the first lens group is divided into at least two divided groups, and any one of the divided groups is set as a focusing group.

また、前記第1レンズ群は、正の屈折力を持つことが好ましい。   The first lens group preferably has a positive refractive power.

また、前記分割群のうち、最も像側の分割群を合焦群とすることが好ましい。   Of the divided groups, the most image-side divided group is preferably a focusing group.

また、前記第4レンズ群は、負の屈折力を持つことが好ましい。   The fourth lens group preferably has a negative refractive power.

また、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び、前記第5レンズ群と前記第6レンズ群との間隔が変化するように、各レンズ群が移動することが好ましい。   Further, upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group And the fourth lens group, the distance between the fourth lens group and the fifth lens group, and the distance between the fifth lens group and the sixth lens group are changed. Is preferably moved.

また、前記第2レンズ群は、負の屈折力を持ち、前記第3レンズ群は、正の屈折力を持ち、前記第5レンズ群は、正の屈折力を持ち、前記第6レンズ群は、負の屈折力を持つことが好ましい。   The second lens group has negative refractive power, the third lens group has positive refractive power, the fifth lens group has positive refractive power, and the sixth lens group has It is preferable to have a negative refractive power.

また、第4レンズ群は、全体又は一部を、光軸に対して直交方向の成分を持つように移動させることが好ましい。   In addition, it is preferable that the fourth lens group is moved entirely or partially so as to have a component in a direction orthogonal to the optical axis.

また、広角端状態から望遠端状態への変倍に際して、開口絞りが像面に対して固定であることが好ましい。   Further, it is preferable that the aperture stop is fixed with respect to the image plane at the time of zooming from the wide-angle end state to the telephoto end state.

また、広角端状態から望遠端状態への変倍に際して、開口絞りの絞り径が一定であることが好ましい。   Further, it is preferable that the aperture diameter of the aperture stop is constant when zooming from the wide-angle end state to the telephoto end state.

また、本発明の光学機器は、上記いずれかに記載の変倍光学系を有する。   Further, an optical apparatus of the present invention has any one of the above variable magnification optical systems.

また、本発明は、少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有する変倍光学系の製造方法であって、前記第1レンズ群〜第6レンズ群はそれぞれ接合レンズを有し、前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式 −(f1/f2)<3.98 の条件を満足するように、レンズ鏡筒内に各レンズを組み込み、動作確認を行う。   The present invention is also a method for manufacturing a variable magnification optical system having at least a first lens group to a sixth lens group that are arranged in order from the object side, wherein each of the first lens group to the sixth lens group includes a cemented lens. And when the focal length of the first lens group is f1 and the focal length of the second lens group is f2, the lens satisfies the following formula − (f1 / f2) <3.98 Install each lens in the lens barrel and check the operation.

本発明によれば、各群に接合レンズを配置することにより、色収差が十分に補正され、良好な光学性能を有する、変倍光学系、光学機器及び変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system, in which chromatic aberration is sufficiently corrected by arranging a cemented lens in each group, and which has good optical performance. Can do.

第1実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this variable magnification optical system which concern on 1st Example. 第1実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 1 when focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第1実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。FIG. 4 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the first example, where (a) shows a wide-angle end state and (b) shows a telephoto end state. 第1実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations when the zooming optical system according to Example 1 is in focus at short distances (total imaging distance R = 1.8 m), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第2実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this zoom optical system which concern on 2nd Example. 第2実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 when focusing at infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第2実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。FIG. 6 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of a variable magnification optical system according to the second example, where (a) shows a wide-angle end state and (b) shows a telephoto end state. 第2実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 7A is a diagram illustrating various aberrations when the zooming optical system according to Example 2 is focused at a short distance (shooting distance R = 1.8 m of the entire system), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第3実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this zoom optical system which concern on 3rd Example. 第3実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 3 when focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第3実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。FIG. 7 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of a variable magnification optical system according to the third example, where (a) shows a wide-angle end state and (b) shows a telephoto end state. 第3実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6A is a diagram illustrating various aberrations of the zoom optical system according to the third example when focusing at short distance (total imaging distance R = 1.8 m), where (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第4実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this zoom optical system which concern on 4th Example. 第4実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 4 when focusing at infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第4実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。FIG. 6 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of a variable magnification optical system according to Example 4, where (a) shows a wide-angle end state and (b) shows a telephoto end state. 第4実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 11 is a diagram illustrating various aberrations of the zoom optical system according to Example 4 when focusing at close distance (shooting distance R = 1.8 m for the entire system), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第5実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this variable magnification optical system which concern on 5th Example. 第5実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 5 when focusing at infinity, where (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. . 第5実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。FIG. 10 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of a variable magnification optical system according to Example 5, where (a) shows a wide-angle end state and (b) shows a telephoto end state. 第5実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 10 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 5 when focusing at short distance (the entire system photographing distance R = 1.8 m), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第6実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this variable magnification optical system which concern on 6th Example. 第6実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 10 is various aberration diagrams of the zoom optical system according to Example 6 at the time of focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第6実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。It is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to Example 6, wherein (a) shows the wide-angle end state and (b) shows the telephoto end state. 第6実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 6 when focusing at short distance (shooting distance R = 1.8 m for the entire system), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第7実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this zoom optical system which concern on 7th Example. 第7実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 7 at the time of focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第7実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。FIG. 10 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of a variable magnification optical system according to Example 7, wherein (a) shows a wide-angle end state and (b) shows a telephoto end state. 第7実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 7 when focusing at short distance (shooting distance R = 1.8 m for the entire system), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第8実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this variable magnification optical system which concern on an 8th Example. 第8実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 8 at the time of focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第8実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。It is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to Example 8, wherein (a) shows the wide-angle end state and (b) shows the telephoto end state. 第8実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 8 when focusing at short distance (shooting distance R = 1.8 m for the entire system), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第9実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this variable magnification optical system which concern on a 9th Example. 第9実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 11A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 9 at the time of focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. . 第9実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。It is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to Example 9, where (a) shows a wide-angle end state and (b) shows a telephoto end state. 第9実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 11A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 9 when focusing at close distance (shooting distance R = 1.8 m for the entire system), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第10実施例に係る本変倍光学系の構成及びズーム軌跡を示す図である。It is a figure which shows the structure and zoom locus | trajectory of this zoom optical system which concern on a 10th Example. 第10実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 12A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 10 at the time of focusing on infinity, in which FIG. . 第10実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。It is a meridional lateral aberration diagram when blur correction is performed at the time of focusing at infinity of the variable magnification optical system according to the tenth example, where (a) shows the wide-angle end state and (b) shows the telephoto end state. 第10実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 11A is a diagram illustrating various aberrations of the variable magnification optical system according to Example 10 when focusing at short distance (shooting distance R = 1.8 m for the entire system), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 上記構成の変倍光学系を撮影レンズとして備えたデジタル一眼レフカメラCAMの略断面図である。It is a schematic sectional view of a digital single-lens reflex camera CAM provided with a variable magnification optical system having the above configuration as a photographic lens. 上記構成の変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the variable magnification optical system of the said structure.

以下、本実施形態について、図面を用いて説明する。   Hereinafter, the present embodiment will be described with reference to the drawings.

第1の本実施形態に係る変倍光学系は、図1に示すように、少なくとも物体側から順に並んだ第1レンズ群G1〜第6レンズ群G6を有し、これら第1レンズ群G1〜第6レンズ群G6はそれぞれ接合レンズを有する構成とした。   As shown in FIG. 1, the variable magnification optical system according to the first embodiment includes at least a first lens group G1 to a sixth lens group G6 arranged in order from the object side, and these first lens groups G1 to G1 are arranged. Each sixth lens group G6 has a cemented lens.

このように本実施形態に係る変倍光学系では、全体で6群以上のレンズ群を有することにより、高変倍比の光学系とすることが容易になる。また、第1レンズ群G1〜第6レンズ群G6はそれぞれ接合レンズを有することにより、色収差(軸上色収差及び倍率色収差)の補正が容易になる。また、偏芯に伴う性能の低下が軽減され、良好な光学性能を実現することができる。   As described above, the variable magnification optical system according to the present embodiment has a total of six or more lens groups, so that an optical system with a high zoom ratio can be easily obtained. In addition, since each of the first lens group G1 to the sixth lens group G6 has a cemented lens, it is easy to correct chromatic aberration (axial chromatic aberration and lateral chromatic aberration). In addition, a decrease in performance due to eccentricity is reduced, and good optical performance can be realized.

そして、本実施形態では、上記構成の基、第1レンズ群G1の焦点距離をf1とし、第2レンズ群G2の焦点距離をf2としたとき、次式(1)の条件を満足する。   In this embodiment, when the focal length of the first lens group G1 is f1 and the focal length of the second lens group G2 is f2, the condition of the following formula (1) is satisfied.

−(f1/f2)<3.98 …(1)   -(F1 / f2) <3.98 (1)

上記条件式(1)は、第1レンズ群G1の焦点距離f1と、第2レンズ群G2の焦点距離f2との比を規定したものである。本変倍光学系は、この条件式(1)を満足することで、良好な光学性能を実現することができる。なお、条件式(1)の上限値を上回ると、第1レンズ群G1の屈折力が弱くなり、第2レンズ群G2の屈折力が強くなる。そのため、第2レンズ群G2で発生する軸上色収差及び倍率色収差を十分に小さくすることが困難になる。したがって、第2レンズ群G2で発生した軸上色収差及び倍率色収差を第1レンズ群G1で補正することが困難となる。   Conditional expression (1) defines the ratio between the focal length f1 of the first lens group G1 and the focal length f2 of the second lens group G2. The present variable magnification optical system can achieve good optical performance by satisfying conditional expression (1). If the upper limit of conditional expression (1) is exceeded, the refractive power of the first lens group G1 becomes weak and the refractive power of the second lens group G2 becomes strong. For this reason, it is difficult to sufficiently reduce the longitudinal chromatic aberration and the lateral chromatic aberration generated in the second lens group G2. Accordingly, it is difficult to correct the longitudinal chromatic aberration and lateral chromatic aberration generated in the second lens group G2 with the first lens group G1.

なお、本実施形態の効果をより確実にするためには、条件式(1)の上限値を3.90に設定することが望ましい。   In order to secure the effect of the present embodiment, it is desirable to set the upper limit value of conditional expression (1) to 3.90.

また、本実施形態においては、第3レンズ群G3の焦点距離をf3とし、第4レンズ群G4の焦点距離をf4としたとき、次式(2)の条件を満足することが好ましい。   In the present embodiment, it is preferable that the condition of the following expression (2) is satisfied when the focal length of the third lens group G3 is f3 and the focal length of the fourth lens group G4 is f4.

0.61<−(f3/f4)<0.98 …(2)   0.61 <-(f3 / f4) <0.98 (2)

上記条件式(2)は、第3レンズ群G3の焦点距離f3と、第4レンズ群G4の焦点距離f4との比を規定したものである。本変倍光学系は、この条件式(2)を満足することで、良好な光学性能を実現することができる。なお、条件式(2)の上限値を上回ると、第4レンズ群G4の屈折力が強くなる。そのため、軸上色収差及び倍率色収差を十分に小さくすることが困難になる。また、条件式(2)の下限値を下回ると、第3レンズ群G3の屈折力が強くなる。そのため、球面収差を補正することが困難になる。   Conditional expression (2) defines the ratio between the focal length f3 of the third lens group G3 and the focal length f4 of the fourth lens group G4. The present variable magnification optical system can realize good optical performance by satisfying the conditional expression (2). If the upper limit of conditional expression (2) is exceeded, the refractive power of the fourth lens group G4 becomes strong. For this reason, it is difficult to sufficiently reduce the longitudinal chromatic aberration and the lateral chromatic aberration. If the lower limit of conditional expression (2) is not reached, the refractive power of the third lens group G3 will become strong. Therefore, it becomes difficult to correct spherical aberration.

なお、本実施形態の効果をより確実にするためには、条件式(2)の上限値を0.90に設定することが望ましい。また、本実施形態の効果をより確実にするためには、条件式(2)の下限値を0.63に設定することが望ましい。   In order to secure the effect of the present embodiment, it is desirable to set the upper limit value of conditional expression (2) to 0.90. In order to make the effect of the present embodiment more reliable, it is desirable to set the lower limit value of conditional expression (2) to 0.63.

また、本実施形態においては、第5レンズ群G5の焦点距離をf5としたとき、次式(3)の条件を満足することが好ましい。   In the present embodiment, it is preferable that the condition of the following expression (3) is satisfied when the focal length of the fifth lens group G5 is f5.

0.00<f1/f5<2.80 …(3)   0.00 <f1 / f5 <2.80 (3)

上記条件式(3)は、第1レンズ群G1の焦点距離f1と、第5レンズ群G5の焦点距離f5との比を規定したものである。本変倍光学系は、この条件式(3)を満足することで、良好な光学性能を実現することができる。なお、条件式(3)の上限値を上回ると、第5レンズ群G5の屈折力が強くなる。そのため、像面湾曲を補正することが困難になる。また、条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が強くなる。そのため、軸上色収差及び倍率色収差を十分に小さくすることが困難になる。   Conditional expression (3) defines the ratio between the focal length f1 of the first lens group G1 and the focal length f5 of the fifth lens group G5. The present variable magnification optical system can realize good optical performance by satisfying the conditional expression (3). If the upper limit of conditional expression (3) is exceeded, the refractive power of the fifth lens group G5 becomes strong. Therefore, it becomes difficult to correct curvature of field. If the lower limit of conditional expression (3) is not reached, the refractive power of the first lens group G1 will become strong. For this reason, it is difficult to sufficiently reduce the longitudinal chromatic aberration and the lateral chromatic aberration.

なお、本実施形態の効果をより確実にするためには、条件式(3)の上限値を2.60に設定することが望ましい。また、本実施形態の効果をより確実にするためには、条件式(3)の下限値を−0.10に設定することが望ましい。   In order to secure the effect of the present embodiment, it is desirable to set the upper limit value of conditional expression (3) to 2.60. In order to further secure the effect of the present embodiment, it is desirable to set the lower limit value of conditional expression (3) to −0.10.

さらに、本実施形態においては、第1レンズ群G1は、少なくとも2つの分割群に分割され、前記分割群のうちいずれか1つの分割群を合焦群とすることが好ましい。この構成により、合焦機構を簡略化することができる。なお、本実施形態においては、第1レンズ群G1は、2つの分割群(図1では前群G1F,後群G1R)に分割し、前記分割群のうち1つの分割群を合焦群(図1では後群G1R)として構成した。   Furthermore, in the present embodiment, it is preferable that the first lens group G1 is divided into at least two divided groups, and any one of the divided groups is set as a focusing group. With this configuration, the focusing mechanism can be simplified. In the present embodiment, the first lens group G1 is divided into two divided groups (the front group G1F and the rear group G1R in FIG. 1), and one of the divided groups is a focusing group (FIG. 1 was configured as the rear group G1R).

また、本実施形態においては、第1レンズ群G1は、正の屈折力を持つことが好ましい。この構成により、光学系全長を短くすることができるとともに、歪曲収差の補正が容易になる。   In the present embodiment, it is preferable that the first lens group G1 has a positive refractive power. With this configuration, the overall length of the optical system can be shortened and distortion can be easily corrected.

また、本実施形態においては、前記分割群のうち、最も像側の分割群を合焦群(図1では後群G1R)とすることが好ましい。この構成により、合焦機構を簡略化することができるとともに、合焦速度を高速化することができる。さらに、合焦群は軽量であるため、超音波モーターを選択することができ、静粛な合焦を実現することができる。   In the present embodiment, it is preferable that among the divided groups, the most image-side divided group is a focusing group (the rear group G1R in FIG. 1). With this configuration, the focusing mechanism can be simplified and the focusing speed can be increased. Furthermore, since the focusing group is lightweight, an ultrasonic motor can be selected, and quiet focusing can be realized.

また、本実施形態においては、第4レンズ群G4は、負の屈折力を持つことが好ましい。この構成により、球面収差の補正が容易になる。   In the present embodiment, it is preferable that the fourth lens group G4 has a negative refractive power. This configuration facilitates correction of spherical aberration.

また、本実施形態においては、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、及び、第5レンズ群G5と第6レンズ群G6との間隔が変化するように、各レンズ群が移動することが好ましい。この構成により、高変倍比の光学系とすることが容易になる。   In the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2, and the distance between the second lens group G2 and the third lens group G3. The distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the distance between the fifth lens group G5 and the sixth lens group G6 change. Thus, it is preferable that each lens group moves. With this configuration, it becomes easy to obtain an optical system with a high zoom ratio.

また、本実施形態においては、第2レンズ群G2は負の屈折力を持ち、第3レンズ群G3は正の屈折力を持ち、第5レンズ群G5は正の屈折力を持ち、第6レンズ群G6は負の屈折力を持つことが好ましい。この構成により、球面収差及び像面湾曲の補正が容易になる。   In the present embodiment, the second lens group G2 has negative refractive power, the third lens group G3 has positive refractive power, the fifth lens group G5 has positive refractive power, and the sixth lens. The group G6 preferably has a negative refractive power. This configuration facilitates correction of spherical aberration and field curvature.

また、本実施形態においては、第4レンズ群G4は、全体又は一部を、光軸に対して直交方向の成分を持つように移動させることが好ましい。この構成により、像ブレ発生時の像面補正を行うことができ、良好な光学性能を実現することができる。   In the present embodiment, it is preferable that the fourth lens group G4 is moved entirely or partially so as to have a component in a direction perpendicular to the optical axis. With this configuration, it is possible to perform image surface correction when an image blur occurs, and to realize good optical performance.

