JP2011109484A - Multi-lens camera apparatus and electronic information device - Google Patents

Multi-lens camera apparatus and electronic information device Download PDF

Info

Publication number
JP2011109484A
JP2011109484A JP2009263416A JP2009263416A JP2011109484A JP 2011109484 A JP2011109484 A JP 2011109484A JP 2009263416 A JP2009263416 A JP 2009263416A JP 2009263416 A JP2009263416 A JP 2009263416A JP 2011109484 A JP2011109484 A JP 2011109484A
Authority
JP
Japan
Prior art keywords
lens
imaging
sub
multi
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009263416A
Other languages
Japanese (ja)
Other versions
JP5399215B2 (en
Inventor
Yoshito Ishimatsu
義人 石末
Original Assignee
Sharp Corp
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, シャープ株式会社 filed Critical Sharp Corp
Priority to JP2009263416A priority Critical patent/JP5399215B2/en
Publication of JP2011109484A publication Critical patent/JP2011109484A/en
Application granted granted Critical
Publication of JP5399215B2 publication Critical patent/JP5399215B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve a resolution while optimizing a distance interval between a lens area and an imaging area by matching lens characteristics with color filters of respective colors. <P>SOLUTION: Sub lenses 3a, 3b, 3c and 3d of a lens array 3 are configured in such a manner that the position of a focal plane of a wavelength light beam selectively transmitted through color filters of respective colors combined with these sub lenses becomes identical on respective imaging areas 6a, 6b, 6c and 6d of an imaging device substrate 6. Accordingly, distance intervals (focal distances) between the sub lenses 3a, 3b, 3c and 3d and the imaging areas 6a, 6b, 6c and 6d corresponding thereto can be optimized by matching lens characteristics with the color filters of respective colors, a lens having an accurate focal distance corresponding to the color of the color filters can be prepared for each color of the color filters, a color aberration is eliminated and the high resolution can be achieved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、携帯電話装置などに内蔵するのに好適なレンズ全長が短い撮像レンズを持つ多眼カメラ装置および、この多眼カメラ装置を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。 The present invention is a portable telephone device camera array camera device and lens suitable overall length for built in such with a short imaging lens, for example, digital video cameras and digital using the multi-lens camera device to the imaging unit as an image input device digital cameras and the like still cameras, an image input camera, such as surveillance cameras, scanner, a facsimile machine, a television telephone apparatus, an electronic information device such as a camera phone device.

近年、CCD(Charge Coupled Device)およびCMOS(Complementary Metal Oxide Semiconductor)に代表される固体撮像素子を用いたデジタルスチルカメラの普及が急速に進み、多種多様なデジタルスチルカメラが開発されている。 Recently, the spread of digital still camera using a solid-state imaging device typified to a CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) proceeds rapidly, a wide variety of digital still cameras have been developed. このデジタルスチルカメラの小型化は、固体撮像素子における技術の進歩と共に年々進んでいる。 Miniaturization of the digital still camera has progressed year by year with the advancement of technology in the solid-state imaging device. その中でも、携帯型情報端末や携帯電話装置などに搭載されるカメラは、その筐体における大きさの制限などにより、特に、小型化が求められている。 Among them, a camera that is mounted on a portable information terminal or a mobile telephone device, due to limitations of size in its housing, in particular, miniaturization is required.

カメラとして要求される画角が同一の場合、固体撮像素子の大きさ(撮像領域の対角長)によりレンズの光学長が制約を受ける。 If angle required as the camera is the same, the optical length of the lens by the size of the solid-state imaging device (the diagonal length of the imaging area) is restricted. このレンズの光学長を短くするためには薄肉レンズや高屈折レンズ材料の採用などの方法が考えられるが、そのようなレンズの光学長を短くする方法には限界がある。 In order to shorten the optical length of this lens is considered a method and employs a thin lens and high refractive lens material, but a method of shortening the optical length of such lenses is limited.
このため、固体撮像素子を分割し、その分割エリア毎にレンズを備えれば、分割した比率に応じてレンズの光学長の短縮化が可能となる。 Therefore, the solid-state imaging device is divided, if Sonaere the lens for each of the divided area, shortening the optical length of the lens is possible in accordance with the divided ratio.

特許文献1、2に記載された薄型カメラは、少なくとも3つのサブカメラを備えることにより薄型化を実現している。 Thin camera described in Patent Documents 1 and 2 is realized thinner by providing at least three sub-camera.

図5は、特許文献1、2に開示されている従来の多眼カメラ装置の概略構成例を示す斜視図である。 Figure 5 is a perspective view showing a schematic configuration example of a conventional multi-eye camera apparatus disclosed in Patent Documents 1 and 2. 図6は、図1の従来の多眼カメラ装置における撮像素子基板の概略構成例を示す斜視図である。 Figure 6 is a perspective view showing a schematic configuration example of the imaging device substrate in the conventional multi-eye camera apparatus of FIG. 図7は、図1の従来の従来の多眼カメラ装置における要部構成例を示す縦断面図である。 Figure 7 is a longitudinal sectional view showing a main configuration example of a conventional prior art multi-view camera system of Figure 1.
図5〜図7において、従来の多眼カメラ装置としての4眼式カメラ装置100は、開口絞りアレイ102、レンズアレイ103、透明ガラス基板などの平面板104、遮光マスク105および撮像素子基板106をこの順次に積層したカメラモジュールである。 In FIGS. 5-7, four-eye type camera apparatus 100 as a conventional multi-eye camera system, aperture stop array 102, lens array 103, the planar plate 104, such as a transparent glass substrate, a light-shielding mask 105 and imaging element substrate 106 this is a sequentially camera module laminated.
レンズアレイ102は、サブカメラ毎にサブレンズ102a、102b、102cおよび102dのそれぞれを備えている。 Lens array 102 includes sub-lenses 102a, 102b, respectively 102c and 102d for each sub-camera.
撮像素子基板106は、遮光マスク105により、分割撮像領域106a、106b、106cおよび106dに4分割されて互いに隔離されており、それぞれ単色のカラーフィルタを有している。 Imaging element substrate 106, the light shielding mask 105, splitting the imaging region 106a, 106b, are isolated from each other are divided into four 106c and 106d, each have a monochromatic color filter. 分割撮像領域106aおよび106bがG(緑)、分割撮像領域106cおよび106dがそれぞれR(赤)、B(青)となる。 Division imaging regions 106a and 106b are G (green), divided imaging region 106c, and 106d are R, respectively (red), and becomes B (blue). サブレンズ毎に集光された入射光は、それぞれが各色のカラーフィルタを、波長毎(色毎)に選択的に透過され、各サブレンズの直下に存在する分割撮像領域上に結像される。 Incident light collected in each sub-lens is a color filter for each each color are selectively transmitted for each wavelength (each color), is imaged division imaging region that is present immediately below the respective sub-lens . これらのサブレンズ102aおよび102bはG(緑)、サブレンズ102cはR(赤)、サブレンズ102dはB(青)の入射光を結像する。 These sub-lens 102a and 102b G (green), sub-lens 102c is R (red), sub-lens 102d images the incident light and B (blue). さらに、遮光マスク105によって、互いに隣接するサブカメラへの迷光は遮断されることになる。 Further, the light-shielding mask 105 will be blocked stray light to the sub-camera adjacent to each other.

各サブレンズサブレンズ102a、102b、102cおよび102dが同じ仕様の場合、サブレンズ102cにより結像されるR(赤)の焦点面の位置は、サブレンズ102aおよび102bにより結像されるG(緑)の焦点面の位置よりも長く、サブレンズ102dによる結像されるB(青)の焦点面の位置は、サブレンズ102aおよび102bにより結像されるG(緑)の焦点面の位置よりも短い。 Each sub-lens sub-lens 102a, 102b, if 102c and 102d have the same specifications, the position of the focal plane of the R (red) which is imaged by the sub-lens 102c is, G (green imaged by the sub-lens 102a and 102b longer than the position of the focal plane of) the position of the focal plane of B to be imaged by the sub-lens 102d (blue) than the position of the focal plane of the G (green), which is formed by the sub-lens 102a and 102b short.

