JP2011104607A - Integral rotor for permanent-magnet generator and method of manufacturing the same from steel sheet by cold forging forming - Google Patents

Integral rotor for permanent-magnet generator and method of manufacturing the same from steel sheet by cold forging forming Download PDF

Info

Publication number
JP2011104607A
JP2011104607A JP2009260366A JP2009260366A JP2011104607A JP 2011104607 A JP2011104607 A JP 2011104607A JP 2009260366 A JP2009260366 A JP 2009260366A JP 2009260366 A JP2009260366 A JP 2009260366A JP 2011104607 A JP2011104607 A JP 2011104607A
Authority
JP
Japan
Prior art keywords
hub
planned
yoke
intermediate body
thickened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009260366A
Other languages
Japanese (ja)
Inventor
Masakazu Ooka
正和 大岡
Yoshiki Hiyama
好材 檜山
Kentaro Tanabe
健太郎 棚部
Takakimi Tomobe
貴公 友部
Manabu Kagawa
学 賀川
Hideto Muraoka
秀人 村岡
Ryuji Soga
龍司 曽我
Yasuhiro Shinkawa
康浩 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Ibaraki Steel Center Co Ltd
Original Assignee
Honda Motor Co Ltd
Ibaraki Steel Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Ibaraki Steel Center Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009260366A priority Critical patent/JP2011104607A/en
Publication of JP2011104607A publication Critical patent/JP2011104607A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Forging (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a hub and a yoke so as to have sufficient strength and accuracy as one body. <P>SOLUTION: A first intermediate body 51 of a concave cone, on which a thickened part 511 having larger diameter than the hub is generated is made on the circumference of the hole 11 by pressurizing the center part of a disk-like steel sheet 1 while pressing the outer peripheral end. Next, a predetermined part 521 of the hub is formed by contracting the diameter by ironing the center part including the thickened part 511 and extending the height, further, the predetermined part 522 of a bottom wall is formed by pressurizing the outer peripheral side and a second intermediate body 52 thickening the side of the predetermined part 521 of the hub is made. By arranging the inner periphery of the predetermined part 521 of the hub by pressurizing and compressing the upper end after ironing the outer periphery, the hub is formed. Meanwhile, the bottom wall is formed by pressurizing the predetermined part 522 of the bottom wall and a third intermediate body on which the predetermined part of the sidewall on the outer periphery is made, is formed. After that, the integral rotor for the power generators is completed by performing the drawing and ironing of the predetermined part of the sidewall at the same time while holding the shape of the hub. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ハブ部とこれをその中心に位置させた底壁部及び側壁部からなるほぼ有底円筒状のヨーク部とが一体成形された磁石発電機用一体型ローター及びこれを鋼板から冷間鍛造成形によって製造する、磁石発電機用一体型ローター及び鋼板からの冷間鍛造成形によるその製造方法に関するものである。   The present invention relates to an integrated rotor for a magnet generator in which a hub portion and a substantially bottomed cylindrical yoke portion comprising a bottom wall portion and a side wall portion with the hub portion positioned at the center thereof are integrally formed, and a steel rotor cooled from a steel plate. The present invention relates to an integrated rotor for a magnet generator manufactured by hot forging and a manufacturing method by cold forging from a steel plate.

この種の発電機用のローターは、前記のように、ハブ部とヨーク部とからなるものであるが、その強度と精度とが発電機の性能に影響するため、個別に作成した硬く強度の高いハブ部用部品とヨーク部用部品とを結合して製造することで、回転軸への取付強度や回転に際しての精度を確保していた。近年、製造工程数を低減し、コストを削減する趣旨からそれらを一体成形する技術が提案されている。また、発電機以外の機械用ローターの一部では実行されてきている。   As described above, this type of rotor for a generator consists of a hub portion and a yoke portion. However, since the strength and accuracy of the rotor affect the performance of the generator, it is hard and strong. By manufacturing a high hub part and a yoke part in combination, the mounting strength to the rotating shaft and the accuracy during rotation have been ensured. In recent years, a technique for integrally forming them has been proposed for the purpose of reducing the number of manufacturing steps and reducing costs. It has also been implemented in some mechanical rotors other than generators.

特許文献1の技術は磁石発電機の製造方法であり、前記ハブ部とヨーク部との一体成形に関する技術の内の一つである。
これは、板材をプレス加工してローターの中間形状物を成形する前処理工程と、前記中間形状物を仕上げ加工する仕上げ工程とを含む、ボス部及びフライホイール部を有するローターを一体成形する磁石発電機の製造方法であり、該仕上げ工程は、該中間形状物を冷間鍛造する冷鍛工程と、冷間鍛造された該中間形状物を切削加工する切削工程とを含む工程であるものである。
The technique of patent document 1 is a manufacturing method of a magnet generator, and is one of the techniques related to integral molding of the hub part and the yoke part.
This is a magnet for integrally forming a rotor having a boss part and a flywheel part, which includes a pre-processing step of pressing a plate material to form an intermediate shape of the rotor and a finishing step of finishing the intermediate shape. A method of manufacturing a generator, wherein the finishing step includes a cold forging step for cold forging the intermediate shape and a cutting step for cutting the cold forged intermediate shape. is there.

この特許文献1の技術は、それ以前の個別に作成したハブ部とヨーク部とを結合する技術及びブロック状の原料を被加工材として冷間鍛造又は熱間鍛造で行う一体成形の技術と比較して、工程数を減少させ得るとされ、その面での利点は認めることができる。
しかしこの特許文献1の製造方法では、素材の流れを適切にコントロールしてボス部側を厚肉にし、かつフライホイール部側を薄肉にすることが困難であり、更にボス部側の硬度を高めて十分に強化することもできないと思われる。即ち、ハブ部の強度が十分に確保されないうちにローターの形状がほぼできあがってしまうので、その十分な強度を得るための冷間鍛造が困難になってしまい、この種の磁石発電機用として要求される強度と精度とを両立することができないものとなっていると云わざるを得ない。
The technique of this patent document 1 is compared with the technique of joining the hub part and the yoke part which were created individually before that and the technique of integral molding performed by cold forging or hot forging using a block-shaped raw material as a workpiece. Thus, the number of steps can be reduced, and an advantage in that respect can be recognized.
However, in the manufacturing method disclosed in Patent Document 1, it is difficult to appropriately control the flow of the material to make the boss side thicker and the flywheel side thinner, and further increase the hardness of the boss side. Cannot be strengthened enough. In other words, the rotor shape is almost completed before the hub is sufficiently strong, making cold forging difficult to obtain sufficient strength, which is required for this type of magnet generator. Therefore, it cannot be said that the strength and accuracy are not compatible.

特許文献2の技術も磁石発電機の製造方法であり、前記ハブ部とヨーク部との一体成形に係る技術の一つである。
これは、板材に対する冷間鍛造の初期段階においてヨークの底壁部と側壁部との境目の厚さを前記底壁部の最終段階の厚さに形成することにより、前記板材に対する前記冷間鍛造の、それ以降における前記板材の材料の前記側壁部への流れと前記ヨークの底壁部への流れとを明確に分配することを特徴とする磁石発電機の製造方法であり、以上の磁石発電機において、板材の前記底壁部の材料を前記ボス部の径方向に寄せること、前記板材の材料を順次起こして行くことによって前記側壁部を成形すること、及び前記ボス部が軸方向に繰り返し圧縮されること、が適用されることがある、とされるものである。
The technique of Patent Document 2 is also a method for manufacturing a magnet generator, and is one of the techniques related to integral molding of the hub part and the yoke part.
This is because the thickness of the boundary between the bottom wall portion and the side wall portion of the yoke is formed at the final stage thickness of the bottom wall portion in the initial stage of cold forging of the plate material, thereby the cold forging of the plate material. Thereafter, the flow of the material of the plate material to the side wall portion and the flow to the bottom wall portion of the yoke are clearly distributed. In the machine, the material of the bottom wall portion of the plate material is brought closer to the radial direction of the boss portion, the side wall portion is formed by sequentially raising the material of the plate material, and the boss portion is repeated in the axial direction. Compressed may be applied.

従って、この特許文献2の技術によれば、冷間鍛造の初期段階に前記境目に形成した流れ制御部によって、その後の冷間鍛造工程で、底壁部側の素材を側壁部側ではなく、ボス部側に適切に流動させることができるため、ヨークの側壁部及び底壁部、並びにボス部の肉厚を予め設定された通りに形成することが可能になるとされ、更に繰り返される冷間鍛造工程で加工硬化が生じ、これによって各部の表面硬度が高まり、その後の焼き入れ処理等が不要になるとされている。   Therefore, according to the technology of this Patent Document 2, the material on the bottom wall portion side is not the side wall portion side in the subsequent cold forging process by the flow control unit formed at the boundary in the initial stage of cold forging, Since it can be made to flow appropriately to the boss side, it is possible to form the wall thickness of the side wall and bottom wall of the yoke and the thickness of the boss as set in advance, and cold forging repeated further It is said that work hardening occurs in the process, which increases the surface hardness of each part and makes the subsequent quenching treatment unnecessary.

しかし、特許文献2の技術によれば、前記流れ制御部は、前記のように、ヨークの底壁部と側壁部の境目に位置するものであり、ボス部の増肉は、底壁部からの流動にのみ依存するものであり、工程数の少ない冷間鍛造で、確実に予定のボス部の肉厚が得られるかは疑問である。
また特許文献1について述べたのと同様に、ボス部の強度が十分に確保されないうちにローターの形状がほぼできあがってしまうものであるので、この種の磁石発電機として要求される強度と精度とが両立できないものとなっていると云わざるを得ない。
However, according to the technique of Patent Document 2, as described above, the flow control unit is located at the boundary between the bottom wall portion and the side wall portion of the yoke, and the increase in thickness of the boss portion is from the bottom wall portion. It depends only on the flow of the steel, and it is doubtful that the expected thickness of the boss can be obtained by cold forging with a small number of processes.
Further, as described in Patent Document 1, since the rotor shape is almost completed before the strength of the boss portion is sufficiently secured, the strength and accuracy required for this type of magnet generator Must be said to be incompatible.

なお、他の機械部品としての一体型ローターでは、ローターの側壁部の内外面を切削加工して精度を確保しており、コスト削減効果が薄れてしまっていた。
さらに、ローター形状に発電機用としての特段の配慮がないため、発電機用の部品をローターに取付けようにも取付けられなかったり、ローターの駆動源と共振を起こしたりしていた。
In addition, in the integrated rotor as another machine part, the inner and outer surfaces of the side wall portion of the rotor are cut to ensure accuracy, and the cost reduction effect has been diminished.
Furthermore, since there is no special consideration for the generator in the rotor shape, it is impossible to attach the generator parts to the rotor or cause resonance with the drive source of the rotor.

特開平08−331814号公報JP 08-331814 A 特開2002−369464号公報JP 2002-369464 A

本発明は、以上のような従来技術の問題点を解消し、鋼板からハブ部とヨーク部とを一体化したローターを冷間鍛造によって成形する製造方法であって、要求される強度を確保すべく、製造過程で、各部の肉厚を適切に設定し、かつ硬度及び精度を確保すべく、必要な鍛造工程を繰り返す、鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法を提供することを解決の課題とする。
また、望ましい形状を有する発電機用一体形ローターを提供することを解決の課題とする。
The present invention eliminates the problems of the prior art as described above, and is a manufacturing method for forming a rotor in which a hub portion and a yoke portion are integrated from a steel plate by cold forging, and ensures the required strength. Therefore, in the production process, a method for producing an integrated rotor for a generator by cold forging from a steel plate, in which the thickness of each part is appropriately set and the necessary forging process is repeated to ensure hardness and accuracy. Providing it is a problem to be solved.
It is another object of the present invention to provide an integrated rotor for a generator having a desirable shape.

本発明の1は、ハブ部とその基部から放射方向に延びる底壁部及びその外周端から該ハブ部の軸方向と平行な方向に延びる側壁部からなる有底円筒状のヨーク部とが一体成形された磁石発電機用ローターを鋼板から冷間鍛造成形によって成形する、鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法であって、
中央部に穴を開口してある円板状鋼板の中央部を、該円板状鋼板の外周端を抑えながら加圧操作して、該中央部の穴の周囲に最終段階のハブ部径より大径の増肉部を生成させ、かつ、該増肉部の周囲を、該増肉部を最下部とする円錐容器状に成形して第1中間体を作成する第1工程と、
前記第1中間体の中央部近傍の増肉部を含む円錐容器状の部分を扱いて縮径させながらその高さを延長させてハブ部予定部を成形し、引き続いて、該ハブ部予定部より外周側を加圧してヨーク部の底壁予定部を成形するとともに、該底壁予定部の過剰素材をハブ部予定部側に流動させることにより、該ハブ部予定部を増肉させた第2中間体を作成する第2工程と、
前記第2中間体のハブ部予定部の内周を加圧し、かつ該ハブ部予定部の外周を扱いた上で、その上端を加圧して圧縮加工することにより、ハブ部の成形を完了させ、その間に前記ヨーク部の底壁予定部を加圧して底壁部の成形を完了させるとともに、その外周の側壁予定部を成形した第3中間体を作成する第3工程と、
前記第3中間体のハブ部の形状を保持しながら、そのヨーク部の側壁予定部の絞り加工と扱きとを同時に行い、ハブ部とヨーク部の同軸性及びヨーク部の真円度を確保して発電機用一体形ローターを完成させる第4工程と、
を順次行う鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法である。
In the present invention, a hub portion and a bottomed cylindrical yoke portion comprising a bottom wall portion extending radially from a base portion thereof and a side wall portion extending from an outer peripheral end thereof in a direction parallel to the axial direction of the hub portion are integrated. A method for producing an integrated rotor for a generator by cold forging from a steel plate, wherein the formed rotor for a magnet generator is formed by cold forging from a steel plate,
Press the center part of the disk-shaped steel plate with a hole in the center part while pressing the outer edge of the disk-shaped steel sheet, and press the hub part diameter around the hole in the center part. Generating a large-diameter thickened portion, and forming a first intermediate body by forming the periphery of the thickened portion into a conical container shape with the thickened portion at the bottom; and
The conical container-shaped portion including the thickened portion in the vicinity of the central portion of the first intermediate body is handled to reduce the diameter while extending the height to form the hub portion planned portion, and subsequently the hub portion planned portion. The outer peripheral side is pressurized to form the planned bottom wall portion of the yoke portion, and the excess material of the planned bottom wall portion is caused to flow toward the hub portion planned portion side, thereby increasing the thickness of the hub portion planned portion. A second step of creating two intermediates;
By pressing the inner periphery of the hub portion planned portion of the second intermediate body and handling the outer periphery of the hub portion planned portion, the upper end of the hub portion is pressed and compressed to complete the forming of the hub portion. In the meantime, the third step of pressurizing the planned bottom wall portion of the yoke portion to complete the molding of the bottom wall portion and creating the third intermediate body molded with the planned side wall portion of the outer periphery,
While maintaining the shape of the hub portion of the third intermediate body, the side wall portion of the yoke portion is simultaneously drawn and handled to ensure the coaxiality of the hub portion and the yoke portion and the roundness of the yoke portion. A fourth step of completing the integrated rotor for the generator;
It is a manufacturing method of the integrated rotor for generators by the cold forging forming from the steel plate which performs sequentially.

本発明の2は、本発明の1の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法において、
前記第1工程の円板状鋼板の中央部の加圧は、前記増肉部の径に相当する先端径を有する上型パンチにより行い、前記円板状鋼板の外周端の抑えは、環状上型を該外周端に圧接することで行い、かつ前記増肉部は、下型の中央開口部に、前記上型パンチの前記加圧によって前記円板状鋼板の中央部を押し込むことで生成させ、
前記増肉部の周囲の該増肉部を最下部とする円錐容器状への成形は、以上の加圧過程で、該増肉部の周囲を前記下型の中央開口部を最下部とし外周方向に向かって上向き傾斜するテーパ面に沿った形状に変形させることによって行われるようにしたものである。
2 of the present invention is a method for producing an integrated rotor for a generator by cold forging from the steel sheet of 1 of the present invention,
The pressing of the central part of the disk-shaped steel plate in the first step is performed by an upper punch having a tip diameter corresponding to the diameter of the thickened part, and the outer peripheral edge of the disk-shaped steel plate is restrained on an annular shape. The die is pressed against the outer peripheral edge, and the thickened portion is generated by pushing the central portion of the disk-shaped steel plate into the central opening of the lower die by the pressurization of the upper die punch. ,
Forming into a conical container shape with the thickened portion around the thickened portion at the bottom is the outer periphery with the central opening of the lower mold at the bottom in the pressurizing process. This is performed by deforming into a shape along a tapered surface inclined upward in the direction.

本発明の3は、本発明の1又は2の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法において、
前記第2工程における前記第1中間体の中央部近傍の増肉部を含む円錐容器状の部分の扱きは、該第1中間体を上下反転させて下型に配置し、これによって、中央部近傍の増肉部を含む円錐容器状の部分を下型マンドレルの上部に外装状態にし、かつ該円錐容器状の部分の中央部の穴を該下型マンドレル上部中央の円柱状の係止突起に外装し、上型を、該中央部近傍の増肉部を含む円錐容器状の部分を扱き動作させることにより行い、
該中央部近傍の増肉部を含む円錐容器状の部分より外周側の加圧は、前記上型を、前記扱き操作に引き続いて、該中央部近傍の増肉部を含む円錐容器状の部分より外周側に押圧動作をさせることにより行うこととしたものである。
3 of the present invention is a method for producing an integral rotor for a generator by cold forging from the steel sheet 1 or 2 of the present invention,
In the second step, the handling of the conical container-like portion including the thickened portion in the vicinity of the central portion of the first intermediate body is arranged in the lower mold by vertically inverting the first intermediate body, whereby the central portion The conical container-shaped part including the thickened portion in the vicinity is put on the upper part of the lower mandrel, and the hole in the center of the conical container-shaped part is used as a cylindrical locking protrusion at the upper center of the lower mandrel. The outer mold is performed by operating the conical container-like portion including the thickened portion near the center,
The pressure on the outer peripheral side of the conical container-shaped portion including the thickened portion in the vicinity of the central portion is the conical container-shaped portion including the thickened portion in the vicinity of the central portion following the handling operation of the upper mold. This is done by pressing the outer peripheral side.

本発明の4は、本発明の1、2又は3の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法において、
前記第3工程のハブ部予定部の内周の加圧及び外周の扱きは、前記第2中間体を環状下型上に配置し、これによって、該第2中間体の中央のハブ部予定部の基部を、該環状下型の中央部に突出状態に配してあるハブ部の大径の基部内周を成形する円筒状下型マンドレルに外装し、かつ同時に該ハブ部予定部の中央の穴を、該円柱状下型マンドレルの中央部に突出状態に配してある円柱ピンに外装し、更に該ハブ部の上部及び基部外周の成形は、環状の成形上型を該ハブ部予定部に扱き下降をさせることで行い、
前記ハブ部予定部の上端の加圧は、成形上型の中央から筒状パンチを下降させ、これで加圧動作させることにより行い、
更に前記ヨーク部の底壁予定部の加圧は、前記成形上型を、前記ハブ部予定部の扱き下降に引き続いて下降させて該底壁予定部に加圧動作させることにより行うこととしたものである。
4 of the present invention is a method for producing an integrated rotor for a generator by cold forging from the steel sheet of 1, 2 or 3 of the present invention,
The pressurization of the inner periphery and the handling of the outer periphery of the hub portion planned portion in the third step are performed by arranging the second intermediate body on the annular lower mold, and thereby the hub portion planned portion at the center of the second intermediate body. Is mounted on a cylindrical lower mandrel that molds the inner periphery of the large-diameter base portion of the hub portion projecting from the center portion of the annular lower die, and at the same time, at the center of the hub portion planned portion. A hole is externally mounted on a cylindrical pin projecting from the central part of the cylindrical lower mold mandrel, and the upper part of the hub part and the outer periphery of the base part are molded by forming an annular molded upper mold into the hub part planned part. Is done by handling and lowering,
Pressurization of the upper end of the hub portion planned portion is performed by lowering the cylindrical punch from the center of the molding upper die and performing a pressure operation with this,
Further, the pressurization of the planned bottom wall of the yoke part is performed by lowering the molding upper die following the handling and lowering of the planned hub part and pressurizing the planned bottom wall. Is.

本発明の5は、本発明の1、2、3又は4の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法において、
前記第4工程のハブ部の形状の保持は、円筒状上型の内周部に第3中間体のハブ部の上部外周を挿入保持させ、該円筒状上型に外装状態の円環状上型パンチの下部内周に該ハブ部の基部外周を挿入保持させ、更に該円環状上型パンチの下端に該第3中間体のヨーク部の底壁部を当接させて行い、
前記ヨーク部の側壁予定部の絞り加工と扱きとは、該円筒状上型及び該円環状上型パンチを同時に下降させ、下型の内周との間で、該第3中間体のヨーク部の側壁予定部の絞り加工及び扱き動作をさせることにより行うこととしたものである。
5 of the present invention is a method for producing an integral rotor for a generator by cold forging from the steel sheet of 1, 2, 3 or 4 of the present invention,
In the fourth step, the shape of the hub portion is maintained by inserting and holding the upper outer periphery of the hub portion of the third intermediate body in the inner peripheral portion of the cylindrical upper die, and the annular upper die in the exterior state in the cylindrical upper die. The base outer periphery of the hub portion is inserted and held at the lower inner periphery of the punch, and the bottom wall portion of the yoke portion of the third intermediate body is brought into contact with the lower end of the annular upper punch,
The drawing of the side wall portion of the yoke portion and the handling are performed by lowering the cylindrical upper die and the annular upper die punch at the same time, and between the inner periphery of the lower die and the yoke portion of the third intermediate body. This is performed by drawing and handling the side wall planned portion.

本発明の6は、磁石発電機に装着される磁石発電機用一体型ローターであって、
ハブ部とヨーク部とからなり、該ヨーク部は、前記ハブ部の基部から放射方向に延びる底壁部及びその外周端から該ハブ部の軸方向と平行な方向に延びる側壁部からなる有底円筒状をなし、
前記底壁部は、前記ハブ部と連続する内側寄りの部分が径方向(放射方向)に延びる平面を有し、かつ前記側壁部と連続する外側寄りの部分より厚い肉厚を有し(軸方向に厚い厚さ寸法を有し)、
前記外側寄りの部分は、前記内側寄りの平面から前記側壁部の開口端側に向けて離反するように傾斜または湾曲して形成された磁石発電機用一体型ローターである。
6 of the present invention is an integrated rotor for a magnet generator mounted on a magnet generator,
The yoke portion includes a hub portion and a yoke portion, and the yoke portion includes a bottom wall portion extending in a radial direction from a base portion of the hub portion, and a bottomed portion including a side wall portion extending from an outer peripheral end thereof in a direction parallel to the axial direction of the hub portion. A cylindrical shape,
The bottom wall portion has a flat surface in which an inner portion continuous with the hub portion extends in a radial direction (radial direction), and has a thicker wall thickness than an outer portion continuous with the side wall portion (shaft Having a thick thickness dimension in the direction),
The outer side portion is an integral rotor for a magnet generator formed to be inclined or curved so as to be separated from the inner side plane toward the opening end side of the side wall portion.

本発明の1の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法によれば、一枚の円板状鋼鈑からハブ部及びヨーク部が一体となった磁石発電機用のローターを、少ない工程数で、ハブ部の十分な強度、ハブ部とヨーク部との高い真円度及び同軸性を確保しながら製造することができる。   According to the method for manufacturing an integrated rotor for a generator by cold forging from a steel plate according to the present invention, for a magnet generator in which a hub portion and a yoke portion are integrated from a single disk-shaped steel plate. The rotor can be manufactured with a small number of steps while ensuring sufficient strength of the hub portion, high roundness and coaxiality between the hub portion and the yoke portion.

その第1工程で、中央部に適切な径の増肉部を形成した第1中間体を形成することで、次工程でハブ部予定部の増肉が良好に行えるようにすることができる。
第2工程で、ハブ部予定部を成形し、底壁予定部を加圧成形する過程で、その部位の過剰素材をハブ部予定部側に流動させ、ハブ部予定部を十分に増肉し、これによって次工程で、予定の肉厚を有し、かつ塑性流動による内部加工硬化から十分な強度を持ったハブ部を成形することができることになる。
By forming the first intermediate body in which the thickened portion having an appropriate diameter is formed in the central portion in the first step, it is possible to favorably increase the thickness of the hub portion planned portion in the next step.
In the second step, the hub part planned part is molded and the bottom wall planned part is pressure-molded. In this process, excess material in the part is flowed to the hub part planned part side, and the hub part planned part is sufficiently thickened. Thus, in the next step, a hub portion having a predetermined thickness and having sufficient strength from internal work hardening by plastic flow can be formed.

第3工程で、ハブ部及びヨーク部の底壁部の成形を完了させることにより、最後の工程である第4工程では、ヨーク部の側壁部の成形と、ハブ部及びヨーク部の同軸性及び真円度の確保のみを行うことができることになる。即ち、この第3工程まで、十分な強度を持ったハブ部を成形すべく、大部分を、十分な肉厚及び硬度を確保するための鍛造工程に費やし、目的の結果を得ることとなっているものである。
第4工程では、前記のように、ハブ部とヨーク部の同軸性及びヨーク部の真円度を確保している。
In the third step, the molding of the hub portion and the bottom wall portion of the yoke portion is completed. In the fourth step, which is the final step, the shaping of the side wall portion of the yoke portion, the coaxiality of the hub portion and the yoke portion, and Only the roundness can be ensured. That is, until this third step, in order to form a hub portion having sufficient strength, most of the time is spent in the forging step to ensure a sufficient thickness and hardness, and the desired result is obtained. It is what.
In the fourth step, as described above, the coaxiality of the hub portion and the yoke portion and the roundness of the yoke portion are ensured.

こうして、本発明の1の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法によれば、一枚の円板状鋼板からハブ部とヨーク部とが一体となったローターを得ることができるものであるため、工程数を減少させ、コストを低減することができる。また前記のように、ヨーク部の加工に優先してハブ部の加工を行い、必要な肉厚と硬度とを確保しているため、得られるローターの十分な強度が得られる。更に、前記のように、十分な精度も確保できるので、発電機に適用された際に、安定した回転を確保し得、騒音の発生等を減少させ、かつ寿命を延長することができることになる。加えて、冷間鍛造による製法であって、必要な部位に加工硬化による必要な硬度が得られるため、焼き入れ等も不要である。それ故、熱間鍛造のような成形時の加熱が不要であり、また当然、焼き入れのための加熱も不要であり、そのような加熱の際に発生するCO2の排出が削減される利点もある。 Thus, according to the method for manufacturing an integrated rotor for a generator by cold forging from a steel plate according to the present invention, a rotor in which a hub portion and a yoke portion are integrated from one disc-shaped steel plate is obtained. Therefore, the number of steps can be reduced and the cost can be reduced. Further, as described above, the hub portion is processed in preference to the yoke portion processing, and the necessary thickness and hardness are ensured, so that sufficient strength of the obtained rotor can be obtained. Furthermore, as described above, sufficient accuracy can be secured, so that when applied to a generator, stable rotation can be secured, noise generation and the like can be reduced, and the life can be extended. . In addition, it is a manufacturing method by cold forging, and the required hardness by work hardening can be obtained at a required site, so that quenching or the like is unnecessary. Therefore, heating at the time of molding such as hot forging is unnecessary, and naturally, heating for quenching is also unnecessary, and the CO 2 emissions generated during such heating are reduced. There is also.

また本発明6の発電機用一体形ローターによれば、発電機用の部品を外面に確実に取付け支持でき、ローターの駆動源からの振動に対する周波数特性をそのピークを共振点からずらして好ましいものに変更することができる。   Further, according to the generator-integrated rotor of the present invention 6, the generator parts can be securely attached and supported on the outer surface, and the frequency characteristics with respect to vibration from the rotor drive source are preferably shifted from the resonance point. Can be changed.

本発明の2の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法によれば、第1中間体の中央部に目的に適合する十分な厚さの増肉部を形成し、かつそれ自体をその増肉部を中心とする円錐容器状に成形することができる。それ故、その後の工程で、予定通りの厚さと強度を持ったハブ部を容易に成形することができることになる。   According to the method for producing an integral rotor for a generator by cold forging from the steel plate of 2 of the present invention, a thickened portion having a sufficient thickness suitable for the purpose is formed in the central portion of the first intermediate, And it can shape | mold itself in the shape of a conical container centering on the thickening part. Therefore, in the subsequent process, a hub portion having a predetermined thickness and strength can be easily formed.

本発明の3の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法によれば、次工程でハブ部を成形するのに適合する肉厚を有するハブ部予定部を容易に成形することができる。またヨーク部の底壁予定部もその過剰素材をハブ部予定部側に流動させながら後工程で底壁を成形するのに適合する形状に成形することができる。   According to the method of manufacturing an integral rotor for a generator by cold forging from the steel plate of 3 of the present invention, a hub portion planned portion having a thickness suitable for forming the hub portion in the next process is easily formed. can do. Also, the planned bottom wall portion of the yoke portion can be formed into a shape suitable for forming the bottom wall in a later process while flowing the excess material toward the hub portion planned portion side.

本発明の4の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法によれば、目的とする形状、精度及び強度を備えたハブ部及びヨーク部の底壁部が成形できる。また次工程で真円度を確保できるヨーク部の側壁予定部を成形することもできる。   According to the method for manufacturing an integral rotor for a generator by cold forging from the steel plate of 4 of the present invention, the bottom wall portion of the hub portion and the yoke portion having the desired shape, accuracy and strength can be formed. Moreover, the side wall planned part of the yoke part which can ensure roundness at the next process can also be formed.

本発明の5の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法によれば、第3工程で成形されたハブ部及びヨーク部の底壁部を確実に保持しながら、ヨーク部の側壁部をハブ部とヨーク部の同軸性及び真円度を確保しながら成形することができる。   According to the method of manufacturing an integral rotor for a generator by cold forging from a steel plate of 5 of the present invention, the yoke and the bottom wall of the yoke formed in the third step are securely held while the yoke is securely held. The side wall portion of the portion can be molded while ensuring the coaxiality and roundness of the hub portion and the yoke portion.

(a)は成形用材料である円板状鋼板の断面図、(b)第1工程で成形された第1中間体の断面図、(c)は第2工程で成形された第2中間体の断面図。(a) is a cross-sectional view of a disk-shaped steel sheet as a forming material, (b) a cross-sectional view of a first intermediate formed in the first step, and (c) is a second intermediate formed in the second step. FIG. (a)は第3工程で成形された第3中間体の断面図、(b)は第4工程で成形完了した発電機用一体形ローターの断面図。(a) is sectional drawing of the 3rd intermediate body shape | molded at the 3rd process, (b) is sectional drawing of the integrated rotor for generators completed at the 4th process. 第4工程で成形完了した発電機用一体形ローターの平面図。The top view of the integrated rotor for generators which the shaping | molding completed in the 4th process. 鍛造装置で成形加工を行う第1工程を示す断面図。Sectional drawing which shows the 1st process which shape | molds with a forging apparatus. 鍛造装置で成形加工を行う第2工程を示す断面図。Sectional drawing which shows the 2nd process which shape | molds with a forging apparatus. 鍛造装置で成形加工を行う第3工程を示す断面図。Sectional drawing which shows the 3rd process which shape | molds with a forging apparatus. 鍛造装置で成形加工を行う第4工程を示す断面図。Sectional drawing which shows the 4th process which shape | molds with a forging apparatus.

本発明を実施するための形態を図面を参照しながら詳細に説明する。   A mode for carrying out the present invention will be described in detail with reference to the drawings.

この実施の形態の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法は、基本的に、図1及び図4〜図7に示すように、
第1工程で、中央部に穴11を開口してある円板状鋼板1の中央部を、該円板状鋼板1の外周端12を可動の環状上型21で抑えながら、該環状上型21の中央に昇降自在に配した上型パンチ31で加圧して、固定の下型41の中央開口部411に押し込み操作することにより、前記中央部の穴11の周囲に該上型パンチ31の先端面の径にほぼ相当する径D1の増肉部511を生成させ、該増肉部511の周囲を、以上の上型パンチ31による加圧過程で、該下型41の中央開口部411の上端を最下部とする外周方向に向かって上向き傾斜のテーパ面412に沿って上向きテーパ状の側板部512に成形して(全体としては円錐容器状に成形して)第1中間体51を成形し、
第2工程で、該第1中間体51を上下反転させて固定の環状下型42の上面上に配置し、これによって、中央部の増肉部511を含む円錐容器状の凹部を該環状下型42の中央部に突出状態に固設した下型マンドレル61の円錐状部611に外装し、かつ該円錐容器状の凹部の上端にあたる増肉部511の中央に開口してある穴11を、該下型マンドレル61の円錐状部611の中央上端に突出状態に構成してある円柱状の係止突起612に外装し、他方、扱き用の中央穴部221を有する可動の上型22で、該中央部の増肉部511を含む円錐状容器状部の中央部付近を扱いて縮径させながらその高さを延長させてハブ部予定部521を成形し、引き続いて該上型22により該ハブ部予定部521より外周側の部分を加圧してヨーク部の底壁予定部522を成形するとともに、該部位の過剰素材をハブ部予定部521側に流動させることにより、該ハブ部予定部521を増肉させて第2中間体52を成形し、
第3工程で、該第2中間体52を、固定の環状下型43の上面上に配置し、これによって、中央のハブ部予定部521を、該環状下型43の中央部に突出状態に固設してある円筒状下型マンドレル62の円錐部621に外装し、かつ同時に、該ハブ部予定部521の中央部の穴11を、該円筒状下型マンドレル62の中央部に同様に突出状態に固設してある円柱ピン63に外装状態とし、その後、可動の環状の成形上型23を加圧下降させて、該ハブ部予定部521の内周側には、該円筒状下型マンドレル62の上部の円錐部621の外形に従ったハブ部541の大径の基部5411の内周形状及び該円柱ピン63の外形に従ったハブ部541の小径上部5412の内形を成形し、更に該ハブ部予定部521の外周側には、該ハブ部541の小径上部5412の外形及び基部5411の大径の外周を成形し、加えてヨーク部の底壁部542を成形するとともに、該環状の成形上型23の中央空洞部231を下降し、これによって、下降下部では、相対的に、前記円柱ピン63をその中心空洞部241に進入させる筒状パンチ24で、該ハブ部予定部521の上端を加圧してその高さ寸法を圧縮し、かつハブ部541の上端部形状を形成することにより、該ハブ部541の硬度を高め、更に上記ヨーク部の底壁部542の加圧成形により該部位の過剰素材をヨーク部の側壁部予定部531となる外周側に流動させ、ハブ部541及びヨーク部の底壁部542を成形し、ヨーク部の側壁部予定部531を成形した第3中間体53を成形し、
第4工程で、第3中間体53を、それぞれ、そのハブ部541の小径上部5412は、可動の円筒状上型25の内周部に係止させ、そのハブ部541の基部5411は、該円筒状上型25に外装状態の円環状上型パンチ26の下部内周に係止させて、両上型25、26に保持させ、かつ該第3中間体53のヨーク部の底壁部542を該円環状上型パンチ26の下端に当接させた上で、該円筒状上型25及び該円環状上型パンチ26を同時に下降させ、固定の下型44の内周との間で、該第3中間体53のヨーク部の側壁予定部531の絞り加工と扱きとを同時に行い、それ自体の真円度及びハブ部541との同軸性を確保した側壁部543を成形し、これによって発電機用一体形ローター54の製造を完了するものである。
As shown in FIG. 1 and FIGS. 4 to 7, the method for manufacturing an integrated rotor for a generator by cold forging from the steel plate of this embodiment is basically as follows.
In the first step, while holding the outer peripheral end 12 of the disc-shaped steel plate 1 with the movable annular upper die 21 at the center of the disc-shaped steel plate 1 having the hole 11 opened at the center, the annular upper die The upper die 31 is pressurized by the upper die 31 disposed in the center of the lower die 21 and is pushed into the central opening 411 of the fixed lower die 41 so that the upper punch 31 is placed around the hole 11 in the central portion. A thickened portion 511 having a diameter D1 substantially corresponding to the diameter of the front end surface is generated, and the periphery of the thickened portion 511 is pressed by the upper die punch 31 in the above-described process of the central opening 411 of the lower die 41. The first intermediate body 51 is formed by forming an upward tapered side plate portion 512 along the tapered surface 412 that is inclined upward in the outer peripheral direction with the uppermost end as the lowermost portion (by forming it as a conical container as a whole). And
In the second step, the first intermediate body 51 is turned upside down and placed on the upper surface of the fixed annular lower mold 42, whereby a conical container-like recess including the thickened portion 511 at the center is formed in the annular lower part. A hole 11 that is externally mounted on the conical portion 611 of the lower mandrel 61 fixed in a protruding state at the central portion of the mold 42 and that is opened at the center of the thickened portion 511 that corresponds to the upper end of the conical container-shaped recess, A movable upper mold 22 that is externally mounted on a cylindrical locking projection 612 configured to protrude from the center upper end of the conical portion 611 of the lower mold mandrel 61 and has a central hole 221 for handling, The hub portion planned portion 521 is formed by extending the height while treating the vicinity of the central portion of the conical container-like portion including the thickened portion 511 at the central portion while reducing the diameter, and subsequently, using the upper mold 22 Pressing the outer peripheral part of the hub part planned part 521 to press the bottom of the yoke part Thereby forming the scheduled portion 522, by flowing the excess material said site to the hub portion scheduled portion 521 side, and forming a second intermediate 52 by thickening the hub portion scheduled portion 521,
In the third step, the second intermediate body 52 is disposed on the upper surface of the fixed annular lower mold 43, whereby the central hub portion planned portion 521 is projected from the central portion of the annular lower mold 43. The cylindrical lower mold mandrel 62 is fixedly mounted on the conical section 621, and at the same time, the central hole 11 in the central hub section 521 protrudes similarly to the central section of the cylindrical lower mold mandrel 62. The cylindrical pin 63 fixed in the state is put into an exterior state, and then the movable annular molding upper die 23 is pressed down, and the cylindrical lower die is placed on the inner peripheral side of the hub portion planned portion 521. The inner peripheral shape of the large diameter base portion 5411 of the hub portion 541 according to the outer shape of the upper conical portion 621 of the mandrel 62 and the inner shape of the small diameter upper portion 5412 of the hub portion 541 according to the outer shape of the cylindrical pin 63 are formed. Furthermore, on the outer peripheral side of the hub portion planned portion 521, the hub portion 541 The outer shape of the upper diameter portion 5412 and the outer circumference of the large diameter of the base portion 5411 are molded, and in addition, the bottom wall portion 542 of the yoke portion is molded, and the central cavity portion 231 of the annular molding upper die 23 is lowered, thereby At the lower part, the cylindrical pin 24 relatively moves the cylindrical pin 63 into its central cavity 241 to pressurize the upper end of the hub portion planned portion 521 to compress its height dimension, and the hub portion. By forming the shape of the upper end portion of 541, the hardness of the hub portion 541 is increased, and further, the excess material at the portion becomes the side wall portion planned portion 531 of the yoke portion by pressure molding of the bottom wall portion 542 of the yoke portion. Flowing to the outer peripheral side, forming the hub part 541 and the bottom wall part 542 of the yoke part, molding the third intermediate 53 formed the side wall part planned part 531 of the yoke part,
In the fourth step, the third intermediate body 53 is engaged with the inner peripheral portion of the movable cylindrical upper mold 25 with the small-diameter upper portion 5412 of the hub portion 541, and the base portion 5411 of the hub portion 541 is The cylindrical upper die 25 is engaged with the lower inner periphery of the annular upper die punch 26 in the exterior state and is held by both upper dies 25, 26, and the bottom wall portion 542 of the yoke portion of the third intermediate body 53. In contact with the lower end of the annular upper die punch 26, the cylindrical upper die 25 and the annular upper die punch 26 are simultaneously lowered, and between the inner periphery of the fixed lower die 44, Simultaneously drawing and handling the side wall planned portion 531 of the yoke portion of the third intermediate body 53 to form a side wall portion 543 that secures its own roundness and coaxiality with the hub portion 541, thereby This completes the production of the generator integrated rotor 54.

以下、以上に示した鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法を順次詳しく説明する。   Hereinafter, the manufacturing method of the integrated rotor for generators by the cold forging forming from the steel plate shown above is demonstrated one by one in detail.

前記第1工程の円板状鋼板1は、先に述べ、図1に示すように、中央部に穴11を開口してある、文字通りの円板状の鋼板である。材質的には、十分な展延性を有するものであることに加えて、発電機用のローターとして適合する適当な材料でもあるべきである。   The disc-shaped steel plate 1 in the first step is a literal disc-shaped steel plate having a hole 11 in the center as described above and shown in FIG. In terms of material, in addition to being sufficiently malleable, it should also be a suitable material suitable as a rotor for a generator.

該第1工程は、前記し、図4に示すように、下面が平坦な環状となっている環状上型21、該環状上型21の中央部の貫通穴に昇降自在に配してある上型パンチ31、下型41及び該下型41の上面周縁部に固設してある環状の案内下型413を用いて行われる。
該下型41は、同図に示すように、その中央に、該上型パンチ31より若干大径の中央開口部411を開口し、かつ該中央開口部411の周囲にこれを中心とする上向き傾斜のテーパ面412を有する構成となっている。該テーパ面412は、これを全体としてみれば、円錐状凹面ということができる。また前記環状の案内下型413は、前記円板状鋼板1の中心を前記下型41の中心と一致させて配するためのガイドとなるものであり、その内径を該円板状鋼板1の径に対応させてある。
In the first step, as shown in FIG. 4, the upper surface of the annular upper die 21 having a flat bottom surface and the through hole in the center of the annular upper die 21 are arranged so as to be movable up and down. This is performed using a die punch 31, a lower die 41, and an annular guide lower die 413 fixed to the peripheral edge of the upper surface of the lower die 41.
As shown in the figure, the lower die 41 has a central opening 411 having a diameter slightly larger than that of the upper die punch 31 at the center thereof, and is directed upward around the central opening 411. An inclined tapered surface 412 is provided. The tapered surface 412 can be said to be a conical concave surface as a whole. The annular guide lower mold 413 serves as a guide for arranging the center of the disk-shaped steel plate 1 so as to coincide with the center of the lower mold 41, and has an inner diameter of the disk-shaped steel sheet 1. It corresponds to the diameter.

該第1工程では、前記円板状鋼板1は、その中央の穴11を該下型41の中央に対応させた状態で該下型41上に配する。該円板状鋼板1は、その周縁部が該下型41の円環状の上面に載置した状態になる。なお、これは、該円板状鋼板1を前記案内下型413の内側に装入すれば自ずとそうなる。
この後、前記上型パンチ31及び環状上型21を下降させ、該上型パンチ31を該円板状鋼板1の中央部に押し当てて絞って行く。この間に該環状上型21の下面が、円錐凹状に絞られつつある該円板状鋼板1の周端に圧接するに至り、その放射方向への延びを抑えるように機能する。該上型パンチ31による加圧は継続し、図4に示すように、円錐凹状に絞られた該円板状鋼板1の中央部は下型41の中央開口部411に押し込まれた状態となり、その周囲は該下型41のテーパ面412に沿った上向きテーパ状の側板部512に成形され(全体としては円錐容器状に成形され)、第1中間体51が成形されることになり、第1工程は終了する。
In the first step, the disk-shaped steel plate 1 is disposed on the lower die 41 with the central hole 11 corresponding to the center of the lower die 41. The disk-shaped steel plate 1 is in a state where its peripheral edge is placed on the annular upper surface of the lower mold 41. Note that this naturally occurs when the disc-shaped steel plate 1 is inserted into the lower guide 413.
Thereafter, the upper die punch 31 and the annular upper die 21 are lowered, and the upper die punch 31 is pressed against the central portion of the disk-shaped steel plate 1 and squeezed. During this time, the lower surface of the annular upper mold 21 comes into pressure contact with the peripheral end of the disk-shaped steel sheet 1 being constricted into a conical concave shape, and functions to suppress its radial extension. The pressurization by the upper die punch 31 is continued, and as shown in FIG. 4, the central portion of the disk-shaped steel plate 1 squeezed into a conical concave shape is pushed into the central opening 411 of the lower die 41, The periphery thereof is formed into an upwardly tapered side plate portion 512 along the tapered surface 412 of the lower mold 41 (as a whole, formed into a conical container shape), and the first intermediate body 51 is formed. One step ends.

該第1工程において、図1(b)及び図4に示すように、該第1中間体51の中央部の穴11の周囲には、前記上型パンチ31の先端面の径にほぼ相当する径D1の増肉部511が生成される。このような増肉部511は、以上のような上型パンチ31で加圧して絞り、該増肉部511となる部位を前記下型41の中央開口部411中に押し込むこと、及びこのとき、該増肉部511となる部位の周囲の部位の周端を、前記のように、前記環状上型21の下面で抑え、その延びを抑制する結果として得られる。なお、この径D1は、より小さい方が増肉効果を高めることができるが、目的とするハブ部541の径より大径とすべきものである。   In the first step, as shown in FIGS. 1B and 4, the periphery of the hole 11 in the center of the first intermediate body 51 substantially corresponds to the diameter of the tip surface of the upper punch 31. A thickened portion 511 having a diameter D1 is generated. Such a thickened portion 511 is pressed and squeezed by the upper die punch 31 as described above, and a portion to be the thickened portion 511 is pushed into the central opening 411 of the lower die 41, and at this time, As described above, it is obtained as a result of restraining the peripheral edge of the portion around the portion to be the thickened portion 511 with the lower surface of the annular upper mold 21 and restraining its extension. In addition, the smaller diameter D1 can enhance the effect of increasing the thickness, but it should be larger than the intended diameter of the hub portion 541.

第2工程は、図5に示すように、上面が基本的に平坦な環状となっている環状下型42、その中央穴に固設されている下型マンドレル61及び上型22を用いて行われる。
該下型マンドレル61は、その上部が上細りの円錐状部611に構成され、更に該円錐状部611の上端中央には、前記第1中間体51の増肉部511の中央に開口している穴11に緩みなく挿入状態となりうる円柱状の係止突起612が構成してある。また前記上型22は、反転させた第1中間体51の増肉部511及びその周囲近傍の側板部512を扱き加工してハブ部予定部521を形成すべく、その中央穴部221を該当する径のテーパ状に形成してあり、更に、該上型22は、反転させた第1中間体51の増肉部511及びその周囲近傍の側板部512より外周側の側板部512を絞り加工して該部位をヨーク部の底壁予定部522に成形すべく、その環状の下端面を形成してある。
As shown in FIG. 5, the second step is performed using an annular lower mold 42 whose upper surface is basically a flat ring, and a lower mold mandrel 61 and an upper mold 22 fixed in the center hole. Is called.
The lower mold mandrel 61 is configured as a conical portion 611 whose upper portion is narrowed. Further, the lower mandrel 61 is opened to the center of the thickened portion 511 of the first intermediate body 51 at the center of the upper end of the conical portion 611. A cylindrical locking projection 612 that can be inserted into the hole 11 without looseness is formed. In addition, the upper mold 22 corresponds to the central hole portion 221 in order to handle the thickened portion 511 of the inverted first intermediate body 51 and the side plate portion 512 in the vicinity thereof to form the hub portion planned portion 521. Further, the upper die 22 is formed by drawing the side plate portion 512 on the outer peripheral side from the thickened portion 511 of the inverted first intermediate body 51 and the side plate portion 512 in the vicinity thereof. In order to form the portion into the planned bottom wall portion 522 of the yoke portion, an annular lower end surface is formed.

第2工程では、前記第1中間体51を上下反転させて前記環状下型42の円環状の上面上に載せ、このとき同時に、該第1中間体51の中央の凹部中に、該環状下型42の中央部に固設した前記下型マンドレル61の円錐状部611を挿入状態にし、更に該凹部上端の増肉部511に開口してある穴11中に、該円錐状部611の上端中央に立ち上げた係止突起612を挿入状態とする。該係止突起612が該第1中間体51の中央の穴11に挿入状態となることにより、該第1中間体51は正確に型の中央に位置決めされることになる。この後、図5に示すように、この状態で、前記上型22が下降して、その中央穴部221で該第1中間体51の増肉部511及びその周囲近傍の側板部512を扱き加工して縮径させながらその高さを延長させてハブ部予定部521を成形し、引き続いて、該上型22の環状の下端面で該ハブ部予定部521より外周側の側板部512を加圧して(据込)ヨーク部の底壁予定部522を成形する。またこのとき、該底壁予定部522を作成する部位の過剰素材をハブ部予定部521側に流動させ、該ハブ部予定部521を増肉させる。こうして第2中間体52を成形し、第2工程は終了する。   In the second step, the first intermediate body 51 is turned upside down and placed on the annular upper surface of the annular lower mold 42, and at the same time, the first intermediate body 51 is placed in the central recess of the first intermediate body 51. The conical section 611 of the lower mold mandrel 61 fixed at the center of the mold 42 is inserted, and the upper end of the conical section 611 is inserted into the hole 11 opened in the thickening section 511 at the upper end of the recess. The locking protrusion 612 raised at the center is set in the inserted state. When the locking protrusion 612 is inserted into the central hole 11 of the first intermediate body 51, the first intermediate body 51 is accurately positioned at the center of the mold. Thereafter, as shown in FIG. 5, in this state, the upper die 22 is lowered, and the central hole 221 handles the thickened portion 511 of the first intermediate 51 and the side plate portion 512 in the vicinity thereof. The hub portion planned portion 521 is formed by extending the height while processing and reducing the diameter, and subsequently, the side plate portion 512 on the outer peripheral side of the hub portion planned portion 521 is formed on the annular lower end surface of the upper mold 22. The bottom wall planned portion 522 of the yoke portion is formed by pressurizing (upsetting). Further, at this time, the excess material of the part for creating the planned bottom wall portion 522 is caused to flow toward the hub portion planned portion 521 side, and the hub portion planned portion 521 is increased in thickness. Thus, the second intermediate 52 is formed, and the second step is completed.

第2工程においては、以上に述べ、図1(c)及び図5に示すとおり、前記第1中間体51の増肉部511及びその周囲近傍の側板部512からハブ部予定部521が成形される。このハブ部予定部511の増肉の度合いは、該ハブ部予定部521の径D2と高さHによって決まる。大径の前記増肉部511及びその周囲の側板部512を、より小径に、かつ高さHが余り低くならないように、扱き、引き続いてその周囲を据込むと、得られるハブ部予定部521は、増肉され、逆の態様の扱き及び引き続く据込を行うと、減肉されることになる。本件のように、増肉を必要とする場合は、当然、前者のようになるように、前記増肉部511の径D1をハブ部予定部521の径D2より大径に、かつハブ部予定部521の高さHを高めに設定しておくべきである。   In the second step, as described above and as shown in FIGS. 1C and 5, the hub portion planned portion 521 is formed from the thickened portion 511 of the first intermediate body 51 and the side plate portion 512 in the vicinity thereof. The The degree of thickness increase of the planned hub portion 511 is determined by the diameter D2 and the height H of the planned hub portion 521. The hub portion planned portion 521 obtained when the large-diameter thickening portion 511 and the side plate portion 512 around the large-diameter portion 511 are handled so as to have a smaller diameter and the height H is not too low, and subsequently the surroundings are installed. Will be thinned if it is handled in the opposite manner and subsequently upset. As in the present case, when a thickening is required, the diameter D1 of the thickening portion 511 is naturally larger than the diameter D2 of the hub portion planned portion 521 and the hub portion is planned, as in the former case. The height H of the part 521 should be set high.

第3工程は、図6に示すように、内側部分が平坦で、周方向途中から外周方向に向かって上向き傾斜になる環状の上面を備えた環状下型43、該環状下型43の中央空洞部に、ここから突出する状態に固設してある円筒状下型マンドレル62、該円筒状下型マンドレル62の中空部に、更にここから突出する状態に固設してある円柱ピン63、環状の成形上型23及び該環状の成形上型23の中央空洞部231に昇降自在に配した筒状パンチ24を用いて行われる。
前記円筒状下型マンドレル62は、図6に示すように、その上部に、第2中間体52の中央のハブ部予定部521の内部に位置してハブ部541の大径の基部5411の内周を成形する円錐部621を備えている。また該円錐部621は、同図に示すように、該ハブ部541の基部5411の内周形状に対応すべく、最上端は錐状に尖らず、該基部5411内周上端の径に対応する円形端面となっている。
As shown in FIG. 6, the third step includes an annular lower mold 43 having a flat inner portion and an annular upper surface inclined upward in the circumferential direction toward the outer circumferential direction, and a central cavity of the annular lower mold 43. A cylindrical lower mandrel 62 fixed in a state protruding from here, a cylindrical pin 63 fixed in a state protruding further from the hollow portion of the cylindrical lower mandrel 62, an annular shape This is carried out using a cylindrical punch 24 disposed in a freely movable manner in the central cavity portion 231 of the molding upper mold 23 and the annular molding upper mold 23.
As shown in FIG. 6, the cylindrical lower mandrel 62 is located inside the hub portion planned portion 521 at the center of the second intermediate body 52, and inside the large-diameter base portion 5411 of the hub portion 541. A conical portion 621 for forming the circumference is provided. Further, as shown in the figure, the conical portion 621 does not have a conical shape at the uppermost end so as to correspond to the inner peripheral shape of the base portion 5411 of the hub portion 541, and corresponds to the diameter of the inner peripheral upper end of the base portion 5411. It has a circular end face.

前記円柱ピン63は、図6に示すように、ハブ部541の小径上部5412の内径に対応する径の円柱状部材である。前記環状の成形上型23は、その内周下部は、ハブ部541の小径上部5412及び基部5411の外周形状に対応する内周形状に構成し、下面は、基本的に、ヨーク部の底壁部542の上面形状に対応する形状としたものである。また前記筒状パンチ24は、同図に示すように、下端に開口する円筒状の部材であり、下方に突出状態に位置する前記円柱ピン63を、その中心空洞部241で外装状態となりつつ下降できるように構成してあるものである。更に該筒状パンチ24は、その下端が、前記ハブ部541の小径上部5412の上端形状に対応する形状に構成してある。   As shown in FIG. 6, the cylindrical pin 63 is a cylindrical member having a diameter corresponding to the inner diameter of the small diameter upper portion 5412 of the hub portion 541. The annular molding upper die 23 is configured such that the inner peripheral lower portion thereof has an inner peripheral shape corresponding to the outer peripheral shapes of the small diameter upper portion 5412 and the base portion 5411 of the hub portion 541, and the lower surface is basically the bottom wall of the yoke portion. The shape corresponding to the upper surface shape of the portion 542 is used. Further, as shown in the figure, the cylindrical punch 24 is a cylindrical member that opens to the lower end, and the cylindrical pin 63 positioned in a downward projecting state is lowered while being in an exterior state at the central cavity portion 241 thereof. It is configured to be able to. Further, the cylindrical punch 24 is configured such that the lower end thereof corresponds to the upper end shape of the small diameter upper portion 5412 of the hub portion 541.

第3工程では、前記第2中間体52を、前記環状下型43の内側部分が平坦で外側部分が外周方向に向かって上向き傾斜となっている上面上に配置し、中央のハブ部予定部521の内周側を、前記円筒状下型マンドレル62の円錐部621に外装状態にし、かつ該ハブ部予定部521の上部中央の穴11を、該円筒状下型マンドレル62の中央部に固設された円柱ピン63に外装状態にする。
その後、上方から、前記環状の成形上型23を下降させ、図6に示すように、その内周下部でハブ部予定部521を加圧し、これによってハブ部541の小径上部5412及び基部5411の外周形状を成形するとともに、前記円筒状下型マンドレル62の円錐部621でハブ部541の基部5411の内周形状を成形し、かつ前記円柱ピン63でハブ部541の小径上部5412の内周形状を成形する。また更に前記成形上型23の下面で第2中間体52のヨーク部の底壁予定部522が加圧され、ヨーク部の底壁部542が成形される。同時に、更に該底壁部542の外周側にヨーク部の側壁部予定部531も成形される。また該成形上型23が下降すると同時に、中央空洞部231を前記筒状パンチ24も下降し、上方に伸びたハブ部541の小径上部5412の上端を加圧・圧縮し上端部を成形する。こうして第3中間体53を成形し、第3工程は終了する。図2(a)は、こうして製造された第3中間体53の断面を示している。
In the third step, the second intermediate body 52 is disposed on the upper surface where the inner portion of the annular lower mold 43 is flat and the outer portion is inclined upward toward the outer peripheral direction, and a central hub portion planned portion The inner peripheral side of the cylindrical lower mold mandrel 62 is externally attached to the conical section 621 of the cylindrical lower mold mandrel 62, and the upper central hole 11 of the hub section planned section 521 is fixed to the central section of the cylindrical lower mold mandrel 62. The installed cylindrical pin 63 is put into an exterior state.
Thereafter, the annular molding upper die 23 is lowered from above, and as shown in FIG. 6, the hub portion planned portion 521 is pressurized at the inner peripheral lower portion thereof, whereby the small diameter upper portion 5412 and the base portion 5411 of the hub portion 541 are pressed. The outer peripheral shape is formed, the inner peripheral shape of the base portion 5411 of the hub portion 541 is formed by the conical portion 621 of the cylindrical lower mandrel 62, and the inner peripheral shape of the small-diameter upper portion 5412 of the hub portion 541 is formed by the cylindrical pin 63. Is molded. Furthermore, the bottom wall planned portion 522 of the yoke portion of the second intermediate body 52 is pressurized on the lower surface of the molding upper mold 23, and the bottom wall portion 542 of the yoke portion is molded. At the same time, a side wall portion planned portion 531 of the yoke portion is also formed on the outer peripheral side of the bottom wall portion 542. At the same time as the molding upper mold 23 is lowered, the cylindrical punch 24 is also lowered in the central cavity 231, and the upper end of the small-diameter upper portion 5412 of the hub portion 541 extending upward is pressurized and compressed to mold the upper end portion. Thus, the third intermediate 53 is formed, and the third step is completed. FIG. 2A shows a cross section of the third intermediate 53 manufactured in this way.

なお、以上の成形上型23によるヨーク部の底壁部542の成形過程で、その部位の過剰素材がハブ部541側に流動して増肉し、該ハブ部541の必要な肉厚を確保し、他方、前記成形上型23及び前記筒状パンチ24の加圧成形動作による加工硬化で、ハブ部541に十分な硬度を確保することができたものでもある。   In the molding process of the bottom wall portion 542 of the yoke portion by the molding upper die 23 described above, excess material in that portion flows to the hub portion 541 side and increases in thickness, and the necessary thickness of the hub portion 541 is secured. On the other hand, sufficient hardness can be secured in the hub portion 541 by the work hardening by the pressure forming operation of the forming upper mold 23 and the cylindrical punch 24.

第4工程は、図7に示すように、円筒状上型25、該円筒状上型25に外装状態の円環状上型パンチ26及び下型44を用いて行われる。
前記円筒状上型25は、図7に示すように、その下部内周を、第3中間体53のハブ部541の小径上部5412の外径とほぼ一致させ、該小径上部5412をその中心に外装保持できる内径寸法に形成した部材である。前記円環状上型パンチ26は、同図に示すように、その中央部の最下部直上までの間に該円筒状上型25を外装し、その最下部の内周は、ハブ部541の基部5411の外周形状及び外径とほぼ一致させ、該基部5411をその中心に外装保持できる内径寸法に形成した部材である。また該円環状上型パンチ26は、以上のように、ハブ部541の基部5411をその中心に外装保持した状態で、その下端が該第3中間体53のヨーク部の底壁部542に良好に接合できるように構成してあるものである。更に前記下型44は、該円環状上型パンチ26及び円筒状上型25に保持されて下降する該第3中間体53のヨーク部の側壁部543を成形すべく、その内周を円筒状内面に構成した型部材である。
As shown in FIG. 7, the fourth step is performed using a cylindrical upper mold 25, and an annular upper mold punch 26 and a lower mold 44 that are externally mounted on the cylindrical upper mold 25.
As shown in FIG. 7, the cylindrical upper mold 25 has its lower inner circumference substantially matched with the outer diameter of the small-diameter upper portion 5412 of the hub portion 541 of the third intermediate body 53, and the small-diameter upper portion 5412 as the center. It is a member formed to have an inner diameter that can be externally held. As shown in the figure, the annular upper die punch 26 covers the cylindrical upper die 25 immediately above the lowermost portion of the central portion, and the inner periphery of the lowermost portion is the base portion of the hub portion 541. This is a member formed so as to have an inner diameter dimension that can substantially match the outer peripheral shape and outer diameter of 5411 and can hold the base portion 5411 at its center. Further, as described above, the annular upper die punch 26 has a lower end that is favorable to the bottom wall portion 542 of the yoke portion of the third intermediate body 53 with the base portion 5411 of the hub portion 541 being externally held at the center thereof. It is comprised so that it can join. Further, the lower die 44 has a cylindrical inner periphery so as to form the side wall portion 543 of the yoke portion of the third intermediate body 53 that is held and lowered by the annular upper die 26 and the cylindrical upper die 25. It is the type | mold member comprised on the inner surface.

第4工程では、図7に示すように、前記円筒状上型25及び該円筒状上型25に外装状態の円環状上型パンチ26に前記第3中間体53を保持させた上で、そのヨーク部の側壁予定部531に外周絞り加工及び扱き加工を施して、側壁部543を成形する。
該第3中間体53の保持は、同図に示すように、円筒状上型25の下部内周で該第3中間体53の小径上部5412の外周を外装状態でその中心に保持し、更に円環状上型パンチ26の最下部の内周で、該第3中間体53のハブ部541の基部5411の外周を同様に外装状態でその中心に保持することにより、実行し、かつその状態で、該円環状上型パンチ26の下端を該第3中間体53のヨーク部の底壁部542に当接させておく。
In the fourth step, as shown in FIG. 7, the third intermediate body 53 is held by the cylindrical upper mold 25 and the cylindrical upper mold 25 held by the annular upper mold punch 26 in the exterior state. The side wall portion 543 is formed by subjecting the planned side wall portion 531 of the yoke portion to peripheral drawing and handling.
As shown in the figure, the third intermediate body 53 is held by holding the outer periphery of the small-diameter upper portion 5412 of the third intermediate body 53 at the center of the lower inner periphery of the cylindrical upper mold 25 in the exterior state. The outer periphery of the base portion 5411 of the hub portion 541 of the third intermediate body 53 is similarly held at the center of the outer periphery of the hub portion 541 of the third intermediate body 53 at the center thereof. The lower end of the annular upper die punch 26 is brought into contact with the bottom wall portion 542 of the yoke portion of the third intermediate body 53.

その後、図7に示すように、該円筒状上型25及び該円環状上型パンチ26を下降させ、下型44の内周との間で、該第3中間体53のヨーク部の側壁予定部531の絞り加工と扱きとを同時に行い、ヨーク部の側壁部543を成形し、これによって発電機用一体形ローター54の製造を完了させ、第4工程は終了する。図2(b)は、発電機用一体形ローター54の断面を示しており、図3は平面を示している。なお、第4工程は、扱き落とし加工法である。   Thereafter, as shown in FIG. 7, the cylindrical upper die 25 and the annular upper die punch 26 are lowered and the side wall of the yoke portion of the third intermediate body 53 is planned between the inner periphery of the lower die 44. The drawing and handling of the part 531 are performed simultaneously to form the side wall part 543 of the yoke part, thereby completing the production of the generator-integrated rotor 54, and the fourth step ends. FIG. 2B shows a cross section of the generator-integrated rotor 54, and FIG. 3 shows a plane. The fourth step is a handling method.

なお、以上の絞り加工と扱きとにより、得られたヨーク部の側壁部543はそれ自体の真円度が確保され、該ヨーク部の側壁部543と前記ハブ部541との同軸性も確保されることになる。   By the above drawing process and handling, the side wall 543 of the yoke part obtained has its own roundness, and the coaxiality between the side wall part 543 of the yoke part and the hub part 541 is also ensured. Will be.

最終製品の発電機用一体型ローター54は、以上の工程により後述の形状を付与される。
ヨーク部の底壁部542は、特に図2(b)及び図7に示すように、ハブ部541寄りの内側部分5421と側壁部543寄りの外側部分5422とからなり、内側部分5421は外側部分5422より厚肉であるとともに、ローターの外側になる面に平面部5423を有し、また、外側部分5422は、前記平面部5423から側壁部543に向かうに従い側壁端面側(有底筒状の開口側端面側)に離れるように傾斜あるいは湾曲した形状の部分5424を有する。
The final product generator-integrated rotor 54 is given the shape described later by the above-described steps.
The bottom wall portion 542 of the yoke portion includes an inner portion 5421 closer to the hub portion 541 and an outer portion 5422 closer to the side wall portion 543, as shown in FIGS. 2B and 7, and the inner portion 5421 is an outer portion. It is thicker than 5422 and has a flat portion 5423 on the outer surface of the rotor, and the outer portion 5422 has a side wall end surface side (bottomed cylindrical opening) as it goes from the flat portion 5423 toward the side wall portion 543. A portion 5424 having an inclined or curved shape so as to be separated from the side end surface side) is provided.

平面部5423は一定の範囲に形成され、特に図2(b)に示すように、例えば、ローターの外径に対し1/3〜2/3、より好ましくは約半分の径D3の範囲に設けられ、傾斜あるいは湾曲した形状の部分5424の角度θは平面部5423の仮装延長面に対し3°〜10°、より好ましくは約5°で傾斜するか、その外周端で該仮装延長面から肉厚tの0.7〜2倍、より好ましくは約0.8倍の距離lだけ離れるように湾曲し、底壁部542の外側部分5422と側壁部543とは直角より緩い角度で連続している。   The flat portion 5423 is formed in a certain range, and as shown in FIG. 2 (b) in particular, for example, it is provided in a range of a diameter D3 of 1/3 to 2/3, more preferably about half of the outer diameter of the rotor. The angle θ of the inclined or curved portion 5424 is inclined at 3 ° to 10 °, more preferably about 5 ° with respect to the temporary extension surface of the flat portion 5423, or from the temporary extension surface at the outer peripheral end thereof. Curved to a distance l of 0.7 to 2 times the thickness t, more preferably about 0.8 times, the outer portion 5422 and the side wall portion 543 of the bottom wall portion 542 are continuously at a gentler angle than a right angle. Yes.

なお、外側部分5422の肉厚tは側壁部543の肉厚より厚く構成されている。
なおまた、ローター内側に位置するステーター(不図示)のための開口を設けることを妨げない。
The wall thickness t of the outer portion 5422 is thicker than the wall thickness of the side wall portion 543.
Furthermore, it is not hindered to provide an opening for a stator (not shown) located inside the rotor.

上述の形状により、ローターに発電機用の部品(不図示)を確実に固定する支持面を外面に確保するとともに、底壁部542の駆動源(不図示)からの振動に対する周波数特性をそのピークを100Hz以上共振点からずらして好ましいものに変更させることができる。また、ヨーク部の底壁部542と側壁部543との緩い角度での連続は流動性を向上させる。   With the above-described shape, a support surface for securely fixing a generator component (not shown) to the rotor is secured on the outer surface, and the frequency characteristics with respect to vibration from the drive source (not shown) of the bottom wall portion 542 are peaked. Can be shifted from the resonance point by 100 Hz or more to a preferable one. In addition, the continuity at a gentle angle between the bottom wall portion 542 and the side wall portion 543 of the yoke portion improves the fluidity.

本発明の鋼鈑からの冷間鍛造成形による発電機用一体形ローターの製造方法は、文字通り、発電機用のローターの製造の分野で有効に利用できる。   The method for producing an integral rotor for a generator by cold forging from a steel plate according to the present invention can be effectively used in the field of producing a rotor for a generator.

1 円板状鋼板
11 円板状鋼板の中央部の穴
12 円板状鋼板の外周端
21 第1工程で用いる環状上型
22 第2工程で用いる上型
221 第2工程で用いる上型の中央穴部
23 第3工程で用いる成形上型
231 第3工程で用いる成形上型の中央空洞部
24 第3工程で用いる上型の筒状パンチ
241 筒状パンチの中心空洞部
25 第4工程で用いる円筒状上型
26 第4工程で用いる円環状上型パンチ
31 第1工程で用いる上型パンチ
41 第1工程で用いる下型
411 第1工程で用いる下型の中央開口部
412 第1工程で用いる下型のテーパ面
413 第1工程で用いる案内下型
42 第2工程で用いる環状下型
43 第3工程で用いる環状下型
44 第4工程で用いる下型
51 第1中間体
511 増肉部
512 第1中間体の側板部
52 第2中間体
521 ハブ部予定部
522 ヨーク部の底壁予定部
53 第3中間体
531 ヨーク部の側壁部予定部
54 発電機用一体形ローター
541 ハブ部
5411 ハブ部の基部
5412 ハブ部の小径上部
542 ヨーク部の底壁部
5421 底壁部のハブ部寄りの内側部分
5422 底壁部の側壁部寄りの外側部分
5423 内側部分の外側の面である平面部
5424 外側部分の外側の面である傾斜あるいは湾曲した形状の部分
543 ヨーク部の側壁部
61 下型マンドレル
611 下型マンドレルの円錐状部
612 円錐状部の係止突起
62 第3工程で用いる円筒状下型マンドレル
621 第3工程で用いる円筒状下型マンドレルの円錐部
63 第3工程で用いる円柱ピン
D1 増肉部の径
D2 ハブ部予定部の径
D3 平面部の径
H ハブ部予定部の高さ
θ 外側部分の傾斜あるいは湾曲した形状の部分の角度
t 外側部分の肉厚
l 外側部分の傾斜あるいは湾曲した形状の部分の最外端と内側部分の外側の面である平面部からの仮装延長線との間の距離
DESCRIPTION OF SYMBOLS 1 Disk shaped steel plate 11 Hole of the center part of a disk shaped steel plate 12 Outer peripheral edge of a disk shaped steel plate 21 An annular upper die used in the first step 22 An upper die used in the second step 221 A center of the upper die used in the second step Hole 23 Upper molding die used in the third step 231 Central cavity portion of the upper molding die used in the third step 24 Upper cylindrical punch used in the third step 241 Central cavity portion of the cylindrical punch
25 Cylindrical upper die used in the fourth step 26 Circular upper die punch used in the fourth step 31 Upper die punch used in the first step 41 Lower die used in the first step 411 Lower central opening of the die used in the first step 412 Tapered surface of lower mold used in the first process 413 Guide lower mold used in the first process 42 Annular lower mold used in the second process 43 Annular lower mold used in the third process 44 Lower mold used in the fourth process 51 First intermediate Body 511 Thickening part 512 Side plate part of first intermediate body 52 Second intermediate body 521 Preliminary part of hub part 522 Preliminary wall part of yoke part 53 Third intermediate part 531 Preferential side wall part of yoke part 54 Integral type for generator Rotor 541 Hub portion 5411 Base portion of hub portion 5412 Upper portion of small diameter of hub portion 542 Bottom wall portion of yoke portion 5421 Inner portion of bottom wall portion near hub portion 5422 Outer portion of bottom wall portion near side wall portion 5 23 Planar part that is the outer surface of the inner part 5424 Inclined or curved part that is the outer surface of the outer part 543 Side wall part of the yoke part 61 Lower mandrel 611 Conical part of the lower mandrel 612 Conical part Locking projection 62 Cylindrical lower mandrel used in the third step 621 Conical portion of the cylindrical lower mandrel used in the third step 63 Columnar pin used in the third step D1 Diameter of the thickened portion D2 Diameter of the hub portion planned portion D3 The diameter of the flat surface portion H The height of the hub portion planned portion θ The angle of the inclined portion or curved portion of the outer portion t The thickness of the outer portion l The outermost end and the inner portion of the inclined portion or curved portion of the outer portion The distance from the flat part that is the outer surface to the disguise extension line

Claims (6)

ハブ部とその基部から放射方向に延びる底壁部及びその外周端から該ハブ部の軸方向と平行な方向に延びる側壁部からなる有底円筒状のヨーク部とが一体成形された磁石発電機用ローターを鋼板から冷間鍛造成形によって成形する、鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法であって、
中央部に穴を開口してある円板状鋼鈑の中央部を、該円板状鋼鈑の外周端を抑えながら加圧操作して、該中央部の穴の周囲に最終段階のハブ部径より大径の増肉部を生成させ、かつ、該増肉部の周囲を、該増肉部を最下部とする円錐容器状に成形して第1中間体を作成する第1工程と、
前記第1中間体の中央部近傍の増肉部を含む円錐容器状の部分を扱いて縮径させながらその高さを伸ばしてハブ部予定部を成形し、引き続いて、該ハブ部予定部より外周側を加圧してヨーク部の底壁予定部を成形するとともに、該底壁予定部の過剰素材をハブ部予定部側に流動させることにより、該ハブ部予定部を増肉させた第2中間体を作成する
第2工程と、
前記第2中間体のハブ部予定部の内周を整圧し、かつ該ハブ部予定部の外周を扱いた上で、その上端を加圧して圧縮加工することにより、ハブ部の成形を完了させ、その間に前記ヨーク部の底壁予定部を加圧して底壁部の成形を完了させるとともに、その外周の側壁予定部を成形した第3中間体を作成する
第3工程と、
前記第3中間体のハブ部の形状を保持しながら、そのヨーク部の側壁予定部の絞り加工と扱きとを同時に行い、ハブ部とヨーク部の同軸性及びヨーク部の真円度を確保して発電機用一体形ローターを完成させる第4工程と、
を順次行う鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法。
A magnet generator in which a hub portion and a bottom wall portion extending radially from the base portion and a bottomed cylindrical yoke portion including a side wall portion extending from an outer peripheral end thereof in a direction parallel to the axial direction of the hub portion are integrally formed. Forming a rotor for steel from a steel plate by cold forging, a method for producing an integrated rotor for a generator by cold forging from a steel plate,
The central portion of the disc-shaped steel plate having a hole in the central portion is pressurized while suppressing the outer peripheral end of the disc-shaped steel plate, and the hub portion of the final stage is formed around the hole in the central portion. A first step of generating a thickened portion having a diameter larger than the diameter, and forming a first intermediate body by molding the periphery of the thickened portion into a conical container shape having the thickened portion as a lowermost portion;
The conical container-shaped part including the thickened part in the vicinity of the center part of the first intermediate body is handled and the height is increased while the diameter is reduced to form the hub part planned part. Subsequently, from the hub part planned part, Secondly, the outer peripheral side is pressurized to form the planned bottom wall portion of the yoke portion, and the excess material of the planned bottom wall portion is caused to flow toward the hub portion planned portion side to increase the thickness of the hub portion planned portion. A second step of creating an intermediate;
After the inner circumference of the hub portion planned portion of the second intermediate body is pressure-regulated and the outer circumference of the hub portion planned portion is handled, the upper end is pressurized and compressed to complete the molding of the hub portion. In the meantime, the third step of pressurizing the planned bottom wall portion of the yoke portion to complete the molding of the bottom wall portion and creating the third intermediate body molded with the planned side wall portion of the outer periphery,
While maintaining the shape of the hub portion of the third intermediate body, the side wall portion of the yoke portion is simultaneously drawn and handled to ensure the coaxiality of the hub portion and the yoke portion and the roundness of the yoke portion. A fourth step of completing the integrated rotor for the generator;
A method for manufacturing an integrated rotor for a generator by cold forging from a steel plate that is sequentially performed.
前記第1工程の円板状鋼板の中央部の加圧は、前記増肉部の径に相当する先端径を有する上型パンチにより行い、前記円板状鋼板の外周端の抑えは、環状上型を該外周端に圧接することで行い、かつ前記増肉部は、下型の中央開口部に、前記上型パンチの前記加圧によって前記円板状鋼板の中央部を押し込むことで生成させ、
前記増肉部の周囲の該増肉部を最下部とする円錐容器状への成形は、以上の加圧過程で、該増肉部の周囲を前記下型の中央開口部を最下部とし外周方向に向かって上向き傾斜するテーパ面に沿った形状に変形させることによって行われるようにした請求項1の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法。
The pressing of the central part of the disk-shaped steel plate in the first step is performed by an upper punch having a tip diameter corresponding to the diameter of the thickened part, and the outer peripheral edge of the disk-shaped steel plate is restrained on an annular shape. The die is pressed against the outer peripheral edge, and the thickened portion is generated by pushing the central portion of the disk-shaped steel plate into the central opening of the lower die by the pressurization of the upper die punch. ,
Forming into a conical container shape with the thickened portion around the thickened portion at the bottom is the outer periphery with the central opening of the lower mold at the bottom in the pressurizing process. The manufacturing method of the integrated rotor for generators by the cold forging from the steel plate of Claim 1 performed by making it deform | transform into the shape along the taper surface which inclines upward toward a direction.
前記第2工程における前記第1中間体の中央部近傍の増肉部を含む円錐容器状の部分の扱きは、該第1中間体を上下反転させて下型に配置し、これによって、中央部近傍の増肉部を含む円錐容器状の部分を下型マンドレルの上部に外装状態にし、かつ該円錐容器状の部分の中央部の穴を該下型マンドレル上部中央の円柱状の係止突起に外装し、上型を、該中央部近傍の増肉部を含む円錐容器状の部分を扱き動作させることにより行い、
該中央部近傍の増肉部を含む円錐容器状の部分より外周側の加圧は、前記上型を、前記扱き操作に引き続いて、該中央部近傍の増肉部を含む円錐容器状の部分より外周側に押圧動作をさせることにより行うこととした請求項1又は2の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法。
In the second step, the handling of the conical container-like portion including the thickened portion in the vicinity of the central portion of the first intermediate body is arranged in the lower mold by vertically inverting the first intermediate body, whereby the central portion The conical container-shaped part including the thickened portion in the vicinity is put on the upper part of the lower mandrel, and the hole in the center of the conical container-shaped part is used as a cylindrical locking protrusion at the upper center of the lower mandrel. The outer mold is performed by operating the conical container-like portion including the thickened portion near the center,
The pressure on the outer peripheral side of the conical container-shaped portion including the thickened portion in the vicinity of the central portion is the conical container-shaped portion including the thickened portion in the vicinity of the central portion following the handling operation of the upper mold. The manufacturing method of the integrated rotor for generators by the cold forging forming from the steel plate of Claim 1 or 2 decided to make it press to the outer peripheral side more.
前記第3工程のハブ部予定部の内周の加圧及び外周の扱きは、前記第2中間体を環状下型上に配置し、これによって、該第2中間体の中央のハブ部予定部の基部を、該環状下型の中央部に突出状態に配してあるハブ部の大径の基部内周を成形する円筒状下型マンドレルに外装し、かつ同時に該ハブ部予定部の中央の穴を、該円柱状下型マンドレルの中央部に突出状態に配してある円柱ピンに外装し、更に該ハブ部の上部及び基部外周の成形は、環状の成形上型を該ハブ部予定部に扱き下降をさせることで行い、
前記ハブ部予定部の上端の加圧は、成形上型の中央から筒状パンチを下降させ、これで加圧動作させることにより行い、
更に前記ヨーク部の底壁予定部の加圧は、前記成形上型を、前記ハブ部予定部の扱き下降に引き続いて下降させて該底壁予定部に加圧動作させることにより行うこととした請求項1、2又は3の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法。
The pressurization of the inner periphery and the handling of the outer periphery of the hub portion planned portion in the third step are performed by arranging the second intermediate body on the annular lower mold, and thereby the hub portion planned portion at the center of the second intermediate body. Is mounted on a cylindrical lower mandrel that molds the inner periphery of the large-diameter base portion of the hub portion projecting from the center portion of the annular lower die, and at the same time, at the center of the hub portion planned portion. A hole is externally mounted on a cylindrical pin projecting from the central part of the cylindrical lower mold mandrel, and the upper part of the hub part and the outer periphery of the base part are molded by forming an annular molded upper mold into the hub part planned part. Is done by handling and lowering,
Pressurization of the upper end of the hub portion planned portion is performed by lowering the cylindrical punch from the center of the molding upper die and performing a pressure operation with this,
Further, the pressurization of the planned bottom wall of the yoke part is performed by lowering the molding upper die following the handling and lowering of the planned hub part and pressurizing the planned bottom wall. The manufacturing method of the integrated rotor for generators by the cold forging forming from the steel plate of Claim 1, 2, or 3.
前記第4工程のハブ部の形状の保持は、円筒状上型の内周部に第3中間体のハブ部の上部外周を挿入保持させ、該円筒状上型に外装状態の円環状上型パンチの下部内周に該ハブ部の基部外周を挿入保持させ、更に該円環状上型パンチの下端に該第3中間体のヨーク部の底壁部を当接させて行い、
前記ヨーク部の側壁予定部の絞り加工と扱きとは、該円筒状上型及び該円環状上型パンチを同時に下降させ、下型の内周との間で、該第3中間体のヨーク部の側壁予定部の絞り加工及び扱き動作をさせることにより行うこととした請求項1、2、3又は4の鋼板からの冷間鍛造成形による発電機用一体形ローターの製造方法。
In the fourth step, the shape of the hub portion is maintained by inserting and holding the upper outer periphery of the hub portion of the third intermediate body in the inner peripheral portion of the cylindrical upper die, and the annular upper die in the exterior state in the cylindrical upper die. The base outer periphery of the hub portion is inserted and held at the lower inner periphery of the punch, and the bottom wall portion of the yoke portion of the third intermediate body is brought into contact with the lower end of the annular upper punch,
The drawing of the side wall portion of the yoke portion and the handling are performed by lowering the cylindrical upper die and the annular upper die punch at the same time, and between the inner periphery of the lower die and the yoke portion of the third intermediate body. The manufacturing method of the integrated rotor for generators by the cold forging from the steel plate of Claim 1, 2, 3, or 4 performed by carrying out the drawing process and handling operation of the side wall scheduled part.
磁石発電機に装着される磁石発電機用一体型ローターであって、
ハブ部とヨーク部とからなり、該ヨーク部は、前記ハブ部の基部から径方向に延びる底壁部及びその外周端から該ハブ部の軸方向と平行な方向に延びる側壁部からなる有底円筒状をなし、
前記底壁部は、前記ハブ部と連続する内側寄りの部分が径方向に延びる平面を有し、かつ前記側壁部と連続する外側寄りの部分より軸方向に厚い肉厚を有し、
前記外側寄りの部分は、前記内側寄りの平面から前記側壁部の開口端側に向けて離反するように傾斜または湾曲して形成された磁石発電機用一体型ローター。
An integrated rotor for a magnet generator attached to a magnet generator,
The yoke portion includes a hub portion and a yoke portion, and the yoke portion includes a bottom wall portion extending in a radial direction from a base portion of the hub portion, and a bottomed portion including a side wall portion extending from an outer peripheral end thereof in a direction parallel to the axial direction of the hub portion. A cylindrical shape,
The bottom wall portion has a flat surface extending in the radial direction at the inner portion continuous with the hub portion, and has a thicker wall thickness in the axial direction than the outer portion continuous with the side wall portion,
The magnet generator-integrated rotor is formed such that the outer side portion is inclined or curved so as to be separated from the inner side plane toward the opening end side of the side wall portion.
JP2009260366A 2009-11-13 2009-11-13 Integral rotor for permanent-magnet generator and method of manufacturing the same from steel sheet by cold forging forming Pending JP2011104607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009260366A JP2011104607A (en) 2009-11-13 2009-11-13 Integral rotor for permanent-magnet generator and method of manufacturing the same from steel sheet by cold forging forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260366A JP2011104607A (en) 2009-11-13 2009-11-13 Integral rotor for permanent-magnet generator and method of manufacturing the same from steel sheet by cold forging forming

Publications (1)

Publication Number Publication Date
JP2011104607A true JP2011104607A (en) 2011-06-02

Family

ID=44228717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260366A Pending JP2011104607A (en) 2009-11-13 2009-11-13 Integral rotor for permanent-magnet generator and method of manufacturing the same from steel sheet by cold forging forming

Country Status (1)

Country Link
JP (1) JP2011104607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115780723A (en) * 2023-01-13 2023-03-14 中北大学 Forming die and method for wide special-shaped hub
CN117943508A (en) * 2024-03-26 2024-04-30 溧阳市金昆锻压有限公司 Positioning mechanism for gear forging and pressing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331814A (en) * 1995-06-02 1996-12-13 Nippondenso Co Ltd Manufacture of permanent-magnet generator
JP2000262010A (en) * 1999-03-10 2000-09-22 Densei Lambda Kk Rotor yoke for rotating machine and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331814A (en) * 1995-06-02 1996-12-13 Nippondenso Co Ltd Manufacture of permanent-magnet generator
JP2000262010A (en) * 1999-03-10 2000-09-22 Densei Lambda Kk Rotor yoke for rotating machine and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115780723A (en) * 2023-01-13 2023-03-14 中北大学 Forming die and method for wide special-shaped hub
CN115780723B (en) * 2023-01-13 2023-06-09 中北大学 Forming die and method for wide special-shaped hub
CN117943508A (en) * 2024-03-26 2024-04-30 溧阳市金昆锻压有限公司 Positioning mechanism for gear forging and pressing
CN117943508B (en) * 2024-03-26 2024-06-04 溧阳市金昆锻压有限公司 Positioning mechanism for gear forging and pressing

Similar Documents

Publication Publication Date Title
JP5610062B2 (en) Tooth profile part manufacturing method, tooth profile part manufacturing apparatus, and tooth profile part
JP6051052B2 (en) Press part molding method, press part manufacturing method, and press part molding die
KR101293631B1 (en) A manufacturing method of a cylinder-cover for a large-sized engine
CN100493765C (en) Forging method of large scale conical barrel
KR101910395B1 (en) Method and device for reshaping a workpice
CN202103831U (en) T-shaped iron die
CN105583278B (en) Horn mouth flanging bore manufacturing process on carrier rocket tank top cover
JP5626061B2 (en) Tooth profile part manufacturing method and tooth profile part manufacturing apparatus
JP5974554B2 (en) Method and apparatus for manufacturing a press-formed product
CN107671132B (en) A kind of forming technology of speed torque-converters hub
JP2010142869A (en) Forging method, device for forming forged product, and tripod-shape constant-velocity universal joint
JP2011104607A (en) Integral rotor for permanent-magnet generator and method of manufacturing the same from steel sheet by cold forging forming
US20150020566A1 (en) Forging device for the production of a piston blank, and method for the production of the piston blank by means of said forging device
JP4770637B2 (en) Method and apparatus for forming housing member with flange
JP4580215B2 (en) Vehicle wheel manufacturing method and spinning processing apparatus
KR20100065598A (en) Device for forging a exhaust valve
JP5412363B2 (en) Vehicle wheel manufacturing method
KR101690107B1 (en) Aluminum Pully Producing Method and Device
JP2002346690A (en) Method for forging metal part
KR20180091162A (en) Clutch Cylinder for Vehicle Producing Device
JP6083552B2 (en) Method of manufacturing bearing blanks by cold forging
CN211707899U (en) Hub forming die
JP5643682B2 (en) Manufacturing method of rotor hub
JP2008245433A (en) Rotor shaft of rotating electrical machine and method for manufacturing the same
JP3586654B2 (en) Forging device and composite forging device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140324