また、本実施形態においては、広角端状態から望遠端状態への変倍に際して、開口絞りSが像面Iに対して光軸方向に固定であることが好ましい。この構成により、開口絞りSの位置を変倍に連動させるといった機構が不要になり、本光学系の構成を簡略化することができる。   In the present embodiment, it is preferable that the aperture stop S is fixed in the optical axis direction with respect to the image plane I when zooming from the wide-angle end state to the telephoto end state. With this configuration, a mechanism for interlocking the position of the aperture stop S with zooming becomes unnecessary, and the configuration of the present optical system can be simplified.

また、本実施形態においては、広角端状態から望遠端状態への変倍に際して、開口絞りSの絞り径が一定であることが好ましい。この構成により、開口絞りSの絞り径を変倍に連動させるといった機構が不要になり、本光学系の構成を簡略化することができる。   In the present embodiment, it is preferable that the aperture diameter of the aperture stop S is constant when zooming from the wide-angle end state to the telephoto end state. With this configuration, a mechanism for interlocking the aperture diameter of the aperture stop S with zooming becomes unnecessary, and the configuration of the present optical system can be simplified.

図41に、上記構成の変倍光学系を撮影レンズ1として備えたデジタル一眼レフカメラCAM(光学機器)の略断面図を示す。図41に示すデジタル一眼レフカメラCAMにおいて、不図示の物体(被写体)からの光は、撮影レンズ1で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。   FIG. 41 is a schematic cross-sectional view of a digital single-lens reflex camera CAM (optical apparatus) provided with the variable magnification optical system having the above configuration as a photographic lens 1. In the digital single-lens reflex camera CAM shown in FIG. 41, light from an object (subject) (not shown) is collected by the photographing lens 1 and focused on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ1で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラCAMによる物体(被写体)の撮影を行うことができる。なお、図41に記載のカメラCAMは、撮影レンズ1を着脱可能に保持するものでもよく、撮影レンズ1と一体に成形されるものでもよい。また、カメラCAMは、いわゆる一眼レフカメラでもよく、クイックリターンミラー等を有さないコンパクトカメラでもよい。   Further, when a release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 1 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can photograph an object (subject) with the camera CAM. The camera CAM shown in FIG. 41 may be one that holds the photographing lens 1 in a detachable manner or may be molded integrally with the photographing lens 1. The camera CAM may be a so-called single-lens reflex camera or a compact camera that does not have a quick return mirror or the like.

続いて、図42を参照しながら、上記構成の変倍光学系の製造方法について説明する。まず、円筒状の鏡筒内に各レンズ(例えば、図1ではレンズL11〜L62)を組み込む(ステップS1)。レンズを鏡筒内に組み込む際、光軸に沿った順にレンズを1つずつ鏡筒内に組み込んでもよく、一部又は全てのレンズを保持部材で一体保持してから鏡筒部材と組み立ててもよい。次に、鏡筒内に各レンズが組み込まれた後、鏡筒内に各レンズが組み込まれた状態で物体の像が形成されるか、すなわち各レンズの中心が揃っているかを確認する(ステップS2)。続いて、変倍光学系の各種動作を確認する(ステップS3)。各種動作の一例としては、広角端状態から望遠端状態への変倍を行う変倍動作(例えば、図1では第2レンズ群G2,第3レンズ群G3,第5レンズ群G5及び第6レンズ群G6が光軸方向に沿ってそれぞれ移動する)、遠距離物点から近距離物点への合焦を行うレンズ(例えば、図1では後群G1R)が光軸方向に沿って移動する合焦動作、少なくとも一部のレンズ(例えば、図1では第4レンズ群G4)を光軸と垂直方向の成分を持つように移動させる手ぶれ補正動作などが挙げられる。なお、各種動作の確認順番は任意である。   Subsequently, a manufacturing method of the variable magnification optical system having the above configuration will be described with reference to FIG. First, each lens (for example, the lenses L11 to L62 in FIG. 1) is assembled in a cylindrical barrel (step S1). When assembling the lenses into the lens barrel, the lenses may be incorporated into the lens barrel one by one in the order along the optical axis, or a part or all of the lenses may be integrally held by the holding member and then assembled with the lens barrel member. Good. Next, after each lens is incorporated in the lens barrel, it is confirmed whether an object image is formed in a state where each lens is incorporated in the lens barrel, that is, whether the centers of the lenses are aligned (step) S2). Subsequently, various operations of the variable magnification optical system are confirmed (step S3). As an example of various operations, a zooming operation that performs zooming from the wide-angle end state to the telephoto end state (for example, in FIG. 1, the second lens group G2, the third lens group G3, the fifth lens group G5, and the sixth lens). Group G6 moves along the optical axis direction), and a lens (for example, rear group G1R in FIG. 1) that focuses from a long distance object point to a short distance object point moves along the optical axis direction. Examples include a focus operation and a camera shake correction operation that moves at least a part of the lenses (for example, the fourth lens group G4 in FIG. 1) so as to have a component in a direction perpendicular to the optical axis. Note that the order of confirming the various operations is arbitrary.

以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜表9を示すが、これらは第1〜第10実施例における各諸元の表である。[全体諸元]において、fは全系の焦点距離を、FNOはFナンバーを、TLは全系の全長を、2ωは全画角を、Φは開口絞り径を示す。[レンズデータ]においては、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、rは各レンズ面の曲率半径を、dは各光学面から次の光学面(又は像面I)までの光軸上の距離である面間隔を、ndはd線(波長587.6nm)に対する屈折率を、νdはd線に対するアッベ数を、BFはバックフォーカスを示す。また、レンズ面が非球面である場合には、面番号に*印を付し、曲率半径rの欄には近軸曲率半径を示す。なお、曲率半径の「0.0000」は平面又は開口を示す。また、空気の屈折率「1.00000」の記載は省略している。[可変間隔データ]において、fは全系の焦点距離を、βは全系の横倍率を、Di(但し、iは整数)は第i面と第(i+1)面の可変間隔を示す。[各群焦点距離データ]において、各群の初面及び焦点距離を示す。[条件式]において、上記の条件式(1)〜(3)に対応する値を示す。   Hereinafter, each example according to the present embodiment will be described with reference to the drawings. Tables 1 to 9 are shown below, but these are tables of specifications in the first to tenth examples. In [Overall specifications], f represents the focal length of the entire system, FNO represents the F number, TL represents the total length of the entire system, 2ω represents the total angle of view, and Φ represents the aperture stop diameter. In [Lens data], the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels, r is the radius of curvature of each lens surface, and d is the next optical surface from each optical surface (or The distance between the surfaces on the optical axis to the image plane I), nd is the refractive index for the d-line (wavelength 587.6 nm), νd is the Abbe number for the d-line, and BF is the back focus. When the lens surface is aspherical, an asterisk is attached to the surface number, and the paraxial radius of curvature is indicated in the column of the radius of curvature r. The curvature radius “0.0000” indicates a plane or an opening. Further, the description of the refractive index “1.00000” of air is omitted. In [variable interval data], f indicates the focal length of the entire system, β indicates the lateral magnification of the entire system, and Di (where i is an integer) indicates the variable interval between the i-th surface and the (i + 1) -th surface. In [Each Group Focal Length Data], the initial surface and focal length of each group are shown. In [Conditional Expression], values corresponding to the conditional expressions (1) to (3) are shown.

[非球面データ]には、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。すなわち、光軸に垂直な方向の高さをyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐係数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で示している。また、E-nは、×10-nを表す。例えば、1.234E-05=1.234×10-5である。 In [Aspherical data], the shape of the aspherical surface shown in [Lens data] is shown by the following equation (a). That is, y is the height in the direction perpendicular to the optical axis, and S (y) is the distance (sag amount) along the optical axis from the tangent plane at the apex of the aspheric surface to the position on the aspheric surface at height y. When the radius of curvature of the reference spherical surface (paraxial radius of curvature) is r, the conic coefficient is κ, and the n-th aspherical coefficient is An, the following equation (a) is given. E-n represents x10 -n. For example, 1.234E-05 = 1.234 × 10 −5 .

S(y)=(y2/r)/{1+(1−κ・y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 …(a)
S (y) = (y 2 / r) / {1+ (1−κ · y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 ... (a)

なお、表中において、焦点距離f、曲率半径r、面間隔d、その他の長さの単位は、一般に「mm」が使われている。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   In the table, “mm” is generally used as the focal length f, radius of curvature r, surface interval d, and other length units. However, since the optical system can obtain the same optical performance even if it is proportionally enlarged or reduced, the unit is not limited to “mm”, and other appropriate units can be used.

以上の表の説明は、他の実施例においても同様とし、その説明を省略する。   The description of the above table is the same in other examples, and the description thereof is omitted.

(第1実施例)
第1実施例について、図1〜図4及び表1を用いて説明する。図1は、第1実施例のレンズ構成図及びズーム軌跡を示したものである。図1に示すように、第1実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(First embodiment)
A first embodiment will be described with reference to FIGS. FIG. 1 shows a lens configuration diagram and zoom locus of the first embodiment. As shown in FIG. 1, the variable magnification optical system according to the first example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と両凸形状の正レンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive lens having a convex surface facing the object side. A meniscus lens L13. The rear group G1R has a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a biconvex positive lens L15, which are arranged in order from the object side along the optical axis.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21と両凹形状の負レンズL22との接合レンズと、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合レンズと、両凹形状の負レンズL25とを有する。   The second lens group G2 includes a cemented lens of a biconvex positive lens L21 and a biconcave negative lens L22, a biconcave negative lens L23, and the object side, which are arranged in order from the object side along the optical axis. The lens has a cemented lens with a positive meniscus lens L24 having a convex surface and a negative biconcave lens L25.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズと、両凸形状の正レンズL34とを有する。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32, and a biconcave negative lens L33, And a positive lens L34 having a convex shape.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と両凹形状の負レンズ凹L42との接合レンズを有する。   The fourth lens group G4 includes a cemented lens formed of a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens concave L42, which are arranged in order from the object side along the optical axis.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is composed of a biconvex positive lens L51 arranged in order from the object side along the optical axis, a negative meniscus lens L52 having a convex surface directed toward the object side, and a biconvex positive lens L53. And a lens.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41とレンズL42との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度θの回転ぶれを補
正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−2.100であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41とレンズL42との接合レンズの移動量は−0.237(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−2.131であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41とレンズL42との接合レンズの移動量は−0.512(mm)である。
In the variable magnification optical system according to the present example, the image plane correction at the time of blurring is performed by shifting the cemented lens of the lens L41 and the lens L42 in the fourth lens group G4 in the direction orthogonal to the optical axis. Done. When the focal length of the entire system is f, a shake correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens group for blur correction in the optical axis direction) is K and a rotational shake at an angle θ. In order to correct, the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, the blur correction coefficient K is −2.100 and the focal length is 81.6 (mm). Therefore, the lens L41 and the lens for correcting the rotational blur of 0.350 ° The amount of movement of the cemented lens with L42 is -0.237 (mm). In the telephoto end state of the present embodiment, since the shake correction coefficient K is −2.131 and the focal length is 392 (mm), the lens L41 and the lens L42 for correcting the rotational shake of 0.160 ° The amount of movement of the cemented lens is -0.512 (mm).

以下の表1に第1実施例に係る変倍光学系の各諸元の値を掲げる。なお、表1に示す面番号1〜35は、図1に示す面1〜35に対応している。   Table 1 below lists values of various specifications of the variable magnification optical system according to the first example. The surface numbers 1 to 35 shown in Table 1 correspond to the surfaces 1 to 35 shown in FIG.

(表1)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.7 〜 5.8
TL 256.6 〜 256.6 〜 256.6
2ω 29.7 〜 12.0 〜 6.1
Φ 25.0 〜 22.0 〜 19.2
[レンズデータ]
面番号 r d nd νd
1 179.4338 2.5 1.80610 40.9
2 89.5051 10.0 1.49782 82.5
3 -446.6400 0.1
4 110.9379 5.5 1.49782 82.5
5 234.3333 D5
6 92.3090 3.3 1.78472 25.7
7 70.7791 8.4 1.48749 70.5
8 -25475.8490 D8
9 1009.0937 4.8 1.80518 25.4
10 -89.8865 1.8 1.77250 49.6
11 65.0749 4.0
12 -181.3777 1.7 1.77250 49.6
13 36.8152 6.0 1.78472 25.7
14 226.5434 4.2
15 -66.7353 2.0 1.62299 58.2
16 368.8553 D16
17 66.6763 5.0 1.56384 60.7
18 -110.2881 0.1
19 44.7900 6.2 1.48749 70.5
20 -80.0154 2.0 1.75520 27.5
21 132.4317 0.1
22 115.9136 5.0 1.48749 70.5
23 -100.6044 D23
24 -47.5857 4.0 1.80809 22.8
25 -36.6835 1.8 1.72916 54.7
26 173.4251 2.3
27 0.0000 D27 (開口絞りS)
28 470.5912 4.0 1.48749 70.5
29 -41.7072 0.1
30 51.3411 1.2 1.80100 35.0
31 34.1887 5.0 1.48749 70.5
32 -432.2669 D32
33 -31.9511 1.1 1.78800 47.4
34 32.8230 4.5 1.67270 32.1
35 -81.3002 BF
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.06 -0.14 -0.26
D0 0 0 0 1543.41 1543.41 1543.41
D5 14.5310 14.5310 14.5310 2.0000 2.0000 2.0000
D8 2.0014 30.5817 38.9987 14.5323 43.1127 51.5297
D16 54.2333 25.8372 2.0033 54.2333 25.8372 2.0033
D23 2.8656 2.6813 18.0983 2.8656 2.6813 18.0983
D27 10.0853 3.9231 2.0001 10.0853 3.9231 2.0001
D32 20.4765 22.0533 6.6083 20.4765 22.0533 6.6083
BF 55.7244 60.3097 77.6778 55.7244 60.3097 77.6778
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 101.2181
G2 9 -31.5893
G3 17 42.3904
G4 24 -52.1478
G5 28 49.2644
G6 33 -52.0818
[条件式]
条件式(1) −(f1/f2) = 3.72
条件式(2) −(f3/f4) = 0.81
条件式(3) f1/f5 = 2.38
(Table 1)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6 to 5.7 to 5.8
TL 256.6 to 256.6 to 256.6
2ω 29.7-12.0-6.1
Φ 25.0 to 22.0 to 19.2
[Lens data]
Surface number r d nd νd
1 179.4338 2.5 1.80610 40.9
2 89.5051 10.0 1.49782 82.5
3 -446.6400 0.1
4 110.9379 5.5 1.49782 82.5
5 234.3333 D5
6 92.3090 3.3 1.78472 25.7
7 70.7791 8.4 1.48749 70.5
8 -25475.8490 D8
9 1009.0937 4.8 1.80518 25.4
10 -89.8865 1.8 1.77250 49.6
11 65.0749 4.0
12 -181.3777 1.7 1.77250 49.6
13 36.8152 6.0 1.78472 25.7
14 226.5434 4.2
15 -66.7353 2.0 1.62299 58.2
16 368.8553 D16
17 66.6763 5.0 1.56384 60.7
18 -110.2881 0.1
19 44.7900 6.2 1.48749 70.5
20 -80.0154 2.0 1.75520 27.5
21 132.4317 0.1
22 115.9136 5.0 1.48749 70.5
23 -100.6044 D23
24 -47.5857 4.0 1.80809 22.8
25 -36.6835 1.8 1.72916 54.7
26 173.4251 2.3
27 0.0000 D27 (Aperture stop S)
28 470.5912 4.0 1.48749 70.5
29 -41.7072 0.1
30 51.3411 1.2 1.80 100 35.0
31 34.1887 5.0 1.48749 70.5
32 -432.2669 D32
33 -31.9511 1.1 1.78800 47.4
34 32.8230 4.5 1.67270 32.1
35 -81.3002 BF
[Variable interval data]
Infinity Near distance Wide angle end Medium telephoto end Wide angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.06 -0.14 -0.26
D0 0 0 0 1543.41 1543.41 1543.41
D5 14.5310 14.5310 14.5310 2.0000 2.0000 2.0000
D8 2.0014 30.5817 38.9987 14.5323 43.1127 51.5297
D16 54.2333 25.8372 2.0033 54.2333 25.8372 2.0033
D23 2.8656 2.6813 18.0983 2.8656 2.6813 18.0983
D27 10.0853 3.9231 2.0001 10.0853 3.9231 2.0001
D32 20.4765 22.0533 6.6083 20.4765 22.0533 6.6083
BF 55.7244 60.3097 77.6778 55.7244 60.3097 77.6778
[Each group focal length data]
Group number Group first surface Group focal length G1 1 101.2181
G2 9 -31.5893
G3 17 42.3904
G4 24 -52.1478
G5 28 49.2644
G6 33 -52.0818
[Conditional expression]
Conditional expression (1) − (f1 / f2) = 3.72
Conditional expression (2)-(f3 / f4) = 0.81
Conditional expression (3) f1 / f5 = 2.38

表1に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 1, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図2は、第1実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図3は、第1実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図4は、第1実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   2A and 2B are graphs showing various aberrations of the variable magnification optical system according to the first example when focusing on infinity, where FIG. 2A is a wide-angle end state, FIG. 2B is an intermediate focal length state, and FIG. 2C is a telephoto end. Each state is shown. FIG. 3 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the first example. (A) is a wide-angle end state, and (b) is a telephoto end state. Each is shown. 4A and 4B are graphs showing various aberrations when the zooming optical system according to Example 1 is focused at a short distance (the imaging distance R of the entire system is R = 1.8 m). FIG. 4A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図において、FNOはFナンバーを、Yは像高(単位:mm)を示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。また、dはd線(波長587.6nm)、gはg線(波長435.8nm)に対する諸収差を、記載のないものはd線に対する諸収差をそれぞれ示す。また、非点収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。   In each aberration diagram, FNO indicates an F number, and Y indicates an image height (unit: mm). The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma diagram shows the value of each image height. Further, d indicates various aberrations with respect to the d-line (wavelength 587.6 nm), g indicates various aberrations with respect to the g-line (wavelength 435.8 nm), and those not described indicate various aberrations with respect to the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.