通常、波長の異なる光線を入射したとき、レンズの焦点面の位置は異なる。 Usually, when the incident light rays of different wavelengths, the position of the focal plane of the lens are different. 特許文献1、2によれば、撮像レンズはアレイ形状を有しており、サブカメラ毎に異なるカラーフィルタを持つ構造が記載されている。 According to Patent Documents 1 and 2, the imaging lens has an array shape, structure having different color filters for each sub-camera is described.

特表2007−520166号公報 JP-T 2007-520166 JP WO2007/013250号公報 WO2007 / 013250 JP

上記従来の多眼カメラ装置では、レンズアレイ103のレンズ領域と、これに対応した撮像素子基板106の撮像領域との距離間隔を調整することにより、焦点面の位置にその撮像領域を配置することができるものの、従来の多眼カメラ装置100の場合、レンズアレイ103のレンズはアレイ構造であり、撮像素子基板106は分割撮像領域であるため、各サブレンズ毎に分割撮像領域との距離間隔を調整することができない。 The above-mentioned conventional multi-eye camera system, a lens region of the lens array 103, by adjusting the distance interval between the imaging area of ​​the imaging element substrate 106 corresponding thereto, placing the imaging area to the position of the focal plane although it is possible, when the conventional multi-lens camera device 100, the lens of the lens array 103 is an array structure, since the imaging element substrate 106 is divided imaging region, the distance interval between the divided image capturing area for each sub-lens It can not be adjusted.
特許文献2に開示された上記従来の多眼カメラ装置では、各レンズは、これに対応するカラーフィルタを透過させる光の波長に対して光学特性が最良となるように設計したとの記載があるが、具体的な事例は示されていない。 In the conventional multi-lens camera device disclosed in Patent Document 2, each lens is described with designed such that the optical characteristics become best with respect to the wavelength of light to be transmitted through the color filters corresponding thereto There, specific examples are not shown.

通常、アレイ構造のレンズの場合、レンズの成型はレプリカ法と呼ばれる成型を行う。 Normally, when the lens array structure, molding the lens performs molding called replica method. これは、雄型のマスタ金型を一つ製作し、マスタ金型をレンズ配列位置上に転写することで雌型を作成する方法である。 It is to one fabricated master mold of the male, is a method of creating a female mold by transferring the master mold on a lens array position. この転写方法では、切削、研磨などによる金属加工による金型作成のコストを抑えることができる。 In this transfer process, it is possible to suppress the cutting, the cost of creating the mold by the metal processing by polishing or the like. しかしながら、レンズはレンズアレイであることから、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔を最適化することはできないという問題を有していた。 However, lenses since a lens array, has a problem that it is impossible to optimize the distance interval between the lens area and the imaging area in accordance with the lens characteristics for each individual color filters.

本発明は、上記従来の問題を解決するもので、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔を最適化して解像度を向上することができる多眼カメラ装置、この多眼カメラ装置を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。 The present invention is the one that solves the prior art problems, by optimizing the distance interval between the lens area and the imaging area in accordance with the lens characteristics for each individual color filters can enhance resolution multi-eye camera system , and to provide an electronic information device such as the multi-eye camera apparatus equipped cell phone device has a camera, an image input devices.

なお、同一レンズにおいて入射する光線の色(波長)によって焦点面が変わる。 Incidentally, the focal plane by color (wavelength) of light incident varies in the same lens. これを色収差という。 This is called chromatic aberration. したがって、通常のベイヤー配列でカラーフィルタを持つセンサでは、色収差のバランスの取れた位置で焦点面調整される。 Thus, the sensor having a color filter in a normal Bayer array is a focal plane adjusted balanced position in the balance of chromatic aberration. 各色毎に見たら必ずしもベスト焦点面では無い。 Not necessarily the best focal plane if you see for each color. 多眼構造にして、カラーフィルタの違うセンサ毎にレンズを作れば、色収差の問題を回避できる。 In the multiview structure, if you make a lens for each different in the color filter sensor, it can be avoided chromatic aberration problems. しかしながら、多眼は、レンズアレイの構造を取るため、レンズ毎に焦点を合わせられない。 However, multiview is to take the structure of the lens array, not focused on each lens. それを如何に回避するのかというところが、本発明の趣旨である。 It is a place of how to avoid it how, is the gist of the present invention.

本発明の多眼カメラ装置は、複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、該レンズアレイの少なくとも2つのサブレンズの該撮像領域に対する焦点距離が互いに異なっているものであり、そのことにより上記目的が達成される。 Multiview camera apparatus of the present invention includes a plurality of imaging regions, the color filter of each color arranged in the imaging each area, a lens array in which each sub-lens corresponds to the imaging each region is provided is laminated in the multi-eye camera system it is, which has a focal length different from each other with respect to the imaging area of ​​at least two sub-lenses of the lens array, the object can be achieved.

また、本発明の多眼カメラ装置は、複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、該レンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が該撮像領域上で同一となるように構成されているであり、そのことにより上記目的が達成される。 Further, the multi-lens camera device of the present invention includes a plurality of imaging regions, the color filter of each color arranged in the imaging each area, a lens array in which each sub-lens corresponds to the imaging each area is provided identical but in the multi-eye camera system are laminated, each of the sub-lenses of the lens array, the position of the focal plane of the selectively transmitted by wavelength light by the color filter of each color to be combined to the sub-lens in the imaging region and a is configured such that the above object can be achieved.

さらに、好ましくは、本発明の多眼カメラ装置におけるレンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が前記撮像領域上で同一となるように構成されている。 Further, preferably, each of the sub-lenses of the lens array in the multi-lens camera device of the present invention, the position of the focal plane of the wavelength light is selectively transmitted by the color filter of each color to be combined to the sub-lens is the imaging area on the in is configured to be the same.

さらに、好ましくは、本発明の多眼カメラ装置におけるレンズアレイのサブレンズはそれぞれ、該サブレンズに対応したカラーフィルタの波長特性に合わせた焦点距離を有している。 Further, preferably, it has a multi-eye camera system each sub-lens of the lens array in the focal length matching the wavelength characteristics of the color filters corresponding to the sub-lens of the present invention.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの被写体側レンズ面から前記撮像領域までの距離を、前記カラーフィルタの透過波長毎の焦点距離に合わせている。 Further preferably, a distance from the object-side lens surface of the sub-lens in the multi-lens camera device of the present invention to the imaging region, tailored to the focal length of each transmission wavelength of said color filter.

さらに、好ましくは、本発明の多眼カメラ装置において、前記焦点距離または前記焦点面の位置は、前記レンズアレイのサブレンズ毎の厚みによって設定されている。 Further, preferably, in the multi-lens camera device of the present invention, the position of the focal length or the focal plane is set by the thickness of each sub-lens of the lens array.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの厚みを調整するのは、該サブレンズの被写体側のレンズ面および、該サブレンズの撮像領域側のレンズ面のうちの少なくともいずれかである。 Further, preferably, to adjust the thickness of the sub-lens in the multi-lens camera device of the present invention, a lens surface on the object side of the sub-lens and at least one of the lens surfaces of the imaging region side of the sub-lens it is.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの積層枚数が2枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズおよび第2レンズの少なくともいずれかである。 Further, preferably, when the number of stacked sub-lens in the multi-lens camera device of the present invention is two, the focal length or lens to adjust the position of the focal plane, at least one of the first lens and the second lens it is.

さらに、好ましくは、本発明の多眼カメラ装置におけるサブレンズの積層枚数が3枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズ、第2レンズおよび第3レンズのうちの少なくともいずれかである。 Still preferably, if the three is the number of stacked sub-lens in the multi-lens camera device of the present invention, the focal length or lens to adjust the position of the focal plane, the first lens, second lens and the third lens at least either of the.

さらに、好ましくは、本発明の多眼カメラ装置における焦点距離または前記焦点面の位置は、前記レンズアレイと前記撮像領域との間に透明平行板を備える場合に、該透明平行板の厚さにより調整されている。 Further, preferably, the position of the focal distance or the focal plane in the multi-lens camera device of the present invention, when provided with a transparent parallel plate between the lens array and the imaging region, the thickness of the transparent parallel plate It has been adjusted.

