JP2011106755A - Cryogenic refrigerator and method for operating the same - Google Patents

Cryogenic refrigerator and method for operating the same Download PDF

Info

Publication number
JP2011106755A
JP2011106755A JP2009262896A JP2009262896A JP2011106755A JP 2011106755 A JP2011106755 A JP 2011106755A JP 2009262896 A JP2009262896 A JP 2009262896A JP 2009262896 A JP2009262896 A JP 2009262896A JP 2011106755 A JP2011106755 A JP 2011106755A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant gas
compressor
closed loop
main compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009262896A
Other languages
Japanese (ja)
Other versions
JP5356983B2 (en
Inventor
Masaki Hirokawa
昌樹 弘川
Shigeru Yoshida
茂 吉田
Yoshiaki Suzuki
佳明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009262896A priority Critical patent/JP5356983B2/en
Publication of JP2011106755A publication Critical patent/JP2011106755A/en
Application granted granted Critical
Publication of JP5356983B2 publication Critical patent/JP5356983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cryogenic refrigerator which adjusts the pressure of coolant gas in a closed loop while reducing the usage of the coolant gas, and a method for operating the same. <P>SOLUTION: The cryogenic refrigerator includes the closed loop L1 which is provided with the main compressor 2 for compressing/circulating the coolant gas, the main heat exchanger 3 for cooling the compressed coolant gas by heat exchanging with the returned coolant gas, an expansion turbine 4 for adiabatically expanding the cooled coolant gas, and an auxiliary heat exchanger 5 for heat exchanging between cryogenic coolant gas coming out of the expansion turbine 4 and cooling liquid, and which is structured of a circulation route for circulating the coolant gas after being heat-exchanged in the auxiliary heat exchanger 5 in the main compressor 2 via the main heat exchanger 3. The cryogenic refrigerator 1 includes a buffer tank 6 communicated with the closed loop L1 on an inlet side 2a of the main compressor 2, and an auxiliary compressor 7 which compares the pressure in the closed loop L1 on the inlet side 2a of the main compressor 2 with the pressure in the buffer tank 6 for pressure-feeding the coolant gas from the low-pressure side to the high-pressure side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷媒ガスを極低温まで冷却する極低温冷凍装置及びその運転方法に関し、詳しくは、冷媒ガスの補充と回収を効率よく行なう系統を備えた極低温冷凍装置及びその運転方法に関する。   The present invention relates to a cryogenic refrigeration apparatus that cools a refrigerant gas to a cryogenic temperature and an operation method thereof, and more particularly, to a cryogenic refrigeration apparatus including a system that efficiently replenishes and collects refrigerant gas and an operation method thereof.

高温超電導機器(例えば、超電導送電ケーブル、超電導変圧器、超電導モーター、超電導限流器、超電導電力貯蔵器等)を冷却するためには、極低温冷凍装置(例えば、GM冷凍機、パルス冷凍機、スターリング冷凍機、ブレイトンサイクル冷凍機等)が用いられる。そして、高温超電導機器を冷却する場合、超電導線材の種類や用途によって冷却する温度は異なるが、その冷却温度は、大気圧の液体窒素温度(77K)よりも低い温度(例えば、70K、65K、40K)が用いられる。このような極低温の冷却には、冷媒ガスとしてヘリウム、ネオン、水素及びこれらの混合ガス等が用いられる。   In order to cool high-temperature superconducting equipment (for example, superconducting power transmission cables, superconducting transformers, superconducting motors, superconducting fault current limiters, superconducting power storage units, etc.) Stirling refrigerators, Brayton cycle refrigerators, etc.) are used. When cooling a high-temperature superconducting device, the cooling temperature varies depending on the type and application of the superconducting wire, but the cooling temperature is lower than the liquid nitrogen temperature (77K) at atmospheric pressure (for example, 70K, 65K, 40K). ) Is used. For such cryogenic cooling, helium, neon, hydrogen, a mixed gas thereof, or the like is used as a refrigerant gas.

ところで、極低温冷凍装置としては、特許文献1及び特許文献2が知られている。具体的には、特許文献1に記載された極低温冷凍装置は、図3に示すように圧縮機102と第1中間熱交換器103、膨張タービン104、極低温熱交換器105を備えたブレイトンサイクル冷凍機である。また、極低温冷凍装置101は、高圧部と低圧部を連通するバイパスラインL106と、該バイパスラインL106の中間に位置し、高圧側と低圧側にそれぞれ圧力調整弁106a,106bを有する貯気タンク106と、該各圧力調整弁106a,106bを制御する圧力制御装置126とをさらに備えている。そして、該圧力制御装置126は、貯気タンク106の圧力が、常温かつ停止時に閉ループL101と同一とするため弁開度が開放となり、極低温を発生する運転時に高圧部の圧力が所定の圧力となるように前記各圧力調整弁106a,106bを制御することを特徴としている。   By the way, as a cryogenic refrigeration apparatus, patent document 1 and patent document 2 are known. Specifically, the cryogenic refrigeration apparatus described in Patent Document 1 is a Brayton equipped with a compressor 102, a first intermediate heat exchanger 103, an expansion turbine 104, and a cryogenic heat exchanger 105 as shown in FIG. It is a cycle refrigerator. The cryogenic refrigeration apparatus 101 is located in the middle of the bypass line L106 that connects the high-pressure part and the low-pressure part, and an air storage tank having pressure control valves 106a and 106b on the high-pressure side and the low-pressure side, respectively. 106 and a pressure control device 126 for controlling the pressure regulating valves 106a and 106b. The pressure control device 126 makes the pressure of the air storage tank 106 the same as that of the closed loop L101 at normal temperature and when stopped, so that the valve opening is opened, and the pressure of the high pressure section is set to a predetermined pressure during operation that generates extremely low temperature. The pressure control valves 106a and 106b are controlled so that

また、特許文献2に記載された従来技術である冷凍装置では、循環圧縮機の吐出側及び吸入側にそれぞれ循環量調整弁を有する経路を介して接続するバッファータンクと、循環圧縮機の吐出圧力を測定して前記循環量調整弁を開閉する圧力調整器とが設けられている。そして、上記循環圧縮機の吸入圧力を一定に保つための経路として、バイパス弁を介して循環圧縮機の吐出側及び吸入側を接続する経路と、循環圧縮機の吸入圧力を測定して前記バイパス弁の開度を調節する圧力調整器とが設けられていることを特徴としている。   Moreover, in the refrigeration apparatus which is the prior art described in Patent Document 2, a buffer tank connected via a path having a circulation amount adjusting valve to the discharge side and the suction side of the circulation compressor, respectively, and the discharge pressure of the circulation compressor And a pressure regulator that opens and closes the circulation amount regulating valve. Then, as a path for keeping the suction pressure of the circulation compressor constant, a path connecting the discharge side and the suction side of the circulation compressor via a bypass valve, and measuring the suction pressure of the circulation compressor, the bypass A pressure regulator for adjusting the opening of the valve is provided.

特開2009−121786号公報JP 2009-121786 A 特開平5−223378号公報Japanese Patent Laid-Open No. 5-223378

このような構成の極低温冷凍装置においては、装置の運転により冷凍装置内が極低温になると、冷媒ガスの比容積が小さくなり、冷凍装置内の圧力を所定の圧力に保持することができなくなる。このため、バッファータンク(または貯気タンク)から冷媒ガスを冷凍装置内に補充する必要がある。また、極低温冷凍装置が常温かつ停止状態にある際の、閉ループに充填された冷媒ガスの圧力は、一般に大気圧力よりも高く設定されている。これは、冷媒ガスの圧力を高めることで比容積を小さくし、冷媒ガスの循環流量を増やして冷凍機の冷凍能力を増大するとともに、装置全体の小型化を図るためである。例えば、特許文献1に記載された極低温冷凍装置では、低圧側の圧力が0.5〜0.6MPaであり、高圧側の圧力が1.0〜1.2MPaとなっている。   In the cryogenic refrigeration apparatus having such a configuration, when the inside of the refrigeration apparatus becomes extremely cold due to operation of the apparatus, the specific volume of the refrigerant gas becomes small, and the pressure inside the refrigeration apparatus cannot be maintained at a predetermined pressure. . For this reason, it is necessary to replenish the refrigerant gas into the refrigeration apparatus from the buffer tank (or the air storage tank). Further, the pressure of the refrigerant gas filled in the closed loop when the cryogenic refrigeration apparatus is at a normal temperature and in a stopped state is generally set higher than the atmospheric pressure. This is because the specific volume is reduced by increasing the pressure of the refrigerant gas, the refrigeration capacity of the refrigerator is increased by increasing the circulation flow rate of the refrigerant gas, and the entire apparatus is reduced in size. For example, in the cryogenic refrigeration apparatus described in Patent Document 1, the low-pressure side pressure is 0.5 to 0.6 MPa, and the high-pressure side pressure is 1.0 to 1.2 MPa.

しかしながら、特許文献1及び特許文献2に示された極低温冷凍装置では、バッファータンク(あるいは貯気タンク)内に貯蔵された冷媒ガスを閉ループの低圧側に供給する際、バッファータンク内の圧力が閉ループの低圧側よりも高い圧力の場合は問題ないが、バッファータンク内の圧力が閉ループの低圧側と同じ圧力になると、それ以上、冷媒ガスを補充することができなくなるという問題があった。すなわち、前述した構成の極低温冷凍装置では、冷媒ガスとして使用している高価で希少なへリウムやネオンを大気圧力まで利用できないまま、バッファータンク内に無駄に貯蔵することになるという問題があった。   However, in the cryogenic refrigeration apparatus shown in Patent Document 1 and Patent Document 2, when the refrigerant gas stored in the buffer tank (or the storage tank) is supplied to the low pressure side of the closed loop, the pressure in the buffer tank is reduced. There is no problem when the pressure is higher than the low pressure side of the closed loop, but when the pressure in the buffer tank becomes the same as the low pressure side of the closed loop, there is a problem that the refrigerant gas cannot be replenished any more. That is, the cryogenic refrigeration apparatus having the above-described configuration has a problem that expensive and rare helium and neon used as a refrigerant gas are wastedly stored in a buffer tank without being used up to atmospheric pressure. It was.

本発明は、上記事情に鑑みてなされたものであり、冷媒ガスの使用量を低減しつつ、閉ループ内の冷媒ガスの圧力の調整が可能な極低温冷凍装置及びその運転方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides a cryogenic refrigeration apparatus capable of adjusting the pressure of refrigerant gas in a closed loop while reducing the amount of refrigerant gas used, and an operating method thereof. It is aimed.

かかる課題を解決するため、
請求項1に記載の発明は、冷媒ガスを圧縮、循環させる主圧縮機と、
圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器と、
冷却した冷媒ガスを断熱膨張させる膨張タービンと、
前記膨張タービンを出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器と、が設けられ、
前記副熱交換器で熱交換した後の冷媒ガスを、前記主熱交換器を介して前記主圧縮機に循環させる循環経路からなる閉ループを備えた極低温冷凍装置であって、
前記主圧縮機の入口側で前記閉ループと弁を介して連通するバッファータンクと、
前記主圧縮機の入口側の前記閉ループ内の圧力と前記バッファータンク内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機と、を備えることを特徴とする極低温冷凍装置である。
To solve this problem,
The invention according to claim 1 is a main compressor for compressing and circulating refrigerant gas;
A main heat exchanger that cools the compressed refrigerant gas by heat exchange with the returned refrigerant gas;
An expansion turbine for adiabatically expanding the cooled refrigerant gas;
A sub heat exchanger for exchanging heat between the cryogenic refrigerant gas exiting the expansion turbine and the coolant; and
A cryogenic refrigeration apparatus comprising a closed loop consisting of a circulation path for circulating the refrigerant gas after heat exchange in the sub heat exchanger to the main compressor via the main heat exchanger,
A buffer tank in communication with the closed loop via a valve on the inlet side of the main compressor;
A sub-compressor that compares the pressure in the closed loop on the inlet side of the main compressor with the pressure in the buffer tank, and pumps the refrigerant gas from the low pressure side to the high side. It is a cryogenic refrigeration system.