各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the first example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第2実施例)
第2実施例について、図5〜図8及び表2を用いて説明する。図5は、第2実施例のレンズ構成図及びズーム軌跡を示したものである。図5に示すように、第2実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(Second embodiment)
A second embodiment will be described with reference to FIGS. FIG. 5 shows a lens configuration diagram and zoom locus of the second embodiment. As shown in FIG. 5, the variable magnification optical system according to the second example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と両凸形状の正レンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive lens having a convex surface facing the object side. A meniscus lens L13. The rear group G1R has a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a biconvex positive lens L15, which are arranged in order from the object side along the optical axis.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と両凹形状の負レンズL22との接合レンズと、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合レンズと、両凹形状の負レンズL25とを有する。   The second lens group G2 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconcave negative lens L22, and a biconcave negative lens. It has a cemented lens of L23 and a positive meniscus lens L24 having a convex surface facing the object side, and a biconcave negative lens L25.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と物体側に凸面を向けた負メニスカスレンズL33との接合レンズとを有する。   The third lens group G3 is formed by joining a biconvex positive lens L31, a biconvex positive lens L32, and a negative meniscus lens L33 having a convex surface toward the object side, which are arranged in order from the object side along the optical axis. And a lens.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と両凹形状の負レンズとの接合レンズL42を有する。   The fourth lens group G4 includes a cemented lens L42, which is arranged in order from the object side along the optical axis, and includes a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave negative lens.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is composed of a biconvex positive lens L51 arranged in order from the object side along the optical axis, a negative meniscus lens L52 having a convex surface directed toward the object side, and a biconvex positive lens L53. And a lens.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the variable magnification optical system according to the present embodiment having such a configuration, the distance between the first lens group G1 and the second lens group G2 is increased when the magnification is changed from the wide-angle end state to the telephoto end state. The distance between the lens group G1 and the second lens group G2 increases, the distance between the second lens group G2 and the third lens group G3 decreases, and the distance between the third lens group G3 and the fourth lens group G4 increases. Then, each lens group moves so that the distance between the fourth lens group G4 and the fifth lens group G5 decreases and the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第3レンズ群G3と第4レンズ群G4との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the third lens group G3 and the fourth lens group G4, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41とレンズL42との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度θの回転ぶれを補
正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.882であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41とレンズL42との接合レンズの移動量は−0.265(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.978であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズレンズL41とレンズL42との接合レンズの移動量は−0.552(mm)である。
In the variable magnification optical system according to the present example, the image plane correction at the time of blurring is performed by shifting the cemented lens of the lens L41 and the lens L42 in the fourth lens group G4 in the direction orthogonal to the optical axis. Done. When the focal length of the entire system is f, a shake correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens group for blur correction in the optical axis direction) is K and a rotational shake at an angle θ. In order to correct, the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, the blur correction coefficient K is −1.882 and the focal length is 81.6 (mm). Therefore, the lens L41 and the lens for correcting the rotational blur of 0.350 ° The amount of movement of the cemented lens with L42 is -0.265 (mm). In the telephoto end state of the present embodiment, the blur correction coefficient K is −1.978 and the focal length is 392 (mm). Therefore, the lens lens L41 and the lens L42 for correcting the rotational blur of 0.160 °. The amount of movement of the cemented lens is -0.552 (mm).

以下の表2に第2実施例に係る変倍光学系の各諸元の値を掲げる。なお、表2に示す面番号1〜33は、図5に示す面1〜33に対応している。   Table 2 below shows values of various specifications of the variable magnification optical system according to the second example. The surface numbers 1 to 33 shown in Table 2 correspond to the surfaces 1 to 33 shown in FIG.

(表2)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.6 〜 5.8
TL 257.8 〜 257.8 〜 257.8
2ω 30.1 〜 12.2 〜 6.2
Φ 24.2 〜 22.0 〜 20.4
[レンズデータ]
面番号 r d nd νd
1 151.4355 2.5 1.80400 46.6
2 80.9045 10.0 1.49782 82.5
3 -660.7905 0.1
4 103.7009 5.5 1.49782 82.5
5 177.6269 D5
6 97.7191 3.3 1.84666 23.8
7 70.3201 8.4 1.58913 61.2
8 2650.6755 D8
9 2332.5539 4.8 1.80809 22.8
10 -95.5599 1.8 1.80440 39.6
11 66.9490 4.0
12 -266.6149 1.7 1.77250 49.6
13 29.9961 7.0 1.78472 25.7
14 356.0090 4.2
15 -70.4727 2.0 1.74400 44.8
16 286.5097 D16
17 47.3805 7.9 1.51680 64.1
18 -59.1743 0.2
19 56.3209 7.7 1.48749 70.5
20 -40.0873 2.0 1.80518 25.4
21 -168.1697 D21
22 0.0000 3.0 (開口絞りS)
23 -46.9340 4.0 1.84666 23.8
24 -29.2304 1.8 1.74100 52.7
25 200.3114 D25
26 490.9425 4.0 1.48749 70.5
27 -67.9550 0.1
28 60.1092 1.2 1.84666 23.8
29 36.2041 6.0 1.48749 70.5
30 -53.9995 D30
31 -31.7589 1.1 1.75500 52.3
32 46.0734 3.7 1.84666 23.8
33 -8940.2754 BF
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.06 -0.14 -0.27
D0 0 0 0 1542.24 1542.24 1542.24
D5 13.4120 13.4120 13.4120 2.0000 2.0000 2.0000
D8 2.0000 28.5031 35.0926 13.4120 39.9151 46.5046
D16 52.6489 25.0338 2.0038 52.6489 25.0338 2.0038
D21 2.0000 3.1120 19.5525 2.0000 3.1120 19.5525
D25 20.1010 9.8885 9.1172 20.1010 9.8885 9.1172
D30 14.5969 14.6003 2.8343 14.5969 14.6003 2.8343
BF 55.0000 65.2091 77.7465 55.0000 65.2092 77.7464
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 114.7469
G2 9 -30.9191
G3 17 40.5507
G4 23 -55.0000
G5 26 47.9530
G6 31 -46.1818
[条件式]
条件式(1) −(f1/f2) = 3.71
条件式(2) −(f3/f4) = 0.74
条件式(3) f1/f5 = 2.39
(Table 2)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6 to 5.6 to 5.8
TL 257.8-257.8-257.8
2ω 30.1-12.2-6.2
Φ 24.2 to 22.0 to 20.4
[Lens data]
Surface number r d nd νd
1 151.4355 2.5 1.80 400 46.6
2 80.9045 10.0 1.49782 82.5
3 -660.7905 0.1
4 103.7009 5.5 1.49782 82.5
5 177.6269 D5
6 97.7191 3.3 1.84666 23.8
7 70.3201 8.4 1.58913 61.2
8 2650.6755 D8
9 2332.5539 4.8 1.80809 22.8
10 -95.5599 1.8 1.80440 39.6
11 66.9490 4.0
12 -266.6149 1.7 1.77250 49.6
13 29.9961 7.0 1.78472 25.7
14 356.0090 4.2
15 -70.4727 2.0 1.74400 44.8
16 286.5097 D16
17 47.3805 7.9 1.51680 64.1
18 -59.1743 0.2
19 56.3209 7.7 1.48749 70.5
20 -40.0873 2.0 1.80518 25.4
21 -168.1697 D21
22 0.0000 3.0 (Aperture stop S)
23 -46.9340 4.0 1.84666 23.8
24 -29.2304 1.8 1.74100 52.7
25 200.3114 D25
26 490.9425 4.0 1.48749 70.5
27 -67.9550 0.1
28 60.1092 1.2 1.84666 23.8
29 36.2041 6.0 1.48749 70.5
30 -53.9995 D30
31 -31.7589 1.1 1.75500 52.3
32 46.0734 3.7 1.84666 23.8
33 -8940.2754 BF
[Variable interval data]
Infinity short distance
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.06 -0.14 -0.27
D0 0 0 0 1542.24 1542.24 1542.24
D5 13.4120 13.4120 13.4120 2.0000 2.0000 2.0000
D8 2.0000 28.5031 35.0926 13.4120 39.9151 46.5046
D16 52.6489 25.0338 2.0038 52.6489 25.0338 2.0038
D21 2.0000 3.1120 19.5525 2.0000 3.1120 19.5525
D25 20.1010 9.8885 9.1172 20.1010 9.8885 9.1172
D30 14.5969 14.6003 2.8343 14.5969 14.6003 2.8343
BF 55.0000 65.2091 77.7465 55.0000 65.2092 77.7464
[Each group focal length data]
Group number Group first surface Group focal length G1 1 114.7469
G2 9 -30.9191
G3 17 40.5507
G4 23 -55.0000
G5 26 47.9530
G6 31 -46.1818
[Conditional expression]
Conditional expression (1) − (f1 / f2) = 3.71
Conditional expression (2)-(f3 / f4) = 0.74
Conditional expression (3) f1 / f5 = 2.39

表2に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 2, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図6は、第2実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図7は、第2実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図8は、第2実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   6A and 6B are graphs showing various aberrations of the variable magnification optical system according to Example 2 during focusing at infinity, where FIG. 6A is a wide-angle end state, FIG. 6B is an intermediate focal length state, and FIG. 6C is a telephoto end. Each state is shown. FIGS. 7A and 7B are meridional lateral aberration diagrams when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the second example. FIG. 7A illustrates a wide-angle end state, and FIG. 7B illustrates a telephoto end state. Each is shown. FIGS. 8A and 8B are graphs showing various aberrations of the variable magnification optical system according to Example 2 when focusing at a short distance (shooting distance R = 1.8 m for the entire system). FIG. 8A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the second example, it is understood that various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第3実施例)
第3実施例について、図9〜図12及び表3を用いて説明する。図9は、第3実施例のレンズ構成図及びズーム軌跡を示したものである。図9に示すように、第3実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(Third embodiment)
A third embodiment will be described using FIGS. 9 to 12 and Table 3. FIG. FIG. 9 shows a lens configuration diagram and zoom locus of the third embodiment. As shown in FIG. 9, the variable magnification optical system according to the third example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive lens having a convex surface facing the object side. A meniscus lens L13. The rear group G1R includes a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 is formed by joining a negative meniscus lens L21 having a convex surface toward the object side, which is arranged in order from the object side along the optical axis, and a biconcave negative lens L22 and a biconvex positive lens L23. It has a lens and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合レンズと、物体側に凸面を向けた正メニスカスレンズL34とを有する。   The third lens group G3 is formed by joining a biconvex positive lens L31, a biconvex positive lens L32, and a negative meniscus lens L33 having a concave surface facing the object side, which are arranged in order from the object side along the optical axis. A lens and a positive meniscus lens L34 having a convex surface facing the object side.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と、両凹形状の負レンズ凹L42と物体側に凸面を向けた正メニスカスレンズL43との接合レンズとを有する。   The fourth lens group G4 includes, in order from the object side along the optical axis, a negative meniscus lens L41 having a convex surface facing the object side, a negative concave lens L42 having a biconcave shape, and a positive meniscus having a convex surface facing the object side. A cemented lens with the lens L43.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is arranged in order from the object side along the optical axis. The positive meniscus lens L51 has a convex surface facing the object side, the negative meniscus lens L52 has a convex surface facing the object side, and a biconvex positive lens. And a cemented lens with L53.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41と、レンズL42とレンズL43との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度
θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.658であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.301(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.900であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.575(mm)である。
In the variable magnification optical system according to the present example, the lens L41 and the cemented lens of the lens L42 and the lens L43 in the fourth lens group G4 are shifted in a direction orthogonal to the optical axis, so that a blur occurs. Image plane correction is performed. When the focal length of the entire system is f, a shake correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens group for blur correction in the optical axis direction) is K and a rotational shake at an angle θ. In order to correct, the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, since the shake correction coefficient K is −1.658 and the focal length is 81.6 (mm), a lens L41 for correcting a rotational shake of 0.350 °, The amount of movement of the cemented lens between the lens L42 and the lens L43 is -0.301 (mm). In the telephoto end state of this embodiment, the blur correction coefficient K is −1.900 and the focal length is 392 (mm). Therefore, the lens L41 for correcting the rotational blur of 0.160 ° and the lens L42 The amount of movement of the cemented lens between the lens L43 and the lens L43 is -0.575 (mm).

以下の表3に第3実施例に係る変倍光学系の各諸元の値を掲げる。なお、表3に示す面番号1〜36は、図9に示す面1〜36に対応している。   Table 3 below lists values of various specifications of the variable magnification optical system according to the third example. The surface numbers 1 to 36 shown in Table 3 correspond to the surfaces 1 to 36 shown in FIG.

(表3)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.6 〜 5.8
TL 270.0 〜 270.0 〜 270.0
2ω 29.0 〜 11.9 〜 6.1
Φ 23.6 〜 21.6 〜 21.2
[レンズデータ]
面番号 r d nd νd
1 176.1767 3.1 1.79952 42.3
2 83.7010 8.5 1.49782 82.6
3 -8152.7306 0.1
4 90.6185 7.8 1.49782 82.6
5 28397.5490 D5
6 92.6435 2.8 1.84666 23.8
7 69.3835 9.5 1.58913 61.2
8 274.2400 D8
9 185.3195 1.9 1.81600 46.6
10 40.1404 4.6
11 -102.8423 1.9 1.75500 52.3
12 40.3224 6.1 1.80809 22.8
13 -266.3547 2.3
14 -61.0923 1.9 1.81600 46.6
15 554.0525 D15
16 585.3312 4.2 1.69680 55.5
17 -80.8093 0.2
18 55.2370 7.4 1.60300 65.5
19 -84.0213 2.3 1.84666 23.8
20 -1893.0691 0.1
21 60.6406 2.9 1.58913 61.2
22 147.6093 D22
23 81.2576 2.5 1.75520 27.5
24 46.0346 3.3
25 -103.3563 2.3 1.74400 44.8
26 42.0032 2.9 1.84666 23.8
27 245.2611 4.1
28 0.0000 D28 (開口絞りS)
29 37.4902 3.4 1.48749 70.5
30 128.4907 12.2
31 62.3471 1.6 1.75520 27.5
32 23.3504 5.8 1.48749 70.5
33 -62.7817 D33
34 -32.6512 1.4 1.79500 45.3
35 35.0907 5.0 1.75520 27.5
36 -70.7458 BF
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.06 -0.14 -0.27
D0 0 0 0 1530.00 1530.00 1530.00
D5 15.0817 15.0817 15.0817 2.0000 2.0000 2.0000
D8 2.0000 21.1264 29.0195 15.0817 34.2081 42.1012
D15 50.1722 23.1721 2.0000 50.1722 23.1721 2.0000
D22 2.0000 9.8738 23.1528 2.0000 9.8738 23.1528
D28 22.6871 9.4683 2.0000 22.6871 9.4683 2.0000
D33 10.9546 9.0485 3.2613 10.9546 9.0485 3.2613
BF 55.0000 70.1250 83.3805 55.0000 70.1250 83.3805
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 105.2506
G2 9 -27.2581
G3 16 42.3041
G4 23 -65.5390
G5 29 61.4146
G6 34 -72.2532
[条件式]
条件式(1) −(f1/f2) = 3.86
条件式(2) −(f3/f4) = 0.65
条件式(3) f1/f5 = 1.71
(Table 3)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6 to 5.6 to 5.8
TL 270.0-270.0-270.0
2ω 29.0-11.9-6.1
Φ 23.6 to 21.6 to 21.2
[Lens data]
Surface number r d nd νd
1 176.1767 3.1 1.79952 42.3
2 83.7010 8.5 1.49782 82.6
3 -8152.7306 0.1
4 90.6185 7.8 1.49782 82.6
5 28397.5490 D5
6 92.6435 2.8 1.84666 23.8
7 69.3835 9.5 1.58913 61.2
8 274.2400 D8
9 185.3195 1.9 1.81600 46.6
10 40.1404 4.6
11 -102.8423 1.9 1.75 500 52.3
12 40.3224 6.1 1.80809 22.8
13 -266.3547 2.3
14 -61.0923 1.9 1.81600 46.6
15 554.0525 D15
16 585.3312 4.2 1.69680 55.5
17 -80.8093 0.2
18 55.2370 7.4 1.60 300 65.5
19 -84.0213 2.3 1.84666 23.8
20 -1893.0691 0.1
21 60.6406 2.9 1.58913 61.2
22 147.6093 D22
23 81.2576 2.5 1.75520 27.5
24 46.0346 3.3
25 -103.3563 2.3 1.74400 44.8
26 42.0032 2.9 1.84666 23.8
27 245.2611 4.1
28 0.0000 D28 (Aperture stop S)
29 37.4902 3.4 1.48749 70.5
30 128.4907 12.2
31 62.3471 1.6 1.75520 27.5
32 23.3504 5.8 1.48749 70.5
33 -62.7817 D33
34 -32.6512 1.4 1.79500 45.3
35 35.0907 5.0 1.75520 27.5
36 -70.7458 BF
[Variable interval data]
Infinity Near distance Wide angle end Medium telephoto end Wide angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.06 -0.14 -0.27
D0 0 0 0 1530.00 1530.00 1530.00
D5 15.0817 15.0817 15.0817 2.0000 2.0000 2.0000
D8 2.0000 21.1264 29.0195 15.0817 34.2081 42.1012
D15 50.1722 23.1721 2.0000 50.1722 23.1721 2.0000
D22 2.0000 9.8738 23.1528 2.0000 9.8738 23.1528
D28 22.6871 9.4683 2.0000 22.6871 9.4683 2.0000
D33 10.9546 9.0485 3.2613 10.9546 9.0485 3.2613
BF 55.0000 70.1250 83.3805 55.0000 70.1250 83.3805
[Each group focal length data]
Group number Group first surface Group focal length G1 1 105.2506
G2 9 -27.2581
G3 16 42.3041
G4 23 -65.5390
G5 29 61.4146
G6 34 -72.2532
[Conditional expression]
Conditional expression (1)-(f1 / f2) = 3.86
Conditional expression (2)-(f3 / f4) = 0.65
Conditional expression (3) f1 / f5 = 1.71