さらに、好ましくは、本発明の多眼カメラ装置におけるカラーフィルタはそれぞれ、R(赤)、G(緑)およびB(青)の各色をそれぞれ有している。 Further, preferably, each have color filters in the multi-lens camera device of the present invention, R (red), G (green) and B of the respective colors (blue), respectively.

さらに、好ましくは、本発明の多眼カメラ装置におけるカラーフィルタはそれぞれ、C(水色)、M(赤紫)、Y(黄色)およびG(緑)の各色をそれぞれ有している。 Further, preferably, each have color filters in the multi-lens camera device of the present invention, C (light blue), M (magenta), Y (yellow) and G each color (green), respectively.

さらに、好ましくは、本発明の多眼カメラ装置における複数の撮像領域は、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域から均等に分割されている。 Further, preferably, the plurality of imaging regions in the multi-lens camera device of the present invention, a plurality of light receiving unit that captures and photoelectric conversion of incident light from a subject are equally divided from the imaging area provided.

さらに、好ましくは、本発明の多眼カメラ装置において、基板上に、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域が複数設けられている。 Further, preferably, in the multi-lens camera device of the present invention, on a substrate, a plurality of imaging regions in which the light receiving portion is provided for imaging by photoelectric conversion of incident light from an object is provided with a plurality.

さらに、好ましくは、本発明の多眼カメラ装置における撮像領域は4つあり、これと同数の前記サブレンズおよび前記カラーフィルタを有している。 Further, preferably, the imaging area in the multi-lens camera device of the present invention there are four, have the same number of the sub-lens and the color filter and which.

本発明の電子情報機器は、本発明の上記多眼カメラ装置を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。 An electronic information device of the present invention, the multi-lens camera device of the present invention as an image input device are those used in the imaging unit, the object can be achieved.

上記構成により、以下、本発明の作用を説明する。 With the above configuration, hereinafter, the operation of the present invention.

カメラとして要求される画角が同一の場合、撮像領域の対角長によりレンズの光学長が制約を受ける。 If angle required as the camera is the same, the optical length of the lens is limited by the diagonal length of the imaging region. このため、レンズの光学長(焦点距離)を短くするために、撮像領域を分割し、その分割エリア毎にレンズを備えれば、分割した比率に応じてレンズの光学長(焦点距離)の短縮化が可能となってカメラの薄型化が可能となる。 Therefore, in order to shorten the optical length of the lens (focal length), shortening of dividing the imaging region, if Sonaere the lens for each of the divided areas, the optical length of the lens in accordance with the divided ratio (focal length) it is possible the camera thinner becomes the enabling is.

本発明においては、レンズアレイのサブレンズはそれぞれ、組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が固体撮像素子の各撮像領域上で同一となるように構成されている。 In the present invention, the sub-lenses of the lens array, respectively, the position of the focal plane of the selectively transmitted by wavelength light by the color filter of each color is configured to be the same on each imaging area of ​​the solid-state imaging device to be combined ing.

これによって、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔(焦点距離)を最適化することが可能となる。 This makes it possible to optimize the distance interval (focal length) between the lens area and the imaging area in accordance with the lens characteristics for each individual color filters. これによって、カラーフィルタの色毎に、その色に応じた焦点距離の正確なレンズを作ることができて、色収差をなくして高解像度とすることが可能となる。 Thus, for each color of the color filter, and can make a precise lens having a focal length corresponding to the colors, it is possible to eliminate the chromatic aberration and high resolution. したがって、高解像度と薄型化が両立した多眼カメラ装置を実現可能となる。 Therefore, it is possible to realize a multi-eye camera system high resolution and thin is compatible.

以上により、本発明によれば、固体撮像素子が複数の撮像領域を有しており、各撮像領域のそれぞれに対応するように複数のサブレンズを備えると、全撮像領域に対応した一つのレンズに比べて複数のサブレンズの方がその焦点距離が短縮化されてカメラの薄型化を実現することができる。 By the above, according to the present invention, the solid-state imaging device has a plurality of imaging regions, the a plurality of sub-lenses so as to correspond to respective imaging regions, one lens which corresponds to the whole image capturing area it is it is to shorten the focal length of the plurality of sub-lenses can be realized camera thinner compared to. また、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔(焦点距離)を最適化するため、色収差をなくして高解像度とすることができる。 Moreover, to optimize the distance interval (focal length) between the lens area and the imaging area in accordance with the lens characteristics for each individual color filters, it may be a high resolution by eliminating the chromatic aberration. これによって、高解像度と薄型化の両立をした多眼カメラ装置を低コストで実現できる。 Thus, the multi-eye camera apparatus both high resolution and thin can be realized at a low cost.

本発明の実施形態1における多眼カメラ装置の要部構成例を示す縦断面図である。 It is a longitudinal sectional view showing a main configuration example of a multi-lens camera apparatus according to the first embodiment of the present invention. 図1の多眼カメラ装置の概略構成例を示す斜視図である。 It is a perspective view showing a schematic configuration example of a multi-lens camera device of FIG. 図1の撮像素子基板の概略構成例を示す斜視図である。 It is a perspective view showing a schematic configuration example of the imaging device substrate of Figure 1. 本発明の実施形態2として、本発明の実施形態1の4眼式カメラ装置1を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。 As Embodiment 2 of the present invention, is a block diagram showing a schematic configuration example of an electronic information device using four-eye type camera apparatus 1 to the imaging unit according to the first embodiment of the present invention. 特許文献1、2に開示されている従来の多眼カメラ装置の概略構成例を示す斜視図である。 It is a perspective view showing a schematic configuration example of a conventional multi-eye camera apparatus disclosed in Patent Documents 1 and 2. 図1の従来の多眼カメラ装置における撮像素子基板の概略構成例を示す斜視図である。 It is a perspective view showing a schematic configuration example of the imaging device substrate in the conventional multi-eye camera apparatus of FIG. 図1の従来の従来の多眼カメラ装置における要部構成例を示す縦断面図である。 It is a longitudinal sectional view showing a main configuration example of a conventional prior art multi-view camera system of Figure 1.

以下に、本発明の多眼カメラ装置の実施形態1として、4眼式カメラ装置の場合を説明し、この4眼式カメラ装置を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態2について、図面を参照しながら詳細に説明する。 Hereinafter, as an embodiment 1 of a multi-lens camera device of the present invention, 4 described the case of lens camera device, the 4-lens camera device as an image input device such as a camera-equipped mobile phone device used in the image pickup unit the embodiment 2 of the electronic information device, will be described in detail with reference to the drawings.

(実施形態1) (Embodiment 1)
図1は、本発明の実施形態1における多眼カメラ装置の要部構成例を示す縦断面図である。 Figure 1 is a longitudinal sectional view showing a main configuration example of a multi-lens camera apparatus according to the first embodiment of the present invention. 図2は、図1の多眼カメラ装置の概略構成例を示す斜視図である。 Figure 2 is a perspective view showing a schematic configuration example of a multi-lens camera device of FIG. 図3は、図1の撮像素子基板の概略構成例を示す斜視図である。 Figure 3 is a perspective view showing a schematic configuration example of the imaging device substrate of Figure 1.

図1〜図3において、多眼カメラ装置としての4眼式カメラ装置1は、カメラモジュールであり、入射光絞り用の開口部が等間隔に4つ形成された開口絞りアレイ2と、4つの開口部にそれぞれ対応してレンズ領域が形成されたレンズアレイ3と、透明ガラス基板で構成される平面板4と、4つの開口部および4つのレンズ領域にそれぞれ対応して配置された各撮像領域の周囲に配設された遮光マスク5と、4つの撮像領域に分割して配設された撮像素子基板6とを有している。 1 to 3, 4-lens camera device 1 as a multi-lens camera system, a camera module, the opening of the throttle incident light and the aperture stop array 2, which is 4 formed at equal intervals, four a lens array 3 lens region is formed in correspondence to the opening, a flat plate 4 formed of a transparent glass substrate, each of the four imaging regions arranged in correspondence with the openings and four lens region a light-shielding mask 5 disposed around the, and an image pickup device substrate 6 disposed divided into four imaging regions.

