JP2011107107A - Shape processing method - Google Patents

Shape processing method Download PDF

Info

Publication number
JP2011107107A
JP2011107107A JP2009265675A JP2009265675A JP2011107107A JP 2011107107 A JP2011107107 A JP 2011107107A JP 2009265675 A JP2009265675 A JP 2009265675A JP 2009265675 A JP2009265675 A JP 2009265675A JP 2011107107 A JP2011107107 A JP 2011107107A
Authority
JP
Japan
Prior art keywords
machining
processing
amount
point
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265675A
Other languages
Japanese (ja)
Other versions
JP5511328B2 (en
Inventor
Yoichi Fukumiya
洋一 福宮
Yasushi Kamaike
康 蒲池
Koji Kitani
耕治 木谷
Tetsuo Saito
哲郎 齊藤
Yasuyuki Suzuki
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009265675A priority Critical patent/JP5511328B2/en
Publication of JP2011107107A publication Critical patent/JP2011107107A/en
Application granted granted Critical
Publication of JP5511328B2 publication Critical patent/JP5511328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape processing method capable of processing of highly precise at high speed, even when correlation is not defined uniquely between processing time and processing amount by means of local processing tool. <P>SOLUTION: By measuring sequentially the processing amount by means of local processing tool at each processing point P<SB>i</SB>during the period of processing and by estimating the temporal change of the processing amount, the processing amount V<SB>i, i+1, i</SB>and V<SB>i, i+1, i+1</SB>processed during the time of moving between the processing points are calculated. When the sum of the processing amount during the time of moving derived from such a calculation and the processing amount V<SB>i</SB>at the present processing point become more than the requested processing amount V<SB>i, f</SB>at the present processing point P<SB>i</SB>, movement of local processing tool to a next processing point P<SB>i+1</SB>is started. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被加工物の面積よりも単位加工面積が小さい局所加工ツールを用いて形状加工を行う形状加工方法に関するものである。   The present invention relates to a shape processing method for performing shape processing using a local processing tool having a unit processing area smaller than the area of a workpiece.

局所加工ツールを用いて被加工物を任意の形状に加工する方法として、局所加工ツールの滞在時間を所望加工量に応じて変動させながら走査する方法が知られている。この方法は、所望加工量が多い加工点では局所加工ツールの滞在時間を相対的に長く、所望加工量が少ない加工点では滞在時間を相対的に短くして加工するもので、次の工程からなる。まず、被加工物の加工前形状を測定し、該加工前形状と所望形状との差から、所望加工量の分布を算出する。次に、被加工物と同質のダミー被加工物を、局所加工ツールにより加工することで、局所加工ツールの単位時間当りの加工形状(単位加工形状)を求める。そして、所望加工量の分布を単位加工形状でデコンボルートし、局所加工ツールの滞在時間の分布データを作成する。この滞在時間の分布データに従い、局所加工ツールと被加工物とを相対運動させて加工し、所望形状を得る。   As a method of processing a workpiece into an arbitrary shape using a local processing tool, a method of scanning while varying the stay time of the local processing tool according to a desired processing amount is known. In this method, the processing time of the local processing tool is relatively long at a processing point with a large desired processing amount, and the processing time is relatively short at a processing point with a small desired processing amount. Become. First, the shape before processing of the workpiece is measured, and the distribution of the desired processing amount is calculated from the difference between the shape before processing and the desired shape. Next, a dummy work piece having the same quality as the work piece is machined by the local machining tool, thereby obtaining a machining shape (unit machining shape) per unit time of the local machining tool. Then, the distribution of the desired machining amount is deconvoluted by the unit machining shape, and the distribution data of the staying time of the local machining tool is created. According to the distribution data of the staying time, the local processing tool and the workpiece are processed by relative movement to obtain a desired shape.

上述の加工方法は、加工速度が経時的に不変であることを前提としている。一方、加工速度が経時的に変化してしまった場合にも、所望の加工形状を得る方法が知られている(特許文献1、特許文献2参照)。これら従来技術の局所加工ツールはいずれも、気体材料を放電させて発生させた活性種により加工を行うものである。   The above processing method is based on the premise that the processing speed does not change with time. On the other hand, a method for obtaining a desired machining shape even when the machining speed has changed over time is known (see Patent Document 1 and Patent Document 2). All of these local processing tools of the prior art perform processing using activated species generated by discharging a gaseous material.

特許文献1に開示されたものは、被加工物と反射板との光路差に基づく干渉により加工中の加工量をモニターし、実際の加工量と所望加工量が一致した時に、当該加工点の加工を止めることで、所望の形状を得ている。   The one disclosed in Patent Document 1 monitors the processing amount during processing by interference based on the optical path difference between the workpiece and the reflector, and when the actual processing amount and the desired processing amount coincide with each other, By stopping the processing, a desired shape is obtained.

特許文献2に開示されたものは、反応ガスの種類と被加工物の材質に応じて決定される加工時間と加工量との相関データを予め取得しておき、前加工面と目的加工面との座標差と、前記相関データに基づき、加工時間を制御する方法である。   What is disclosed in Patent Document 2 acquires in advance correlation data between the processing time and the processing amount determined according to the type of reaction gas and the material of the workpiece, The processing time is controlled based on the coordinate difference between the two and the correlation data.