表3に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 3, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図10は、第3実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図11は、第3実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図12は、第3実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 10A and 10B are graphs showing various aberrations of the variable magnification optical system according to the third example when focusing on infinity. FIG. 10A is a wide-angle end state, FIG. 10B is an intermediate focal length state, and FIG. Each state is shown. FIGS. 11A and 11B are meridional lateral aberration diagrams when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the third example. FIG. 11A shows a wide-angle end state, and FIG. 11B shows a telephoto end state. Each is shown. FIGS. 12A and 12B are graphs showing various aberrations of the variable magnification optical system according to the third example at the time of focusing at a short distance (the photographing distance R of the entire system is R = 1.8 m), where FIG. 12A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the third example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第4実施例)
第4実施例について、図13〜図16及び表4を用いて説明する。図13は、第4実施例のレンズ構成図及びズーム軌跡を示したものである。図13に示すように、第4実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. 13 to 16 and Table 4. FIG. FIG. 13 shows a lens configuration diagram and zoom locus of the fourth example. As shown in FIG. 13, the variable magnification optical system according to the fourth example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive lens having a convex surface facing the object side. A meniscus lens L13. The rear group G1R includes a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 is formed by joining a negative meniscus lens L21 having a convex surface toward the object side, which is arranged in order from the object side along the optical axis, and a biconcave negative lens L22 and a biconvex positive lens L23. It has a lens and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズと、両凸形状の正レンズL34とを有する。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32, and a biconcave negative lens L33, And a positive lens L34 having a convex shape.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL41と物体側に凸面を向けた正メニスカスレンズ凹L42との接合レンズを有する。   The fourth lens group G4 includes a cemented lens of a biconcave negative lens L41 and a positive meniscus lens concave L42 having a convex surface directed toward the object side, which are arranged in order from the object side along the optical axis.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is composed of a biconvex positive lens L51 arranged in order from the object side along the optical axis, a negative meniscus lens L52 having a convex surface directed toward the object side, and a biconvex positive lens L53. And a lens.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41とレンズL42との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度θの回転ぶれを補
正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.918であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41とレンズL42との接合レンズの移動量は−0.280(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−2.100であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41とレンズL42との接合レンズの移動量は−0.520(mm)である。
In the variable magnification optical system according to the present example, the image plane correction at the time of blurring is performed by shifting the cemented lens of the lens L41 and the lens L42 in the fourth lens group G4 in the direction orthogonal to the optical axis. Done. When the focal length of the entire system is f, a shake correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens group for blur correction in the optical axis direction) is K and a rotational shake at an angle θ. In order to correct, the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, the blur correction coefficient K is −1.918 and the focal length is 81.6 (mm). Therefore, the lens L41 and the lens for correcting the rotational blur of 0.350 ° The amount of movement of the cemented lens with L42 is -0.280 (mm). In the telephoto end state of the present embodiment, the blur correction coefficient K is −2.100, and the focal length is 392 (mm). Therefore, the lens L41 and the lens L42 for correcting the rotational blur of 0.160 ° The amount of movement of the cemented lens is -0.520 (mm).

以下の表4に第4実施例に係る変倍光学系の各諸元の値を掲げる。なお、表4に示す面番号1〜34は、図13に示す面1〜34に対応している。   Table 4 below lists values of various specifications of the variable magnification optical system according to the fourth example. The surface numbers 1 to 34 shown in Table 4 correspond to the surfaces 1 to 34 shown in FIG.

(表4)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.6 〜 5.8
TL 258.0 〜 258.0 〜 258.0
2ω 29.9 〜 12.1 〜 6.2
Φ 23.8 〜 21.4 〜 19.4
[レンズデータ]
面番号 r d nd νd
1 126.2852 3.3 1.79952 42.3
2 79.6260 10.6 1.49782 82.5
3 -541.0387 0.1
4 94.0460 3.7 1.49782 82.5
5 141.4849 D5
6 84.8758 3.0 1.84666 23.8
7 57.9320 10.0 1.58913 61.2
8 885.9292 D8
9 862.8124 2.0 1.79500 45.3
10 48.1688 4.0
11 -176.6867 2.0 1.74100 52.7
12 34.0469 6.7 1.84666 23.8
13 -305.8080 4.2
14 -74.2246 2.0 1.81600 46.6
15 181.5933 D15
16 111.3175 3.9 1.62299 58.2
17 -203.7316 0.1
18 52.5848 7.0 1.48749 70.5
19 -64.1320 2.0 1.75520 27.5
20 289.7602 0.5
21 54.1239 4.8 1.48749 70.5
22 -195.6914 D22
23 -89.0244 1.8 1.60311 60.7
24 24.8548 3.0 1.70154 41.2
25 45.6872 7.6
26 0.0000 D26 (開口絞りS)
27 64.6827 3.5 1.48749 70.5
28 -104.5194 0.1
29 51.5479 1.5 1.83400 37.2
30 32.0407 4.7 1.48749 70.5
31 -120.2933 D31
32 -35.1150 1.5 1.80400 46.6
33 45.0203 4.0 1.72825 28.5
34 -135.5442 BF
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1542.00 1542.00 1542.00
D5 11.6537 11.6537 11.6537 2.0000 2.0000 2.0000
D8 2.0226 20.7147 28.1109 11.6763 30.3684 37.7646
D15 51.8351 24.3452 2.0011 51.8351 24.3452 2.0011
D22 2.4769 11.2746 26.2226 2.4769 11.2746 26.2226
D26 16.2448 8.2055 2.0003 16.2448 8.2055 2.0003
D31 21.1668 15.7916 3.0201 21.1668 15.7916 3.0201
BF 55.0000 68.4145 87.3912 55.0000 68.4145 87.3912
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 102.5630
G2 9 -31.0371
G3 16 46.2095
G4 23 -54.5500
G5 27 46.9800
G6 32 -53.1076
[条件式]
条件式(1) −(f1/f2) = 3.30
条件式(2) −(f3/f4) = 0.85
条件式(3) f1/f5 = 2.18
(Table 4)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6 to 5.6 to 5.8
TL 258.0 to 258.0 to 258.0
2ω 29.9-12.1-6.2
Φ 23.8-21.4-19.4
[Lens data]
Surface number r d nd νd
1 126.2852 3.3 1.79952 42.3
2 79.6260 10.6 1.49782 82.5
3 -541.0387 0.1
4 94.0460 3.7 1.49782 82.5
5 141.4849 D5
6 84.8758 3.0 1.84666 23.8
7 57.9320 10.0 1.58913 61.2
8 885.9292 D8
9 862.8124 2.0 1.79500 45.3
10 48.1688 4.0
11 -176.6867 2.0 1.74 100 52.7
12 34.0469 6.7 1.84666 23.8
13 -305.8080 4.2
14 -74.2246 2.0 1.81600 46.6
15 181.5933 D15
16 111.3175 3.9 1.62299 58.2
17 -203.7316 0.1
18 52.5848 7.0 1.48749 70.5
19 -64.1320 2.0 1.75520 27.5
20 289.7602 0.5
21 54.1239 4.8 1.48749 70.5
22 -195.6914 D22
23 -89.0244 1.8 1.60311 60.7
24 24.8548 3.0 1.70154 41.2
25 45.6872 7.6
26 0.0000 D26 (Aperture stop S)
27 64.6827 3.5 1.48749 70.5
28 -104.5194 0.1
29 51.5479 1.5 1.83400 37.2
30 32.0407 4.7 1.48749 70.5
31 -120.2933 D31
32 -35.1150 1.5 1.80 400 46.6
33 45.0203 4.0 1.72825 28.5
34 -135.5442 BF
[Variable interval data]
Infinity short distance
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1542.00 1542.00 1542.00
D5 11.6537 11.6537 11.6537 2.0000 2.0000 2.0000
D8 2.0226 20.7147 28.1109 11.6763 30.3684 37.7646
D15 51.8351 24.3452 2.0011 51.8351 24.3452 2.0011
D22 2.4769 11.2746 26.2226 2.4769 11.2746 26.2226
D26 16.2448 8.2055 2.0003 16.2448 8.2055 2.0003
D31 21.1668 15.7916 3.0201 21.1668 15.7916 3.0201
BF 55.0000 68.4145 87.3912 55.0000 68.4145 87.3912
[Each group focal length data]
Group number Group first surface Group focal length G1 1 102.5630
G2 9 -31.0371
G3 16 46.2095
G4 23 -54.5500
G5 27 46.9800
G6 32 -53.1076
[Conditional expression]
Conditional expression (1)-(f1 / f2) = 3.30
Conditional expression (2)-(f3 / f4) = 0.85
Conditional expression (3) f1 / f5 = 2.18

表4に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 4, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図14は、第4実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図15は、第4実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図16は、第4実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 14A and 14B are graphs showing various aberrations of the variable magnification optical system according to Example 4 when focusing at infinity, where FIG. 14A is a wide-angle end state, FIG. 14B is an intermediate focal length state, and FIG. 14C is a telephoto end. Each state is shown. FIGS. 15A and 15B are meridional lateral aberration diagrams when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the fourth example. FIG. 15A shows a wide-angle end state, and FIG. 15B shows a telephoto end state. Each is shown. FIGS. 16A and 16B are graphs showing various aberrations of the zoom optical system according to Example 4 when focusing at a short distance (total imaging distance R = 1.8 m), in which FIG. 16A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第4実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from each aberration diagram, in the fourth example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第5実施例)
第5実施例について、図17〜図20及び表5を用いて説明する。図17は、第5実施例のレンズ構成図及びズーム軌跡を示したものである。図17に示すように、第5実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(5th Example)
The fifth embodiment will be described with reference to FIGS. 17 to 20 and Table 5. FIG. FIG. 17 shows a lens configuration diagram and zoom locus of the fifth example. As shown in FIG. 17, the variable magnification optical system according to the fifth example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正レンズL12との接合レンズと、両凸形状の正レンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズとを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive lens L12 having a convex surface facing the object side, and a biconvex positive lens. And a lens L13. The rear group G1R includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 is formed by joining a negative meniscus lens L21 having a convex surface toward the object side, which is arranged in order from the object side along the optical axis, and a biconcave negative lens L22 and a biconvex positive lens L23. It has a lens and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとを有する。   The third lens group G3 includes a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33, which are arranged in order from the object side along the optical axis. .

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と、物体側に凹面を向けた正レンズL42と両凹形状の負レンズ凹L43との接合レンズとを有する。   The fourth lens group G4 includes a negative meniscus lens L41 having a convex surface facing the object side, a positive lens L42 having a concave surface facing the object side, and a biconcave negative lens concave array, which are arranged in order from the object side along the optical axis. And a cemented lens with L43.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is arranged in order from the object side along the optical axis. The positive meniscus lens L51 has a convex surface facing the object side, the negative meniscus lens L52 has a convex surface facing the object side, and a biconvex positive lens. And a cemented lens with L53.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41と、レンズL42とレンズL43の接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度θ
の回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.432であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.348(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.900であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.575(mm)である。
In the variable magnification optical system according to the present example, the lens L41 and the cemented lens of the lens L42 and the lens L43 in the fourth lens group G4 are shifted in a direction orthogonal to the optical axis, thereby generating an image at the time of occurrence of blurring. Surface correction is performed. A lens having a focal length f of the entire system and a blur correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens unit for blur correction in the optical axis direction) at an angle θ
In order to correct the rotational shake, the lens group for shake correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, the blur correction coefficient K is −1.432, and the focal length is 81.6 (mm). Therefore, a lens L41 for correcting a rotational blur of 0.350 °, The amount of movement of the cemented lens between the lens L42 and the lens L43 is -0.348 (mm). In the telephoto end state of this embodiment, the blur correction coefficient K is −1.900 and the focal length is 392 (mm). Therefore, the lens L41 for correcting the rotational blur of 0.160 ° and the lens L42 The amount of movement of the cemented lens between the lens L43 and the lens L43 is -0.575 (mm).

以下の表5に第5実施例に係る変倍光学系の各諸元の値を掲げる。なお、表5に示す面番号1〜34は、図17に示す面1〜34に対応している。   Table 5 below shows values of various specifications of the variable magnification optical system according to the fifth example. The surface numbers 1 to 34 shown in Table 5 correspond to the surfaces 1 to 34 shown in FIG.

(表5)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.3 〜 5.8
TL 260.0 〜 260.0 〜 260.0
2ω 29.5 〜 12.0 〜 6.2
Φ 20.3 〜 20.7 〜 21.5
[レンズデータ]
面番号 r d nd νd
1 189.2251 3.6 1.83481 42.7
2 85.1335 8.2 1.49782 82.6
3 1015.6177 0.1
4 108.8270 8.1 1.49782 82.6
5 -537.5395 D5
6 88.9642 3.2 1.84666 23.8
7 66.2716 8.1 1.58913 61.2
8 588.7120 D8
*9 1000.0000 2.0 1.79050 45.0
10 92.9093 4.1
11 -84.2744 2.0 1.75500 52.3
12 41.0861 5.8 1.80809 22.8
13 -176.5623 1.4
14 -68.0933 1.7 1.80400 46.6
15 87.0261 D15
16 91.3387 4.8 1.79500 45.3
17 -88.6741 0.1
18 56.2501 7.1 1.51680 64.1
19 -56.2501 1.8 1.84666 23.8
20 33.1404 D20
21 105.8589 1.3 1.84666 23.8
22 69.0399 1.8
23 -73.2131 2.8 1.80518 25.4
24 -26.8863 1.3 1.72000 43.7
25 211.2287 4.1
26 0.0000 D26 (開口絞りS)
27 27.6410 3.5 1.51680 64.1
28 125.3545 7.5
29 40.6460 1.3 1.84666 23.8
30 19.0178 12.9 1.51742 52.3
31 -58.3678 D31
32 -25.9539 1.3 1.80400 46.6
33 25.9539 5.8 1.78472 25.7
34 -113.2339 BF
[非球面データ]
第9面
κ=1.0000,A4=1.4266E-06,A6=4.5344E-10,A8=3.7386E-13,A10=4.6201E-16
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.00 1540.00 1540.00
D5 11.8592 11.8592 11.8592 2.0153 2.0153 2.0154
D8 2.2708 21.6597 28.5685 12.1146 31.5035 38.4123
D15 49.0856 22.5061 2.0000 49.0856 22.5061 2.0000
D20 12.3526 19.5431 33.1404 12.3526 19.5431 33.1404
D26 27.1659 13.9317 2.0000 27.1659 13.9317 2.0000
D31 5.6235 5.1024 3.1982 5.6235 5.1024 3.1982
BF 45.9240 59.6793 73.5152 45.9240 59.6793 73.5153
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 102.4814
G2 9 -29.2207
G3 16 46.7169
G4 21 -64.5468
G5 27 41.5607
G6 32 -41.7749
[条件式]
条件式(1) −(f1/f2) = 3.51
条件式(2) −(f3/f4) = 0.72
条件式(3) f1/f5 = 2.47
(Table 5)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6-5.3-5.8
TL 260.0 to 260.0 to 260.0
2ω 29.5-12.0-6.2
Φ 20.3 〜 20.7 〜 21.5
[Lens data]
Surface number r d nd νd
1 189.2251 3.6 1.83481 42.7
2 85.1335 8.2 1.49782 82.6
3 1015.6177 0.1
4 108.8270 8.1 1.49782 82.6
5 -537.5395 D5
6 88.9642 3.2 1.84666 23.8
7 66.2716 8.1 1.58913 61.2
8 588.7120 D8
* 9 1000.0000 2.0 1.79050 45.0
10 92.9093 4.1
11 -84.2744 2.0 1.75 500 52.3
12 41.0861 5.8 1.80809 22.8
13 -176.5623 1.4
14 -68.0933 1.7 1.80 400 46.6
15 87.0261 D15
16 91.3387 4.8 1.79500 45.3
17 -88.6741 0.1
18 56.2501 7.1 1.51680 64.1
19 -56.2501 1.8 1.84666 23.8
20 33.1404 D20
21 105.8589 1.3 1.84666 23.8
22 69.0399 1.8
23 -73.2131 2.8 1.80518 25.4
24 -26.8863 1.3 1.72000 43.7
25 211.2287 4.1
26 0.0000 D26 (Aperture stop S)
27 27.6410 3.5 1.51680 64.1
28 125.3545 7.5
29 40.6460 1.3 1.84666 23.8
30 19.0178 12.9 1.51742 52.3
31 -58.3678 D31
32 -25.9539 1.3 1.80 400 46.6
33 25.9539 5.8 1.78472 25.7
34 -113.2339 BF
[Aspherical data]
9th surface κ = 1.0000, A4 = 1.4266E-06, A6 = 4.5344E-10, A8 = 3.7386E-13, A10 = 4.6201E-16
[Variable interval data]
Infinity short distance
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.00 1540.00 1540.00
D5 11.8592 11.8592 11.8592 2.0153 2.0153 2.0154
D8 2.2708 21.6597 28.5685 12.1146 31.5035 38.4123
D15 49.0856 22.5061 2.0000 49.0856 22.5061 2.0000
D20 12.3526 19.5431 33.1404 12.3526 19.5431 33.1404
D26 27.1659 13.9317 2.0000 27.1659 13.9317 2.0000
D31 5.6235 5.1024 3.1982 5.6235 5.1024 3.1982
BF 45.9240 59.6793 73.5152 45.9240 59.6793 73.5153
[Each group focal length data]
Group number Group first surface Group focal length G1 1 102.4814
G2 9 -29.2207
G3 16 46.7169
G4 21 -64.5468
G5 27 41.5607
G6 32 -41.7749
[Conditional expression]
Conditional expression (1)-(f1 / f2) = 3.51
Conditional expression (2)-(f3 / f4) = 0.72
Conditional expression (3) f1 / f5 = 2.47