レンズアレイ3は、被写体からの入射光を光電変換して撮像する4つのサブカメラ毎にレンズ領域としてのサブレンズ3a、3b、3cおよび3dが互いに等間隔に、平面視で仮想正方形の4角位置にそれぞれ配置されている。 Lens array 3, sub-lens 3a as four lenses area for each sub-camera for imaging by photoelectric conversion of incident light from a subject, 3b, at regular intervals 3c and 3d each other, the four corners of the imaginary square in a plan view They are disposed at positions.

撮像素子基板6は、4つの撮像領域6a、6b、6cおよび6dに均等に分割されている。 Imaging device substrate 6, four imaging areas 6a, 6b, are evenly divided 6c and 6d. 分割撮像領域6a、6b、6cおよび6dのそれぞれ毎にレンズを備えれば、分割した比率に応じてレンズの光学長(焦点距離)の短縮化が可能となってカメラ装置の薄型化が可能となる。 Division imaging regions 6a, 6b, if Sonaere the 6c and 6d lens for each, can be made thinner camera apparatus shortening becomes possible in optical length of the lens in accordance with the divided ratio (focal length) and Become. これによって、高解像度と薄型化が両立した4眼式カメラ装置1を実現することができる。 Thus, high-resolution and thinning can be achieved 4-lens camera device 1 having both.

撮像素子基板6の各撮像領域6a、6b、6cおよび6dの上方にそれぞれ単色のカラーフィルタ(図示せず)を有している。 Each imaging region 6a of the image pickup device substrate 6, 6b, respectively above the 6c and 6d have a monochromatic color filter (not shown). 例えば撮像領域6aおよび6bはG(緑)、撮像領域6cおよび6dはこの順にR(赤)、B(青)の単色のカラーフィルタが配置されている。 For example imaging areas 6a and 6b are G (green), the imaging region 6c and 6d in that order R (red), monochromatic color filters of B (blue) are arranged. サブレンズ3a、3b、3cおよび3dのそれぞれ毎に集光された入射光は、それぞれが各色のカラーフィルタによって、各色の特定波長毎に選択的に透過され、各サブレンズ3a、3b、3cおよび3dのそれぞれの直下に存在する撮像素子基板6の分割撮像領域6a、6b、6cおよび6d上にそれぞれ結像されるようになっている。 Sub-lens 3a, 3b, 3c and incident light collected for each. 3d, by the color filter of each color respectively, are selectively transmitted to each specific wavelength of each color, each sub-lens 3a, 3b, 3c and division imaging area 6a of the imaging device substrate 6 present on each of the right under the 3d, 6b, respectively on 6c and 6d so as to be imaged. 即ち、サブレンズ3aおよび3bはG(緑)の入射光を分割撮像領域6a、6bに集光して結像し、サブレンズ3cはR(赤)、サブレンズ3dはB(青)の各入射光を分割撮像領域6c、6dに集光して結像する。 That is, the sub lenses 3a and 3b are imaged condenses the incident light split imaging areas 6a, and 6b of the G (green), each sub-lens 3c is R (red), sub-lens 3d is B (blue) the incident light division imaging region 6c, to form an image by focusing on 6d.

撮像素子基板6の各撮像領域6a、6b、6cおよび6dの周囲にそれぞれ配置された遮光マスク5により、4つの撮像領域6a、6b、6cおよび6dが光学的に隔離されて、遮光マスク5によって隣接する各色のサブカメラへの迷光が遮断されて画質を向上させることができる。 Each imaging region 6a of the image pickup device substrate 6, 6b, the light-shielding mask 5 disposed respectively around the 6c and 6d, 4 one imaging areas 6a, 6b, 6c and 6d is optically isolated by light-shielding mask 5 it can be cut off stray light for each color sub-camera adjacent to improved image quality.

ここで、本発明の特徴構成について詳細に説明する。 It will now be described in detail characterizing feature of the present invention.

レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、これに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が撮像素子基板6の各撮像領域6a、6b、6cおよび6d上でそれぞれ同一となるように構成されている。 Lens array 3 sub lenses 3a, 3b, 3c and each 3d, each imaging region 6a positions imaging device substrate 6 of the focal plane of the selectively transmitted by wavelength light by the color filter of each color to be combined thereto, 6b It is configured to respectively the same on 6c and 6d. より具体的には、各サブレンズ3aおよび3bの第1レンズ面に対して、サブレンズ3cの第1レンズ面は高く(より被写体寄り)、サブレンズ3dの第1レンズ面は低く(より撮像領域寄り)なっている。 More specifically, the first lens surface of each sub-lenses 3a and 3b, the first lens surface of the sub-lens 3c is high (more subject closer), the first lens surface of the sub-lens 3d is low (more imaging and the region closer to) become.

この場合、レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、各サブレンズに対応した各色のカラーフィルタの波長特性に合わせたレンズ焦点距離を有している。 In this case, has sub-lens 3a of the lens array 3, 3b, respectively 3c and 3d, the lens focal length to suit the wavelength characteristics of the color filters corresponding to each sub-lens. 例えばサブレンズ3a、3b、3cおよび3dの被写体側レンズ面(上側レンズ面)から、対応する撮像素子基板6の撮像領域6a、6b、6cおよび6dのそれぞれまでの距離を、入射光が通過するカラーフィルタの波長毎のレンズ焦点距離に合わせて最適化している。 For example sub-lens 3a, 3b, 3c and 3d object side lens surface of the (upper lens surface), the imaging area 6a of the corresponding imaging element substrate 6, 6b, the distance to each of 6c and 6d, passes through the incident light It is optimized for the lens focal length for each wavelength of the color filter. このレンズ焦点距離は、レンズアレイ3のサブレンズ3a、3b、3cおよび3dのそれぞれ毎の厚みによって最適化かされている。 The lens focal length, the sub-lenses 3a of the lens array 3, 3b, are Bakasa optimized by each respective thicknesses of 3c and 3d. 図1の場合は、サブレンズ3aの厚みと、サブレンズ3cの厚みとの差が厚みtだけ高くなっている。 In the case of FIG. 1, the thickness of the sub-lens 3a, a difference between the thickness of the sub-lens 3c is higher by the thickness t.

各サブレンズ3a、3b、3cおよび3dのレンズ面(レンズ領域)の形状を同じくしてレンズ厚みで焦点面を位置調整する効果は、レンズアレイ3を製作する工法上も有利である。 Each sub-lens 3a, 3b, 3c and 3d likewise effectively to align the focal plane in the lens thickness of the shape of the lens surface (lens region) on method of manufacturing a lens array 3 is also advantageous. レンズアレイ3のレンズ面は、一つのマスタ型(雄型)を所定ピッチで順送りで転写し、アレイ金型(雌型)を製作し、成型を行う。 Lens surface of the lens array 3, one master-type (male type) is transferred by the forward at a predetermined pitch, to prepare a array mold (female mold), and molded. なお、例えばマスタ型(雄型)をアレイで製作することは通常困難である。 Incidentally, for example, be fabricated master mold a (male) in the array is usually difficult. 各サブレンズの面形状が異なる場合はこの工法でアレイ金型を製作することができない。 If the surface shape of each sub-lens is different it can not be fabricated array mold in this method.

このとき、各サブレンズ3a、3b、3cおよび3dのレンズ面形状と同じ形状のマスタ型(雄型)を用いて、各サブレンズ3a、3b、3cおよび3dのレンズ厚さの違いをどのようにして作製するのかについては、マスタ型(雄型)を用いて透明レンズ樹脂材料にレンズ面形状を作るときのストローク寸法を制御すればよい。 In this case, each sub-lens 3a, 3b, with 3c and 3d lens surface shape as the same shape master type of the (male), how each sub-lens 3a, 3b, the difference in 3c and 3d lens thickness to about how to make and may be controlled stroke size when making the lens surface shape on the transparent lens resin material using the master mold (male mold).