請求項2に記載の発明は、前記バッファータンクから前記閉ループの前記主圧縮機の入口側に前記副圧縮機を介して接続する補充経路と、
前記閉ループの前記主圧縮機の入口側から前記バッファータンクに前記副圧縮機を介して接続する回収経路と、を備えることを特徴とする請求項1に記載の極低温冷凍装置である。
The invention according to claim 2 is a replenishment path connected from the buffer tank to the inlet side of the main compressor in the closed loop via the sub compressor,
2. The cryogenic refrigeration apparatus according to claim 1, further comprising a recovery path connected to the buffer tank from the inlet side of the main compressor in the closed loop via the sub compressor.

請求項3に記載の発明は、前記閉ループの前記主圧縮機の入口側と前記バッファータンクとを前記副圧縮機を介さずに接続する補充・回収経路を備えることを特徴とする請求項1又は2に記載の極低温冷凍装置である。   The invention according to claim 3 is provided with a replenishment / recovery path for connecting the inlet side of the main compressor of the closed loop and the buffer tank without passing through the sub-compressor. 2. The cryogenic refrigeration apparatus according to 2.

請求項4に記載の発明は、前記閉ループ内で、前記主圧縮機の入口側と出口側とを連通するバイパス経路を備え、
前記バイパス経路が当該バイパス経路の中間部にバイパス弁を有することを特徴とする請求項1乃至3のいずれか一項に記載の極低温冷凍装置である。
The invention according to claim 4 includes a bypass path communicating the inlet side and the outlet side of the main compressor in the closed loop,
The cryogenic refrigeration apparatus according to any one of claims 1 to 3, wherein the bypass path includes a bypass valve in an intermediate portion of the bypass path.

請求項5に記載の発明は、前記副圧縮機の入口側に、減圧弁が設けられていることを特徴とする請求項1乃至4のいずれかに記載の極低温冷凍装置である。   A fifth aspect of the present invention is the cryogenic refrigeration apparatus according to any one of the first to fourth aspects, wherein a pressure reducing valve is provided on the inlet side of the sub-compressor.

請求項6に記載の発明は、前記副圧縮機は、前記主圧縮機より処理量が小さいことを特徴とする請求項1乃至5のいずれか一項に記載の極低温冷凍装置である。   The invention according to claim 6 is the cryogenic refrigeration apparatus according to any one of claims 1 to 5, wherein the sub-compressor has a smaller processing amount than the main compressor.

請求項7に記載の発明は、前記主圧縮機が、インバーターによって駆動されることを特徴とする請求項1乃至6のいずれか一項に記載の極低温冷凍装置である。   A seventh aspect of the present invention is the cryogenic refrigeration apparatus according to any one of the first to sixth aspects, wherein the main compressor is driven by an inverter.

請求項8に記載の発明は、前記主圧縮機の出口側に設けられたアフタークーラーと、
前記アフタークーラーの出口側又は前記主圧縮機と前記アフタークーラーとの間に設けられた逆止弁と、を備えることを特徴とする請求項1乃至7のいずれか一項に記載の極低温冷凍装置である。
The invention according to claim 8 is an aftercooler provided on the outlet side of the main compressor,
The cryogenic refrigeration according to any one of claims 1 to 7, further comprising: a check valve provided on an outlet side of the after cooler or between the main compressor and the after cooler. Device.

請求項9に記載の発明は、被冷却体と前記冷却液とを収納する断熱容器と、
前記冷却液を前記副熱交換器に循環させる循環ポンプと、をさらに備えることを特徴とする請求項1乃至5のいずれか一項に記載の極低温冷凍装置である。
The invention according to claim 9 is a heat-insulating container that houses the object to be cooled and the coolant,
The cryogenic refrigeration apparatus according to any one of claims 1 to 5, further comprising a circulation pump that circulates the cooling liquid to the sub heat exchanger.

請求項10に記載の発明は、請求項1乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側の圧力が所定の圧力以下であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも低い場合に、前記バッファータンクから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記閉ループ内に補充し、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側及び出口側の少なくともいずれか一方の圧力が所定の圧力以上であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも高い場合に、前記閉ループから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記バッファータンク内に回収することを特徴とする極低温冷凍装置の運転方法である。
Invention of Claim 10 is the operating method of the cryogenic refrigeration apparatus as described in any one of Claims 1 thru | or 9, Comprising:
The pressure of the refrigerant gas in the closed loop on the inlet side of the main compressor is equal to or lower than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank is higher than the pressure in the closed loop on the inlet side of the main compressor. If low, introduce refrigerant gas from the buffer tank to the sub-compressor, replenish the refrigerant gas pumped by the sub-compressor into the closed loop,
The pressure of at least one of the inlet side and the outlet side of the main compressor of the refrigerant gas in the closed loop is equal to or higher than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank is the inlet side of the main compressor When the pressure in the closed loop is higher, refrigerant gas is introduced into the sub-compressor from the closed loop, and the refrigerant gas pumped by the sub-compressor is recovered in the buffer tank. It is the operating method of a low-temperature freezing apparatus.

請求項11に記載の発明は、前記閉ループ内の冷媒ガスを副圧縮機により圧送してバッファータンク内に回収することにより、閉ループ内の冷媒ガスの圧力を大気圧にすることを特徴とする請求項10に記載の極低温冷凍装置の運転方法である。   The invention according to claim 11 is characterized in that the pressure of the refrigerant gas in the closed loop is made atmospheric pressure by pumping the refrigerant gas in the closed loop by a sub-compressor and collecting it in the buffer tank. The operation method of the cryogenic refrigeration apparatus according to Item 10.

請求項12に記載の発明は、請求項4乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
主圧縮機の運転停止時にバイパス弁を開放することを特徴とする請求項10又は請求項11に記載の極低温冷凍装置の運転方法である。
Invention of Claim 12 is the operating method of the cryogenic refrigeration apparatus as described in any one of Claims 4 thru | or 9, Comprising:
The operation method of the cryogenic refrigeration apparatus according to claim 10 or 11, wherein the bypass valve is opened when the operation of the main compressor is stopped.

請求項13に記載の発明は、請求項5乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記副圧縮機に冷媒ガスを導入する前に、冷媒ガスの圧力をほぼ大気圧まで減圧することを特徴とする請求項10乃至12のいずれか一項に記載の極低温冷凍装置の運転方法である。
Invention of Claim 13 is the operating method of the cryogenic refrigeration apparatus as described in any one of Claims 5 thru | or 9, Comprising:
The cryogenic refrigeration apparatus operating method according to any one of claims 10 to 12, wherein the pressure of the refrigerant gas is reduced to substantially atmospheric pressure before introducing the refrigerant gas into the sub-compressor. is there.

請求項14に記載の発明は、請求項7乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の出口側の圧力が所定の圧力よりも高くなった場合に、前記インバーターの出力周波数を変更して前記主圧縮機の運転回転数を降下させることを特徴とする請求項10乃至13のいずれか一項に記載の極低温冷凍装置の運転方法である。
Invention of Claim 14 is the operating method of the cryogenic refrigeration apparatus as described in any one of Claims 7 thru | or 9, Comprising:
When the pressure on the outlet side of the main compressor of the refrigerant gas in the closed loop becomes higher than a predetermined pressure, the operating frequency of the main compressor is decreased by changing the output frequency of the inverter. A method for operating a cryogenic refrigeration apparatus according to any one of claims 10 to 13.

本発明の極低温冷凍装置及びその運転方法によれば、主圧縮機の入口側で閉ループと弁を介して連通するバッファータンクと、主圧縮機の入口側の閉ループ内の圧力とバッファータンク内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機と、を備えている。これにより、閉ループ内の主圧縮機の入口側の圧力が所定の圧力以下であって、バッファータンク内の冷媒ガスの圧力が閉ループ内の主圧縮機の入口側の圧力よりも高い場合は、バッファータンクから閉ループ内に直接冷媒ガスを補充し、バッファータンク内の冷媒ガスの圧力が閉ループ内の主圧縮機の入口側の圧力よりも低い場合は、バッファータンク内の冷媒ガスを副圧縮機により圧送して閉ループ内に補充することができる。また、閉ループ内の主圧縮機の入口側及び出口側の少なくともいずれか一方の圧力が所定の圧力以上であって、バッファータンク内の冷媒ガスの圧力が閉ループ内の主圧縮機の入口側の圧力よりも高い場合は、閉ループ内の冷媒ガスを副圧縮機により圧送してバッファータンク内に回収することができる。このように、バッファータンク内に貯蔵された冷媒ガスを副圧縮機により昇圧して閉ループ内に送り出すことができるため、バッファータンク内の圧力が大気圧となるまで冷媒ガスを有効利用して閉ループ内に補充することができる。このため、高価で希少な冷媒ガスを利用できないまま、バッファータンク内に無駄に貯蔵されることがない。したがって、冷媒ガスの使用量を低減しつつ、閉ループ内の冷媒ガスの圧力の調整をすることができる。また、バッファータンクの容積を減らして設置スペースの縮小を図ることができる。   According to the cryogenic refrigeration apparatus and the operation method thereof of the present invention, the buffer tank communicated with the closed loop on the inlet side of the main compressor via the valve, the pressure in the closed loop on the inlet side of the main compressor, and the buffer tank A sub-compressor that compares the pressure and pumps the refrigerant gas from the low pressure side to the high pressure side. Thus, if the pressure on the inlet side of the main compressor in the closed loop is equal to or lower than a predetermined pressure and the pressure of the refrigerant gas in the buffer tank is higher than the pressure on the inlet side of the main compressor in the closed loop, When the refrigerant gas is replenished directly from the tank into the closed loop and the pressure of the refrigerant gas in the buffer tank is lower than the pressure on the inlet side of the main compressor in the closed loop, the refrigerant gas in the buffer tank is pumped by the sub compressor. Can be refilled in the closed loop. In addition, the pressure of at least one of the inlet side and the outlet side of the main compressor in the closed loop is equal to or higher than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank is the pressure on the inlet side of the main compressor in the closed loop. If higher, the refrigerant gas in the closed loop can be pumped by the sub-compressor and recovered in the buffer tank. In this way, the refrigerant gas stored in the buffer tank can be boosted by the sub-compressor and sent out into the closed loop. Therefore, the refrigerant gas is effectively used until the pressure in the buffer tank reaches atmospheric pressure. Can be replenished. For this reason, expensive and rare refrigerant gas cannot be used and is not stored in the buffer tank in vain. Therefore, the pressure of the refrigerant gas in the closed loop can be adjusted while reducing the amount of refrigerant gas used. Further, the installation space can be reduced by reducing the volume of the buffer tank.

また、本発明の極低温冷凍装置の運転方法によれば、閉ループ内の冷媒ガスを副圧縮機によりバッファータンク内へ圧送することにより、閉ループ内の冷媒ガスの圧力が大気圧となるまで冷媒ガスをバッファータンク内に回収することができる。これにより、メンテナンス時や装置の故障時に構成機器を開放点検する際、大気中に放出される冷媒ガスの損失量を低減することができる。   Further, according to the operation method of the cryogenic refrigeration apparatus of the present invention, the refrigerant gas in the closed loop is pumped into the buffer tank by the sub-compressor until the pressure of the refrigerant gas in the closed loop becomes atmospheric pressure. Can be recovered in the buffer tank. This can reduce the loss of the refrigerant gas released into the atmosphere when the components are opened and inspected at the time of maintenance or device failure.

本発明の極低温冷凍装置の一形態例を示す系統図である。It is a systematic diagram which shows one example of the cryogenic refrigeration apparatus of this invention. 図1の構成機器の容積と圧力、温度から冷媒ガスの充填量を説明するための系統図である。It is a systematic diagram for demonstrating the filling amount of refrigerant gas from the volume of the component apparatus of FIG. 1, pressure, and temperature. 従来の極低温冷凍装置の一例を示す系統図である。It is a systematic diagram which shows an example of the conventional cryogenic refrigeration apparatus.

以下、本発明を適用した一実施形態である極低温冷凍装置について、運転方法とともに図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, a cryogenic refrigeration apparatus which is an embodiment to which the present invention is applied will be described in detail with reference to the drawings together with an operation method. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.

図1は、本発明を適用した一実施形態である極低温冷凍装置示す図である。図1に示すように、本実施形態の極低温冷凍装置1は、主圧縮機2、主熱交換器3、膨張タービン4、副熱交換器5が設けられた循環経路からなる閉ループL1と、閉ループL1と連通するバッファータンク6と、閉ループL1と上記バッファータンク6との間で冷媒ガスを圧送する副圧縮機7と、を備えて概略構成されている。より具体的には、極低温冷凍装置1は、被冷却体8aと冷媒液8bとを収納する断熱容器8と、上記冷媒液8bを副熱交換器5に循環させる循環ポンプ9と、を備えている。   FIG. 1 is a diagram showing a cryogenic refrigeration apparatus which is an embodiment to which the present invention is applied. As shown in FIG. 1, the cryogenic refrigeration apparatus 1 of the present embodiment includes a closed loop L1 including a circulation path provided with a main compressor 2, a main heat exchanger 3, an expansion turbine 4, and a sub heat exchanger 5, A buffer tank 6 that communicates with the closed loop L1 and a sub-compressor 7 that pumps refrigerant gas between the closed loop L1 and the buffer tank 6 are schematically configured. More specifically, the cryogenic refrigeration apparatus 1 includes a heat insulating container 8 that houses a cooled object 8a and a refrigerant liquid 8b, and a circulation pump 9 that circulates the refrigerant liquid 8b to the auxiliary heat exchanger 5. ing.

また、本実施形態の極低温冷凍装置1は、図1に示すように、主圧縮機2で冷媒ガスを圧縮し、主熱交換器3において高圧側の冷媒ガスを低圧側の戻りの冷媒ガスと熱交換することによって冷却し、冷却した冷媒ガスを膨張タービン4で断熱膨張させることにより極低温を発生させ、副熱交換器5において極低温の冷媒ガスによって循環ポンプ9から送液された液体窒素等の冷媒液(冷却液)8bを冷却し、この冷媒液8bで被冷却体8aを冷却するものである。
本実施形態の冷媒ガスとしては、窒素よりも沸点が低いヘリウム、ネオン又は水素及びそれらの混合ガス、あるいは僅かに窒素やアルゴン等の不活性ガスを混合させた混合ガスを用いる。
Further, as shown in FIG. 1, the cryogenic refrigeration apparatus 1 of the present embodiment compresses refrigerant gas by the main compressor 2, and converts the high-pressure side refrigerant gas to the low-pressure side return refrigerant gas in the main heat exchanger 3. The refrigerant is cooled by exchanging heat with it, and the cooled refrigerant gas is adiabatically expanded by the expansion turbine 4 to generate a cryogenic temperature. In the auxiliary heat exchanger 5, the liquid sent from the circulation pump 9 by the cryogenic refrigerant gas. The refrigerant liquid (cooling liquid) 8b such as nitrogen is cooled, and the cooled object 8a is cooled by the refrigerant liquid 8b.
As the refrigerant gas of this embodiment, helium, neon, or hydrogen having a lower boiling point than nitrogen and a mixed gas thereof, or a mixed gas obtained by slightly mixing an inert gas such as nitrogen or argon is used.

閉ループL1は、冷媒ガスを圧縮、循環させる主圧縮機2と、圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器3と、冷却した冷媒ガスを断熱膨張させる膨張タービン4と、上記膨張タービン4を出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器5と、が設けられており、上記副熱交換器5で熱交換した後の冷媒ガスを、主熱交換器3を介して主圧縮機2に循環させる循環経路である。   The closed loop L1 includes a main compressor 2 that compresses and circulates refrigerant gas, a main heat exchanger 3 that cools the compressed refrigerant gas by heat exchange with the returned refrigerant gas, and an expansion turbine that adiabatically expands the cooled refrigerant gas. 4 and a sub heat exchanger 5 for exchanging heat between the cryogenic refrigerant gas exiting the expansion turbine 4 and the coolant, and the refrigerant gas after heat exchange in the sub heat exchanger 5 Is circulated through the main compressor 2 through the main heat exchanger 3.

主圧縮機2は、冷媒ガスを圧縮、循環させるために閉ループL1に設けられたターボ圧縮機である。本実施形態では、図1に示すように、主圧縮機2として1段式のターボ圧縮機を例示しているがこれに限定されるものではなく、1段式のターボ圧縮機に替えてインタークーラーを備えた2段式のターボ圧縮機としても良い。   The main compressor 2 is a turbo compressor provided in the closed loop L1 for compressing and circulating the refrigerant gas. In the present embodiment, as shown in FIG. 1, a single-stage turbo compressor is illustrated as the main compressor 2, but the present invention is not limited to this, and the intercooler is replaced with a single-stage turbo compressor. It is good also as a two-stage turbo compressor provided with.

閉ループL1内における主圧縮機2の入口側2aの圧力は、例えば0.5〜1MPaとすることが好ましい。また、閉ループL1内における主圧縮機2の出口側2bの圧力は1〜2MPaとすることが好ましい。そして、冷却温度域と冷凍装置のエネルギー効率との点から、主圧縮機2の圧縮比は、1.6〜3程度とすることが好ましい。   The pressure on the inlet side 2a of the main compressor 2 in the closed loop L1 is preferably, for example, 0.5 to 1 MPa. The pressure on the outlet side 2b of the main compressor 2 in the closed loop L1 is preferably 1 to 2 MPa. And it is preferable that the compression ratio of the main compressor 2 shall be about 1.6-3 from the point of the cooling temperature range and the energy efficiency of a freezing apparatus.

また、主圧縮機2は、インバーターによって駆動されるものを用いてもよい。主圧縮機2がインバーター制御される場合には、主圧縮機2の出口側2bの圧力が規定値よりも高くなった際に、インバーターの出力周波数を変更して主圧縮機2の運転回転数を降下させることができるため、主圧縮機2の出口側2bの圧力を規定値以下に保持することが可能となる。これにより、閉ループL1内の最高圧力を、極低温冷凍装置1を構成する圧力容器の耐圧強度以下に保持することができる。   The main compressor 2 may be driven by an inverter. When the main compressor 2 is inverter-controlled, when the pressure on the outlet side 2b of the main compressor 2 becomes higher than a specified value, the operating frequency of the main compressor 2 is changed by changing the output frequency of the inverter. Therefore, the pressure on the outlet side 2b of the main compressor 2 can be kept below a specified value. Thereby, the maximum pressure in the closed loop L <b> 1 can be kept below the pressure resistance of the pressure vessel constituting the cryogenic refrigeration apparatus 1.

また、主圧縮機2の出口側(二次側)2bには、図1に示すように、例えば、水冷式のアフタークーラー10を設置することが好ましい。このアフタークーラー10には、図示されない外部のクーリングタワーから冷却水が供給されており、高温の冷媒ガスを大気温度近くまで冷却することができる。   In addition, as shown in FIG. 1, for example, a water-cooled aftercooler 10 is preferably installed on the outlet side (secondary side) 2 b of the main compressor 2. The aftercooler 10 is supplied with cooling water from an external cooling tower (not shown), and can cool the high-temperature refrigerant gas to near the atmospheric temperature.

さらに、アフタークーラー10の出口側に、逆止弁(チェックバルブ)11を設けてもよい。これにより、極低温冷凍装置1の通常運転停止時や緊急停止時に、圧縮された冷却ガスが主圧縮機2に逆流して逆回転することを防止することができる。なお、逆止弁11は、主圧縮機2とアフタークーラー10との中間位置に設けてもよい。   Furthermore, a check valve (check valve) 11 may be provided on the outlet side of the aftercooler 10. Thereby, it is possible to prevent the compressed cooling gas from flowing backward to the main compressor 2 and reversely rotating when the cryogenic refrigeration apparatus 1 is stopped during normal operation or emergency stop. The check valve 11 may be provided at an intermediate position between the main compressor 2 and the aftercooler 10.

主熱交換器3は、図1に示すように、閉ループL1において主圧縮機2と膨張タービン4との中間に配置されており、主圧縮機2により圧縮された冷媒ガスと副熱交換器5からの戻りの冷媒ガスとを熱交換することにより、上記圧縮された冷媒ガスを冷却するものである。
膨張タービン4は、図1に示すように、閉ループL1において主熱交換器3の二次側に設置されており、上記主熱交換器3により冷却された冷媒ガスを断熱膨張させて極低温の冷媒ガスとするものである。また、膨張タービン4は、主圧縮機2と同軸上に取り付けられて一体構造となっていてもよい。
As shown in FIG. 1, the main heat exchanger 3 is disposed in the middle of the main compressor 2 and the expansion turbine 4 in the closed loop L <b> 1, and the refrigerant gas compressed by the main compressor 2 and the auxiliary heat exchanger 5. The compressed refrigerant gas is cooled by exchanging heat with the refrigerant gas returned from the refrigerant.
As shown in FIG. 1, the expansion turbine 4 is installed on the secondary side of the main heat exchanger 3 in the closed loop L <b> 1, and a refrigerant gas cooled by the main heat exchanger 3 is adiabatically expanded to produce a cryogenic temperature. Refrigerant gas. Further, the expansion turbine 4 may be mounted on the same axis as the main compressor 2 to have an integral structure.

副熱交換器5は、図1に示すように、閉ループL1において膨張タービン4の二次側に設置されており、上記膨張タービン4によって極低温とされた冷媒ガスと被熱交換体である冷媒液8bとを熱交換することにより、上記冷媒液8bを冷却するものである。
極低温まで冷却された冷媒ガスは、この冷媒液8bにより、断熱容器8に収納された被冷却体8aを間接的に冷却する。
ここで、本実施形態における被冷却体8aは、例えば、超電導送電ケーブル、超電導変圧器、超電導モーター、超電導限流器、超電導電力貯蔵器等の高温超電導機器である。
As shown in FIG. 1, the auxiliary heat exchanger 5 is installed on the secondary side of the expansion turbine 4 in the closed loop L <b> 1, and is a refrigerant gas that is made a cryogenic temperature by the expansion turbine 4 and a refrigerant that is a heat exchanger. The refrigerant liquid 8b is cooled by exchanging heat with the liquid 8b.
The refrigerant gas cooled to an extremely low temperature indirectly cools the cooled object 8a accommodated in the heat insulating container 8 by the refrigerant liquid 8b.
Here, the object to be cooled 8a in the present embodiment is a high-temperature superconducting device such as a superconducting power transmission cable, a superconducting transformer, a superconducting motor, a superconducting current limiter, a superconducting power storage, or the like.

バッファータンク6は、冷媒ガスを貯留するための貯留槽であり、図1に示すように、補充・回収経路L2によって、主圧縮機2の入口側2aで閉ループL1と接続されている。このバッファータンク6は、補充・回収経路L2に設けられた開閉弁(弁)12を介して閉ループL1と連通されている。ここで、補充・回収経路L2は、閉ループL1の主圧縮機2の入口側2aとバッファータンク6とを副圧縮機7を介さずに接続する経路である。また、バッファータンク6には、開閉弁13が設けられた経路L3が接続されており、この経路L3から冷媒ガスをバッファータンク6内に供給可能とされている。   The buffer tank 6 is a storage tank for storing the refrigerant gas, and is connected to the closed loop L1 on the inlet side 2a of the main compressor 2 by a replenishment / recovery path L2, as shown in FIG. The buffer tank 6 communicates with the closed loop L1 through an on-off valve (valve) 12 provided in the replenishment / recovery path L2. Here, the replenishment / recovery path L2 is a path that connects the inlet side 2a of the main compressor 2 in the closed loop L1 and the buffer tank 6 without passing through the sub compressor 7. The buffer tank 6 is connected to a path L3 provided with an on-off valve 13 so that the refrigerant gas can be supplied into the buffer tank 6 from the path L3.

副圧縮機7は、主圧縮機2の入口側2aの閉ループL1内の圧力と、バッファータンク6内の圧力と、を比較して、圧力の低い側から高い側へ冷媒ガスを圧送するために設けられている。
本実施形態の副圧縮機7は、主圧縮機2よりも処理量が小さいものでよく、例えば、オイルフリーのダイヤフラム式やレシプロ式、スクロール式など安価で容易に入手できる小型圧縮機を使用することができる。
The sub-compressor 7 compares the pressure in the closed loop L1 on the inlet side 2a of the main compressor 2 with the pressure in the buffer tank 6, and pumps the refrigerant gas from the low pressure side to the high pressure side. Is provided.
The sub-compressor 7 of the present embodiment may have a smaller processing amount than the main compressor 2, and uses a small-sized compressor that can be easily obtained at low cost, such as an oil-free diaphragm type, reciprocating type, or scroll type. be able to.

ところで、一般的に安価で容易に入手できる上述したような小型圧縮機は、大気圧で吸入するタイプが大多数を占めている。そのような小型圧縮機を副圧縮機7として用いた場合、吸入側に圧力の高い冷媒ガスが入ると、小型圧縮機の負荷が急激に増大するだけでなく、耐圧強度上の問題がある。したがって、副圧縮機7の吸入側(入口側)に減圧弁14を設けることが好ましい。この減圧弁14により、副圧縮機7の吸入側の冷媒ガスの圧力を大気圧付近まで減圧することができるため、市販の安価な小型圧縮機を副圧縮機7として利用することが可能となる。
また、副圧縮機7の吐出側(出口側)には、逆止弁15が設けられている。
さらに、上記減圧弁14と副圧縮機7との間に、小容量、例えば数リットルのバッファータンク(図示せず)を設けることが好ましい。これにより、副圧縮機7の吸入圧力の脈動を防止することができる。
By the way, in general, the above-described small compressors that are inexpensive and easily available are mainly inhaled at atmospheric pressure. When such a small compressor is used as the sub-compressor 7, when a refrigerant gas having a high pressure enters the suction side, not only the load of the small compressor increases rapidly, but also there is a problem in pressure resistance. Therefore, it is preferable to provide the pressure reducing valve 14 on the suction side (inlet side) of the sub compressor 7. Since the pressure of the refrigerant gas on the suction side of the sub compressor 7 can be reduced to near atmospheric pressure by the pressure reducing valve 14, a commercially available small-sized compressor can be used as the sub compressor 7. .
A check valve 15 is provided on the discharge side (exit side) of the sub compressor 7.
Furthermore, it is preferable to provide a buffer tank (not shown) having a small capacity, for example, several liters, between the pressure reducing valve 14 and the sub compressor 7. Thereby, the pulsation of the suction pressure of the sub compressor 7 can be prevented.

本実施形態の極低温冷凍装置1は、バッファータンク6から閉ループL1の主圧縮機2の入口側2aに副圧縮機7を介して接続する補充経路L4と、閉ループL1の主圧縮機2の入口側2aからバッファータンク6に副圧縮機7を介して接続する回収経路L5と、閉ループL1内において主圧縮機2の入口側2aと出口側2bとを連通するバイパス経路L6と、を備えている。   The cryogenic refrigeration apparatus 1 of the present embodiment includes a replenishment path L4 that is connected from the buffer tank 6 to the inlet side 2a of the main compressor 2 in the closed loop L1 via the sub compressor 7, and the inlet of the main compressor 2 in the closed loop L1. A recovery path L5 connected from the side 2a to the buffer tank 6 via the sub compressor 7, and a bypass path L6 communicating the inlet side 2a and the outlet side 2b of the main compressor 2 in the closed loop L1. .

ここで、補充経路L4には、バッファータンク6との接続側に開閉弁16が、閉ループL1との接続側に開閉弁17が、それぞれ設けられている。
また、回収経路L5には、閉ループL1との接続側に開閉弁18が、バッファータンク6との接続側に開閉弁19が、それぞれ設けられている。
さらに、バイパス経路L6には、開閉バルブからなるバイパス弁20が設けられている。
Here, the replenishment path L4 is provided with an on-off valve 16 on the connection side with the buffer tank 6 and an on-off valve 17 on the connection side with the closed loop L1.
In the recovery path L5, an opening / closing valve 18 is provided on the connection side with the closed loop L1, and an opening / closing valve 19 is provided on the connection side with the buffer tank 6.
Further, the bypass path L6 is provided with a bypass valve 20 composed of an open / close valve.

すなわち、副圧縮機7の吸入側は、主圧縮機2の入口側2aにおいて閉ループL1と開閉弁18を介して連通されると同時に、バッファータンク6と開閉弁16を介して連通されている。
一方、副圧縮機7の吐出側は、バッファータンク6と開閉弁19を介して連通されると同時に、主圧縮機2の入口側2aにおいて閉ループL1と開閉弁17を介して連通されている。
In other words, the suction side of the sub-compressor 7 is communicated with the buffer tank 6 and the on-off valve 16 at the same time as being communicated with the closed loop L 1 and the on-off valve 18 on the inlet side 2 a of the main compressor 2.
On the other hand, the discharge side of the sub-compressor 7 is communicated with the buffer tank 6 via the on-off valve 19 and at the same time with the closed loop L1 and the on-off valve 17 on the inlet side 2a of the main compressor 2.

次に、本実施形態の極低温冷凍装置1の運転方法について説明する。
先ず、極低温冷凍装置1の閉ループL1において、主圧縮機2によって冷媒ガスが圧縮する。主圧縮機2で圧縮された冷媒ガスは高温となるため、主圧縮機2の出口側(下流側)に設置されたアフタークーラー10により、高温の冷媒ガスは大気温度近くまで冷却する。
Next, the operation method of the cryogenic refrigeration apparatus 1 of the present embodiment will be described.
First, in the closed loop L <b> 1 of the cryogenic refrigeration apparatus 1, the refrigerant gas is compressed by the main compressor 2. Since the refrigerant gas compressed by the main compressor 2 becomes high temperature, the high-temperature refrigerant gas is cooled to near atmospheric temperature by the aftercooler 10 installed on the outlet side (downstream side) of the main compressor 2.

次に、アフタークーラー10を経た冷媒ガスをコールドボックス内に収納された主熱交換器3に導入し、副熱交換器5からの戻りの冷媒ガスと熱交換する。これにより、冷媒ガスを65〜75Kの温度まで冷却し、膨張タービン4に導入する。そして、膨張タービン4において、冷媒ガスを高圧側の圧力(1〜2MPa)から低圧側の圧力(0.5〜1MPa)まで断熱膨張することにより、冷媒ガスの温度を55〜65Kまで降下させる。   Next, the refrigerant gas having passed through the after cooler 10 is introduced into the main heat exchanger 3 housed in the cold box, and heat exchange with the returned refrigerant gas from the sub heat exchanger 5 is performed. Thereby, the refrigerant gas is cooled to a temperature of 65 to 75 K and introduced into the expansion turbine 4. Then, in the expansion turbine 4, the temperature of the refrigerant gas is lowered to 55 to 65K by adiabatically expanding the refrigerant gas from the high pressure side pressure (1 to 2 MPa) to the low pressure side pressure (0.5 to 1 MPa).

次に、膨張タービン4により55〜65Kまで温度を降下させた冷媒ガスを、副熱交換器5に導入する。そして、副熱交換器5において、極低温の冷媒ガスと液体窒素等の冷媒液8bとを熱交換することにより、冷媒液8bをサブクール状態(液体がその飽和温度よりも低い状態をいい、ここでは液体窒素の沸点(約77K)から凝固点(約63K)までの温度をいう)の約65Kまで冷却する。この際、冷媒液8bとの熱交換後の冷媒ガスは、60〜70Kまで温度上昇する。副熱交換器5を経た冷媒ガスは、その後、主熱交換器3に戻る。ここで、主熱交換器3に戻った低圧側の戻り冷媒ガスの温度は、高圧側の冷媒ガスと熱交換することにより、主熱交換器3を出る際にはほぼ常温まで温度上昇する。そして、主熱交換器3を経てほぼ常温となった冷媒ガスは、主圧縮機2の入口側2aに戻る。本実施形態の極冷凍装置1における閉ループL1では、以上のように冷媒ガスが循環する構成となっている。   Next, the refrigerant gas whose temperature has been lowered to 55 to 65 K by the expansion turbine 4 is introduced into the auxiliary heat exchanger 5. Then, in the sub heat exchanger 5, the refrigerant liquid 8b is subcooled by heat exchange between the cryogenic refrigerant gas and the refrigerant liquid 8b such as liquid nitrogen, which means that the liquid is lower than its saturation temperature. Then, the liquid nitrogen is cooled to about 65K, which is the boiling point of liquid nitrogen (about 77K) to the freezing point (about 63K). At this time, the temperature of the refrigerant gas after heat exchange with the refrigerant liquid 8b rises to 60 to 70K. The refrigerant gas that has passed through the auxiliary heat exchanger 5 then returns to the main heat exchanger 3. Here, the temperature of the low-pressure-side return refrigerant gas that has returned to the main heat exchanger 3 rises to substantially room temperature when leaving the main heat exchanger 3 by exchanging heat with the high-pressure side refrigerant gas. Then, the refrigerant gas that has reached the room temperature through the main heat exchanger 3 returns to the inlet side 2 a of the main compressor 2. In the closed loop L1 in the polar refrigeration apparatus 1 of the present embodiment, the refrigerant gas circulates as described above.

なお、上記の副熱交換器5での熱交換によって、被冷却体8aを冷却する断熱容器8内の冷媒液8bは、約70Kに保持される。   Note that the refrigerant liquid 8b in the heat insulating container 8 that cools the object to be cooled 8a is maintained at about 70K by heat exchange in the sub heat exchanger 5 described above.

ここで、閉ループL1内の冷媒ガスの、主圧縮機2の入口側2aの圧力が所定の圧力以下となった場合であって、バッファータンク6内の冷媒ガスの圧力が主圧縮機2の入口側2aの圧力よりも高い場合は、補充・回収経路L2に設けられた開閉弁12を開放してバッファータンク6から閉ループL1内に冷媒ガスを補充する。   Here, when the pressure of the refrigerant gas in the closed loop L1 on the inlet side 2a of the main compressor 2 becomes equal to or lower than a predetermined pressure, the pressure of the refrigerant gas in the buffer tank 6 becomes the inlet of the main compressor 2. When the pressure is higher than the pressure on the side 2a, the on-off valve 12 provided in the replenishment / recovery path L2 is opened to replenish the refrigerant gas from the buffer tank 6 into the closed loop L1.

これに対して、バッファータンク6内の冷媒ガスの圧力が、主圧縮機2の入口側2aの閉ループL1内の圧力よりも低い場合には、補充経路L4に設けられた開閉弁16を開放してバッファータンク6から副圧縮機7に冷媒ガスを導入する。そして、副圧縮機7によって冷媒ガスを閉ループL1内における主圧縮機2の入口側2aの圧力(冷媒ガスの補充に必要最低限の圧力のことを意味しており、主圧縮機2の入口側2aの圧力よりもわずかに高い圧力)まで昇圧し、補充経路L4に設けられた開閉弁17を開放して閉ループL1内に冷媒ガスを補充する。このように、副圧縮機7によって圧送された冷媒ガスを閉ループL1内に補充することにより、閉ループL1における主圧縮機2の入口側2aの圧力を一定に保持することができる。   On the other hand, when the pressure of the refrigerant gas in the buffer tank 6 is lower than the pressure in the closed loop L1 on the inlet side 2a of the main compressor 2, the on-off valve 16 provided in the replenishment path L4 is opened. Then, the refrigerant gas is introduced from the buffer tank 6 to the sub compressor 7. Then, the subcompressor 7 supplies the refrigerant gas to the pressure on the inlet side 2a of the main compressor 2 in the closed loop L1 (meaning the minimum pressure necessary for replenishing the refrigerant gas, and the inlet side of the main compressor 2). The pressure is increased to a pressure slightly higher than the pressure of 2a), and the on-off valve 17 provided in the replenishment path L4 is opened to replenish the refrigerant gas into the closed loop L1. Thus, by replenishing the closed loop L1 with the refrigerant gas pumped by the sub compressor 7, the pressure on the inlet side 2a of the main compressor 2 in the closed loop L1 can be kept constant.

一方、閉ループL1内の主圧縮機2の入口側2a及び出口側2bの少なくともいずれか一方の圧力が所定の圧力以上であって、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも高い場合は、閉ループL1内の冷媒ガスを副圧縮機7により圧送してバッファータンク6内に回収することができる。また、閉ループL1内の冷媒ガスの、主圧縮機2の出口側2bの圧力が所定の圧力以上となった場合であって、バッファータンク6内の冷媒ガスの圧力が主圧縮機2の入口側の圧力よりも低い場合は、主圧縮機2の出口側2b(高圧側)と入口側2a(低圧側)とを連通するバイパス経路L6に設けられたバイパス弁20を開放することにより、主圧縮機2の入口側(低圧側)2bに冷媒ガスが戻されて、閉ループL1における主圧縮機2の入口側2aの圧力が規定値よりも高くなるため、補充・回収経路L2に設けられた開閉弁12を開放して閉ループL1内からバッファータンク6内に冷媒ガスを回収できる。   On the other hand, the pressure of at least one of the inlet side 2a and the outlet side 2b of the main compressor 2 in the closed loop L1 is equal to or higher than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank 6 is the main compression in the closed loop L1. When the pressure is higher than the pressure on the inlet side 2 a of the machine 2, the refrigerant gas in the closed loop L <b> 1 can be pumped by the sub compressor 7 and recovered in the buffer tank 6. In addition, when the pressure of the refrigerant gas in the closed loop L1 on the outlet side 2b of the main compressor 2 is equal to or higher than a predetermined pressure, the pressure of the refrigerant gas in the buffer tank 6 is the inlet side of the main compressor 2 When the pressure is lower than the pressure of the main compressor 2, the main compression is performed by opening the bypass valve 20 provided in the bypass path L6 that connects the outlet side 2b (high pressure side) and the inlet side 2a (low pressure side) of the main compressor 2. Since the refrigerant gas is returned to the inlet side (low pressure side) 2b of the compressor 2 and the pressure on the inlet side 2a of the main compressor 2 in the closed loop L1 becomes higher than a specified value, the opening / closing provided in the replenishment / recovery path L2 The refrigerant gas can be recovered from the closed loop L1 into the buffer tank 6 by opening the valve 12.

これに対して、バッファータンク6内の冷媒ガスの圧力が、主圧縮機2の入口側2aの閉ループL1内の圧力よりも高い場合には、回収経路L5に設けられた開閉弁18を解放して閉ループL1内から副圧縮機7に冷媒ガスを導入する。そして、副圧縮機7によって冷媒ガスをバッファータンク6内の圧力(冷媒ガスの回収に必要最低限の圧力のことを意味しており、バッファータンク6内の圧力よりもわずかに高い圧力)まで昇圧した後、回収経路L5に設けられた開閉弁19を開放してバッファータンク6内に冷媒ガスを回収する。このように、副圧縮機7によって圧送された冷媒ガスをバッファータンク6内に回収することにより、閉ループL1における主圧縮機2の入口側2aの圧力を一定に保持することができる。   On the other hand, when the pressure of the refrigerant gas in the buffer tank 6 is higher than the pressure in the closed loop L1 on the inlet side 2a of the main compressor 2, the on-off valve 18 provided in the recovery path L5 is released. Then, the refrigerant gas is introduced into the sub compressor 7 from the closed loop L1. Then, the sub-compressor 7 raises the refrigerant gas to a pressure in the buffer tank 6 (which means a minimum pressure necessary for the recovery of the refrigerant gas and is slightly higher than the pressure in the buffer tank 6). After that, the on-off valve 19 provided in the recovery path L5 is opened to recover the refrigerant gas in the buffer tank 6. In this way, by collecting the refrigerant gas pumped by the sub compressor 7 in the buffer tank 6, the pressure on the inlet side 2a of the main compressor 2 in the closed loop L1 can be kept constant.

また、極低温冷凍装置1の停止時には主圧縮機2を定常運転から停止させるが、主圧縮機2の異常振動を防止するため、装置の停止信号を受けてから主圧縮機2が停止動作に至る間にバイパス弁20を解放して主圧縮機2の高圧側(出口側2b)から低圧側(入口側2a)に冷媒ガスを戻すことにより、主圧縮機2の高圧側の圧力を低下させて閉ループL1内の圧力を均圧化する。この動作によって主圧縮機2の低圧側(入口側2a)の圧力が規定値よりも高くなるため、補充・回収経路L2に設けられた開閉弁12を開放して閉ループL1内の冷媒ガスをバッファータンク6内に回収する。   Further, when the cryogenic refrigeration apparatus 1 is stopped, the main compressor 2 is stopped from the steady operation. However, in order to prevent abnormal vibration of the main compressor 2, the main compressor 2 is stopped after receiving a stop signal of the apparatus. In the meantime, by releasing the bypass valve 20 and returning the refrigerant gas from the high pressure side (outlet side 2b) to the low pressure side (inlet side 2a) of the main compressor 2, the pressure on the high pressure side of the main compressor 2 is reduced. The pressure in the closed loop L1 is equalized. As a result of this operation, the pressure on the low pressure side (inlet side 2a) of the main compressor 2 becomes higher than the specified value, so the on-off valve 12 provided in the replenishment / recovery path L2 is opened to buffer the refrigerant gas in the closed loop L1. It collects in the tank 6.

さらに、極低温冷凍装置1のメンテナンスの際や故障の際には、各構成機器を開放点検する必要がある。この場合には、回収経路L5に設けられた開閉弁18を開放し、閉ループL1内の冷媒ガスを副圧縮機7により圧送してバッファータンク6内に回収する。これにより、閉ループL1内の冷媒ガスの圧力を大気圧近くまで回収にすることができる。   Furthermore, when the cryogenic refrigeration apparatus 1 is maintained or broken, it is necessary to open and check each component device. In this case, the on-off valve 18 provided in the recovery path L5 is opened, and the refrigerant gas in the closed loop L1 is pumped by the sub compressor 7 and recovered in the buffer tank 6. Thereby, the pressure of the refrigerant gas in the closed loop L1 can be recovered to near atmospheric pressure.

次に、本実施形態の極低温冷凍装置1の常温停止状態から常温で起動した状態、および冷凍運転時の圧力、温度変化からバッファータンク6からの冷媒ガス補充量がどれくらい必要となるかについて、図2を用いて説明する。   Next, with regard to the state where the cryogenic refrigeration apparatus 1 of the present embodiment is started from the normal temperature stop state at normal temperature, and how much refrigerant gas replenishment amount from the buffer tank 6 is required from the pressure and temperature change during the freezing operation, This will be described with reference to FIG.

図2に示すように、極低温冷凍装置1の閉ループL1内の容積を(A)〜(E)に区分し、バッファータンク6の容積を(F)とする。ここで、簡単のために(A)〜(E)の容積はすべて等しく、大気圧(0.1MPa)、常温状態(300K)で(A)〜(E)の各容積を占める冷媒ガスの量(質量)を「Wt」とする。   As shown in FIG. 2, the volume in the closed loop L1 of the cryogenic refrigeration apparatus 1 is divided into (A) to (E), and the volume of the buffer tank 6 is set to (F). Here, for the sake of simplicity, the volumes of (A) to (E) are all equal, and the amount of refrigerant gas that occupies each volume of (A) to (E) at atmospheric pressure (0.1 MPa) and room temperature (300 K). Let (mass) be “Wt”.

また、極低温冷凍装置1が常温停止状態である時の閉ループL1内((A)〜(E))の圧力と温度はすべて等しく、0.7MPa、300Kとする。この時の(A)〜(E)までの各容積の冷媒ガス量はそれぞれ、7(Wt)となる。したがって、閉ループL1内の全冷媒ガス量は5×7(Wt)=35(Wt)となる。   In addition, the pressure and temperature in the closed loop L1 ((A) to (E)) when the cryogenic refrigeration apparatus 1 is at a normal temperature stop state are all equal to 0.7 MPa and 300K. At this time, the amount of refrigerant gas in each volume from (A) to (E) is 7 (Wt). Therefore, the total refrigerant gas amount in the closed loop L1 is 5 × 7 (Wt) = 35 (Wt).

主圧縮機2を常温停止状態から起動すると、主圧縮機2から膨張タービン4までの(B)、(C)の高圧側は1.0MPa、膨張タービン4から主圧縮機2までの(D)、(E)、(A)の低圧側は0.5MPaとなる。起動直後では、(A)〜(E)の温度がすべて300Kであるから、この時の(A)〜(E)の冷媒ガス量は圧力の増減によって、(B)と(C)はそれぞれ10(Wt)、(D)、(E)、(A)はそれぞれ5(Wt)となり、合計すると全体では2×10(Wt)+3×5(Wt)=35(Wt)となる。   When the main compressor 2 is started from a normal temperature stop state, (B) and (C) from the main compressor 2 to the expansion turbine 4 are 1.0 MPa, and (D) from the expansion turbine 4 to the main compressor 2. , (E), (A) has a low pressure side of 0.5 MPa. Immediately after startup, the temperatures of (A) to (E) are all 300K, so the amount of refrigerant gas (A) to (E) at this time is 10 for each of (B) and (C) due to the increase or decrease of the pressure. (Wt), (D), (E), and (A) are each 5 (Wt), and the total is 2 × 10 (Wt) + 3 × 5 (Wt) = 35 (Wt).

極低温冷凍装置1の運転を継続すると、膨張タービン4での断熱膨張によって(C)〜(E)の温度は降下し、最終的には、(D)の副熱交換器5の温度は60Kとなる。一方、主熱交換器2の高圧側の入口および低圧側の出口は常温のままであるから、(C)と(E)の温度は300Kと60Kの単純平均とし、(300+60)/2=180Kとする。   If the operation of the cryogenic refrigeration apparatus 1 is continued, the temperature of (C) to (E) decreases due to adiabatic expansion in the expansion turbine 4, and finally the temperature of the auxiliary heat exchanger 5 in (D) is 60K. It becomes. On the other hand, since the high-pressure side inlet and the low-pressure side outlet of the main heat exchanger 2 remain at room temperature, the temperature of (C) and (E) is a simple average of 300K and 60K, and (300 + 60) / 2 = 180K. And

最終的な閉ループL1内の冷媒ガス量は、(A)が5(Wt)、(B)が10(Wt)、(C)は温度が低下した分、冷媒ガスが増加するため、10(Wt)×300/180=16.67(Wt)となる。(D)は5(Wt)×300/60=25(Wt)、(E)は5(Wt)×300/180=8.33(Wt)となる。   The final amount of refrigerant gas in the closed loop L1 is 10 (Wt) because (A) is 5 (Wt), (B) is 10 (Wt), and (C) is the amount of refrigerant gas that increases as the temperature decreases. ) × 300/180 = 16.67 (Wt). (D) is 5 (Wt) × 300/60 = 25 (Wt), and (E) is 5 (Wt) × 300/180 = 8.33 (Wt).

したがって、(A)〜(E)を合計すると全体では5(Wt)+10(Wt)+16.67(Wt)+25(Wt)+8.33(Wt)=65(Wt)となる。極低温冷凍装置1の運転開始前の閉ループL1内の冷媒ガス量は35(Wt)であるから、運転と冷却の進行によって30(Wt)の冷媒ガスをバッファータンク6から閉ループL1内に補充しなければならないことになる。   Therefore, the sum of (A) to (E) is 5 (Wt) +10 (Wt) +16.67 (Wt) +25 (Wt) +8.33 (Wt) = 65 (Wt) as a whole. Since the refrigerant gas amount in the closed loop L1 before the operation of the cryogenic refrigeration apparatus 1 is 35 (Wt), 30 (Wt) refrigerant gas is replenished from the buffer tank 6 into the closed loop L1 by the progress of operation and cooling. Will have to.

ここで、バッファータンク6の常温停止時の圧力を0.7MPaとし、その容積(F)を(A)〜(E)の容積の5倍と仮定すると、バッファータンク6には、大気圧、常温で5(Wt)だけ冷媒ガスを収納することができ、0.7MPaの時は7×5(Wt)=35(Wt)となる。本発明に基づきバッファータンク6から副圧縮機7(図2中では省略)を用いて冷媒ガスを昇圧して閉ループL1内に30(Wt)だけ補充すると、バッファータンク6内の冷媒ガス残量は5(Wt)となる。すなわち、バッファータンク6の圧力はほぼ大気圧となり、バッファータンク6内の冷媒ガスを有効活用できることになる。   Here, assuming that the pressure when the buffer tank 6 is stopped at room temperature is 0.7 MPa, and the volume (F) is assumed to be 5 times the volume of (A) to (E), the buffer tank 6 has atmospheric pressure and room temperature. Thus, 5 (Wt) of refrigerant gas can be stored, and at 0.7 MPa, 7 × 5 (Wt) = 35 (Wt). When the refrigerant gas is boosted from the buffer tank 6 using the sub-compressor 7 (not shown in FIG. 2) and replenished by 30 (Wt) in the closed loop L1 according to the present invention, the remaining refrigerant gas in the buffer tank 6 is obtained. 5 (Wt). That is, the pressure in the buffer tank 6 becomes almost atmospheric pressure, and the refrigerant gas in the buffer tank 6 can be effectively used.

本発明によれば、副圧縮機7を設けることにより、バッファータンク6内の冷媒ガスをほぼ大気圧まで閉ループL1内に補充できるが、従来技術ではバッファータンク内の冷媒ガスは閉ループの最低圧力(上記特許文献1の例では0.5MPa)までしか補充できない。   According to the present invention, by providing the sub-compressor 7, the refrigerant gas in the buffer tank 6 can be replenished into the closed loop L1 up to almost atmospheric pressure. However, in the conventional technology, the refrigerant gas in the buffer tank has a minimum closed loop pressure ( In the example of Patent Document 1 described above, replenishment can only be performed up to 0.5 MPa.

すなわち、従来技術の極低温冷凍装置において冷媒ガス30(Wt)分をバッファータンクから閉ループ内に補充するためには、補充のために使用できる量は0.7MPaから0.5MPaまでであるから、バッファータンクの必要容積は、30(Wt)÷(7−5)=15(Wt)となり、大気圧、常温で15(Wt)の冷媒ガスを収納する容積が必要となる。   That is, in order to replenish the refrigerant gas 30 (Wt) in the closed loop from the buffer tank in the cryogenic refrigerator of the prior art, the amount that can be used for replenishment is from 0.7 MPa to 0.5 MPa, The required volume of the buffer tank is 30 (Wt) ÷ (7−5) = 15 (Wt), and a capacity for storing 15 (Wt) of refrigerant gas at atmospheric pressure and room temperature is required.

したがって、従来技術に対して本発明では、バッファータンク6の容積は1/3で済み、装置全体の占有スペースが小さくなる。また、バッファータンク6内に貯蔵する冷媒ガス量は、従来技術では7×15(Wt)=105(Wt)となり、本発明では105(Wt)から35(Wt)に減少するから、高価で希少な冷媒ガス量も1/3で済む。すなわち、使用されないままバッファータンクに貯蔵される冷媒ガス量は従来と比較して2/3程度削減することができる。   Therefore, in the present invention, the volume of the buffer tank 6 can be reduced to 1/3, and the space occupied by the entire apparatus is reduced. Further, the amount of refrigerant gas stored in the buffer tank 6 is 7 × 15 (Wt) = 105 (Wt) in the prior art, and is reduced from 105 (Wt) to 35 (Wt) in the present invention. A small amount of refrigerant gas is also required. That is, the amount of refrigerant gas stored in the buffer tank without being used can be reduced by about 2/3 compared to the conventional case.

以上説明したように、本実施形態の極低温冷凍装置1及びその運転方法によれば、主圧縮機2の入口側2aで閉ループL1と弁を介して連通するバッファータンク6と、主圧縮機2の入口側2aの閉ループL1内の圧力とバッファータンク6内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機7と、を備えている。これにより、閉ループL1内の主圧縮機2の入口側2aの圧力が所定の圧力以下であって、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも高い場合は、バッファータンク6から閉ループL1内に直接冷媒ガスを補充し、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも低い場合は、バッファータンク6内の冷媒ガスを副圧縮機7により圧送して閉ループL1内に補充することができる。また、閉ループL1内の主圧縮機2の入口側2a及び出口側2bの少なくともいずれか一方の圧力が所定の圧力以上であって、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも高い場合は、閉ループL1内の冷媒ガスを副圧縮機7により圧送してバッファータンク6内に回収することができる。このように、バッファータンク6内に貯蔵された冷媒ガスを副圧縮機7により昇圧して閉ループL1内に送り出すことができるため、バッファータンク6内の圧力が大気圧となるまで冷媒ガスを有効利用して閉ループL1内に補充することができる。このため、高価で希少な冷媒ガスを利用できないまま、バッファータンク6内に無駄に貯蔵されることがない。したがって、冷媒ガスの使用量を低減しつつ、閉ループL1内の冷媒ガスの圧力の調整をすることができる。また、バッファータンク6の容積を減らして設置スペースの縮小を図ることができる。   As described above, according to the cryogenic refrigeration apparatus 1 and the operation method thereof according to the present embodiment, the buffer tank 6 communicating with the closed loop L1 via the valve on the inlet side 2a of the main compressor 2, and the main compressor 2 And a sub-compressor 7 that compares the pressure in the closed loop L1 on the inlet side 2a with the pressure in the buffer tank 6 and pumps the refrigerant gas from the low pressure side to the high pressure side. Thus, the pressure on the inlet side 2a of the main compressor 2 in the closed loop L1 is equal to or lower than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank 6 is the pressure on the inlet side 2a of the main compressor 2 in the closed loop L1. Is higher, the refrigerant gas is replenished directly from the buffer tank 6 into the closed loop L1, and the pressure of the refrigerant gas in the buffer tank 6 is lower than the pressure on the inlet side 2a of the main compressor 2 in the closed loop L1. The refrigerant gas in the buffer tank 6 can be pumped by the sub compressor 7 and replenished in the closed loop L1. Further, the pressure of at least one of the inlet side 2a and the outlet side 2b of the main compressor 2 in the closed loop L1 is equal to or higher than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank 6 is the main compression in the closed loop L1. When the pressure is higher than the pressure on the inlet side 2 a of the machine 2, the refrigerant gas in the closed loop L <b> 1 can be pumped by the sub compressor 7 and recovered in the buffer tank 6. Thus, the refrigerant gas stored in the buffer tank 6 can be pressurized by the sub compressor 7 and sent out into the closed loop L1, so that the refrigerant gas is effectively used until the pressure in the buffer tank 6 reaches atmospheric pressure. Thus, the closed loop L1 can be replenished. For this reason, it is not stored in the buffer tank 6 wastefully without using expensive and rare refrigerant gas. Therefore, the pressure of the refrigerant gas in the closed loop L1 can be adjusted while reducing the amount of refrigerant gas used. Moreover, the volume of the buffer tank 6 can be reduced and the installation space can be reduced.

また、本実施形態の極低温冷凍装置1の運転方法によれば、閉ループL1内の冷媒ガスを副圧縮機7によりバッファータンク6内へ圧送することにより、閉ループL1内の冷媒ガスの圧力が大気圧となるまで冷媒ガスをバッファータンク6内に回収することができる。これにより、メンテナンス時や装置の故障時に構成機器を開放点検する際、大気中に放出される冷媒ガスの損失量を低減することができる。   Further, according to the operation method of the cryogenic refrigeration apparatus 1 of the present embodiment, the refrigerant gas in the closed loop L1 is increased in pressure by feeding the refrigerant gas in the closed loop L1 into the buffer tank 6 by the sub compressor 7. The refrigerant gas can be collected in the buffer tank 6 until the pressure is reached. This can reduce the loss of the refrigerant gas released into the atmosphere when the components are opened and inspected at the time of maintenance or device failure.

さらに、主圧縮機2の出口側(高圧側)2bと入口側(低圧側)2aとを連通するバイパス経路L6と、該経路L6の中間部にバイパス弁20を設け、主圧縮機2の出口側2bの圧力が規定値よりも高くなった場合に、バイパス弁20を開くことで主圧縮機2の出口側2bの圧力を規定値以下に保持することができる。これにより、閉ループL1内の最高圧力を、極低温冷凍装置1を構成する圧力容器の耐圧強度以下に保持することができる。   Further, a bypass path L6 that communicates the outlet side (high pressure side) 2b and the inlet side (low pressure side) 2a of the main compressor 2 and a bypass valve 20 is provided in the middle of the path L6, and the outlet of the main compressor 2 When the pressure on the side 2b becomes higher than the specified value, the pressure on the outlet side 2b of the main compressor 2 can be kept below the specified value by opening the bypass valve 20. Thereby, the maximum pressure in the closed loop L <b> 1 can be kept below the pressure resistance of the pressure vessel constituting the cryogenic refrigeration apparatus 1.

また、主圧縮機2をインバーターによって駆動し、主圧縮機2の出口側2bの圧力が規定値よりも高くなった場合に、インバーターの出力周波数を変更することで主圧縮機2の運転回転数を降下させ、主圧縮機2の出口側の圧力を規定値以下に保持することができる。これにより、閉ループL1内の最高圧力を、極低温冷凍装置1を構成する圧力容器の耐圧強度以下に保持することができる。   Further, when the main compressor 2 is driven by an inverter and the pressure on the outlet side 2b of the main compressor 2 becomes higher than a specified value, the operating speed of the main compressor 2 is changed by changing the output frequency of the inverter. The pressure on the outlet side of the main compressor 2 can be kept below a specified value. Thereby, the maximum pressure in the closed loop L <b> 1 can be kept below the pressure resistance of the pressure vessel constituting the cryogenic refrigeration apparatus 1.

また、主圧縮機2の二次側(出口側)に設置されたアフタークーラー10の出口、あるいは主圧縮機2とアフタークーラー10との中間位置に逆止弁(チェックバルブ)11を設置することにより、極低温冷凍装置1の通常運転停止時あるいは緊急停止時に圧縮された冷却ガスが主圧縮機2に逆流して逆回転することを防止することができる。   In addition, a check valve (check valve) 11 is installed at the outlet of the aftercooler 10 installed on the secondary side (outlet side) of the main compressor 2 or at an intermediate position between the main compressor 2 and the aftercooler 10. Thus, it is possible to prevent the cooling gas compressed at the time of normal operation stop or emergency stop of the cryogenic refrigeration apparatus 1 from flowing backward to the main compressor 2 and reversely rotating.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、本実施形態では、主圧縮機2をターボ圧縮機としたが、レシプロ圧縮機やスクリュー圧縮機としてもよく、また主圧縮機2の出口側2bおよび入口側2aにそれぞれ圧力調節弁を有する経路を設けて、バッファータンク6に接続してもよい。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the present embodiment, the main compressor 2 is a turbo compressor, but it may be a reciprocating compressor or a screw compressor, and has pressure control valves on the outlet side 2b and the inlet side 2a of the main compressor 2, respectively. A path may be provided and connected to the buffer tank 6.

また、本実施形態の極低温冷凍装置1では、副熱交換器5で熱交換(冷却)する被熱交換体として被冷却体8aを冷却するための冷媒液8bを用いている構成としているが、副熱交換器5や循環ポンプ9を設置することなく、極低温冷凍装置1により極低温に冷却された冷媒ガスを断熱容器8内に導入し、冷媒液8bを冷却する、或いは被冷却体8aに供給することにより被冷却体8aを直接冷却する構成としても良い。   In the cryogenic refrigeration apparatus 1 of the present embodiment, the refrigerant liquid 8b for cooling the object to be cooled 8a is used as the heat exchanger to be heat exchanged (cooled) by the sub heat exchanger 5. Without installing the auxiliary heat exchanger 5 and the circulation pump 9, the refrigerant gas cooled to a cryogenic temperature by the cryogenic refrigeration apparatus 1 is introduced into the heat insulating container 8 to cool the refrigerant liquid 8b, or to be cooled It is good also as a structure which cools the to-be-cooled body 8a directly by supplying to 8a.

1…極低温冷凍装置
2…主圧縮機
2a…入口側
2b…出口側
3…主熱交換器
4…膨張タービン
5…副熱交換器
6…バッファータンク
7…副圧縮機
8…断熱容器
8a…被冷却体
8b…冷媒液(冷却液)
9…循環ポンプ
10…アフタークーラー
11…逆止弁(チェックバルブ)
12,13,16,17,18,19…開閉弁(弁)
14…減圧弁
15…逆止弁
20…バイパス弁
L1…閉ループ
L2…補充・回収経路
L3…経路
L4…補充経路
L5…回収経路
L6…バイパス経路
DESCRIPTION OF SYMBOLS 1 ... Cryogenic refrigeration apparatus 2 ... Main compressor 2a ... Inlet side 2b ... Outlet side 3 ... Main heat exchanger 4 ... Expansion turbine 5 ... Sub heat exchanger 6 ... Buffer tank 7 ... Sub compressor 8 ... Insulated container 8a ... Object to be cooled 8b ... Refrigerant liquid (cooling liquid)
9 ... Circulating pump 10 ... After cooler 11 ... Check valve (check valve)
12, 13, 16, 17, 18, 19 ... open / close valve (valve)
14 ... Pressure reducing valve 15 ... Check valve 20 ... Bypass valve L1 ... Closed loop L2 ... Replenishment / recovery path L3 ... Path L4 ... Refill path L5 ... Recovery path L6 ... Bypass path

Claims (14)

冷媒ガスを圧縮、循環させる主圧縮機と、
圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器と、
冷却した冷媒ガスを断熱膨張させる膨張タービンと、
前記膨張タービンを出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器と、が設けられ、
前記副熱交換器で熱交換した後の冷媒ガスを、前記主熱交換器を介して前記主圧縮機に循環させる循環経路からなる閉ループを備えた極低温冷凍装置であって、
前記主圧縮機の入口側で前記閉ループと弁を介して連通するバッファータンクと、
前記主圧縮機の入口側の前記閉ループ内の圧力と前記バッファータンク内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機と、を備えることを特徴とする極低温冷凍装置。
A main compressor that compresses and circulates refrigerant gas;
A main heat exchanger that cools the compressed refrigerant gas by heat exchange with the returned refrigerant gas;
An expansion turbine for adiabatically expanding the cooled refrigerant gas;
A sub heat exchanger for exchanging heat between the cryogenic refrigerant gas exiting the expansion turbine and the coolant; and
A cryogenic refrigeration apparatus comprising a closed loop consisting of a circulation path for circulating the refrigerant gas after heat exchange in the sub heat exchanger to the main compressor via the main heat exchanger,
A buffer tank in communication with the closed loop via a valve on the inlet side of the main compressor;
A sub-compressor that compares the pressure in the closed loop on the inlet side of the main compressor with the pressure in the buffer tank, and pumps the refrigerant gas from the low pressure side to the high side. Cryogenic refrigeration equipment.
前記バッファータンクから前記閉ループの前記主圧縮機の入口側に前記副圧縮機を介して接続する補充経路と、
前記閉ループの前記主圧縮機の入口側から前記バッファータンクに前記副圧縮機を介して接続する回収経路と、を備えることを特徴とする請求項1に記載の極低温冷凍装置。
A replenishment path connected from the buffer tank to the inlet side of the main compressor in the closed loop via the sub-compressor;
The cryogenic refrigeration apparatus according to claim 1, further comprising: a recovery path connected to the buffer tank from the inlet side of the main compressor in the closed loop via the sub compressor.
前記閉ループの前記主圧縮機の入口側と前記バッファータンクとを前記副圧縮機を介さずに接続する補充・回収経路を備えることを特徴とする請求項1又は2に記載の極低温冷凍装置。   3. The cryogenic refrigeration apparatus according to claim 1, further comprising a replenishment / recovery path that connects the closed-loop inlet side of the main compressor and the buffer tank without passing through the sub-compressor. 4. 前記閉ループ内で、前記主圧縮機の入口側と出口側とを連通するバイパス経路を備え、
前記バイパス経路が当該バイパス経路の中間部にバイパス弁を有することを特徴とする請求項1乃至3のいずれか一項に記載の極低温冷凍装置。
In the closed loop, comprising a bypass path communicating the inlet side and the outlet side of the main compressor,
The cryogenic refrigeration apparatus according to any one of claims 1 to 3, wherein the bypass path includes a bypass valve in an intermediate portion of the bypass path.
前記副圧縮機の入口側に、減圧弁が設けられていることを特徴とする請求項1乃至4のいずれかに記載の極低温冷凍装置。   The cryogenic refrigeration apparatus according to any one of claims 1 to 4, wherein a pressure reducing valve is provided on an inlet side of the sub compressor. 前記副圧縮機は、前記主圧縮機より処理量が小さいことを特徴とする請求項1乃至5のいずれか一項に記載の極低温冷凍装置。   The cryogenic refrigeration apparatus according to any one of claims 1 to 5, wherein the sub compressor has a smaller processing amount than the main compressor. 前記主圧縮機が、インバーターによって駆動されることを特徴とする請求項1乃至6のいずれか一項に記載の極低温冷凍装置。   The cryogenic refrigeration apparatus according to any one of claims 1 to 6, wherein the main compressor is driven by an inverter. 前記主圧縮機の出口側に設けられたアフタークーラーと、
前記アフタークーラーの出口側又は前記主圧縮機と前記アフタークーラーとの間に設けられた逆止弁と、を備えることを特徴とする請求項1乃至7のいずれか一項に記載の極低温冷凍装置。
An aftercooler provided on the outlet side of the main compressor;
The cryogenic refrigeration according to any one of claims 1 to 7, further comprising: a check valve provided on an outlet side of the after cooler or between the main compressor and the after cooler. apparatus.
被冷却体と前記冷却液とを収納する断熱容器と、
前記冷却液を前記副熱交換器に循環させる循環ポンプと、をさらに備えることを特徴とする請求項1乃至8のいずれか一項に記載の極低温冷凍装置。
A heat-insulating container for storing the object to be cooled and the coolant;
The cryogenic refrigeration apparatus according to any one of claims 1 to 8, further comprising a circulation pump that circulates the cooling liquid to the sub heat exchanger.
請求項1乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側の圧力が所定の圧力以下であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも低い場合に、前記バッファータンクから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記閉ループ内に補充し、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側及び出口側の少なくともいずれか一方の圧力が所定の圧力以上であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも高い場合に、前記閉ループから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記バッファータンク内に回収することを特徴とする極低温冷凍装置の運転方法。
An operation method of the cryogenic refrigeration apparatus according to any one of claims 1 to 9,
The pressure of the refrigerant gas in the closed loop on the inlet side of the main compressor is equal to or lower than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank is higher than the pressure in the closed loop on the inlet side of the main compressor. If low, introduce refrigerant gas from the buffer tank to the sub-compressor, replenish the refrigerant gas pumped by the sub-compressor into the closed loop,
The pressure of at least one of the inlet side and the outlet side of the main compressor of the refrigerant gas in the closed loop is equal to or higher than a predetermined pressure, and the pressure of the refrigerant gas in the buffer tank is the inlet side of the main compressor When the pressure in the closed loop is higher, refrigerant gas is introduced into the sub-compressor from the closed loop, and the refrigerant gas pumped by the sub-compressor is recovered in the buffer tank. Operation method of low-temperature refrigeration equipment.
前記閉ループ内の冷媒ガスを副圧縮機により圧送してバッファータンク内に回収することにより、閉ループ内の冷媒ガスの圧力を大気圧にすることを特徴とする請求項10に記載の極低温冷凍装置の運転方法。   The cryogenic refrigeration apparatus according to claim 10, wherein the pressure of the refrigerant gas in the closed loop is set to atmospheric pressure by pumping the refrigerant gas in the closed loop by a sub-compressor and collecting the refrigerant gas in the buffer tank. Driving method. 請求項4乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
主圧縮機の運転停止時にバイパス弁を開放することを特徴とする請求項10又は請求項11に記載の極低温冷凍装置の運転方法。
An operation method of the cryogenic refrigeration apparatus according to any one of claims 4 to 9,
The operation method of the cryogenic refrigeration apparatus according to claim 10 or 11, wherein the bypass valve is opened when the operation of the main compressor is stopped.
請求項5乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記副圧縮機に冷媒ガスを導入する前に、冷媒ガスの圧力をほぼ大気圧まで減圧することを特徴とする請求項10乃至12のいずれか一項に記載の極低温冷凍装置の運転方法。
An operation method of the cryogenic refrigeration apparatus according to any one of claims 5 to 9,
The method of operating a cryogenic refrigeration apparatus according to any one of claims 10 to 12, wherein the pressure of the refrigerant gas is reduced to substantially atmospheric pressure before introducing the refrigerant gas into the sub-compressor.
請求項7乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の出口側の圧力が所定の圧力よりも高くなった場合に、前記インバーターの出力周波数を変更して前記主圧縮機の運転回転数を降下させることを特徴とする請求項10乃至13のいずれか一項に記載の極低温冷凍装置の運転方法。
An operation method of the cryogenic refrigeration apparatus according to any one of claims 7 to 9,
When the pressure on the outlet side of the main compressor of the refrigerant gas in the closed loop becomes higher than a predetermined pressure, the operating frequency of the main compressor is decreased by changing the output frequency of the inverter. The operation method of the cryogenic refrigeration apparatus according to any one of claims 10 to 13.
JP2009262896A 2009-11-18 2009-11-18 Cryogenic refrigeration apparatus and operation method thereof Active JP5356983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262896A JP5356983B2 (en) 2009-11-18 2009-11-18 Cryogenic refrigeration apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262896A JP5356983B2 (en) 2009-11-18 2009-11-18 Cryogenic refrigeration apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2011106755A true JP2011106755A (en) 2011-06-02
JP5356983B2 JP5356983B2 (en) 2013-12-04

Family

ID=44230421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262896A Active JP5356983B2 (en) 2009-11-18 2009-11-18 Cryogenic refrigeration apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP5356983B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076546A (en) * 2011-09-30 2013-04-25 Sumitomo Heavy Ind Ltd Cryogenic refrigerator
WO2013154185A1 (en) * 2012-04-13 2013-10-17 大陽日酸株式会社 Cooling device for high temperature superconducting apparatus and operation method therefor
WO2014192382A1 (en) * 2013-05-31 2014-12-04 株式会社前川製作所 Brayton cycle refrigeration device
JP2015187525A (en) * 2014-03-27 2015-10-29 大陽日酸株式会社 Brayton cycle refrigerator, and method for cooling heat generating part of turbo-compressor
TWI512195B (en) * 2013-03-12 2015-12-11 Sumitomo Heavy Industries Cryogenic pump system, cryopump system operation method and compressor unit
WO2017212713A1 (en) 2016-06-07 2017-12-14 株式会社Ihi Rotary machine
US10012448B2 (en) 2012-09-27 2018-07-03 X Development Llc Systems and methods for energy storage and retrieval
WO2018125535A1 (en) * 2016-12-29 2018-07-05 X Development Llc Use of external air for closed cycle inventory control
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US11028841B2 (en) 2014-09-08 2021-06-08 Pressure Wave Systems Gmbh Cooling device equipped with a compressor device
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
CN114286917A (en) * 2019-08-05 2022-04-05 乔治洛德方法研究和开发液化空气有限公司 Refrigeration device and facility
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210478A (en) * 1982-05-31 1983-12-07 株式会社島津製作所 Helium liquefier
JPH0252958A (en) * 1988-08-17 1990-02-22 Mitsubishi Electric Corp Heat pump air-conditioning device
JPH02203176A (en) * 1989-01-30 1990-08-13 Daikin Ind Ltd Refrigerant recovery device
JPH03247965A (en) * 1990-02-26 1991-11-06 Hitachi Ltd Helium refrigerating plant
JPH1089778A (en) * 1996-09-10 1998-04-10 Hoshizaki Electric Co Ltd Deep freezer
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
JP2000028211A (en) * 1998-07-14 2000-01-28 Matsushita Electric Ind Co Ltd Integrated refrigeration cycle apparatus
JP2000028237A (en) * 1998-07-14 2000-01-28 Matsushita Electric Ind Co Ltd Separation type refrigerating cycle apparatus
JP2004293815A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Critical transitional refrigerant cycle device
JP2006029614A (en) * 2004-07-13 2006-02-02 Nippon Steel Corp Vapor compression type heat pump system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210478A (en) * 1982-05-31 1983-12-07 株式会社島津製作所 Helium liquefier
JPH0252958A (en) * 1988-08-17 1990-02-22 Mitsubishi Electric Corp Heat pump air-conditioning device
JPH02203176A (en) * 1989-01-30 1990-08-13 Daikin Ind Ltd Refrigerant recovery device
JPH03247965A (en) * 1990-02-26 1991-11-06 Hitachi Ltd Helium refrigerating plant
JPH1089778A (en) * 1996-09-10 1998-04-10 Hoshizaki Electric Co Ltd Deep freezer
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
JP2000028211A (en) * 1998-07-14 2000-01-28 Matsushita Electric Ind Co Ltd Integrated refrigeration cycle apparatus
JP2000028237A (en) * 1998-07-14 2000-01-28 Matsushita Electric Ind Co Ltd Separation type refrigerating cycle apparatus
JP2004293815A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Critical transitional refrigerant cycle device
JP2006029614A (en) * 2004-07-13 2006-02-02 Nippon Steel Corp Vapor compression type heat pump system

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US10907513B2 (en) 2010-03-04 2021-02-02 Malta Inc. Adiabatic salt energy storage
US11761336B2 (en) 2010-03-04 2023-09-19 Malta Inc. Adiabatic salt energy storage
JP2013076546A (en) * 2011-09-30 2013-04-25 Sumitomo Heavy Ind Ltd Cryogenic refrigerator
WO2013154185A1 (en) * 2012-04-13 2013-10-17 大陽日酸株式会社 Cooling device for high temperature superconducting apparatus and operation method therefor
KR101368722B1 (en) 2012-04-13 2014-02-28 다이요 닛산 가부시키가이샤 Cooling device for high temperature superconducting apparatus and operation method therefor
JP5705375B2 (en) * 2012-04-13 2015-04-22 大陽日酸株式会社 Cooling device for high temperature superconducting equipment and method for operating the same
US11754319B2 (en) 2012-09-27 2023-09-12 Malta Inc. Pumped thermal storage cycles with turbomachine speed control
US10288357B2 (en) 2012-09-27 2019-05-14 Malta Inc. Hybrid pumped thermal systems
US11156385B2 (en) 2012-09-27 2021-10-26 Malta Inc. Pumped thermal storage cycles with working fluid management
US10458721B2 (en) 2012-09-27 2019-10-29 Malta Inc. Pumped thermal storage cycles with recuperation
US10012448B2 (en) 2012-09-27 2018-07-03 X Development Llc Systems and methods for energy storage and retrieval
US10458283B2 (en) 2012-09-27 2019-10-29 Malta Inc. Varying compression ratios in energy storage and retrieval systems
US10443452B2 (en) 2012-09-27 2019-10-15 Malta Inc. Methods of hot and cold side charging in thermal energy storage systems
US10428693B2 (en) 2012-09-27 2019-10-01 Malta Inc. Pumped thermal systems with dedicated compressor/turbine pairs
US10428694B2 (en) 2012-09-27 2019-10-01 Malta Inc. Pumped thermal and energy storage system units with pumped thermal system and energy storage system subunits
US10422250B2 (en) 2012-09-27 2019-09-24 Malta Inc. Pumped thermal systems with variable stator pressure ratio control
TWI512195B (en) * 2013-03-12 2015-12-11 Sumitomo Heavy Industries Cryogenic pump system, cryopump system operation method and compressor unit
WO2014192382A1 (en) * 2013-05-31 2014-12-04 株式会社前川製作所 Brayton cycle refrigeration device
US9863669B2 (en) 2013-05-31 2018-01-09 Mayekawa Mfg. Co., Ltd. Brayton cycle type refrigerating apparatus
RU2631841C2 (en) * 2013-05-31 2017-09-26 Майекава Мфг. Ко., Лтд. Cooling device based on brayton cycle
JP5985746B2 (en) * 2013-05-31 2016-09-06 株式会社前川製作所 Brayton cycle refrigerator
JP2015187525A (en) * 2014-03-27 2015-10-29 大陽日酸株式会社 Brayton cycle refrigerator, and method for cooling heat generating part of turbo-compressor
US11028841B2 (en) 2014-09-08 2021-06-08 Pressure Wave Systems Gmbh Cooling device equipped with a compressor device
WO2017212713A1 (en) 2016-06-07 2017-12-14 株式会社Ihi Rotary machine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10920674B2 (en) 2016-12-28 2021-02-16 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10082045B2 (en) 2016-12-28 2018-09-25 X Development Llc Use of regenerator in thermodynamic cycle system
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11927130B2 (en) 2016-12-28 2024-03-12 Malta Inc. Pump control of closed cycle power generation system
US11454168B2 (en) 2016-12-28 2022-09-27 Malta Inc. Pump control of closed cycle power generation system
US11371442B2 (en) 2016-12-28 2022-06-28 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11512613B2 (en) 2016-12-28 2022-11-29 Malta Inc. Storage of excess heat in cold side of heat engine
US10907510B2 (en) 2016-12-28 2021-02-02 Malta Inc. Storage of excess heat in cold side of heat engine
US11591956B2 (en) 2016-12-28 2023-02-28 Malta Inc. Baffled thermoclines in thermodynamic generation cycle systems
US10920667B2 (en) 2016-12-28 2021-02-16 Malta Inc. Pump control of closed cycle power generation system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10280804B2 (en) 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays
WO2018125535A1 (en) * 2016-12-29 2018-07-05 X Development Llc Use of external air for closed cycle inventory control
US11578622B2 (en) 2016-12-29 2023-02-14 Malta Inc. Use of external air for closed cycle inventory control
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10907548B2 (en) 2016-12-29 2021-02-02 Malta Inc. Use of external air for closed cycle inventory control
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US11352951B2 (en) 2016-12-30 2022-06-07 Malta Inc. Variable pressure turbine
US10082104B2 (en) 2016-12-30 2018-09-25 X Development Llc Atmospheric storage and transfer of thermal energy
US11655759B2 (en) 2016-12-31 2023-05-23 Malta, Inc. Modular thermal storage
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10830134B2 (en) 2016-12-31 2020-11-10 Malta Inc. Modular thermal storage
US11678615B2 (en) 2018-01-11 2023-06-20 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
CN114286917A (en) * 2019-08-05 2022-04-05 乔治洛德方法研究和开发液化空气有限公司 Refrigeration device and facility
US11852043B2 (en) 2019-11-16 2023-12-26 Malta Inc. Pumped heat electric storage system with recirculation
US11578650B2 (en) 2020-08-12 2023-02-14 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11840932B1 (en) 2020-08-12 2023-12-12 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11846197B2 (en) 2020-08-12 2023-12-19 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11885244B2 (en) 2020-08-12 2024-01-30 Malta Inc. Pumped heat energy storage system with electric heating integration
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration

Also Published As

Publication number Publication date
JP5356983B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5356983B2 (en) Cryogenic refrigeration apparatus and operation method thereof
KR101161339B1 (en) Cryogenic refrigerator and control method therefor
US20070271956A1 (en) System and method for reducing windage losses in compressor motors
JP5705375B2 (en) Cooling device for high temperature superconducting equipment and method for operating the same
US10892642B2 (en) Compressed air energy storage power generation apparatus and compressed air energy storage power generation method
US4498313A (en) Compact helium gas-refrigerating and liquefying apparatus
US9546647B2 (en) Gas balanced brayton cycle cold water vapor cryopump
US6523366B1 (en) Cryogenic neon refrigeration system
CN103047788B (en) J-T throttling refrigeration circulating system driven by low-temperature linear compressor
Tavian Large Cryogenics systems at 1.8 K
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
JP2015187525A (en) Brayton cycle refrigerator, and method for cooling heat generating part of turbo-compressor
JP2019095079A (en) Cooling system for high temperature superconductive electric power equipment and its operational method
CN115406132B (en) Helium low-temperature refrigerating system and refrigerating method
JP7065745B2 (en) Ultra-low temperature fluid circulation cooling system
JPH10238889A (en) He liquidation refrigerator
JP2020125866A (en) Cryogenic cooling device and operation method therefor
JP2022091505A (en) Operation method of cryogenic fluid circulation-type cooling system, and cryogenic fluid circulation-type cooling system
JP2000154944A (en) Cooling apparatus for cryogenic container
JP2018189170A (en) Liquefied gas storage device
US20230417465A1 (en) Refrigerator and operation method during precooling of refrigerator
CN113606499B (en) Water chilling unit suitable for hydrogen adding station and application method thereof
CN115235136B (en) G-M/J-T hybrid internal liquefaction system adopting multi-pressure air supplementing
US20240125548A1 (en) Oil-lubricated cryocooler compressor and operation method thereof
JP2023537492A (en) Simple cryogenic refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5356983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250