表5に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 5, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図18は、第5実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図19は、第5実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図20は、第5実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   18A and 18B are graphs showing various aberrations of the variable magnification optical system according to Example 5 when focusing on infinity, where FIG. 18A is a wide-angle end state, FIG. 18B is an intermediate focal length state, and FIG. 18C is a telephoto end. Each state is shown. FIGS. 19A and 19B are meridional lateral aberration diagrams when blur correction is performed at the time of focusing at infinity of the variable magnification optical system according to the fifth example. FIG. 19A shows a wide-angle end state, and FIG. 19B shows a telephoto end state. Each is shown. 20A and 20B are graphs showing various aberrations of the zoom optical system according to Example 5 when focusing at close distance (imaging distance R = 1.8 m for the entire system), where FIG. 20A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第5実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from each aberration diagram, in the fifth example, it is understood that various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第6実施例)
第6実施例について、図21〜図24及び表6を用いて説明する。図21は、第6実施例のレンズ構成図及びズーム軌跡を示したものである。図21に示すように、第6実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIGS. 21 to 24 and Table 6. FIG. FIG. 21 shows a lens configuration diagram and zoom locus of the sixth example. As shown in FIG. 21, the variable magnification optical system according to the sixth example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13. The rear group G1R includes a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 is formed by joining a negative meniscus lens L21 having a convex surface toward the object side, which is arranged in order from the object side along the optical axis, and a biconcave negative lens L22 and a biconvex positive lens L23. It has a lens and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズと、物体側に凸面を向けた正メニスカスレンズL34とを有する。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32, and a biconcave negative lens L33, an object And a positive meniscus lens L34 having a convex surface on the side.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズ凹L42と両凹形状の負レンズL43との接合レンズとを有する。   The fourth lens group G4 is arranged in order from the object side along the optical axis, and includes a negative meniscus lens L41 having a convex surface facing the object side, a positive meniscus lens concave L42 having a concave surface facing the object side, and a biconcave negative shape. A cemented lens with the lens L43.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとを有する。   The fifth lens group G5 is composed of a biconvex positive lens L51, a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object, which are arranged in order from the object side along the optical axis. And a lens.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41と、レンズL42とレンズL43との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度
θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.538であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.324(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.900であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.575(mm)である。
In the variable magnification optical system according to the present example, the lens L41 and the cemented lens of the lens L42 and the lens L43 in the fourth lens group G4 are shifted in a direction orthogonal to the optical axis, so that a blur occurs. Image plane correction is performed. When the focal length of the entire system is f, a shake correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens group for blur correction in the optical axis direction) is K and a rotational shake at an angle θ. In order to correct, the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, since the shake correction coefficient K is −1.538 and the focal length is 81.6 (mm), a lens L41 for correcting a rotational shake of 0.350 °, The amount of movement of the cemented lens between the lens L42 and the lens L43 is -0.324 (mm). In the telephoto end state of this embodiment, the blur correction coefficient K is −1.900 and the focal length is 392 (mm). Therefore, the lens L41 for correcting the rotational blur of 0.160 ° and the lens L42 The amount of movement of the cemented lens between the lens L43 and the lens L43 is -0.575 (mm).

以下の表6に第6実施例に係る変倍光学系の各諸元の値を掲げる。なお、表6に示す面番号1〜36は、図21に示す面1〜36に対応している。   Table 6 below shows values of various specifications of the variable magnification optical system according to the sixth example. The surface numbers 1 to 36 shown in Table 6 correspond to the surfaces 1 to 36 shown in FIG.

(表6)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.3
FNO 4.6 〜 5.2 〜 5.8
TL 260.0 〜 260.0 〜 260.0
2ω 29.2 〜 12.0 〜 6.2
Φ 19.8 〜 19.8 〜 19.8
[レンズデータ]
面番号 r d nd νd
1 141.4367 3.6 1.83481 42.7
2 77.5835 9.1 1.49782 82.6
3 1217.2505 0.1
4 98.6776 7.2 1.49782 82.6
5 1816.6879 D5
6 86.8450 3.2 1.84666 23.8
7 61.4144 8.6 1.58913 61.2
8 586.4327 D8
*9 1000.0000 2.0 1.79050 45.0
10 78.7985 3.8
11 -115.6092 2.0 1.75500 52.3
12 34.4861 6.2 1.80809 22.8
13 -217.3620 1.5
14 -71.6505 1.7 1.81600 46.6
15 63.5472 D15
16 135.7647 4.1 1.74400 44.8
17 -89.5215 0.2
18 60.1055 6.6 1.61800 63.4
19 -61.6315 1.8 1.84666 23.8
20 587.4989 0.1
21 54.0842 2.9 1.48749 70.5
22 108.0347 D22
23 78.4319 1.3 1.84666 23.8
24 51.4225 2.8
25 -89.2197 3.2 1.80518 25.4
26 -26.3728 1.3 1.74400 44.8
27 162.3606 4.1
28 0.0000 D28 (開口絞りS)
29 57.0723 4.1 1.48749 70.5
30 -47.3394 0.8
31 135.0079 7.6 1.51742 52.3
32 -31.0619 1.7 1.80518 25.4
33 -114.3448 D33
34 -46.0933 1.3 1.81600 46.6
35 31.0312 4.4 1.75520 27.5
36 -181.0133 BF
[非球面データ]
第9面
κ=1.0000,A4=1.7255E-06,A6=2.4724E-10,A8=7.1737E-13,A10=-1.7822E-16
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.3 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.00 1540.00 1540.00
D5 11.6403 11.6403 11.6403 2.0038 2.0038 2.0038
D8 2.0000 19.7154 26.6341 11.6366 29.3520 36.2707
D15 49.5877 22.9984 3.0852 49.5877 22.9984 3.0852
D22 11.5139 20.3877 33.3823 11.5139 20.3877 33.3823
D28 27.3128 14.4763 2.2541 27.3128 14.4763 2.2541
D33 6.7527 6.0569 3.4268 6.7527 6.0569 3.4268
BF 53.8135 67.3459 82.1982 53.8135 67.3459 82.1982
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 99.1871
G2 9 -26.5930
G3 16 42.7402
G4 23 -58.7482
G5 29 49.2727
G6 34 -65.5437
[条件式]
条件式(1) −(f1/f2) = 3.73
条件式(2) −(f3/f4) = 0.73
条件式(3) f1/f5 = 2.01
(Table 6)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.3
FNO 4.6-5.2-5.8
TL 260.0 to 260.0 to 260.0
2ω 29.2-12.0-6.2
Φ 19.8 〜 19.8 〜 19.8
[Lens data]
Surface number r d nd νd
1 141.4367 3.6 1.83481 42.7
2 77.5835 9.1 1.49782 82.6
3 1217.2505 0.1
4 98.6776 7.2 1.49782 82.6
5 1816.6879 D5
6 86.8450 3.2 1.84666 23.8
7 61.4144 8.6 1.58913 61.2
8 586.4327 D8
* 9 1000.0000 2.0 1.79050 45.0
10 78.7985 3.8
11 -115.6092 2.0 1.75500 52.3
12 34.4861 6.2 1.80809 22.8
13 -217.3620 1.5
14 -71.6505 1.7 1.81600 46.6
15 63.5472 D15
16 135.7647 4.1 1.74400 44.8
17 -89.5215 0.2
18 60.1055 6.6 1.61800 63.4
19 -61.6315 1.8 1.84666 23.8
20 587.4989 0.1
21 54.0842 2.9 1.48749 70.5
22 108.0347 D22
23 78.4319 1.3 1.84666 23.8
24 51.4225 2.8
25 -89.2197 3.2 1.80518 25.4
26 -26.3728 1.3 1.74400 44.8
27 162.3606 4.1
28 0.0000 D28 (Aperture stop S)
29 57.0723 4.1 1.48749 70.5
30 -47.3394 0.8
31 135.0079 7.6 1.51742 52.3
32 -31.0619 1.7 1.80518 25.4
33 -114.3448 D33
34 -46.0933 1.3 1.81600 46.6
35 31.0312 4.4 1.75520 27.5
36 -181.0133 BF
[Aspherical data]
9th surface κ = 1.0000, A4 = 1.7255E-06, A6 = 2.4724E-10, A8 = 7.1737E-13, A10 = -1.7822E-16
[Variable interval data]
Infinity Near distance Wide angle end Medium telephoto end Wide angle end Medium telephoto end f 81.6 200.0 392.3 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.00 1540.00 1540.00
D5 11.6403 11.6403 11.6403 2.0038 2.0038 2.0038
D8 2.0000 19.7154 26.6341 11.6366 29.3520 36.2707
D15 49.5877 22.9984 3.0852 49.5877 22.9984 3.0852
D22 11.5139 20.3877 33.3823 11.5139 20.3877 33.3823
D28 27.3128 14.4763 2.2541 27.3128 14.4763 2.2541
D33 6.7527 6.0569 3.4268 6.7527 6.0569 3.4268
BF 53.8135 67.3459 82.1982 53.8135 67.3459 82.1982
[Each group focal length data]
Group number Group first surface Group focal length G1 1 99.1871
G2 9 -26.5930
G3 16 42.7402
G4 23 -58.7482
G5 29 49.2727
G6 34 -65.5437
[Conditional expression]
Conditional expression (1) − (f1 / f2) = 3.73
Conditional expression (2)-(f3 / f4) = 0.73
Conditional expression (3) f1 / f5 = 2.01

表6に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 6, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図22は、第6実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図23は、第6実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図24は、第6実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   22A and 22B are graphs showing various aberrations of the variable magnification optical system according to Example 6 when focusing on infinity. FIG. 22A is a wide-angle end state, FIG. 22B is an intermediate focal length state, and FIG. 22C is a telephoto end. Each state is shown. FIG. 23 is a meridional lateral aberration diagram when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the sixth example. (A) is a wide-angle end state, and (b) is a telephoto end state. Each is shown. 24A and 24B are graphs showing various aberrations of the zoom optical system according to Example 6 when focusing at a short distance (total imaging distance R = 1.8 m), where FIG. 24A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第6実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the sixth example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and the imaging performance is excellent.

(第7実施例)
第7実施例について、図25〜図28及び表7を用いて説明する。図25は、第7実施例のレンズ構成図及びズーム軌跡を示したものである。図25に示すように、第7実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(Seventh embodiment)
The seventh embodiment will be described using FIGS. 25 to 28 and Table 7. FIG. FIG. 25 shows a lens configuration diagram and zoom locus of the seventh example. As shown in FIG. 25, the variable magnification optical system according to the seventh example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、両凸形状の正レンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes a cemented lens of a negative meniscus lens L11 having a convex surface directed toward the object side and a positive meniscus lens L12 having a convex surface directed toward the object side, which are arranged in order from the object side along the optical axis, and a biconvex positive lens. And a lens L13. The rear group G1R includes a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 is formed by joining a negative meniscus lens L21 having a convex surface toward the object side, which is arranged in order from the object side along the optical axis, and a biconcave negative lens L22 and a biconvex positive lens L23. It has a lens and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と、両凸形状の正レンズL33と両凹形状の負レンズL34との接合レンズとを有する。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a biconvex positive lens L32, a biconvex positive lens L33, and a biconcave negative lens. And a cemented lens with the lens L34.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と両凹形状の負レンズL22との接合レンズと、両凹形状の負レンズL43とを有する。   The fourth lens group G4 includes, in order from the object side along the optical axis, a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L22, and a biconcave negative lens L43. .

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is arranged in order from the object side along the optical axis. The positive meniscus lens L51 has a convex surface facing the object side, the negative meniscus lens L52 has a convex surface facing the object side, and a biconvex positive lens. And a cemented lens with L53.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41と、レンズL42とレンズL43との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度
θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.513であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.329(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.900であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.575(mm)である。
In the variable magnification optical system according to the present example, the lens L41 and the cemented lens of the lens L42 and the lens L43 in the fourth lens group G4 are shifted in a direction orthogonal to the optical axis, so that a blur occurs. Image plane correction is performed. When the focal length of the entire system is f, a shake correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens group for blur correction in the optical axis direction) is K and a rotational shake at an angle θ. In order to correct, the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, since the shake correction coefficient K is −1.513 and the focal length is 81.6 (mm), a lens L41 for correcting a rotational shake of 0.350 °, The amount of movement of the cemented lens between the lens L42 and the lens L43 is -0.329 (mm). In the telephoto end state of this embodiment, the blur correction coefficient K is −1.900 and the focal length is 392 (mm). Therefore, the lens L41 for correcting the rotational blur of 0.160 ° and the lens L42 The amount of movement of the cemented lens between the lens L43 and the lens L43 is -0.575 (mm).

以下の表7に第7実施例に係る変倍光学系の各諸元の値を掲げる。なお、表7に示す面番号1〜36は、図25に示す面1〜36に対応している。   Table 7 below shows values of various specifications of the variable magnification optical system according to the seventh example. The surface numbers 1 to 36 shown in Table 7 correspond to the surfaces 1 to 36 shown in FIG.

(表7)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.3 〜 5.9
TL 259.9 〜 259.9 〜 259.9
2ω 29.5 〜 11.9 〜 6.1
Φ 19.0 〜 19.0 〜 19.0
[レンズデータ]
面番号 r d nd νd
1 136.5927 3.6 1.83481 42.7
2 77.4288 8.4 1.49782 82.6
3 480.1154 0.1
4 112.0728 7.7 1.49782 82.6
5 -763.0919 D5
6 89.3642 3.2 1.84666 23.8
7 65.2719 8.6 1.58913 61.2
8 622.4204 D8
*9 856.4923 2.0 1.79050 45.0
10 75.8742 4.1
11 -106.9796 2.0 1.75500 52.3
12 36.4011 6.0 1.80809 22.8
13 -328.5252 1.7
14 -66.6918 1.7 1.80400 46.6
15 89.8287 D15
16 131.5292 4.0 1.72916 54.7
17 -122.0116 0.1
18 88.6769 3.4 1.48749 70.5
19 -385.5563 0.1
20 61.9020 6.5 1.61800 63.4
21 -86.1967 1.8 1.84666 23.8
22 242.3945 D22
23 4432.8239 2.8 1.80518 25.4
24 -48.7019 1.3 1.74400 44.8
25 68.5468 1.8
26 -154.2813 1.3 1.77250 49.6
27 278.4806 4.1
28 0.0000 D28 (開口絞りS)
29 28.3699 3.9 1.48749 70.5
30 269.2184 6.5
31 56.8377 1.3 1.75520 27.5
32 18.8512 7.3 1.51823 58.9
33 -60.6257 D33
34 -27.6815 1.3 1.80400 46.6
35 29.3829 5.8 1.78472 25.7
36 -80.4905 BF
[非球面データ]
第9面
κ=1.0000,A4=1.1177E-06,A6=2.2238E-10,A8=5.3529E-13,A10=-8.5532E-17
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.12 1540.12 1540.12
D5 11.7134 11.7134 11.7134 2.0000 2.0000 2.0000
D8 2.0000 21.4337 27.3996 11.7134 31.1472 37.1130
D15 49.3041 23.0636 2.4250 49.3041 23.0636 2.4250
D22 26.5526 15.3736 4.1319 26.5526 15.3736 4.1319
D28 6.9815 6.4986 4.1109 6.9815 6.4986 4.1109
BF 46.9037 58.5656 72.1951 46.9037 58.5656 72.1951
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 100.1359
G2 9 -27.4127
G3 16 44.5281
G4 23 -57.6921
G5 29 43.8984
G6 34 -53.1354
[条件式]
条件式(1) −(f1/f2) = 3.65
条件式(2) −(f3/f4) = 0.77
条件式(3) f1/f5 = 2.28
(Table 7)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6-5.3-5.9
TL 259.9-259.9-259.9
2ω 29.5-11.9-6.1
Φ 19.0-19.0-19.0
[Lens data]
Surface number r d nd νd
1 136.5927 3.6 1.83481 42.7
2 77.4288 8.4 1.49782 82.6
3 480.1154 0.1
4 112.0728 7.7 1.49782 82.6
5 -763.0919 D5
6 89.3642 3.2 1.84666 23.8
7 65.2719 8.6 1.58913 61.2
8 622.4204 D8
* 9 856.4923 2.0 1.79050 45.0
10 75.8742 4.1
11 -106.9796 2.0 1.75500 52.3
12 36.4011 6.0 1.80809 22.8
13 -328.5252 1.7
14 -66.6918 1.7 1.80 400 46.6
15 89.8287 D15
16 131.5292 4.0 1.72916 54.7
17 -122.0116 0.1
18 88.6769 3.4 1.48749 70.5
19 -385.5563 0.1
20 61.9020 6.5 1.61800 63.4
21 -86.1967 1.8 1.84666 23.8
22 242.3945 D22
23 4432.8239 2.8 1.80518 25.4
24 -48.7019 1.3 1.74400 44.8
25 68.5468 1.8
26 -154.2813 1.3 1.77250 49.6
27 278.4806 4.1
28 0.0000 D28 (Aperture stop S)
29 28.3699 3.9 1.48749 70.5
30 269.2184 6.5
31 56.8377 1.3 1.75520 27.5
32 18.8512 7.3 1.51823 58.9
33 -60.6257 D33
34 -27.6815 1.3 1.80 400 46.6
35 29.3829 5.8 1.78472 25.7
36 -80.4905 BF
[Aspherical data]
9th surface κ = 1.0000, A4 = 1.1177E-06, A6 = 2.2238E-10, A8 = 5.3529E-13, A10 = -8.5532E-17
[Variable interval data]
Infinity short distance
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.12 1540.12 1540.12
D5 11.7134 11.7134 11.7134 2.0000 2.0000 2.0000
D8 2.0000 21.4337 27.3996 11.7134 31.1472 37.1130
D15 49.3041 23.0636 2.4250 49.3041 23.0636 2.4250
D22 26.5526 15.3736 4.1319 26.5526 15.3736 4.1319
D28 6.9815 6.4986 4.1109 6.9815 6.4986 4.1109
BF 46.9037 58.5656 72.1951 46.9037 58.5656 72.1951
[Each group focal length data]
Group number Group first surface Group focal length G1 1 100.1359
G2 9 -27.4127
G3 16 44.5281
G4 23 -57.6921
G5 29 43.8984
G6 34 -53.1354
[Conditional expression]
Conditional expression (1)-(f1 / f2) = 3.65
Conditional expression (2)-(f3 / f4) = 0.77
Conditional expression (3) f1 / f5 = 2.28