以上により、本実施形態1によれば、固体撮像素子としての撮像素子基板6が4つの撮像領域6a、6b、6cおよび6dを有しており、各撮像領域6a、6b、6cおよび6dのそれぞれに対応するように各サブレンズ3a、3b、3cおよび3dを備えると、全撮像領域に対応した一つの大きなレンズに比べて複数のサブレンズの方がその焦点距離が短縮化されてカメラの薄型化を実現することができる。 Thus, according to the present embodiment 1, the imaging device substrate 6 as a solid state imaging device has four imaging areas 6a, 6b, has 6c and 6d, the imaging areas 6a, 6b, each of 6c and 6d each sub-lens 3a so as to correspond to, 3b, when provided with 3c and 3d, towards a plurality of sub lenses compared to one large lens corresponding to all the imaging regions is the focal length is shortened by camera thin it is possible to realize a reduction. また、レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、これに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が撮像素子基板6の各撮像領域6a、6b、6cおよび6d上で同一となるように構成されている。 The lens array 3 sub lenses 3a, 3b, 3c and each 3d, each imaging region 6a positions imaging device substrate 6 of the focal plane of the selectively transmitted by wavelength light by the color filter of each color to be combined to , 6b, and is configured to be the same on 6c and 6d. これによって、レンズ特性を個々の各色のカラーフィルタに合わせてサブレンズ3a、3b、3cおよび3dと、これに対応する撮像領域6a、6b、6cおよび6dとの距離間隔(焦点距離)を最適化することができて、カラーフィルタの色毎に、その色に応じた焦点距離の正確なレンズを作ることができて、色収差をなくして高解像度とすることができる。 Optimization Thus, the sub-lens 3a, 3b, 3c and 3d together lens characteristics to the individual color filters of the imaging region 6a corresponding thereto, 6b, distance interval between 6c and 6d (the focal length) and it can be, for each color of the color filter, and can make a precise lens having a focal length corresponding to the colors, it is possible to eliminate the chromatic aberration and high resolution. したがって、高解像度と薄型化が両立した4眼式カメラ装置1を実現することができる。 Therefore, it is possible to realize a 4-lens camera device 1 high resolution and thin is compatible.

本実施形態1の効果は、薄型化に限るわけでなく、撮像素子基板6への光線入射角度を小さくする(テレセントリック性)必要があるときにも有効である。 Effects of the first embodiment is not necessarily limited to thinning, it is also effective when it is necessary to reduce the incident angle of the light to an imaging element board 6 (telecentricity).

なお、本発明の具体的な実施形態1を示したが、本発明は、先に示した上記実施形態1の具体的形状および数値などに限定されるものではなく、所望の光学特性を得るために、各パラメータを適宜変更することができることは言うまでもないことである。 Incidentally, although the specific embodiment 1 of the present invention, the present invention is not limited like the specific shape and numerical values ​​of the first embodiment shown above, to obtain the desired optical properties in, it is needless to say that it is possible to change the parameters as appropriate.

なお、本実施形態1では、レンズアレイ3のサブレンズ3a、3b、3cおよび3dの厚みを調整するのは、サブレンズ3a、3b、3cおよび3dの被写体側のレンズ面(上側のレンズ面)で行ったが、これに限らず、サブレンズ3a、3b、3cおよび3dの撮像領域側のレンズ面(下側のレンズ面)で、サブレンズ3a、3b、3cおよび3dの厚みを調整してもよい。 In Embodiment 1, to adjust the sub-lenses 3a of the lens array 3, 3b, the thickness of 3c and 3d are sub-lens 3a, 3b, 3c and 3d object side lens surface of the (upper lens surface) was performed by, not limited thereto, the sub-lenses 3a, 3b, the lens surfaces of 3c and 3d imaging area side (lens surface of the lower), sub-lens 3a, 3b, by adjusting the thickness of 3c and 3d it may be. 要するに、サブレンズ3a、3b、3cおよび3dの厚みを調整するのは、サブレンズの被写体側のレンズ面であっても、撮像素子基板6側のレンズ面であってもよい。 In short, to adjust the sub-lenses 3a, 3b, the thickness of 3c and 3d may be a lens surface on the object side of the sub lens may be a lens surface of the imaging device substrate 6 side.

また、本実施形態1では、特に説明しなかったが、サブレンズ3a、3b、3cおよび3dの積層枚数が2枚の場合にも、焦点面の位置を調整するサブレンズ3a、3b、3cおよび3dは、第1レンズおよび第2レンズのうちの少なくともいずれかであればよい。 In Embodiment 1, although not particularly described, the sub-lenses 3a, 3b, even when the number of stacked 3c and 3d are two, sub-lens 3a for adjusting the position of the focal plane, 3b, 3c and 3d is at least may be at one of the first and second lenses. また、本実施形態1では、特に説明しなかったが、サブレンズ3a、3b、3cおよび3dの積層枚数が3枚の場合にも、焦点面の位置を調整するサブレンズ3a、3b、3cおよび3dは、第1レンズ、第2レンズおよび第3レンズのうちの少なくともいずれかであればよい。 In Embodiment 1, although not particularly described, the sub-lenses 3a, 3b, even when the number of stacked 3c and 3d is three, the sub-lenses 3a to adjust the position of the focal plane, 3b, 3c and 3d, the first lens, at least may be at one of the second lens and the third lens.

さらに、本実施形態1では、特に説明しなかったが、サブレンズ3a、3b、3cおよび3dのそれぞれから、撮像素子基板6の撮像領域6a、6b、6cおよび6dのそれぞれまでのレンズ焦点距離は、レンズアレイ3と撮像素子基板6との間に設けられた透明ガラス基板などの平行板4の厚さにより全体的に調整することも可能とである。 Furthermore, in Embodiment 1, although not particularly described, the sub-lenses 3a, 3b, from each of 3c and 3d, imaging area 6a of the image pickup device substrate 6, 6b, lens focal distance to each 6c and 6d are it is also possible and the overall adjusted by the thickness of the lens array 3 and the image pickup element parallel plate 4 such as a transparent glass substrate provided between the substrate 6. 即ち、レンズアレイ3と撮像素子基板6の間に撮像素子保護ガラスなどの平行板4を備える場合、上記焦点面の位置を調整するものが平行板4であってもよい。 That is, if during the lens array 3 and the image pickup device substrate 6 comprises a parallel plate 4, such as the imaging element protective glass, which adjusts the position of the focal plane may be parallel plate 4.

さらに、本実施形態1では、特に説明しなかったが、撮像素子基板6に設けたカラーフィルタの各色は、R(赤)、G(緑)およびB(青)の各色に限るものではなく、例えばC(水色)、M(赤紫)Y、(黄色)およびG(緑)の各色としてもよい。 Furthermore, in Embodiment 1, although not specifically described, each color of the color filter provided in the imaging device substrate 6, R (red), not limited to the respective colors of G (green) and B (blue), for example C (light blue), M (magenta) Y, may be the color (yellow) and G (green).

さらに、本実施形態1では、複数の撮像領域を持つ撮像素子基板6として、一つの撮像素子基板6の撮像領域を複数(ここでは4つ)に分割した場合について説明したが、これに限らず、例えば一枚の基板上に複数の撮像素子(複数の撮像領域)を実装しており、各サブレンズに対して個々の撮像素子(個々の撮像領域)との間隔(焦点距離)が調整されるようにすることができる。 Furthermore, in Embodiment 1, as the image pickup device substrate 6 having a plurality of imaging regions, but (in this case four) of one of the imaging region of the imaging element substrate 6 a plurality been described as being divided into is not limited thereto , for example, mounting a plurality of imaging devices (the plurality of imaging regions) on a single substrate, the distance between the individual imaging elements for each sub-lens (individual imaging area) (focal length) is adjusted it is possible to so that. この場合も本発明は有効である。 Again the present invention is effective. 即ち、撮像素子基板6の複数の撮像領域(ここでは4つの撮像領域)として、基板上に、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域が複数設けられていてもよい。 That is, a plurality of the imaging region of the imaging element substrate 6 (imaging area four in this case) on the substrate, a plurality a plurality of imaging regions in which the light receiving portion is provided for imaging by photoelectric conversion of incident light from a subject it may be provided.

なお、上記実施形態1では、4眼式カメラ装置1を用いて説明したが、4眼式カメラ装置1に限るものではなく、2眼式でも3眼式でもよく、5眼式以上のカメラ装置であってもよい。 In the above embodiment 1 has been described with reference to 4-lens camera device 1 is not limited to 4-lens camera device 1 may be three-eye type in binocular, 5-lens or camera devices it may be.