特許第3917703号公報Japanese Patent No. 3917703 特許第2962583号公報Japanese Patent No. 2962583

しかしながら、特許文献1に開示されたものは、実際の加工量と所望加工量が一致した後に、加工点間の移動を開始するため、移動開始時の加工速度が異なっていると、移動中の加工量にばらつきが生じ、高精度な加工ができない。また、移動中の加工をなくす場合には、全ての加工点で加工の開始と停止の動作を行わなければならず、総加工時間が冗長となってしまう。さらに、加工点が多数存在し、加工点間で滞在時間が異なる場合、滞在時間の履歴により加工点の表面温度が変わる。特に化学反応による加工の場合、加工速度は加工表面の温度に依存するので、加工時間と加工量の相関は、滞在時間履歴のパターンに応じた数だけ存在する。   However, since what is disclosed in Patent Document 1 starts movement between machining points after the actual machining amount and the desired machining amount match, if the machining speed at the start of movement is different, Variations in the processing amount make it impossible to perform highly accurate processing. In addition, in order to eliminate machining during movement, it is necessary to start and stop machining at all machining points, which makes the total machining time redundant. Furthermore, when there are a large number of machining points and the staying time differs between the machining points, the surface temperature of the machining point changes depending on the history of the staying time. Particularly in the case of machining by chemical reaction, the machining speed depends on the temperature of the machined surface, so that there are as many correlations between the machining time and the machining amount as the number of stay time history patterns.

特許文献2に開示されたものは、加工時間と加工量との相関データを、あらゆる滞在時間履歴を想定して予め取得する必要があり、事前実験に多大な労力を要する。   In the technique disclosed in Patent Document 2, it is necessary to obtain in advance correlation data between the machining time and the machining amount assuming all stay time histories, and a large amount of labor is required for the preliminary experiment.

本発明は、局所加工ツールによる加工時間と加工量の相関が一意に定まらない場合にも、高精度で高速かつ効率的な加工が可能である形状加工方法を提供することを目的とするものである。   An object of the present invention is to provide a shape machining method capable of high-precision, high-speed and efficient machining even when the correlation between the machining time and the machining amount by the local machining tool is not uniquely determined. is there.

上記の課題を解決するため、本発明の形状加工方法は、局所加工ツールを被加工物の複数の加工点に逐次移動させながら加工する形状加工方法であって、前記被加工物の各加工点における前記局所加工ツールによる加工量を加工中に測定する工程と、各加工点における加工量の時間変化に基づき、前の加工点から現加工点へ移動中の前記局所加工ツールによる現加工点の加工量と、現加工点から次の加工点へ移動中の前記局所加工ツールによる現加工点の加工量と、現加工点における前記局所加工ツールによる加工量との和を計算する工程と、を有し、前記加工量の和が現加工点の所望加工量を越えた時に、現加工点から次の加工点への前記局所加工ツールの移動を開始することを特徴とする。   In order to solve the above problems, a shape processing method of the present invention is a shape processing method for processing a local processing tool while sequentially moving to a plurality of processing points of a workpiece, and each processing point of the workpiece is processed. Measuring the machining amount by the local machining tool in machining during machining, and the time variation of the machining quantity at each machining point, the current machining point by the local machining tool moving from the previous machining point to the current machining point Calculating the sum of the machining amount, the machining amount of the current machining point by the local machining tool that is moving from the current machining point to the next machining point, and the machining amount by the local machining tool at the current machining point; And the movement of the local machining tool from the current machining point to the next machining point is started when the sum of the machining amounts exceeds a desired machining amount at the current machining point.

移動中の局所加工ツールの加工量を、実測した加工量に基づいて計算し、各加工点の滞在時間を決定するので、各加工点での停止動作が不要であり、全ての加工点を連続して加工することが可能となり、加工効率を向上させることができる。また、加工量の時間変化(経時変化)を、加工中に逐次測定することで、加工時間と加工量の相関が一意に定まらない場合でも、所望の加工形状が得られる。   The machining amount of the moving local machining tool is calculated based on the measured machining amount, and the stay time of each machining point is determined, so there is no need to stop at each machining point, and all machining points are continuous. Thus, it is possible to improve the processing efficiency. Moreover, a desired machining shape can be obtained even when the correlation between the machining time and the machining amount is not uniquely determined by sequentially measuring the change in the machining amount over time (change over time) during machining.

一実施形態による形状加工方法を示すフローチャートである。It is a flowchart which shows the shape processing method by one Embodiment. 局所加工ツールによる加工時間と加工量の関係を示すグラフである。It is a graph which shows the relationship between the processing time by a local processing tool, and processing amount. 実施例1に係る加工装置と、局所加工ツールによる単位除去形状を示す図である。It is a figure which shows the unit removal shape by the processing apparatus which concerns on Example 1, and a local processing tool. 加工すべき形状と、所望加工量の分布データを示す図である。It is a figure which shows the distribution data of the shape which should be processed, and desired processing amount. 実施例1の形状加工方法による加工時間と加工量の関係を示すグラフである。It is a graph which shows the relationship between the processing time by the shape processing method of Example 1, and a processing amount. 実施例2の形状加工方法による加工時間と加工量の関係を示すグラフである。It is a graph which shows the relationship between the processing time by the shape processing method of Example 2, and a processing amount. 実施例3に係る加工装置を示す図である。FIG. 6 is a diagram illustrating a processing apparatus according to a third embodiment. 実施例4の形状加工方法による加工時間と加工量の関係を示すグラフである。It is a graph which shows the relationship between the processing time by the shape processing method of Example 4, and a processing amount.

図1および図2は、一実施形態による形状加工方法を説明するもので、加工量Vi,i+1,jは、被加工物の加工点Pから加工点Pi+1へ局所加工ツールを移動させる時に加工される、移動中の局所加工ツールによる加工点Pの加工量である。また、Vは加工点Pへ移動後の加工点Pにおいて測定される加工量である実測加工量、Vi,fは加工点Pの所望加工量である。 1 and 2, serve to explain the shaping method according to an embodiment, the processing amount V i, i + 1, j moves the local machining tool from the machining point P i of the workpiece to the machining point P i + 1 It is the amount of processing of the processing point P j by the moving local processing tool that is sometimes processed. Also, the V i measured processing amount as a processing weight measured at the processing point P i after moving the machining point P i, V i, f is the desired processing amount of the machining point P i.

図1のフローチャートに示すように、まず、局所加工ツールを被加工物の複数の加工点に逐次移動させながら加工する時の、各加工点Pの所望加工量の分布データを計算する(ステップS01)。加工は、所望加工量の分布データに影響を与えない程度離れた点Pから時刻t=0に開始する。そして、加工の開始とともに、加工量のモニター(測定)を行う(ステップS02)。 As shown in the flowchart of FIG. 1, when machining while sequentially moving the local machining tool to a plurality of processing points of the workpiece, calculating the distribution data of a desired processing amount of each machining point P i (step S01). The machining starts at time t = 0 from a point P 0 that is far enough not to affect the distribution data of the desired machining amount. Then, the processing amount is monitored (measured) with the start of processing (step S02).

加工量のモニターは、エッチング生成物の発光強度を検出することによって行う。エッチング生成物に固有の発光波長における発光強度は、エッチング生成物の生成量に比例する。従って、上記発光波長における発光強度の積算値と加工量との相関を予め取得しておくことで、加工量を発光強度でモニターすることができる。なお、加工量のモニター方法はこれに限るものではない。代替手段の例を以下に列挙する。第一の例は、公知の四重極型質量分析装置でエッチング生成物の生成量をモニターする方法である。第二の例は、加工前に予め測定したエッチャントの供給量と、加工中に排気されるエッチャントの量との差を、公知の四重極型質量分析装置などでモニターする方法である。第三の例は、レーザー変位計により、加工点の変位をモニターする方法である。第四の例は、被加工物と反射板との光路差に基づく干渉により、モニターする方法である。   The processing amount is monitored by detecting the emission intensity of the etching product. The emission intensity at the emission wavelength inherent to the etching product is proportional to the amount of etching product generated. Therefore, by acquiring the correlation between the integrated value of the emission intensity at the emission wavelength and the processing amount in advance, the processing amount can be monitored by the emission intensity. Note that the processing amount monitoring method is not limited to this. Examples of alternative means are listed below. The first example is a method of monitoring the amount of etching products generated with a known quadrupole mass spectrometer. The second example is a method of monitoring the difference between the supply amount of the etchant measured in advance before processing and the amount of the etchant exhausted during processing using a known quadrupole mass spectrometer or the like. The third example is a method of monitoring the displacement of the processing point with a laser displacement meter. A fourth example is a method of monitoring by interference based on the optical path difference between the workpiece and the reflector.

局所加工ツールの移動中の加工量を計算するに当り、加工量の時間変化(経時変化)を推定する(ステップS03)。加工量の加工時間に対する変化は、多項式や指数関数などの既知の関数でフィッティングする。フィッティングには現加工点の加工に関わるデータのうちで、直近のデータを含む一部または全部のデータを使用する。これらのデータを用い、前記既知の関数の係数を決定し、加工量の時間変化曲線を決定する。また、次の加工点へ移動するのに要する時間Δtを、走査速度、走査の加速度、加工点間距離から計算する。前記加工量の時間変化曲線を用いて、Δt/2後までの加工量の増分を現加工点の加工量、Δt/2からΔt後の間の加工量増分を次の加工点の加工量に加える。   In calculating the machining amount during the movement of the local machining tool, the time change (time-dependent change) of the machining amount is estimated (step S03). The change of the machining amount with respect to the machining time is fitted by a known function such as a polynomial or an exponential function. For the fitting, a part or all of the data including the latest data is used among the data related to the machining of the current machining point. Using these data, the coefficient of the known function is determined, and a time change curve of the machining amount is determined. Further, the time Δt required to move to the next machining point is calculated from the scanning speed, the scanning acceleration, and the distance between the machining points. Using the time change curve of the machining amount, the increment of the machining amount until after Δt / 2 is set as the machining amount at the current machining point, and the increment of the machining amount between Δt / 2 and after Δt is set as the machining amount at the next machining point. Add.

加工量の時間変化を推定する別の方法として、加工点の温度を測定することによる方法を説明する。特に化学反応を加工に用いる場合、加工点の温度と加工速度には強い相関がある。そこで、予め、目的の被加工物と同質のダミー被加工物を、加工点の温度を種々の値に制御して加工し、温度と加工速度との相関データを取得しておく。実際の加工時には、加工量をモニターするとともに、加工点の温度を逐次測定する。そして、加工量の時間変化曲線は、各時刻における加工量と、加工点の温度および該温度と加工速度との相関データから求めた加工速度、とを用いて推定する。移動中の加工量は次のように計算する。次の加工点へ移動するのに要する時間Δtとし、前記加工速度を現時刻からΔt/2後の間で積分し、現加工点の加工量に加える。また、前記加工速度をΔt/2からΔt後の間で積分し、次の加工点の加工量に加える。   As another method for estimating the time change of the machining amount, a method by measuring the temperature of the machining point will be described. In particular, when a chemical reaction is used for processing, there is a strong correlation between the processing point temperature and the processing speed. Therefore, a dummy workpiece having the same quality as the target workpiece is processed in advance by controlling the temperature of the processing point to various values, and correlation data between the temperature and the processing speed is acquired. During actual machining, the machining amount is monitored and the temperature at the machining point is sequentially measured. Then, the time change curve of the machining amount is estimated using the machining amount at each time, the machining point temperature, and the machining speed obtained from the correlation data between the temperature and the machining speed. The machining amount during movement is calculated as follows. The time required to move to the next machining point is set as Δt, and the machining speed is integrated between Δt / 2 after the current time and added to the machining amount at the current machining point. Further, the machining speed is integrated between Δt / 2 and Δt and added to the machining amount at the next machining point.

このようにして、移動中の加工量を逐次測定し、加工点Pから、最初の加工点Pへ移動中の局所加工ツールによって加工される加工点Pの加工量V0,1,1を求める(ステップS04)。移動中の加工量V0,1,1を計算するのに十分な、加工量の測定データを取得した時刻t=tに、加工点Pから加工点Pへ移動を行う(ステップS05、ステップS06)。加工点Pに到着(時刻t=t)と同時に、加工量の測定を開始し、加工点Pへ移動後の実測加工量Vを得る(ステップS07)。加工量を逐次測定することで、加工点Pにおける加工量の時間変化を推定する(ステップS08)。そして、次の加工点Pへ移動中の局所加工ツールによって加工される現加工点Pの加工量V1,2,1および次の加工点Pの加工量V1,2,2を逐次計算する(ステップS09)。ステップS10で、V0,1,1とVとV1,2,1との和が加工点Pの所望加工量V1,fを越えたら、ステップS11で、加工点Pから加工点Pへの局所加工ツールの移動を開始する(時刻t=t)。 In this way, the machining amount during movement is sequentially measured, and the machining amount V 0,1, of the machining point P 1 machined by the local machining tool moving from the machining point P 0 to the first machining point P 1 . 1 is obtained (step S04). At time t = t 0 when measurement data of the machining amount sufficient to calculate the machining amount V 0,1,1 during movement is obtained, the machining point P 0 is moved to the machining point P 1 (step S05). Step S06). At the same time we arrived at the processing point P 1 (time t = t 1), and starts the measurement of the processing amount, obtain the actual processing amount V 1 of the after movement to the machining point P 1 (step S07). By sequentially measuring the processing amount, and estimates the amount of machining time changes in the machining point P 1 (step S08). Then, the processing amount V 1,2,1 and processing amount V 1,2,2 of the next machining point P 2 of the current working point P i to be processed by the next local machining tool moving to the machining point P 2 Sequential calculation is performed (step S09). If the sum of V 0,1,1 and V 1 and V 1,2,1 exceeds the desired machining amount V 1, f of the machining point P 1 in step S10, machining is performed from the machining point P 1 in step S11. The movement of the local processing tool to the point P 2 is started (time t = t 2 ).

以上述べた加工量の測定、局所加工ツールの移動中の加工量の計算、局所加工ツールの移動、の各ステップを繰り返し、所望加工量の分布データ全域を走査することで、所望形状を得る。   The desired shape is obtained by repeating the steps of measuring the machining amount, calculating the machining amount during movement of the local machining tool, and moving the local machining tool, and scanning the entire distribution data of the desired machining amount.

なお、所望加工量の分布データから十分離れた点Pを起点に、加工を開始する代わりに、加工点Pを起点に加工を開始してもよい。加工点Pを起点に加工を開始する場合は、直ちに加工点Pの実測加工量Vを得るステップから開始する。この場合、局所加工ツールの種類によっても異なるが、加工開始時に単位除去形状が乱れることがあるので、加工点Pを起点にした方が、より高精度な加工ができる。 Instead of starting the processing with the point P 0 sufficiently separated from the distribution data of the desired processing amount, the processing may be started with the processing point P 1 as the starting point. When starting the processing of the processing point P 1 to the origin, it starts with the step of obtaining immediate processing point P 1 the measured processing amount V i. In this case, although depending on the type of the local processing tool, since the unit removal shape may be disturbed at the start of processing, the processing can be performed with higher accuracy by using the processing point P 0 as the starting point.

本実施例では、合成石英製の被加工物を、フッ素を含む活性種と化学反応させて加工した。本実施例で使用した装置の構成を図3(a)に示す。被加工物301をホルダー302とともに、チャンバー311内に設置した。チャンバー311は真空ポンプ(図示せず)で排気されている。局所加工ツールである加工ツール307にはガス導入ライン308と電力導入ライン309が接続されている。ガス導入ライン308から導入したガスを、電力導入ライン309から導入した電力で電離せしめ、フッ素を含む活性種の噴流310を生成し、該活性種を被加工物301に照射して加工を行った。加工量は、光ファイバー304を通じて加工点の発光を光検出器305に取り込み、これを制御装置306に入力してモニターした。なお、発光強度と加工量の相関は、予め、制御装置306に入力した。光検出器305には、特定波長のみを透過させるバンドパスフィルター、フォトディテクター、フォトディテクターに光を導く光学系が内蔵されている。測定した発光波長は440nmで、エッチング生成物であるSiFの発光に起因するものである。そして、測定した発光強度に基づき、制御装置306で駆動機構303を制御して、加工ツール307の走査を行った。駆動機構303は加工ツール307を、紙面内水平方向と紙面に垂直方向のXY方向に走査可能である。また、紙面内垂直方向にも可動で、加工ツール307と被加工物301との距離を調整することができるようになっている。   In this example, a workpiece made of synthetic quartz was processed by chemically reacting with an active species containing fluorine. FIG. 3A shows the configuration of the apparatus used in this example. The workpiece 301 was placed in the chamber 311 together with the holder 302. The chamber 311 is evacuated by a vacuum pump (not shown). A gas introduction line 308 and a power introduction line 309 are connected to the processing tool 307 which is a local processing tool. The gas introduced from the gas introduction line 308 was ionized with the power introduced from the power introduction line 309 to generate a jet 310 of active species containing fluorine, and the workpiece 301 was irradiated with the active species to perform processing. . The amount of processing was monitored by inputting light emitted from the processing point into the light detector 305 through the optical fiber 304 and inputting it into the control device 306. Note that the correlation between the emission intensity and the processing amount was input to the control device 306 in advance. The photodetector 305 includes a band-pass filter that transmits only a specific wavelength, a photodetector, and an optical system that guides light to the photodetector. The measured emission wavelength is 440 nm, which is caused by the emission of SiF, which is an etching product. Based on the measured light emission intensity, the control device 306 controls the drive mechanism 303 to scan the processing tool 307. The drive mechanism 303 can scan the processing tool 307 in the horizontal direction in the paper plane and in the XY directions perpendicular to the paper plane. Further, it is also movable in the vertical direction in the drawing, and the distance between the processing tool 307 and the workpiece 301 can be adjusted.

次に、加工プロセスの詳細を説明する。被加工物の加工前形状を測定し、該加工前形状と所望形状との差から、図4(a)に示すように、加工すべき形状を算出した。また、図3(b)に示すように、被加工物と同質のダミー被加工物を、局所加工ツールにより加工することで、局所加工ツールによる加工形状を、単位体積当りの加工形状に規格化した単位加工形状を求めた。そして、前記加工すべき形状を単位加工形状でデコンボルートし、図4(b)に示すように、局所加工ツールによる所望加工量の分布データを作成した。加工点間距離は4mmであり、所望加工量の分布データは、XY面内で4mm角のメッシュで分割されたデータである。   Next, details of the machining process will be described. The shape before processing of the workpiece was measured, and the shape to be processed was calculated from the difference between the shape before processing and the desired shape as shown in FIG. In addition, as shown in Fig. 3 (b), by processing a dummy workpiece with the same quality as the workpiece with the local processing tool, the processing shape with the local processing tool is normalized to the processing shape per unit volume. The processed unit shape was determined. Then, the shape to be machined was deconvoluted by a unit machining shape, and distribution data of a desired machining amount by a local machining tool was created as shown in FIG. The distance between the processing points is 4 mm, and the distribution data of the desired processing amount is data divided by a 4 mm square mesh in the XY plane.

加工は、前記所望加工量の分布データのメッシュ中央に、活性種の噴流を位置させ、以下に述べる移動開始条件を満たすまで、滞在させた。走査の方法について、図5のグラフを用いて説明する。加工点間の移動速度は50mm/s、加速度は1000mm/sとしたので、加工点間の移動時間は130msである。各加工点(現加工点)Piの加工量のモニターは、時刻t=tに開始した。加工量の時間変化を推定するに当り、加工量のデータは直近50msのデータを用い、二次関数でフィッティングを行った。ここで求めたフィッティング関数を用い、現時刻から65ms後までの加工量の増分を、移動中に加工される現加工点Pの加工量Vi,i+1,iとして計算した。また、65ms後から130ms後までの加工量の増分を、移動中に加工される次の加工点の加工量Vi,i+1,i+1として計算した。これら加工量の計算値を用い、前の加工点から現加工点に移動中に加工される現加工点Pの加工量Vi−1,i,iと、現加工点Pの実測加工量Vと、移動中に加工される現加工点Pの加工量Vi,i+1,iとの和を、現加工点Pの総加工量とした。そして、現加工点Pの総加工量が、所望加工量Vi,f以上となった時刻t=tに、次の加工点へ移動した。 In the processing, the active species jet was positioned at the center of the mesh of the distribution data of the desired processing amount, and stayed until the movement start condition described below was satisfied. A scanning method will be described with reference to the graph of FIG. Since the moving speed between the processing points is 50 mm / s and the acceleration is 1000 mm / s 2 , the moving time between the processing points is 130 ms. Monitor processing amount of each processing point (current working point) Pi began at time t = t i. In estimating the time change of the processing amount, the data of the processing amount was the data of the latest 50 ms, and fitting was performed with a quadratic function. Using the fitting function obtained here, the increment of the machining amount from the current time to 65 ms later was calculated as the machining amount V i, i + 1, i of the current machining point P i to be machined during the movement. Further, the increment of the machining amount from 65 ms to 130 ms later was calculated as the machining amount V i, i + 1, i + 1 of the next machining point to be machined during the movement. Using the calculated value of the processing amount, processing amount of the current working point P i to be processed before processing point while moving in the current working point V i-1, i, and i, actually measured processing of the current processing point P i the amount V i, the processing amount V i of the current working point P i to be processed during the movement, the sum of i + 1, i, and the total processing amount of the current working point P i. Then, at the time t = t 2 when the total machining amount at the current machining point P i becomes equal to or greater than the desired machining amount V i, f , the machine moves to the next machining point.

以上の走査を繰り返し、所望加工量の分布データ全域を加工した結果、所望形状に対して加工ばらつきを19nm以下に抑えることができた。比較のために、現加工点の加工量が所望加工量と一致した時に、次の加工点へ移動する方法で加工した場合を検討した結果、加工ばらつきは36nmであった。   As a result of repeating the above scanning and processing the entire distribution data of the desired processing amount, the processing variation with respect to the desired shape could be suppressed to 19 nm or less. For comparison, when the machining amount at the current machining point coincided with the desired machining amount, a case where machining was performed by a method of moving to the next machining point was examined. As a result, machining variation was 36 nm.

実施例1では、加工点間の移動速度と加速度を固定し、移動を開始する時点での加工量を変調させて走査する例を述べたが、本実施例では、移動を開始する時点での、所望加工量に対する残り加工量を固定し、加工点間の移動速度を変調させて走査する。本実施例の装置構成と、所望加工量の分布データを作成する工程は、実施例1と同じであるので、走査方法の詳細から図6を用いて説明する。   In the first embodiment, the movement speed and acceleration between the machining points are fixed, and the scanning is performed by modulating the machining amount at the time of starting the movement. However, in this embodiment, the movement at the time of starting the movement is described. The remaining machining amount with respect to the desired machining amount is fixed, and scanning is performed by modulating the moving speed between the machining points. Since the apparatus configuration of the present embodiment and the process of creating the distribution data of the desired machining amount are the same as in the first embodiment, the details of the scanning method will be described with reference to FIG.

加工は、所望加工量の分布データのメッシュ中央に、活性種の噴流を位置させ、以下に述べる移動開始条件を満たすまで滞在させた。なお、加工点間距離は4mm、加速度は1000mm/sである。加工の開始と同時に、加工量のモニターを開始し、現加工点の加工量が、所望加工量から1.18×10−2mmだけ引いた値以上となったら、次の加工点への移動を開始することとした。 In the processing, the active species jet was positioned at the center of the mesh of the distribution data of the desired processing amount, and stayed until the movement start condition described below was satisfied. The distance between the machining points is 4 mm, and the acceleration is 1000 mm / s 2 . Simultaneously with the start of machining, monitoring of the machining amount is started, and when the machining amount at the current machining point becomes equal to or more than the value obtained by subtracting 1.18 × 10 −2 mm 3 from the desired machining amount, the next machining point is reached. We decided to start moving.

加工点Pの加工量のモニターは、時刻t=tに開始した。加工量の時間変化を推定するに当り、加工量のデータは直近50msのデータを用い、二次関数でフィッティングを行った。ここで求めたフィッティング関数を用い、現加工点の加工量が所望加工量に達するまでの所要時間Tを算出した。そして、所要時間Tちょうどで加工点間距離の1/2である2mmを移動するように、加工点間の移動速度vを決定した。つまり移動速度vは、v/1000×v×1/2+(T−v/1000)×v=2なるvである。さらに、前記フィッティング関数を用い、T後から2T後までの加工量の増分を、移動中に加工される、次の加工点の加工量Vi,i+1,i+1として計算した。 Monitor of the processing amount of the machining point P i was initiated at a time t = t 1. In estimating the time change of the processing amount, the data of the processing amount was the data of the latest 50 ms, and fitting was performed with a quadratic function. Using a fitting function obtained here was calculated required time T i until processing of the current processing point reaches the desired processing amount. Then, the moving speed v i between the processing points was determined so as to move 2 mm, which is ½ of the distance between the processing points, in the required time T i . That movement speed v i is a v i / 1000 × v i × 1/2 + (T i -v i / 1000) × v = 2 becomes v i. Furthermore, using the fitting function, the increment of amount of machining after T i until after 2T i, are processed during the movement, processing amount V i of the next machining point, was calculated as i + 1, i + 1.

このように、前の加工点から現加工点に移動中に加工される現加工点の加工量Vi−1,i,iを求めて、現加工点の実測加工量Vとの和が、所望加工量Vi,fから1.18×10−2mmだけ引いた値以上となった時刻t=tに次の加工点へ移動した。このときの移動速度はvである。 In this way, the machining amount V i−1, i, i of the current machining point to be machined while moving from the previous machining point to the current machining point is obtained, and the sum of the machining amount V i of the current machining point and the actual machining point V i is obtained. The machine moved to the next machining point at time t = t 2 when the value was equal to or greater than the value obtained by subtracting 1.18 × 10 −2 mm 3 from the desired machining amount V i, f . The moving speed at this time is v i .

以上述べた走査を繰り返し、所望加工量の分布データ全域を加工した結果、所望形状に対して加工ばらつきを19nm以下に抑えることができた。比較のために、現加工点の加工量が所望加工量と一致した時に、次の加工点へ移動する方法で加工した場合を検討した結果、加工ばらつきは36nmであった。   As a result of repeating the scanning described above and processing the entire distribution data of the desired processing amount, the processing variation with respect to the desired shape could be suppressed to 19 nm or less. For comparison, when the machining amount at the current machining point coincided with the desired machining amount, a case where machining was performed by a method of moving to the next machining point was examined. As a result, machining variation was 36 nm.

本実施例では、加工量の時間変化を推定するに当り、加工点の温度を測定したデータを用いた。本実施例で使用した装置の構成を図7に示す。実施例1で使用した装置との違いは、加工点の温度を測定するため、放射温度計404および温度検出器405を設置した点である。所望加工量の分布データを作成する工程と、走査方法は実施例1と同じであるので、加工量の時間変化を推定する工程と、移動中の加工量を計算する工程のみ説明する。   In this example, data obtained by measuring the temperature of the machining point was used in estimating the time change of the machining amount. The configuration of the apparatus used in this example is shown in FIG. The difference from the apparatus used in Example 1 is that a radiation thermometer 404 and a temperature detector 405 are installed in order to measure the temperature of the processing point. Since the process of creating the distribution data of the desired machining amount and the scanning method are the same as those in the first embodiment, only the process of estimating the time variation of the machining quantity and the process of calculating the machining quantity during movement will be described.

加工の開始と同時に、加工量と加工点の温度のモニターを開始した。加工量の時間変化を推定するに当り、予め制御装置に入力した加工点の温度と加工速度との相関データを用いた。つまり、測定した加工点の温度から、前記加工点の温度と加工速度との相関データに基づき加工速度を求め、加工量の時間変化を、加工速度を傾きとした直線で推定した。そして、加工点間の移動時間の1/2である65msを加工速度に乗じて得る加工量を、現加工点から次の加工点へ移動中に加工される、現加工点の加工量および次の加工点の加工量として計算した。   Simultaneously with the start of processing, monitoring of the processing amount and the temperature of the processing point was started. In estimating the time change of the machining amount, correlation data between the temperature of the machining point and the machining speed input in advance to the control device were used. That is, the machining speed was obtained from the measured temperature of the machining point based on the correlation data between the temperature of the machining point and the machining speed, and the time change of the machining amount was estimated with a straight line with the machining speed as an inclination. Then, the machining amount obtained by multiplying the machining speed by 65 ms, which is 1/2 of the movement time between machining points, is machined while moving from the current machining point to the next machining point, and the machining amount at the current machining point and the next machining point. It was calculated as the processing amount of the processing point.

本実施例では、移動速度を断続的に変えながら走査する。本実施例の装置構成と、所望加工量の分布データを作成する工程は、実施例1と同じであるので、説明を省略する。隣接する2つの加工点Pと加工点Pi+1との境界位置をpi,i+1、時刻tにおける局所加工ツールの位置をp(t)と記すことにし、pi−1,1からpi,i+1の領域を持つ加工点P内の走査について、図8を用いて説明する。 In this embodiment, scanning is performed while intermittently changing the moving speed. Since the apparatus configuration of the present embodiment and the process of creating the distribution data of the desired machining amount are the same as those of the first embodiment, description thereof is omitted. The boundary position between two adjacent machining points P i and machining point P i + 1 is denoted by p i, i + 1 , and the position of the local machining tool at time t is denoted by p (t), and p i−1,1 to p i , the scanning of the machining point in P i with i + 1 of the area will be described with reference to FIG.

時刻tに局所加工ツールがpi−1,iに速度vで侵入してきたとする。pi−1,iとpi,i+1との間を等分割し、最初の1区間を走査してp(t)に至る間、加工量をモニターする。モニターした加工量の時間変化に基づき、加工量の時間変化を推定した関数であるフィッティング関数を求める。該フィッティング関数により、現加工点Pの所望加工量Vi,fに達するまでの所要時間Tを求める。p(t)からpi,i+1を所要時間Tで走査する速度vに走査速度を変更し、次の1区間を走査してp(tj+1)に至る。p(t)とp(tj+1)との間を走査する間に測定した加工量の時間変化に基づき、前述と同様にフィッティング関数を求める。該フィッティング関数により、現加工点Pの所望加工量Vi,fに達するまでの所要時間Tj+1を求める。p(tj+1)からpi,i+1を所要時間Tで走査する速度vj+1に走査速度を変更し、次の1区間を走査してp(tj+2)に至る。以上述べた走査を繰り返し、所望加工量の分布データ全域を加工する。 It is assumed that the local processing tool has entered p i−1, i at a speed v 0 at time t 0 . The interval between p i−1, i and p i, i + 1 is equally divided, and the processing amount is monitored while scanning the first one section to reach p (t j ). Based on the time variation of the monitored machining amount, a fitting function, which is a function that estimates the time variation of the machining amount, is obtained. A time T j required to reach the desired machining amount V i, f at the current machining point P i is obtained by the fitting function. The scanning speed is changed from p (t j ) to the speed v j at which p i, i + 1 is scanned at the required time T j , and the next one section is scanned to reach p (t j + 1 ). A fitting function is obtained in the same manner as described above based on the change over time in the machining amount measured while scanning between p (t j ) and p (t j + 1 ). By the fitting function, a required time T j + 1 to reach the desired machining amount V i, f at the current machining point P i is obtained. The scanning speed is changed from p (t j + 1 ) to the speed v j + 1 for scanning p i, i + 1 at the required time T j , and the next one section is scanned to reach p (t j + 2 ). The above-described scanning is repeated to process the entire distribution data of the desired processing amount.

301 被加工物
302 ホルダー
303 駆動機構
304 光ファイバー
305 光検出器
306 制御装置
307 加工ツール
311 チャンバー
404 放射温度計
405 温度検出器
301 Workpiece 302 Holder 303 Drive Mechanism 304 Optical Fiber 305 Photodetector 306 Control Device 307 Processing Tool 311 Chamber 404 Radiation Thermometer 405 Temperature Detector

Claims (3)

局所加工ツールを被加工物の複数の加工点に逐次移動させながら加工する形状加工方法であって、
前記被加工物の各加工点における前記局所加工ツールによる加工量を加工中に測定する工程と、
各加工点における加工量の時間変化に基づき、前の加工点から現加工点へ移動中の前記局所加工ツールによる現加工点の加工量と、現加工点から次の加工点へ移動中の前記局所加工ツールによる現加工点の加工量と、現加工点における前記局所加工ツールによる加工量との和を計算する工程と、を有し、
前記加工量の和が現加工点の加工量を越えた時に、現加工点から次の加工点への前記局所加工ツールの移動を開始することを特徴とする形状加工方法。
A shape machining method for machining while sequentially moving a local machining tool to a plurality of machining points of a workpiece,
Measuring a machining amount by the local machining tool at each machining point of the workpiece during machining;
Based on the time change of the machining amount at each machining point, the machining amount of the current machining point by the local machining tool moving from the previous machining point to the current machining point, and the above-mentioned moving from the current machining point to the next machining point Calculating the sum of the amount of machining at the current machining point by the local machining tool and the amount of machining by the local machining tool at the current machining point;
A shape machining method characterized by starting movement of the local machining tool from a current machining point to a next machining point when a sum of the machining amounts exceeds a machining amount at a current machining point.
エッチング生成物の発光強度を検出することによって加工量を測定することを特徴とする請求項1に記載の形状加工方法。   The shape processing method according to claim 1, wherein the processing amount is measured by detecting the emission intensity of the etching product. 加工中に前記被加工物の温度を検出することによって加工量の時間変化を推定することを特徴とする請求項1または2に記載の形状加工方法。   The shape processing method according to claim 1, wherein a time change of a processing amount is estimated by detecting a temperature of the workpiece during processing.
JP2009265675A 2009-11-20 2009-11-20 Shape processing method Active JP5511328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265675A JP5511328B2 (en) 2009-11-20 2009-11-20 Shape processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265675A JP5511328B2 (en) 2009-11-20 2009-11-20 Shape processing method

Publications (2)

Publication Number Publication Date
JP2011107107A true JP2011107107A (en) 2011-06-02
JP5511328B2 JP5511328B2 (en) 2014-06-04

Family

ID=44230738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265675A Active JP5511328B2 (en) 2009-11-20 2009-11-20 Shape processing method

Country Status (1)

Country Link
JP (1) JP5511328B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254268A (en) * 1996-03-22 1997-09-30 Yuzo Mori Shape creating method and apparatus
JPH11251288A (en) * 1998-02-27 1999-09-17 Dainippon Screen Mfg Co Ltd Apparatus for treating substrate
JP2010161124A (en) * 2009-01-06 2010-07-22 Showa Shinku:Kk Etching device, etching method, etching program, and film forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254268A (en) * 1996-03-22 1997-09-30 Yuzo Mori Shape creating method and apparatus
JPH11251288A (en) * 1998-02-27 1999-09-17 Dainippon Screen Mfg Co Ltd Apparatus for treating substrate
JP2010161124A (en) * 2009-01-06 2010-07-22 Showa Shinku:Kk Etching device, etching method, etching program, and film forming apparatus

Also Published As

Publication number Publication date
JP5511328B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
US20210074528A1 (en) Plasma processing apparatus and plasma processing system
JP2019082836A (en) Tool life prediction device
US8666530B2 (en) Silicon etching control method and system
JP2004518527A (en) Atmospheric pressure reactive atomic plasma processing apparatus and method for surface modification
JP6549917B2 (en) Plasma processing apparatus and data analysis apparatus therefor
JP6333785B2 (en) Vibration analyzer that calculates the period of tool vibration relative to the workpiece
KR101134326B1 (en) Methods and apparatus for in situ substrate temperature monitoring
JP5683149B2 (en) Optical element manufacturing method and optical element molding die manufacturing method
TWI426670B (en) Use of predictive pulse triggering to improve accuracy in link processing
JP5511328B2 (en) Shape processing method
US6379490B1 (en) System for improving the total thickness variation of a wafer
JP2015115414A (en) Lithography apparatus and method of manufacturing article
JP2014113606A (en) Laser machining apparatus and laser machining method
TWI695426B (en) Workpiece processing technique
JP6643202B2 (en) Plasma processing apparatus and analysis method for analyzing plasma processing data
JP5642996B2 (en) Control device, laser processing machine, and laser processing method
TWI411484B (en) Method for optimization of laser process parameters and laser machining apparatus for the same
JP6027760B2 (en) Shape processing method
JP6392804B2 (en) Laser processing apparatus that performs gap sensor correction and reflected light profile measurement simultaneously, and correlation table generation method for laser processing apparatus
KR101274526B1 (en) Plasma processing apparatus and plasma processing method
JP2006324384A (en) Etch selectivity measuring method and etch selectivity measurement device
WO2019234994A1 (en) Measurement system, measurement method, and measurement program
JP5995411B2 (en) Semiconductor wafer manufacturing method, lens manufacturing method, and mirror manufacturing method
KR20070006489A (en) Apparatus for measuring temperature of process chamber and method for measuring temperature using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R151 Written notification of patent or utility model registration

Ref document number: 5511328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151