表7に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 7, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図26は、第7実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図27は、第7実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図28は、第7実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 26A and 26B are graphs showing various aberrations of the variable magnification optical system according to Example 7 when focusing at infinity, where FIG. 26A is a wide-angle end state, FIG. 26B is an intermediate focal length state, and FIG. 26C is a telephoto end. Each state is shown. FIGS. 27A and 27B are meridional lateral aberration diagrams when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the seventh example. FIG. 27A shows a wide-angle end state, and FIG. 27B shows a telephoto end state. Each is shown. 28A and 28B are graphs showing various aberrations of the zoom optical system according to Example 7 when focusing at close distance (imaging distance R = 1.8 m for the entire system), where FIG. 28A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第7実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the seventh example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第8実施例)
第8実施例について、図29〜図32及び表8を用いて説明する。図29は、第8実施例のレンズ構成図及びズーム軌跡を示したものである。図29に示すように、第8実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(Eighth embodiment)
The eighth embodiment will be described using FIGS. 29 to 32 and Table 8. FIG. FIG. 29 shows a lens configuration diagram and zoom locus of the eighth example. As shown in FIG. 29, the variable magnification optical system according to the eighth example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とを有する。後群G1Rは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. And a positive meniscus lens L13. The rear group G1R includes a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side, which are arranged in order from the object side along the optical axis.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 includes a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, and a positive meniscus lens having a convex surface directed toward the object side, which are arranged in order from the object side along the optical axis. It has a cemented lens with L23 and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズと、物体側に凸面を向けた正メニスカスレンズL34とを有する。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32, and a biconcave negative lens L33, an object And a positive meniscus lens L34 having a convex surface on the side.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42と両凹形状の負レンズL43との接合レンズとを有する。   The fourth lens group G4 includes a negative meniscus lens L41 having a convex surface directed toward the object side, a positive meniscus lens L42 having a concave surface directed toward the object side, and a biconcave negative lens arranged in order from the object side along the optical axis. And a cemented lens with L43.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is arranged in order from the object side along the optical axis. The positive meniscus lens L51 has a convex surface facing the object side, the negative meniscus lens L52 has a convex surface facing the object side, and a biconvex positive lens. And a cemented lens with L53.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41と、レンズL42とレンズL43との接合レンズを光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレンズで角度
θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.351であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.369(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.700であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.642(mm)である。
In the variable magnification optical system according to the present example, the lens L41 and the cemented lens of the lens L42 and the lens L43 in the fourth lens group G4 are shifted in a direction orthogonal to the optical axis, so that a blur occurs. Image plane correction is performed. When the focal length of the entire system is f, a shake correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens group for blur correction in the optical axis direction) is K and a rotational shake at an angle θ. In order to correct, the lens group for blur correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, since the shake correction coefficient K is −1.351 and the focal length is 81.6 (mm), a lens L41 for correcting a rotational shake of 0.350 °, The amount of movement of the cemented lens between the lens L42 and the lens L43 is -0.369 (mm). In the telephoto end state of the present embodiment, the blur correction coefficient K is −1.700 and the focal length is 392 (mm). Therefore, the lens L41 for correcting the rotational blur of 0.160 ° and the lens L42 The moving amount of the cemented lens between the lens L43 and the lens L43 is -0.642 (mm).

以下の表8に第8実施例に係る変倍光学系の各諸元の値を掲げる。なお、表8に示す面番号1〜36は、図29に示す面1〜36に対応している。   Table 8 below lists values of various specifications of the variable magnification optical system according to the eighth example. The surface numbers 1 to 36 shown in Table 8 correspond to the surfaces 1 to 36 shown in FIG.

(表8)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.3 〜 5.8
TL 259.8 〜 259.8 〜 259.8
2ω 29.4 〜 12.0 〜 6.1
Φ 19.6 〜 19.6 〜 19.6
[レンズデータ]
面番号 r d nd νd
1 129.9076 3.6 1.83481 42.7
2 75.6303 8.5 1.49782 82.6
3 442.7333 0.1
4 110.9240 7.5 1.49782 82.6
5 -816.2615 D5
6 85.9708 3.2 1.84666 23.8
7 62.0564 9.0 1.58913 61.2
8 598.8161 D8
*9 884.9284 2.0 1.79050 45.0
10 71.3911 4.2
11 -106.6390 2.0 1.75500 52.3
12 36.8443 6.0 1.80809 22.8
13 -267.9233 1.8
14 -62.3635 1.7 1.80400 46.6
15 94.6941 D15
16 144.0036 4.0 1.74400 44.8
17 -91.4279 0.1
18 64.8767 8.4 1.60300 65.5
19 -64.8767 1.8 1.84666 23.8
20 1898.9739 0.1
21 68.6533 2.3 1.48749 70.5
22 136.9385 D22
23 129.0250 1.3 1.62004 36.3
24 57.4273 1.8
25 -92.5865 3.1 1.79504 28.7
26 -27.0013 1.3 1.74400 44.8
27 332.0147 4.1
28 0.0000 D28 (開口絞りS)
29 27.5541 4.2 1.48749 70.5
30 167.5525 7.1
31 55.7759 1.3 1.75520 27.5
32 18.2265 8.6 1.51823 58.9
33 -60.8589 D33
34 -27.7779 1.3 1.80400 46.6
35 27.7779 5.6 1.78472 25.7
36 -84.5200 BF
[非球面データ]
第9面
κ=1.0000,A4=1.1546E-06,A6=2.2711E-10,A8=6.5905E-13,A10=-2.0618E-16
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.20 1540.20 1540.20
D5 11.0323 11.0323 11.0323 1.8400 1.8400 1.8400
D8 2.0000 19.3680 26.5375 11.1923 28.5603 35.7297
D15 48.6029 22.6018 2.0000 48.6029 22.6018 2.0000
D22 13.9941 22.6272 36.0595 13.9941 22.6272 36.0595
D28 26.2541 12.0119 1.8900 26.2541 12.0119 1.8900
D33 6.1601 5.3477 3.0592 6.1601 5.3477 3.0592
BF 45.7684 60.8230 73.2333 45.7684 60.8230 73.2333
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 97.5902
G2 9 -26.8801
G3 16 45.7125
G4 23 -66.7628
G5 29 45.6409
G6 34 -51.7889
[条件式]
条件式(1) −(f1/f2) = 3.63
条件式(2) −(f3/f4) = 0.68
条件式(3) f1/f5 = 2.14
(Table 8)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6-5.3-5.8
TL 259.8-259.8-259.8
2ω 29.4-12.0-6.1
Φ 19.6 〜 19.6 〜 19.6
[Lens data]
Surface number r d nd νd
1 129.9076 3.6 1.83481 42.7
2 75.6303 8.5 1.49782 82.6
3 442.7333 0.1
4 110.9240 7.5 1.49782 82.6
5 -816.2615 D5
6 85.9708 3.2 1.84666 23.8
7 62.0564 9.0 1.58913 61.2
8 598.8161 D8
* 9 884.9284 2.0 1.79050 45.0
10 71.3911 4.2
11 -106.6390 2.0 1.75 500 52.3
12 36.8443 6.0 1.80809 22.8
13 -267.9233 1.8
14 -62.3635 1.7 1.80 400 46.6
15 94.6941 D15
16 144.0036 4.0 1.74400 44.8
17 -91.4279 0.1
18 64.8767 8.4 1.60 300 65.5
19 -64.8767 1.8 1.84666 23.8
20 1898.9739 0.1
21 68.6533 2.3 1.48749 70.5
22 136.9385 D22
23 129.0250 1.3 1.62004 36.3
24 57.4273 1.8
25 -92.5865 3.1 1.79504 28.7
26 -27.0013 1.3 1.74400 44.8
27 332.0147 4.1
28 0.0000 D28 (Aperture stop S)
29 27.5541 4.2 1.48749 70.5
30 167.5525 7.1
31 55.7759 1.3 1.75520 27.5
32 18.2265 8.6 1.51823 58.9
33 -60.8589 D33
34 -27.7779 1.3 1.80 400 46.6
35 27.7779 5.6 1.78472 25.7
36 -84.5200 BF
[Aspherical data]
9th surface κ = 1.0000, A4 = 1.1546E-06, A6 = 2.2711E-10, A8 = 6.5905E-13, A10 = -2.0618E-16
[Variable interval data]
Infinity short distance
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.20 1540.20 1540.20
D5 11.0323 11.0323 11.0323 1.8400 1.8400 1.8400
D8 2.0000 19.3680 26.5375 11.1923 28.5603 35.7297
D15 48.6029 22.6018 2.0000 48.6029 22.6018 2.0000
D22 13.9941 22.6272 36.0595 13.9941 22.6272 36.0595
D28 26.2541 12.0119 1.8900 26.2541 12.0119 1.8900
D33 6.1601 5.3477 3.0592 6.1601 5.3477 3.0592
BF 45.7684 60.8230 73.2333 45.7684 60.8230 73.2333
[Each group focal length data]
Group number Group first surface Group focal length G1 1 97.5902
G2 9 -26.8801
G3 16 45.7125
G4 23 -66.7628
G5 29 45.6409
G6 34 -51.7889
[Conditional expression]
Conditional expression (1)-(f1 / f2) = 3.63
Conditional expression (2)-(f3 / f4) = 0.68
Conditional expression (3) f1 / f5 = 2.14

表8に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 8, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図30は、第8実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図31は、第8実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図32は、第8実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 30 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 8 at the time of focusing on infinity, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end. Each state is shown. FIGS. 31A and 31B are meridional lateral aberration diagrams when blur correction is performed at the time of focusing on infinity of the variable magnification optical system according to the eighth example. FIG. 31A shows a wide-angle end state, and FIG. 31B shows a telephoto end state. Each is shown. FIGS. 32A and 32B are graphs showing various aberrations of the variable magnification optical system according to Example 8 at the short distance focusing (total imaging distance R = 1.8 m), where FIG. 32A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第8実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the eighth embodiment, it is understood that various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第9実施例)
第9実施例について、図33〜図36及び表9を用いて説明する。図33は、第9実施例のレンズ構成図及びズーム軌跡を示したものである。図33に示すように、第9実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。
(Ninth embodiment)
The ninth embodiment will be described using FIGS. 33 to 36 and Table 9. FIG. FIG. 33 shows a lens configuration diagram and zoom locus of the ninth example. As shown in FIG. 33, the variable magnification optical system according to the ninth example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、両凸形状の正レンズL13とを有する。後群G1Rは、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a biconvex shape. And a positive lens L13. The rear group G1R includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 is formed by joining a negative meniscus lens L21 having a convex surface toward the object side, which is arranged in order from the object side along the optical axis, and a biconcave negative lens L22 and a biconvex positive lens L23. It has a lens and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズと、物体側に凸面を向けた正メニスカスレンズL34とを有する。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32, and a biconcave negative lens L33, an object And a positive meniscus lens L34 having a convex surface on the side.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42と両凹形状の負レンズL43との接合レンズとを有する。   The fourth lens group G4 includes a negative meniscus lens L41 having a convex surface directed toward the object side, a positive meniscus lens L42 having a concave surface directed toward the object side, and a biconcave negative lens arranged in order from the object side along the optical axis. And a cemented lens with L43.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is arranged in order from the object side along the optical axis. The positive meniscus lens L51 has a convex surface facing the object side, the negative meniscus lens L52 has a convex surface facing the object side, and a biconvex positive lens. And a cemented lens with L53.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41と、レンズL42とレンズL43との接合レンズを、光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。ここで、全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレ
ンズで角度θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.488であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.335(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.900であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.575(mm)である。
In the variable magnification optical system according to the present example, the lens L41 and the cemented lens of the lens L42 and the lens L43 in the fourth lens group G4 are shifted in a direction perpendicular to the optical axis, thereby generating blurring. Image plane correction is performed. Here, the focal length of the entire system is f, and a blur correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens unit for blur correction in the optical axis direction) is K and is an angle θ. In order to correct the rotational shake, the lens group for shake correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, the blur correction coefficient K is −1.488 and the focal length is 81.6 (mm). Therefore, the lens L41 for correcting the rotational blur of 0.350 °, The moving amount of the cemented lens between the lens L42 and the lens L43 is −0.335 (mm). In the telephoto end state of this embodiment, the blur correction coefficient K is −1.900 and the focal length is 392 (mm). Therefore, the lens L41 for correcting the rotational blur of 0.160 ° and the lens L42 The amount of movement of the cemented lens between the lens L43 and the lens L43 is -0.575 (mm).

以下の表9に第9実施例に係る変倍光学系の各諸元の値を掲げる。なお、表9に示す面番号1〜36は、図33に示す面1〜36に対応している。   Table 9 below lists values of various specifications of the variable magnification optical system according to the ninth example. The surface numbers 1 to 36 shown in Table 9 correspond to the surfaces 1 to 36 shown in FIG.

(表9)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.5 〜 5.3 〜 5.8
TL 259.9 〜 259.9 〜 259.9
2ω 29.4 〜 12.0 〜 6.1
Φ 20.0 〜 20.0 〜 20.0
[レンズデータ]
面番号 r d nd νd
1 131.5273 3.6 1.83481 42.7
2 75.2890 8.6 1.49782 82.6
3 468.3641 0.1
4 106.0385 7.7 1.49782 82.6
5 -928.7919 D5
6 87.6000 3.2 1.84666 23.8
7 63.0110 8.8 1.58913 61.2
8 553.3485 D8
*9 949.9140 2.0 1.79050 45.0
10 72.9166 4.2
11 -105.9661 2.0 1.75500 52.3
12 36.6390 6.1 1.80809 22.8
13 -262.3986 1.8
14 -62.0851 1.7 1.80400 46.6
15 89.8014 D15
16 156.9157 4.1 1.74400 44.8
17 -87.6277 0.1
18 64.6661 6.2 1.60300 65.5
19 -64.6450 1.8 1.84666 23.8
20 -1644.6864 0.1
21 62.7701 2.4 1.48749 70.5
22 114.6467 D22
23 114.8569 1.3 1.62004 36.2
24 54.8911 1.8
25 -92.2541 3.1 1.79504 28.7
26 -27.0180 1.3 1.74400 44.8
27 193.5011 4.1
28 0.0000 D28 (開口絞りS)
29 27.2612 4.4 1.48749 70.5
30 298.2465 6.2
31 61.8805 1.3 1.75520 27.5
32 17.9910 7.7 1.51823 58.9
33 -53.6762 D33
34 -27.3003 1.3 1.80400 46.6
35 27.3060 5.7 1.78472 25.7
36 -81.4626 BF
[非球面データ]
第9面
κ=1.0000,A4=1.2623E-06,A6=2.9682E-10,A8=5.7870E-13,A10=-1.2302E-16
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.12 1540.12 1540.12
D5 11.5037 11.5037 11.5037 1.8932 1.8932 1.8932
D8 2.0055 19.3952 26.6587 11.6160 29.0058 36.2693
D15 47.4566 22.0189 2.1846 47.4566 22.0189 2.1846
D22 14.0706 22.1186 34.6893 14.0706 22.1186 34.6893
D28 27.0683 12.3291 2.0706 27.0683 12.3291 2.0706
D33 5.8957 5.2880 3.2943 5.8957 5.2880 3.2943
BF 49.1754 64.5223 76.7746 49.1754 64.5223 76.7746
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 98.5763
G2 9 -26.6117
G3 16 44.0942
G4 23 -60.3396
G5 29 43.5178
G6 34 -51.5312
[条件式]
条件式(1) −(f1/f2) = 3.70
条件式(2) −(f3/f4) = 0.73
条件式(3) f1/f5 = 2.27
(Table 9)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.5 to 5.3 to 5.8
TL 259.9-259.9-259.9
2ω 29.4-12.0-6.1
Φ 20.0 〜 20.0 〜 20.0
[Lens data]
Surface number r d nd νd
1 131.5273 3.6 1.83481 42.7
2 75.2890 8.6 1.49782 82.6
3 468.3641 0.1
4 106.0385 7.7 1.49782 82.6
5 -928.7919 D5
6 87.6000 3.2 1.84666 23.8
7 63.0110 8.8 1.58913 61.2
8 553.3485 D8
* 9 949.9140 2.0 1.79050 45.0
10 72.9166 4.2
11 -105.9661 2.0 1.75 500 52.3
12 36.6390 6.1 1.80809 22.8
13 -262.3986 1.8
14 -62.0851 1.7 1.80 400 46.6
15 89.8014 D15
16 156.9157 4.1 1.74400 44.8
17 -87.6277 0.1
18 64.6661 6.2 1.60300 65.5
19 -64.6450 1.8 1.84666 23.8
20 -1644.6864 0.1
21 62.7701 2.4 1.48749 70.5
22 114.6467 D22
23 114.8569 1.3 1.62004 36.2
24 54.8911 1.8
25 -92.2541 3.1 1.79504 28.7
26 -27.0180 1.3 1.74400 44.8
27 193.5011 4.1
28 0.0000 D28 (Aperture stop S)
29 27.2612 4.4 1.48749 70.5
30 298.2465 6.2
31 61.8805 1.3 1.75520 27.5
32 17.9910 7.7 1.51823 58.9
33 -53.6762 D33
34 -27.3003 1.3 1.80 400 46.6
35 27.3060 5.7 1.78472 25.7
36 -81.4626 BF
[Aspherical data]
9th surface κ = 1.0000, A4 = 1.2623E-06, A6 = 2.9682E-10, A8 = 5.7870E-13, A10 = -1.2302E-16
[Variable interval data]
Infinity short distance
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1540.12 1540.12 1540.12
D5 11.5037 11.5037 11.5037 1.8932 1.8932 1.8932
D8 2.0055 19.3952 26.6587 11.6160 29.0058 36.2693
D15 47.4566 22.0189 2.1846 47.4566 22.0189 2.1846
D22 14.0706 22.1186 34.6893 14.0706 22.1186 34.6893
D28 27.0683 12.3291 2.0706 27.0683 12.3291 2.0706
D33 5.8957 5.2880 3.2943 5.8957 5.2880 3.2943
BF 49.1754 64.5223 76.7746 49.1754 64.5223 76.7746
[Each group focal length data]
Group number Group first surface Group focal length G1 1 98.5763
G2 9 -26.6117
G3 16 44.0942
G4 23 -60.3396
G5 29 43.5178
G6 34 -51.5312
[Conditional expression]
Conditional expression (1)-(f1 / f2) = 3.70
Conditional expression (2)-(f3 / f4) = 0.73
Conditional expression (3) f1 / f5 = 2.27