(実施形態2) (Embodiment 2)
図4は、本発明の実施形態2として、本発明の実施形態1の4眼式カメラ装置1を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。 Figure 4 is a second embodiment of the present invention, is a block diagram showing a schematic configuration example of an electronic information device using four-eye type camera apparatus 1 to the imaging unit according to the first embodiment of the present invention.

図4において、本実施形態2の電子情報機器90は、上記実施形態1の4眼式カメラ装置1からの撮像信号を所定の信号処理をしてカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示手段93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信手段94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなど 4, the electronic information device 90 of the present embodiment 2 includes a solid-state imaging device 91 to obtain a color image signal by a predetermined signal processing image pickup signals from the 4-lens camera device 1 of the first embodiment, this a memory unit 92 such as a recording medium which allows data recording after a predetermined signal process is performed for recording a color image signal from the solid-state imaging device 91, a predetermined signal for displaying a color image signal from the solid-state imaging device 91 a display means 93 such as a liquid crystal display device capable of displaying on a display screen such as a liquid crystal display screen after processing, can communicate treatment after a predetermined signal processing for communication color image signal from the solid-state imaging device 91 and communication means 94 such as a transceiver for, the solid-state imaging a color image signal from the device 91 after a predetermined printing signal processing for printing the printing process can to a printer, etc. 画像出力手段95とを有している。 And an image output unit 95. なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示手段93と、通信手段94と、プリンタなどの画像出力手段95とのうちの少なくともいずれかを有していてもよい。 As the electronic information device 90 is not limited thereto, in addition to the solid-state imaging device 91, a memory unit 92, a display unit 93, a communication unit 94, at least one of the image output means 95 such as a printer or it may have.

この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付きパーソナルコンピュータ、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。 As the electronic information device 90, for example a digital video camera as described above, a digital camera or a digital still camera, a surveillance camera, intercom camera, such as an onboard camera and a television phone camera, such as vehicle rear monitoring camera an image input camera, a scanner device, a facsimile machine, a personal computer with a camera, an electronic apparatus having an image input device such as a mobile telephone device and a portable terminal device with a camera (PDA) can be considered.

したがって、本実施形態2によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力手段95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。 Therefore, according to the second embodiment, the solid based on the color image signal from the imaging device 91, which or better displayed on a display screen, better printed out by the image output unit 95 to a sheet of paper (printing) or, communicated finely via a wire or a radio as communication data, which look and good store by performing predetermined data compression processing in the memory unit 92, favorably performed that various data processing can.

なお、本実施形態1では、4つの撮像領域6a、6b、6cおよび6dを持つ撮像素子基板6と、撮像領域6a、6b、6cおよび6dのそれぞれに配設された所定色配列のカラーフィルタ(図示せず)と、撮像領域6a、6b、6cおよび6dのそれぞれに対応して各サブレンズ3a、3b、3cおよび3dが設けられたレンズアレイ3とを備えた4眼式カメラ装置1において、レンズアレイ3のサブレンズ3a、3b、3cおよび3dはそれぞれ、各サブレンズ3a、3b、3cおよび3dのそれぞれに組み合わされる各色のカラーフィルタ(図示せず)によって選択的に透過される波長光線の焦点面の位置が撮像素子基板6の各撮像領域6a、6b、6cおよび6d上で同一となるように構成されている場合について説明したが、これ In Embodiment 1, the four imaging areas 6a, 6b, 6c and 6d and the image pickup device substrate 6 having the imaging region 6a, 6b, color filters 6c and 6d predetermined color arrangement disposed in each of the ( and not shown), an imaging region 6a, 6b, 6c and respectively corresponding to each sub-lens 3a of 6d, 3b, the 4-lens camera device 1 and a lens array 3 3c and 3d are provided, sub-lens 3a of the lens array 3, 3b, respectively 3c and 3d, each sub-lens 3a, 3b, each color filter being combined in each of 3c and 3d (not shown) by the selectively transmitted by wavelength light each imaging region 6a of the position of the focal plane imaging device substrate 6, 6b, has been described that is configured to be the same on 6c and 6d, which 限らず、レンズアレイ3の少なくとも2つのサブレンズの撮像領域に対する焦点距離が互いに異なっている場合にも、カラーフィルタの色に応じた焦点距離の正確なサブレンズを作ることができて、色収差をなくして高解像度とすることができる。 Not only, when the focal length are different from each other with respect to the imaging area of ​​at least two sub-lenses of the lens array 3 is also able to make a correct sub-lens focal length corresponding to the color of the color filter, the chromatic aberration it can be eliminated by high resolution. したがって、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔を最適化して解像度を向上する本発明の目的を達成することができる。 Therefore, it is possible to lens characteristics by optimizing the distance interval between the individual lens regions and the imaging region in accordance with the color filter of each color to achieve the object of the present invention to improve the resolution.

以上のように、本発明の好ましい実施形態1、2を用いて本発明を例示してきたが、本発明は、この実施形態1、2に限定して解釈されるべきものではない。 As described above, although the present invention with reference to preferred embodiments 1 and 2 of the present invention has been illustrated, the present invention should not be interpreted solely based on the first and second embodiments. 本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。 The present invention is understood that should the scope only by the scope of the claims. 当業者は、本発明の具体的な好ましい実施形態1、2の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。 Those skilled in the art from the description of the detailed preferred embodiments 1 and 2 of the present invention, it is understood that it is possible to implement equivalent scope based on the description and common technical knowledge of the present invention. 本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 Patents cited herein, patent applications and publications, that the contents themselves should likewise its contents to that described in specifically herein incorporated by reference with respect to the specification It is understood.

本発明は、携帯電話装置などに内蔵するのに好適なレンズ全長が短い撮像レンズを持つ多眼カメラ装置および、この多眼カメラ装置を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、固体撮像素子が複数の撮像領域を有しており、各撮像領域のそれぞれに対応するように複数のサブレンズを備えると、全撮像領域に対応した一つのレンズに比べて複数のサブレンズの方がその焦点距離が短縮化されてカメラの薄型化を実現することができる。 The present invention is a portable telephone device camera array camera device and lens suitable overall length for built in such with a short imaging lens, for example, digital video cameras and digital using the multi-lens camera device to the imaging unit as an image input device digital cameras and the like still cameras, an image input camera, such as surveillance cameras, scanner, a facsimile machine, a television telephone apparatus, in the field of electronic information equipment such as camera-equipped cell phone device, the solid-state imaging device of the plurality of imaging regions has, when a plurality of sub-lenses so as to correspond to respective imaging regions, towards the plurality of sub-lenses as compared to a lens corresponding to all the imaging regions focal length is shortened it is possible to realize a camera thinner. また、レンズ特性を個々の各色のカラーフィルタに合わせてレンズ領域と撮像領域との距離間隔(焦点距離)を最適化するため、色収差をなくして高解像度とすることができる。 Moreover, to optimize the distance interval (focal length) between the lens area and the imaging area in accordance with the lens characteristics for each individual color filters, it may be a high resolution by eliminating the chromatic aberration. これによって、高解像度と薄型化の両立をした多眼カメラ装置を低コストで実現できる。 Thus, the multi-eye camera apparatus both high resolution and thin can be realized at a low cost. このようにして、本発明に係る多眼カメラ装置は、デジタルスチルカメラなどの撮像機器に好適に用いることができる。 In this manner, the multi-eye camera apparatus according to the present invention can be suitably used for an imaging device such as a digital still camera. また、携帯用途に適した小型の撮像機器に対して特に好適に用いることができる。 Moreover, it can be particularly suitably used with respect to small-sized image pickup device suitable for portable applications. 具体的には、携帯型情報端末や携帯電話装置などに搭載されるデジタルカメラなどを挙げることができる。 Specifically, mention may be made of a digital camera that is mounted on a portable information terminal or a mobile phone device.

1 4眼式カメラ装置(多眼カメラ装置) 1 4 lens camera device (a multi-lens camera system)
2 開口絞りアレイ 3 レンズアレイ 3a、3b、3c、3d サブレンズ 4 平面板 5 遮光マスク 6 撮像素子基板(固体撮像素子) 2 an aperture stop array 3 lens array 3a, 3b, 3c, 3d sub lens 4 flat plate 5 shading mask 6 imaging element substrate (solid-state imaging device)
6a、6b、6c、6d 分割撮像領域 7a サブレンズ6aにより結像される光線 7c サブレンズ6cにより結像される光線 90 電子情報機器 91 固体撮像装置 92 メモリ部 93 表示手段 94 通信手段 95 画像出力手段 6a, 6b, 6c, 6d divided imaging region 7a beam is imaged by the beam 7c sub lens 6c imaged by the sub-lens 6a 90 electronic information device 91 the solid-state imaging device 92 memory unit 93 display means 94 communication means 95 image output means

Claims (16)

  1. 複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、 A plurality of imaging regions, the color filter of each color arranged in the imaging each region, in the multi-eye camera system and the lens array are stacked to each sub lens corresponds to the imaging each area is provided,
    該レンズアレイの少なくとも2つのサブレンズの該撮像領域に対する焦点距離が互いに異なっている多眼カメラ装置。 Multiview camera apparatus focal length are different from each other with respect to the imaging area of ​​at least two sub-lenses of the lens array.
  2. 複数の撮像領域と、該撮像領域毎に配設された各色のカラーフィルタと、該撮像領域毎に対応して各サブレンズが設けられたレンズアレイとが積層された多眼カメラ装置において、 A plurality of imaging regions, the color filter of each color arranged in the imaging each region, in the multi-eye camera system and the lens array are stacked to each sub lens corresponds to the imaging each area is provided,
    該レンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が該撮像領域上で同一となるように構成されている多眼カメラ装置。 Each sub lens of the lens array, a multi-eye position of the focal plane of the wavelength light is selectively transmitted by the color filter of each color to be combined to the sub-lens is configured to be the same in the imaging region the camera device.
  3. 前記レンズアレイのサブレンズはそれぞれ、該サブレンズに組み合わされる各色のカラーフィルタによって選択的に透過される波長光線の焦点面の位置が前記撮像領域上で同一となるように構成されている請求項1に記載の多眼カメラ装置。 Each sub lens of the lens array, claim the position of the focal plane of the wavelength light is selectively transmitted by the color filter of each color to be combined to the sub-lens is configured to be the same on the imaging area multiview camera apparatus according to 1.
  4. 前記レンズアレイのサブレンズはそれぞれ、該サブレンズに対応したカラーフィルタの波長特性に合わせた焦点距離を有している請求項1または2に記載の多眼カメラ装置。 Each sub lens of the lens array, a multi-lens camera according to claim 1 or 2 has a focal length matching the wavelength characteristics of the color filters corresponding to the sub-lens.
  5. 前記サブレンズの被写体側レンズ面から前記撮像領域までの距離を、前記カラーフィルタの透過波長毎の焦点距離に合わせている請求項4に記載の多眼カメラ装置。 Wherein the distance from the object-side lens surface of the sub-lens to the imaging area, the multi-eye camera system of claim 4, in accordance with the focal length of each transmission wavelength of said color filter.
  6. 前記焦点距離または前記焦点面の位置は、前記レンズアレイのサブレンズ毎の厚みによって設定されている請求項1または2に記載の多眼カメラ装置。 The position of the focal distance or the focal plane, the multi-eye camera system according to claim 1 or 2 is set by the thickness of each sub-lens of the lens array.
  7. 前記サブレンズの厚みを調整するのは、該サブレンズの被写体側のレンズ面および、該サブレンズの撮像領域側のレンズ面のうちの少なくともいずれかである請求項6に記載の多眼カメラ装置。 To adjust the thickness of the sub-lens is a lens surface on the object side of the sub-lens and a multi-eye camera system according to claim 6 at least is one of a lens surface of the imaging region side of the sub-lens .
  8. 前記サブレンズの積層枚数が2枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズおよび第2レンズの少なくともいずれかである請求項1または2に記載の多眼カメラ装置。 Wherein when the number of stacked sub-lens is two, the focal length or lens to adjust the position of the focal plane, multiview according to claim 1 or 2 is at least one of the first lens and the second lens the camera device.
  9. 前記サブレンズの積層枚数が3枚の場合、前記焦点距離または前記焦点面の位置を調整するレンズは、第1レンズ、第2レンズおよび第3レンズのうちの少なくともいずれかである請求項1または2に記載の多眼カメラ装置。 Wherein when the number of stacked sub-lens is a three, the focal length or lens to adjust the position of the focal plane, the first lens, according to claim 1 or at least one of the second lens and the third lens multiple cameras according to 2.
  10. 前記焦点距離または前記焦点面の位置は、前記レンズアレイと前記撮像領域との間に透明平行板を備える場合に、該透明平行板の厚さにより調整されている請求項1または2に記載の多眼カメラ装置。 The position of the focal length or the focal plane, when said lens array and comprises a transparent parallel plate between the imaging area, according to claim 1 or 2 is adjusted by the thickness of the transparent parallel plate multi-eye camera device.
  11. 前記カラーフィルタはそれぞれ、R(赤)、G(緑)およびB(青)の各色をそれぞれ有している請求項1または2に記載の多眼カメラ装置。 Wherein each color filter, R (red), G (green) and the multi-lens camera according to claim 1 or 2 colors to have respective B (blue).
  12. 前記カラーフィルタはそれぞれ、C(水色)、M(赤紫)、Y(黄色)およびG(緑)の各色をそれぞれ有している請求項1または2に記載の多眼カメラ装置。 Each said color filter is C (light blue), M (magenta), Y (yellow) and G (green) multiview camera apparatus according to claim 1 or 2 colors to have each.
  13. 前記複数の撮像領域は、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域から均等に分割されている請求項1または2に記載の多眼カメラ装置。 The plurality of imaging regions, a multi-lens camera according to claim 1 or 2 a plurality of light receiving portions are equally divided from the imaging area provided for imaging by photoelectric conversion of incident light from a subject.
  14. 基板上に、被写体からの入射光を光電変換して撮像する複数の受光部が設けられた撮像領域が複数設けられている請求項1または2に記載の多眼カメラ装置。 On a substrate, the multi-eye camera system according to claim 1 or 2 a plurality of light receiving portions is provided with a plurality imaging area provided for imaging by photoelectric conversion of incident light from a subject.
  15. 前記撮像領域は4つあり、これと同数の前記サブレンズおよび前記カラーフィルタを有している請求項1に記載の多眼カメラ装置。 The imaging region there are four, multiple lens camera apparatus according to claim 1 which has the same number of the sub-lens and the color filter and which.
  16. 請求項1〜15のいずれかに記載の多眼カメラ装置を画像入力デバイスとして撮像部に用いた電子情報機器。 Electronic information device using the imaging unit the multi-eye camera apparatus according to any one of claims 1 to 15 as an image input device.
JP2009263416A 2009-11-18 2009-11-18 Multi-eye camera device and an electronic information device Active JP5399215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009263416A JP5399215B2 (en) 2009-11-18 2009-11-18 Multi-eye camera device and an electronic information device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009263416A JP5399215B2 (en) 2009-11-18 2009-11-18 Multi-eye camera device and an electronic information device

Publications (2)

Publication Number Publication Date
JP2011109484A true JP2011109484A (en) 2011-06-02
JP5399215B2 JP5399215B2 (en) 2014-01-29

Family

ID=44232472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009263416A Active JP5399215B2 (en) 2009-11-18 2009-11-18 Multi-eye camera device and an electronic information device

Country Status (1)

Country Link
JP (1) JP5399215B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057619A1 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
CN102854549A (en) * 2011-07-01 2013-01-02 奇景光电股份有限公司 Wafer-level lens module and wafer-level multi-lens photo-sensing module and manufacturing method thereof
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US8692893B2 (en) 2011-05-11 2014-04-08 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US8804255B2 (en) 2011-06-28 2014-08-12 Pelican Imaging Corporation Optical arrangements for use with an array camera
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078212A (en) * 1999-06-30 2001-03-23 Canon Inc Image pickup device
JP2006246193A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078212A (en) * 1999-06-30 2001-03-23 Canon Inc Image pickup device
JP2006246193A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Image pickup device

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041823B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Systems and methods for performing post capture refocus using images captured by camera arrays
US9060142B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including heterogeneous optics
US9060124B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images using non-monolithic camera arrays
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9055233B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using a set of images containing a baseline image
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9094661B2 (en) 2008-05-20 2015-07-28 Pelican Imaging Corporation Systems and methods for generating depth maps using a set of images containing a baseline image
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9049381B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for normalizing image data captured by camera arrays
US8885059B1 (en) 2008-05-20 2014-11-11 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by camera arrays
US8896719B1 (en) 2008-05-20 2014-11-25 Pelican Imaging Corporation Systems and methods for parallax measurement using camera arrays incorporating 3 x 3 camera configurations
US8902321B2 (en) 2008-05-20 2014-12-02 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9049367B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing higher resolution images using images captured by camera arrays
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9049391B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of near-IR images including occlusions using camera arrays incorporating near-IR light sources
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9049411B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Camera arrays incorporating 3×3 imager configurations
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9060120B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Systems and methods for generating depth maps using images captured by camera arrays
US8861089B2 (en) 2009-11-20 2014-10-14 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US8514491B2 (en) 2009-11-20 2013-08-20 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US8928793B2 (en) 2010-05-12 2015-01-06 Pelican Imaging Corporation Imager array interfaces
US9681057B2 (en) 2010-10-24 2017-06-13 Linx Computational Imaging Ltd. Exposure timing manipulation in a multi-lens camera
US9654696B2 (en) 2010-10-24 2017-05-16 LinX Computation Imaging Ltd. Spatially differentiated luminance in a multi-lens camera
US9615030B2 (en) 2010-10-24 2017-04-04 Linx Computational Imaging Ltd. Luminance source selection in a multi-lens camera
US9025077B2 (en) 2010-10-24 2015-05-05 Linx Computational Imaging Ltd. Geometrically distorted luminance in a multi-lens camera
US9413984B2 (en) 2010-10-24 2016-08-09 Linx Computational Imaging Ltd. Luminance source selection in a multi-lens camera
WO2012057622A1 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
WO2012057620A2 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
US9578257B2 (en) 2010-10-24 2017-02-21 Linx Computational Imaging Ltd. Geometrically distorted luminance in a multi-lens camera
WO2012057619A1 (en) 2010-10-24 2012-05-03 Ziv Attar System and method for imaging using multi aperture camera
US9361662B2 (en) 2010-12-14 2016-06-07 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US9041824B2 (en) 2010-12-14 2015-05-26 Pelican Imaging Corporation Systems and methods for dynamic refocusing of high resolution images generated using images captured by a plurality of imagers
US9047684B2 (en) 2010-12-14 2015-06-02 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using a set of geometrically registered images
US8878950B2 (en) 2010-12-14 2014-11-04 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using super-resolution processes
US8692893B2 (en) 2011-05-11 2014-04-08 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9197821B2 (en) 2011-05-11 2015-11-24 Pelican Imaging Corporation Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US8804255B2 (en) 2011-06-28 2014-08-12 Pelican Imaging Corporation Optical arrangements for use with an array camera
CN102854549A (en) * 2011-07-01 2013-01-02 奇景光电股份有限公司 Wafer-level lens module and wafer-level multi-lens photo-sensing module and manufacturing method thereof
CN102854549B (en) * 2011-07-01 2015-03-04 奇景光电股份有限公司 Wafer-level lens module and wafer-level multi-lens photo-sensing module and manufacturing method thereof
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9036931B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for decoding structured light field image files
US9042667B2 (en) 2011-09-28 2015-05-26 Pelican Imaging Corporation Systems and methods for decoding light field image files using a depth map
US8831367B2 (en) 2011-09-28 2014-09-09 Pelican Imaging Corporation Systems and methods for decoding light field image files
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9031335B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having depth and confidence maps
US9025895B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding refocusable light field image files
US9031343B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding light field image files having a depth map
US9129183B2 (en) 2011-09-28 2015-09-08 Pelican Imaging Corporation Systems and methods for encoding light field image files
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9036928B2 (en) 2011-09-28 2015-05-19 Pelican Imaging Corporation Systems and methods for encoding structured light field image files
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9031342B2 (en) 2011-09-28 2015-05-12 Pelican Imaging Corporation Systems and methods for encoding refocusable light field image files
US9025894B2 (en) 2011-09-28 2015-05-05 Pelican Imaging Corporation Systems and methods for decoding light field image files having depth and confidence maps
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9147254B2 (en) 2012-08-21 2015-09-29 Pelican Imaging Corporation Systems and methods for measuring depth in the presence of occlusions using a subset of images
US9123118B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation System and methods for measuring depth using an array camera employing a bayer filter
US9129377B2 (en) 2012-08-21 2015-09-08 Pelican Imaging Corporation Systems and methods for measuring depth based upon occlusion patterns in images
US9123117B2 (en) 2012-08-21 2015-09-01 Pelican Imaging Corporation Systems and methods for generating depth maps and corresponding confidence maps indicating depth estimation reliability
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9240049B2 (en) 2012-08-21 2016-01-19 Pelican Imaging Corporation Systems and methods for measuring depth using an array of independently controllable cameras
US8619082B1 (en) 2012-08-21 2013-12-31 Pelican Imaging Corporation Systems and methods for parallax detection and correction in images captured using array cameras that contain occlusions using subsets of images to perform depth estimation
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9143711B2 (en) 2012-11-13 2015-09-22 Pelican Imaging Corporation Systems and methods for array camera focal plane control
US9462164B2 (en) 2013-02-21 2016-10-04 Pelican Imaging Corporation Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US8866912B2 (en) 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US9124864B2 (en) 2013-03-10 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9124831B2 (en) 2013-03-13 2015-09-01 Pelican Imaging Corporation System and methods for calibration of an array camera
US9519972B2 (en) 2013-03-13 2016-12-13 Kip Peli P1 Lp Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9106784B2 (en) 2013-03-13 2015-08-11 Pelican Imaging Corporation Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9445003B1 (en) 2013-03-15 2016-09-13 Pelican Imaging Corporation Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9602805B2 (en) 2013-03-15 2017-03-21 Fotonation Cayman Limited Systems and methods for estimating depth using ad hoc stereo array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9264592B2 (en) 2013-11-07 2016-02-16 Pelican Imaging Corporation Array camera modules incorporating independently aligned lens stacks
US9426343B2 (en) 2013-11-07 2016-08-23 Pelican Imaging Corporation Array cameras incorporating independently aligned lens stacks
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9456134B2 (en) 2013-11-26 2016-09-27 Pelican Imaging Corporation Array camera configurations incorporating constituent array cameras and constituent cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras

Also Published As

Publication number Publication date
JP5399215B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US7262799B2 (en) Image sensing apparatus and its control method, control program, and storage medium
US7233359B2 (en) Image sensing apparatus having image signals generated from light between optical elements of an optical element array
US7916180B2 (en) Simultaneous multiple field of view digital cameras
CN101427372B (en) Apparatus for multiple camera devices and method of operating same
US7483065B2 (en) Multi-lens imaging systems and methods using optical filters having mosaic patterns
CN101779288B (en) Solid-state imaging device
US9578257B2 (en) Geometrically distorted luminance in a multi-lens camera
US9654709B2 (en) Solid-state imaging device and electronic camera
US8194169B2 (en) Compound eye camera module and method of producing the same
US20090190022A1 (en) Image pickup apparatus
CN101738840B (en) Image pickup apparatus
US8988566B2 (en) Lens array for partitioned image sensor having color filters
EP1560426A1 (en) Image input device
US6882368B1 (en) Image pickup apparatus
KR100875938B1 (en) Optics and the beam splitter
US8102459B2 (en) Image pickup apparatus
CN1174637C (en) Optoelectronic camera and method for image formatting in the same
US20070263114A1 (en) Ultra-thin digital imaging device of high resolution for mobile electronic devices and method of imaging
US8289409B2 (en) Compact camera module with lens array
JP5232118B2 (en) An imaging device and an electronic camera
CN100527788C (en)
US9521319B2 (en) Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US8436286B2 (en) Imager module optical focus and assembly method
CN101883215B (en) Imaging device
US20080246853A1 (en) Solid-state imaging device and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04