表9に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 9, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図34は、第9実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図35は、第9実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図36は、第9実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 34A and 34B are graphs showing various aberrations of the variable magnification optical system according to Example 9 when focused at infinity, where FIG. 34A is a wide-angle end state, FIG. 34B is an intermediate focal length state, and FIG. 34C is a telephoto end. Each state is shown. FIGS. 35A and 35B are meridional lateral aberration diagrams when blurring correction is performed at the time of focusing on infinity of the variable magnification optical system according to the ninth example. FIG. 35A is a wide-angle end state, and FIG. Each is shown. FIGS. 36A and 36B are graphs showing various aberrations of the zoom optical system according to Example 9 when focusing at short distance (the imaging distance R of the entire system is R = 1.8 m), where FIG. 36A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第9実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the ninth example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第10実施例)
第10実施例について、図37〜図40及び表10を用いて説明する。図37は、第10実施例のレンズ構成図及びズーム軌跡を示したものである。図37に示すように、第10実施例に係る変倍光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6と、正の屈折力を持つ第7レンズ群G7とを有する。
(Tenth embodiment)
The tenth embodiment will be described with reference to FIGS. 37 to 40 and Table 10. FIG. FIG. 37 shows a lens configuration diagram and zoom locus of the tenth example. As shown in FIG. 37, the variable magnification optical system according to the tenth example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power A sixth lens group G6 having a positive refractive power and a seventh lens group G7 having a positive refractive power.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、前群G1Fと、後群G1R(合焦群)とを有する。前群G1Fは、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズと、両凸形状の正レンズL13とを有する。後群G1Rは、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL14と物体側に凸面を向けた正メニスカスレンズL15との接合レンズを有する。   The first lens group G1 includes a front group G1F and a rear group G1R (focusing group) arranged in order from the object side along the optical axis. The front group G1F includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, and a biconvex shape. And a positive lens L13. The rear group G1R includes, in order from the object side, a cemented lens of a negative meniscus lens L14 having a convex surface facing the object side and a positive meniscus lens L15 having a convex surface facing the object side.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と両凸形状の正レンズL23との接合レンズと、両凹形状の負レンズL24とを有する。   The second lens group G2 is formed by joining a negative meniscus lens L21 having a convex surface toward the object side, which is arranged in order from the object side along the optical axis, and a biconcave negative lens L22 and a biconvex positive lens L23. It has a lens and a biconcave negative lens L24.

第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズと、物体側に凸面を向けた正メニスカスレンズL34とを有する。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32, and a biconcave negative lens L33, an object And a positive meniscus lens L34 having a convex surface on the side.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42と両凹形状の負レンズL43との接合レンズとを有する。   The fourth lens group G4 includes a negative meniscus lens L41 having a convex surface directed toward the object side, a positive meniscus lens L42 having a concave surface directed toward the object side, and a biconcave negative lens arranged in order from the object side along the optical axis. And a cemented lens with L43.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズとを有する。   The fifth lens group G5 is arranged in order from the object side along the optical axis. The positive meniscus lens L51 has a convex surface facing the object side, the negative meniscus lens L52 has a convex surface facing the object side, and a biconvex positive lens. And a cemented lens with L53.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL61と両凸形状の正レンズL62との接合レンズを有する。   The sixth lens group G6 includes a cemented lens of a biconcave negative lens L61 and a biconvex positive lens L62, which are arranged in order from the object side along the optical axis.

第7レンズ群G7は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL71と両凸形状の正レンズL72との接合レンズを有する。   The seventh lens group G7 has a cemented lens of a biconcave negative lens L71 and a biconvex positive lens L72 arranged in order from the object side along the optical axis.

このような構成である本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、第6レンズ群G6と第7レンズ群G7との間隔が増大するように、各レンズ群が移動する。但し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, The distance between the lens group G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. Then, each lens group moves so that the distance between the sixth lens group G6 and the seventh lens group G7 increases so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I during zooming from the wide-angle end state to the telephoto end state.

また、開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

なお、本実施例に係る変倍光学系では、第4レンズ群G4における、レンズL41と、レンズL42とレンズL43との接合レンズを、光軸と直交する方向へシフトさせることで、ぶれ発生時の像面補正が行われる。ここで、全系の焦点距離がfで、ぶれ補正係数(光軸方向のぶれ補正用のレンズ群の移動量に対する像面I上の像の移動量の比)がKのレ
ンズで角度θの回転ぶれを補正するには、ぶれ補正用のレンズ群を(f・tanθ)/Kだけ光軸と直交方向に移動させればよい。本実施例の広角端状態において、ぶれ補正係数Kは−1.476であり、焦点距離は81.6(mm)であるので、0.350°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.338(mm)である。本実施例の望遠端状態において、ぶれ補正係数Kは−1.882であり、焦点距離は392(mm)であるので、0.160°の回転ぶれを補正するためのレンズL41と、レンズL42とレンズL43との接合レンズの移動量は−0.580(mm)である。
In the variable magnification optical system according to the present example, the lens L41 and the cemented lens of the lens L42 and the lens L43 in the fourth lens group G4 are shifted in a direction perpendicular to the optical axis, thereby generating blurring. Image plane correction is performed. Here, the focal length of the entire system is f, and a blur correction coefficient (ratio of the amount of movement of the image on the image plane I to the amount of movement of the lens unit for blur correction in the optical axis direction) is K and is an angle θ. In order to correct the rotational shake, the lens group for shake correction may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. In the wide-angle end state of the present embodiment, the blur correction coefficient K is −1.476 and the focal length is 81.6 (mm). Therefore, a lens L41 for correcting a rotational blur of 0.350 °, The amount of movement of the cemented lens between the lens L42 and the lens L43 is -0.338 (mm). In the telephoto end state of the present embodiment, since the shake correction coefficient K is −1.882 and the focal length is 392 (mm), the lens L41 for correcting the rotational shake of 0.160 ° and the lens L42 The amount of movement of the cemented lens between the lens L43 and the lens L43 is -0.580 (mm).

以下の表10に第10実施例に係る変倍光学系の各諸元の値を掲げる。なお、表10に示す面番号1〜39は、図37に示す面1〜39に対応している。   Table 10 below lists values of various specifications of the variable magnification optical system according to the tenth example. The surface numbers 1 to 39 shown in Table 10 correspond to the surfaces 1 to 39 shown in FIG.

(表10)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.5 〜 5.3 〜 5.8
TL 260.9 〜 260.9 〜 260.9
2ω 29.4 〜 12.0 〜 6.1
Φ 20.0 〜 20.0 〜 20.0
[レンズデータ]
面番号 r d nd νd
1 130.0536 3.6 1.83481 42.7
2 74.9561 8.6 1.49782 82.6
3 454.1406 0.1
4 106.1743 7.7 1.49782 82.6
5 -949.5390 D5
6 87.4896 3.2 1.84666 23.8
7 62.8924 8.8 1.58913 61.2
8 551.7556 D8
*9 957.5166 2.0 1.79050 45.0
10 72.5997 4.2
11 -106.5652 2.0 1.75500 52.3
12 36.6959 6.1 1.80809 22.8
13 -252.1462 1.8
14 -61.5152 1.7 1.80400 46.6
15 89.7000 D15
16 160.3889 4.1 1.74400 44.8
17 -87.3914 0.1
18 64.8299 6.2 1.60300 65.5
19 -64.8299 1.8 1.84666 23.8
20 0.1000 33.1
21 63.9787 2.4 1.48749 70.5
22 119.3123 D22
23 117.8451 1.3 1.62004 36.3
24 54.9291 1.8
25 -92.7259 3.1 1.79504 28.7
26 -27.1421 1.3 1.74400 44.8
27 206.7960 4.1
28 0.0000 D28 (開口絞りS)
29 27.3592 4.4 1.48749 70.5
30 248.9875 6.2
31 60.2128 1.3 1.75520 27.5
32 17.8831 7.7 1.51823 58.9
33 -53.7739 D33
34 -27.8585 1.3 1.80400 46.6
35 27.8585 5.7 1.78472 25.7
36 -88.1172 D36
37 -650.8702 1.3 1.51680 64.1
38 1290.5552 1.5 1.80518 25.4
39 -1000.0000 BF
[非球面データ]
第9面
κ=1.0000,A4=1.2632E-06,A6=3.9475E-10,A8=1.8963E-13,A10=4.5598E-16
[可変間隔データ]
無限遠 近距離
広角端 中間 望遠端 広角端 中間 望遠端
f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1539.12 1539.12 1539.12
D5 11.4537 11.4537 11.4537 1.8407 1.8407 1.8407
D8 2.0232 19.4113 26.6831 11.6361 29.0243 36.2961
D15 47.4636 22.0560 2.1798 47.4636 22.0560 2.1798
D22 14.1077 22.1272 34.7316 14.1077 22.1272 34.7316
D28 27.0625 12.1601 1.9256 27.0625 12.1601 1.9256
D33 5.9725 5.3838 3.3847 5.9725 5.3838 3.3847
D36 2.0276 17.5186 29.7522 2.0276 17.5186 29.7522
BF 45.2343 45.2342 45.2339 45.2343 45.2342 45.2339
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 98.5536
G2 9 -26.5937
G3 16 44.1147
G4 23 -60.9206
G5 29 43.7730
G6 34 -50.9294
G7 37 4242.4823
[条件式]
条件式(1) −(f1/f2) = 3.71
条件式(2) −(f3/f4) = 0.72
条件式(3) f1/f5 = 2.25
(Table 10)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.5 to 5.3 to 5.8
TL 260.9-260.9-260.9
2ω 29.4-12.0-6.1
Φ 20.0 〜 20.0 〜 20.0
[Lens data]
Surface number r d nd νd
1 130.0536 3.6 1.83481 42.7
2 74.9561 8.6 1.49782 82.6
3 454.1406 0.1
4 106.1743 7.7 1.49782 82.6
5 -949.5390 D5
6 87.4896 3.2 1.84666 23.8
7 62.8924 8.8 1.58913 61.2
8 551.7556 D8
* 9 957.5166 2.0 1.79050 45.0
10 72.5997 4.2
11 -106.5652 2.0 1.75500 52.3
12 36.6959 6.1 1.80809 22.8
13 -252.1462 1.8
14 -61.5152 1.7 1.80 400 46.6
15 89.7000 D15
16 160.3889 4.1 1.74400 44.8
17 -87.3914 0.1
18 64.8299 6.2 1.60 300 65.5
19 -64.8299 1.8 1.84666 23.8
20 0.1000 33.1
21 63.9787 2.4 1.48749 70.5
22 119.3123 D22
23 117.8451 1.3 1.62004 36.3
24 54.9291 1.8
25 -92.7259 3.1 1.79504 28.7
26 -27.1421 1.3 1.74400 44.8
27 206.7960 4.1
28 0.0000 D28 (Aperture stop S)
29 27.3592 4.4 1.48749 70.5
30 248.9875 6.2
31 60.2128 1.3 1.75520 27.5
32 17.8831 7.7 1.51823 58.9
33 -53.7739 D33
34 -27.8585 1.3 1.80 400 46.6
35 27.8585 5.7 1.78472 25.7
36 -88.1172 D36
37 -650.8702 1.3 1.51680 64.1
38 1290.5552 1.5 1.80518 25.4
39 -1000.0000 BF
[Aspherical data]
9th surface κ = 1.0000, A4 = 1.2632E-06, A6 = 3.9475E-10, A8 = 1.8963E-13, A10 = 4.5598E-16
[Variable interval data]
Infinity short distance
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end f 81.6 200.0 392.0 − − −
β 0 0 0 -0.05 -0.13 -0.26
D0 0 0 0 1539.12 1539.12 1539.12
D5 11.4537 11.4537 11.4537 1.8407 1.8407 1.8407
D8 2.0232 19.4113 26.6831 11.6361 29.0243 36.2961
D15 47.4636 22.0560 2.1798 47.4636 22.0560 2.1798
D22 14.1077 22.1272 34.7316 14.1077 22.1272 34.7316
D28 27.0625 12.1601 1.9256 27.0625 12.1601 1.9256
D33 5.9725 5.3838 3.3847 5.9725 5.3838 3.3847
D36 2.0276 17.5186 29.7522 2.0276 17.5186 29.7522
BF 45.2343 45.2342 45.2339 45.2343 45.2342 45.2339
[Each group focal length data]
Group number Group first surface Group focal length G1 1 98.5536
G2 9 -26.5937
G3 16 44.1147
G4 23 -60.9206
G5 29 43.7730
G6 34 -50.9294
G7 37 4242.4823
[Conditional expression]
Conditional expression (1) − (f1 / f2) = 3.71
Conditional expression (2)-(f3 / f4) = 0.72
Conditional expression (3) f1 / f5 = 2.25

表10に示す諸元の表から、本実施例に係る変倍光学系では、上記条件式(1)〜(3)を全て満たすことが分かる。   From the table of specifications shown in Table 10, it can be seen that the variable magnification optical system according to the present example satisfies all the conditional expressions (1) to (3).

図38は、第10実施例に係る変倍光学系の無限遠合焦時の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図39は、第10実施例に係る変倍光学系の無限遠合焦時にぶれ補正を行った際のメリディオナル横収差図であり、(a)は広角端状態、(b)は望遠端状態をそれぞれ示す。図40は、第10実施例に係る変倍光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 38A and 38B are graphs showing various aberrations of the variable magnification optical system according to Example 10 at the time of focusing on infinity, where FIG. 38A is a wide-angle end state, FIG. 38B is an intermediate focal length state, and FIG. Each state is shown. FIGS. 39A and 39B are meridional lateral aberration diagrams when blurring correction is performed at the time of focusing on infinity of the variable magnification optical system according to the tenth example. FIG. 39A shows a wide-angle end state, and FIG. 39B shows a telephoto end state. Each is shown. FIGS. 40A and 40B are graphs showing various aberrations of the variable magnification optical system according to Example 10 when focusing at close distance (imaging distance R = 1.8 m for the entire system), in which FIG. 40A is a wide-angle end state, and FIG. Indicates an intermediate focal length state, and (c) indicates a telephoto end state.

各収差図から明らかなように、第10実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As can be seen from the respective aberration diagrams, in the tenth embodiment, various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

なお、上述の実施形態において、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   In the above-described embodiment, the following description can be appropriately adopted as long as the optical performance is not impaired.

上記実施例では、変倍光学系として6群又は7群構成のものを示したが、5群、8群等の他の群構成にも適用可能である。具体的には、最も物体側に正のレンズ群を追加した構成や、最も像側に正又は負のレンズ群を追加した構成が挙げられる。   In the above embodiment, the zoom optical system has a 6-group or 7-group configuration, but it can be applied to other group configurations such as a 5-group and 8-group. Specifically, a configuration in which a positive lens group is added on the most object side and a configuration in which a positive or negative lens group is added on the most image side can be given.

また、単独又は複数のレンズ群、又は部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、第1レンズ群G1を構成する、レンズL14とレンズL15との接合レンズを合焦レンズ群とするのが好ましい。   In addition, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is preferable that the cemented lens of the lens L14 and the lens L15 constituting the first lens group G1 is a focusing lens group.

また、レンズ群又は部分レンズ群を光軸に垂直な方向に振動させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第4レンズ群G4の少なくとも一部を防振レンズ群とするのが好ましい。   Alternatively, the lens group or the partial lens group may be vibrated in a direction perpendicular to the optical axis, and may be an anti-vibration lens group that corrects image blur caused by camera shake. In particular, it is preferable that at least a part of the fourth lens group G4 is an anti-vibration lens group.

また、各レンズ面は、球面又は平面で形成されても、非球面で形成されても構わない。特に、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4、第5レンズ群G5、の少なくとも一部を非球面とするのが好ましい。なお、レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。一方、レンズ面が非球面の場合、この非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、各レンズ面は、回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   Each lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. In particular, it is preferable that at least a part of the second lens group G2, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 be aspherical. In addition, it is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. On the other hand, when the lens surface is an aspheric surface, this aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite type in which resin is formed on the glass surface in an aspheric shape Any aspherical surface may be used. Each lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、開口絞りSは、第4レンズ群G4の近傍(好ましくは像側)又は第3レンズ群G3の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズ枠でその役割を代用してもよい。   The aperture stop S is preferably arranged in the vicinity of the fourth lens group G4 (preferably on the image side) or in the vicinity of the third lens group G3. That role may be substituted.

また、各レンズ面には、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.

本実施形態の変倍光学系は、変倍比が4.5〜6程度である。   The variable magnification optical system of the present embodiment has a variable magnification ratio of about 4.5-6.

また、本実施形態の変倍光学系は、第1レンズ群G1の前群G1Fが正レンズを2つ又は3つと、負レンズを1つ有するのが好ましい。また、前群G1Fは、物体側から順に、負レンズと、正レンズと、正レンズとを、又は、負レンズと、正レンズと、正レンズと、正レンズとを配置するのが好ましい。なお、各レンズは、単レンズとしてもよく、貼り合わせて接合レンズとしてもよい。   In the variable magnification optical system of the present embodiment, it is preferable that the front group G1F of the first lens group G1 has two or three positive lenses and one negative lens. In the front group G1F, it is preferable that a negative lens, a positive lens, and a positive lens, or a negative lens, a positive lens, a positive lens, and a positive lens are arranged in order from the object side. Each lens may be a single lens or may be bonded to form a cemented lens.

また、本実施形態の変倍光学系は、第1レンズ群G1の後群G1Rが正レンズと負レンズとを1つずつ有するのが好ましい。また、後群G1Rは、物体側から順に、負レンズと、正レンズとを配置するのが好ましい。また、後群G1Rは、1つの接合レンズから構成されるのが好ましい。   In the variable magnification optical system of the present embodiment, it is preferable that the rear group G1R of the first lens group G1 has one positive lens and one negative lens. In the rear group G1R, it is preferable to dispose a negative lens and a positive lens in order from the object side. The rear group G1R is preferably composed of one cemented lens.

また、本実施形態の変倍光学系は、第2レンズ群G2が正レンズを1つ又は2つと、負レンズを3つ有するのが好ましい。また、第2レンズ群G2は、物体側から順に、負レンズと、負レンズと、正レンズと、負レンズとを、又は、正レンズと、負レンズと、負レンズと、正レンズと、負レンズとを配置するのが好ましい。なお、各レンズは、単レンズとしてもよく、貼り合わせて接合レンズとしてもよい。   In the variable magnification optical system of the present embodiment, it is preferable that the second lens group G2 has one or two positive lenses and three negative lenses. The second lens group G2 includes, in order from the object side, a negative lens, a negative lens, a positive lens, a negative lens, or a positive lens, a negative lens, a negative lens, a positive lens, and a negative lens. It is preferable to arrange a lens. Each lens may be a single lens or may be bonded to form a cemented lens.

また、本実施形態の変倍光学系は、第3レンズ群G3が正レンズを2つ又は3つと、負レンズを1つ有するのが好ましい。また、第3レンズ群G3は、物体側から順に、正レンズと、正レンズと、負レンズとを、又は、正レンズと、正レンズと、負レンズと、正レンズとを配置するのが好ましい。なお、各レンズは、単レンズとしてもよく、貼り合わせて接合レンズとしてもよい。   In the variable magnification optical system of the present embodiment, it is preferable that the third lens group G3 has two or three positive lenses and one negative lens. In the third lens group G3, it is preferable that a positive lens, a positive lens, and a negative lens, or a positive lens, a positive lens, a negative lens, and a positive lens are arranged in order from the object side. . Each lens may be a single lens or may be bonded to form a cemented lens.

また、本実施形態の変倍光学系は、第4レンズ群G4が、正レンズを1つと、負レンズを1つ又は2つ有するのが好ましい。また、第4レンズ群G4は、物体側から順に、正レンズと、負レンズとを、又は、負レンズと、正レンズと、負レンズとを配置するのが好ましい。また、第4レンズ群G4は、物体側から順に、正レンズと、負レンズと、負レンズとを、又は、負レンズと、負レンズと、正レンズとを配置するのが好ましい。なお、各レンズは、単レンズとしてもよく、貼り合わせて接合レンズとしてもよい。   In the variable power optical system of the present embodiment, it is preferable that the fourth lens group G4 has one positive lens and one or two negative lenses. In the fourth lens group G4, it is preferable that a positive lens and a negative lens, or a negative lens, a positive lens, and a negative lens are arranged in order from the object side. In the fourth lens group G4, it is preferable that a positive lens, a negative lens, and a negative lens, or a negative lens, a negative lens, and a positive lens are arranged in order from the object side. Each lens may be a single lens or may be bonded to form a cemented lens.

また、本実施形態の変倍光学系は、第5レンズ群G5が正レンズを2つ又は3つと、負レンズを1つ又は2つ有するのが好ましい。また、第5レンズ群G5は、物体側から順に、正レンズと、正レンズと、負レンズとを、又は、正レンズと、負レンズと、正レンズとを配置するのが好ましい。また、第5レンズ群G5は、物体側から順に、正レンズと、正レンズと、負レンズと、正レンズとを、又は、正レンズと、負レンズとを、正レンズと、負レンズとを配置するのが好ましい。さらに、第5レンズ群G5は、物体側から順に、正レンズと、負レンズと、正レンズと、負レンズと、正レンズとを配置するのが好ましい。なお、各レンズは、単レンズとしてもよく、貼り合わせて接合レンズとしてもよい。   In the variable power optical system of the present embodiment, it is preferable that the fifth lens group G5 has two or three positive lenses and one or two negative lenses. In the fifth lens group G5, it is preferable that a positive lens, a positive lens, and a negative lens, or a positive lens, a negative lens, and a positive lens are arranged in order from the object side. The fifth lens group G5 includes, in order from the object side, a positive lens, a positive lens, a negative lens, a positive lens, or a positive lens, a negative lens, a positive lens, and a negative lens. It is preferable to arrange. Further, in the fifth lens group G5, it is preferable that a positive lens, a negative lens, a positive lens, a negative lens, and a positive lens are arranged in order from the object side. Each lens may be a single lens or may be bonded to form a cemented lens.

また、本実施形態の変倍光学系は、第6レンズ群G6が正レンズを1つと、負レンズを1つ又は2つ有するのが好ましい。第6レンズ群G6は、物体側から順に、負レンズと、正レンズとを配置するのが好ましい。なお、各レンズは、単レンズとしてもよく、貼り合わせて接合レンズとしてもよい。   In the variable power optical system of the present embodiment, it is preferable that the sixth lens group G6 has one positive lens and one or two negative lenses. In the sixth lens group G6, it is preferable to dispose a negative lens and a positive lens in order from the object side. Each lens may be a single lens or may be bonded to form a cemented lens.

なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In addition, in order to make this invention intelligible, although demonstrated with the component requirement of embodiment, it cannot be overemphasized that this invention is not limited to this.

以上のように、色収差が補正され、良好な光学性能を有し、写真用カメラ、電子スチルカメラ及びビデオカメラ等に好適である変倍光学系、光学機器及び変倍光学系の製造方法を提供することができる。   As described above, a variable power optical system, an optical device, and a method for manufacturing the variable power optical system, which are corrected for chromatic aberration, have good optical performance, and are suitable for a photographic camera, an electronic still camera, a video camera, and the like. can do.

G1 第1レンズ群
G1F 前群
G1R 後群(合焦群)
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
G7 第7レンズ群
S 開口絞り
I 像面
CAM デジタル一眼レフカメラ(光学機器)
G1 first lens group G1F front group G1R rear group (focusing group)
G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group G6 Sixth lens group G7 Seventh lens group S Aperture stop I Image surface CAM Digital single lens reflex camera (optical equipment)

Claims (20)

少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有し、
前記第1レンズ群〜前記第6レンズ群はそれぞれ接合レンズを有し、
前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式
−(f1/f2)<3.98
の条件を満足することを特徴とする変倍光学系。
Having at least a first lens group to a sixth lens group arranged in order from the object side,
Each of the first lens group to the sixth lens group has a cemented lens,
When the focal length of the first lens group is f1, and the focal length of the second lens group is f2, the following equation − (f1 / f2) <3.98
A variable power optical system characterized by satisfying the following conditions.
前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4としたとき、次式
0.61<−(f3/f4)<0.98
の条件を満足することを特徴とする請求項1に記載の変倍光学系。
When the focal length of the third lens group is f3 and the focal length of the fourth lens group is f4, the following expression 0.61 <− (f3 / f4) <0.98
The zoom lens system according to claim 1, wherein the following condition is satisfied.
前記第5レンズ群の焦点距離をf5としたとき、次式
0.00<f1/f5<2.80
の条件を満足することを特徴とする請求項1又は2に記載の変倍光学系。
When the focal length of the fifth lens group is f5, the following expression 0.00 <f1 / f5 <2.80
The zoom lens system according to claim 1 or 2, wherein the following condition is satisfied.
少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有し、
前記第1レンズ群〜前記第6レンズ群はそれぞれ接合レンズを有し、
前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4としたとき、次式
0.61<−(f3/f4)<0.98
の条件を満足することを特徴とする変倍光学系。
Having at least a first lens group to a sixth lens group arranged in order from the object side,
Each of the first lens group to the sixth lens group has a cemented lens,
When the focal length of the third lens group is f3 and the focal length of the fourth lens group is f4, the following expression 0.61 <− (f3 / f4) <0.98
A variable power optical system characterized by satisfying the following conditions.
前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式
−(f1/f2)<3.98
の条件を満足することを特徴とする請求項4に記載の変倍光学系。
When the focal length of the first lens group is f1, and the focal length of the second lens group is f2, the following equation − (f1 / f2) <3.98
The zoom lens system according to claim 4, wherein the following condition is satisfied.
前記第1レンズ群の焦点距離をf1とし、前記第5レンズ群の焦点距離をf5としたとき、次式
0.00<f1/f5<2.80
の条件を満足することを特徴とする請求項4又は5に記載の変倍光学系。
When the focal length of the first lens group is f1, and the focal length of the fifth lens group is f5, the following expression 0.00 <f1 / f5 <2.80
The zoom optical system according to claim 4 or 5, wherein the following condition is satisfied.
少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有し、
前記第1レンズ群〜前記第6レンズ群はそれぞれ接合レンズを有し、
前記第1レンズ群の焦点距離をf1とし、前記第5レンズ群の焦点距離をf5としたとき、次式
0.00<f1/f5<2.80
の条件を満足することを特徴とする変倍光学系。
Having at least a first lens group to a sixth lens group arranged in order from the object side,
Each of the first lens group to the sixth lens group has a cemented lens,
When the focal length of the first lens group is f1, and the focal length of the fifth lens group is f5, the following expression 0.00 <f1 / f5 <2.80
A variable power optical system characterized by satisfying the following conditions.
前記第2レンズ群の焦点距離をf2としたとき、次式
−(f1/f2)<3.98
の条件を満足することを特徴とする請求項7に記載の変倍光学系。
When the focal length of the second lens group is f2, the following formula − (f1 / f2) <3.98
The zooming optical system according to claim 7, wherein the following condition is satisfied.
前記第3レンズ群の焦点距離をf3とし、前記第4レンズ群の焦点距離をf4としたとき、次式
0.61<−(f3/f4)<0.98
の条件を満足することを特徴とする請求項7又は8に記載の変倍光学系。
When the focal length of the third lens group is f3 and the focal length of the fourth lens group is f4, the following expression 0.61 <− (f3 / f4) <0.98
The zoom optical system according to claim 7 or 8, wherein the following condition is satisfied.
前記第1レンズ群は、少なくとも2つの分割群に分割され、前記分割群のうちいずれか1つの分割群を合焦群とすることを特徴とする請求項1〜9のいずれか一項に記載の変倍光学系。   10. The first lens group is divided into at least two divided groups, and any one of the divided groups is set as a focusing group. 10. Variable magnification optical system. 前記第1レンズ群は、正の屈折力を持つことを特徴とする請求項1〜10のいずれか一項に記載の変倍光学系。   The variable magnification optical system according to claim 1, wherein the first lens group has a positive refractive power. 前記分割群のうち、最も像側の分割群を合焦群とすることを特徴とする請求項10又は11に記載の変倍光学系。   12. The variable magnification optical system according to claim 10, wherein among the divided groups, the most image-side divided group is a focusing group. 前記第4レンズ群は、負の屈折力を持つことを特徴とする請求項1〜12のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 12, wherein the fourth lens group has a negative refractive power. 広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び、前記第5レンズ群と前記第6レンズ群との間隔が変化するように、各レンズ群が移動することを特徴とする請求項1〜13のいずれか一項に記載の変倍光学系。   Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the Each lens group is moved so that the distance from the fourth lens group, the distance from the fourth lens group to the fifth lens group, and the distance from the fifth lens group to the sixth lens group are changed. The variable power optical system according to any one of claims 1 to 13, wherein 前記第2レンズ群は、負の屈折力を持ち、
前記第3レンズ群は、正の屈折力を持ち、
前記第5レンズ群は、正の屈折力を持ち、
前記第6レンズ群は、負の屈折力を持つことを特徴とする請求項1〜14のいずれか一項に記載の変倍光学系。
The second lens group has negative refractive power,
The third lens group has a positive refractive power,
The fifth lens group has a positive refractive power,
The variable magnification optical system according to claim 1, wherein the sixth lens group has a negative refractive power.
前記第4レンズ群は、全体又は一部を、光軸に対して直交方向の成分を持つように移動させることを特徴とする請求項1〜15のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 15, wherein the fourth lens group is moved in whole or in part so as to have a component orthogonal to the optical axis. . 広角端状態から望遠端状態への変倍に際して、開口絞りが像面に対して固定であることを特徴とする請求項1〜16のいずれか一項に記載の変倍光学系。   The variable magnification optical system according to any one of claims 1 to 16, wherein the aperture stop is fixed with respect to the image plane during zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍に際して、開口絞りの絞り径が一定であることを特徴とする請求項1〜17のいずれか一項に記載の変倍光学系。   18. The zoom optical system according to claim 1, wherein the aperture diameter of the aperture stop is constant when zooming from the wide-angle end state to the telephoto end state. 請求項1〜18のいずれか一項に記載の変倍光学系を有する光学機器。   An optical apparatus having the variable magnification optical system according to any one of claims 1 to 18. 少なくとも物体側から順に並んだ第1レンズ群〜第6レンズ群を有する変倍光学系の製造方法であって、
前記第1レンズ群〜第6レンズ群はそれぞれ接合レンズを有し、
前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2としたとき、次式 −(f1/f2)<3.98 の条件を満足するように、
レンズ鏡筒内に各レンズを組み込み、動作確認を行うことを特徴とする変倍光学系の製造方法。
A method of manufacturing a variable magnification optical system having at least a first lens group to a sixth lens group arranged in order from the object side,
The first to sixth lens groups each have a cemented lens,
When the focal length of the first lens group is f1 and the focal length of the second lens group is f2, the following equation − (f1 / f2) <3.98 is satisfied.
A method of manufacturing a variable magnification optical system, wherein each lens is incorporated in a lens barrel and operation is confirmed.
JP2009268886A 2009-11-26 2009-11-26 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method Expired - Fee Related JP5541567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268886A JP5541567B2 (en) 2009-11-26 2009-11-26 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268886A JP5541567B2 (en) 2009-11-26 2009-11-26 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2011112851A true JP2011112851A (en) 2011-06-09
JP5541567B2 JP5541567B2 (en) 2014-07-09

Family

ID=44235227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268886A Expired - Fee Related JP5541567B2 (en) 2009-11-26 2009-11-26 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP5541567B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090601A (en) * 1996-09-12 1998-04-10 Nikon Corp Zoom lens having vibration proofing function
JP2003241096A (en) * 2002-02-18 2003-08-27 Sigma Corp Zoom lens
JP2005284099A (en) * 2004-03-30 2005-10-13 Nikon Corp Variable focal length lens
JP2009186888A (en) * 2008-02-08 2009-08-20 Canon Inc Optical system and optical equipment using the same
JP2009271166A (en) * 2008-05-01 2009-11-19 Canon Inc Optical system and optical apparatus including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090601A (en) * 1996-09-12 1998-04-10 Nikon Corp Zoom lens having vibration proofing function
JP2003241096A (en) * 2002-02-18 2003-08-27 Sigma Corp Zoom lens
JP2005284099A (en) * 2004-03-30 2005-10-13 Nikon Corp Variable focal length lens
JP2009186888A (en) * 2008-02-08 2009-08-20 Canon Inc Optical system and optical equipment using the same
JP2009271166A (en) * 2008-05-01 2009-11-19 Canon Inc Optical system and optical apparatus including the same

Also Published As

Publication number Publication date
JP5541567B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP4904842B2 (en) Zoom lens having anti-vibration function and image pickup apparatus having the same
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5423190B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP5448028B2 (en) Zoom lens and optical apparatus having the same
JP5168641B2 (en) Magnification optical system, optical apparatus having the same and magnifying method
JP5641680B2 (en) Zoom lens and optical apparatus having the same
CN107430261B (en) Variable magnification optical system and optical apparatus
JP5344279B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP2014157225A (en) Zoom lens and imaging apparatus including the same
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5660311B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2014052413A (en) Zoom lens and image capturing device having the same
JP6725000B2 (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JP5557089B2 (en) Variable magnification optical system, optical equipment
JP5617172B2 (en) Variable magnification optical system, optical equipment
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP5608986B2 (en) Variable magnification optical system, optical equipment
JP5608987B2 (en) Variable magnification optical system, optical equipment
JP5359558B2 (en) Lens system, optical equipment
JP5565676B2 (en) Optical element, imaging optical system having the same, and optical instrument
JP5617277B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5541567B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5605675B2 (en) Variable magnification optical system, optical equipment
JP5369897B2 (en) Lens system, optical equipment
JP5369898B2 (en) Zoom lens, optical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140424

R150 Certificate of patent or registration of utility model

Ref document number: 5541567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees