JP2011099405A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011099405A
JP2011099405A JP2009255521A JP2009255521A JP2011099405A JP 2011099405 A JP2011099405 A JP 2011099405A JP 2009255521 A JP2009255521 A JP 2009255521A JP 2009255521 A JP2009255521 A JP 2009255521A JP 2011099405 A JP2011099405 A JP 2011099405A
Authority
JP
Japan
Prior art keywords
carrier
electrodes
partition wall
current path
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009255521A
Other languages
Japanese (ja)
Inventor
Kazutomi Yamanishi
一臣 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009255521A priority Critical patent/JP2011099405A/en
Publication of JP2011099405A publication Critical patent/JP2011099405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device in which a carrier for catalyst is heated uniformly, whereby capable of raising the temperature of the catalyst borne by the carrier to the activation temperature even when the engine is going to make a cold start. <P>SOLUTION: The exhaust emission control device 100 is arranged so that the carrier 20 in cylindrical shape is heated electrically through electrodes 30 and 40 to raise the temperature of the catalyst borne by the carrier 20 to the activation temperature, the carrier 20 being formed in honeycomb structure with a plurality of bulkheads 21, 21... through which the current for heating the carrier 20 flows between the electrodes 30 and 40, wherein the thickness of the bulkheads 21, 21... is set so that the electric resistances of all current paths between terminals 50 and 60 are the same. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気浄化装置に関し、特にエンジンから排出される排気ガスを浄化する排気浄化装置に関する。   The present invention relates to an exhaust purification device, and more particularly to an exhaust purification device that purifies exhaust gas discharged from an engine.

従来、自動車等の排気経路上に設けられ、エンジンから排出される排気ガスを浄化する排気浄化装置として通電加熱式触媒(Electrically Heated Catalyst:EHC)が知られている。   2. Description of the Related Art Conventionally, an electrically heated catalyst (EHC) is known as an exhaust purification device that is provided on an exhaust path of an automobile or the like and purifies exhaust gas exhausted from an engine.

図8に示すように、従来のEHCである排気浄化装置100は、外装をなす中空のケース110と、ケース110の内部に収納され、白金、又はパラジウム等の触媒が担持されたハニカム構造を有する円筒状の担体120と、担体120の外周面に互いに対向するように設けられ、担体120と電気的に接続された電極130・140と、電極130・140にそれぞれ電気的に接続されると共に、バッテリ等の電源にワイヤハーネス等を介して電気的に接続された端子150・160とを具備する。排気浄化装置100は、前記電源から供給されて電極130から電極140に向けて流れる電流により担体120を通電加熱することで、担体120に担持された触媒を活性温度まで昇温して、エンジンから排出される排気ガス中のHC(未燃炭化水素)、CO(一酸化炭素)、及びNOx(窒素酸化物)等の有害物質を触媒反応により浄化する。   As shown in FIG. 8, a conventional exhaust purification device 100, which is an EHC, has a hollow case 110 that forms an exterior, and a honeycomb structure that is housed in the case 110 and that supports a catalyst such as platinum or palladium. A cylindrical carrier 120 and electrodes 130 and 140 that are provided on the outer peripheral surface of the carrier 120 so as to face each other and are electrically connected to the carrier 120, and are electrically connected to the electrodes 130 and 140, respectively. And terminals 150 and 160 electrically connected to a power source such as a battery via a wire harness or the like. The exhaust gas purification apparatus 100 energizes and heats the carrier 120 with a current supplied from the power source and flows from the electrode 130 toward the electrode 140, thereby raising the temperature of the catalyst supported on the carrier 120 to the activation temperature. Harmful substances such as HC (unburned hydrocarbons), CO (carbon monoxide), and NOx (nitrogen oxides) in the exhaust gas discharged are purified by catalytic reaction.

上記のように、担体120に担持された触媒は、活性温度に達している場合において触媒反応により排気ガスを浄化することが可能である。しかし、エンジン始動時、特にコールドスタート時において、触媒の温度が活性温度に達していない場合、排気ガス中の有害物質が浄化されないまま大気中に排出されてしまうという問題が生じる。   As described above, the catalyst supported on the carrier 120 can purify the exhaust gas by a catalytic reaction when it reaches the activation temperature. However, when the temperature of the catalyst does not reach the activation temperature at the time of starting the engine, particularly at the cold start, there arises a problem that harmful substances in the exhaust gas are discharged into the atmosphere without being purified.

そのため、担体120のハニカム構造をなす隔壁の厚さを部分的に変更して、電気抵抗を部分的に変化させることで、効率的かつ均等に担体120を加熱し、担体120に担持された触媒を昇温する技術が公知となっている(例えば、特許文献1参照)。   Therefore, the carrier 120 is efficiently and evenly heated by partially changing the thickness of the partition walls forming the honeycomb structure of the carrier 120 and partially changing the electric resistance, so that the catalyst supported on the carrier 120 is supported. A technique for raising the temperature is known (see, for example, Patent Document 1).

排気浄化装置100においては、端子150を通過した電流は、電極130からすぐに担体120に流れず、担体120よりも電気抵抗の小さい電極130の両端部へと流れる(図中矢印参照)。そのため、担体120の周方向における電極130・140の両端部近傍においては、それらの中央付近よりも電流密度が高くなり、担体120全体として温度にばらつきが生じる。
特許文献1に記載の技術では、このような問題が考慮されておらず、温度のばらつきが生じないように均等に担体120を加熱することができなかった。そのため、コールドスタート時に担体120に担持された触媒において活性温度に達していない部分が生じるおそれがあり、排気ガス中の有害物質の浄化が充分ではなかった。
In the exhaust purification apparatus 100, the current that has passed through the terminal 150 does not immediately flow from the electrode 130 to the carrier 120, but flows to both ends of the electrode 130 that has a lower electrical resistance than the carrier 120 (see arrows in the figure). Therefore, the current density is higher in the vicinity of both ends of the electrodes 130 and 140 in the circumferential direction of the carrier 120 than in the vicinity of the center thereof, and the temperature of the carrier 120 as a whole varies.
In the technique described in Patent Document 1, such a problem is not taken into consideration, and the carrier 120 cannot be heated uniformly so as not to cause temperature variations. For this reason, there is a possibility that a portion of the catalyst supported on the carrier 120 at the cold start does not reach the activation temperature, and purification of harmful substances in the exhaust gas is not sufficient.

特開平8−232647号公報Japanese Patent Laid-Open No. 8-232647

本発明は、担体を均等に加熱して、エンジンのコールドスタート時においても担体に担持された触媒を活性温度まで昇温できる排気浄化装置を提供することを課題とする。   An object of the present invention is to provide an exhaust emission control device that can heat a carrier evenly and raise the temperature of a catalyst supported on the carrier to an active temperature even when the engine is cold-started.

本発明の排気浄化装置は、外装をなす中空のケースと、前記ケースの内部に収納され、触媒が担持される担体と、前記担体の外周面に設けられる一対の電極と、前記一対の電極に電気的に接続され、前記ケースの外部に突出する一対の端子と、を具備し、前記一対の電極を通じて前記担体を通電加熱して前記触媒を活性温度まで昇温する排気浄化装置であって、前記担体は、複数の隔壁によってハニカム構造に形成され、前記複数の隔壁を通じて、前記担体を通電加熱するための電流が前記一対の電極間を流れ、下記の数1から算出される、前記端子間のすべての電流経路の電気抵抗が等しくなるように前記担体の隔壁の厚さが設定される。

Figure 2011099405
The exhaust emission control device of the present invention includes a hollow case forming an exterior, a carrier housed in the case and carrying a catalyst, a pair of electrodes provided on an outer peripheral surface of the carrier, and the pair of electrodes. A pair of terminals electrically connected and projecting to the outside of the case; and an exhaust gas purification device that heats the carrier through the pair of electrodes and heats the catalyst to an activation temperature, The carrier is formed in a honeycomb structure by a plurality of partition walls, and an electric current for energizing and heating the carrier flows between the pair of electrodes through the plurality of partition walls, and is calculated from the following equation (1). The thickness of the partition wall of the carrier is set so that the electric resistances of all the current paths are equal.
Figure 2011099405

本発明によれば、担体を均等に加熱して、エンジンのコールドスタート時においても担体に担持された触媒を活性温度まで昇温できる。   According to the present invention, the support can be heated evenly, and the temperature of the catalyst supported on the support can be raised to the activation temperature even when the engine is cold started.

本発明に係る排気浄化装置の正面断面図。1 is a front sectional view of an exhaust emission control device according to the present invention. 本発明に係る排気浄化装置の一部側面断面図。The partial side sectional view of the exhaust emission control device according to the present invention. 隔壁を通る電流経路を示す図。The figure which shows the electric current path which passes along a partition. 担体、電極、及び端子を二次元座標上に示した図。The figure which showed the support | carrier, the electrode, and the terminal on the two-dimensional coordinate. 担体の周方向における電極が設けられた範囲に位置しない一つの隔壁を通る電流経路を示す図。The figure which shows the electric current path which passes along one partition which is not located in the range in which the electrode in the circumferential direction of the support | carrier was provided. 端子が担体の周方向における電極の中央部に配置されていない場合における一つの隔壁を通る電流経路を示す図。The figure which shows the electric current path | route which passes along one partition in case the terminal is not arrange | positioned in the center part of the electrode in the circumferential direction of a support | carrier. 担体が電極に対して周方向に傾いている場合における隔壁の厚さの設定を示す図。The figure which shows the setting of the thickness of the partition when a support | carrier is inclined in the circumferential direction with respect to the electrode. 従来の排気浄化装置の正面断面図。Front sectional drawing of the conventional exhaust gas purification apparatus.

以下では、図1〜図2を参照して、排気浄化装置1について説明する。
排気浄化装置1は、自動車等の排気経路上に設けられ、エンジンから排出される排気ガスを浄化する通電加熱式触媒(Electrically Heated Catalyst:EHC)である。
Below, with reference to FIGS. 1-2, the exhaust gas purification apparatus 1 is demonstrated.
The exhaust purification device 1 is an electrically heated catalyst (EHC) that is provided on an exhaust path of an automobile or the like and purifies exhaust gas discharged from an engine.

図1及び図2に示すように、排気浄化装置1は、外装をなす中空のケース10と、ケース10の内部に収納された担体20と、担体20の外周面に設けられた電極30・40と、電極30・40にそれぞれ電気的に接続された端子50・60とを具備する。   As shown in FIGS. 1 and 2, the exhaust emission control device 1 includes a hollow case 10 that forms an exterior, a carrier 20 housed inside the case 10, and electrodes 30 and 40 provided on the outer peripheral surface of the carrier 20. And terminals 50 and 60 electrically connected to the electrodes 30 and 40, respectively.

ケース10は、排気浄化装置1の外装をなすと共に、エンジンから排出される排気ガスが流動する排気管の一部をなす部材であり、略円筒状に形成されている。   The case 10 is a member that forms an exterior of the exhaust purification device 1 and that forms part of an exhaust pipe through which exhaust gas discharged from the engine flows, and is formed in a substantially cylindrical shape.

担体20は、SiC(炭化ケイ素)、又はコーディエライト等のセラミックスからなる円筒状の部材であり、白金、又はパラジウム等の触媒が担持されている。担体20は、複数の隔壁21・21・・・によってハニカム構造に形成されている。
担体20の外径は、ケース10の内径よりも若干小さく設定される。担体20は、ケース10の内部においてケース10の内周面との間に所定の隙間(ケース10の内周面と担体20の外周面に設けられた電極30・40とが接触しない程度の隙間)を有するように配置されると共に、エンジンから排出される排気ガスが担体20の内部を軸方向に通過するように配置されている。なお、ケース10の内周面と担体20の外周面との間には、アルミナ等からなる保持部材(不図示)が設けられており、担体20の位置ずれを防止すると共に、ケース10の内周面と担体20の外周面との間の隙間をシールしている。
The carrier 20 is a cylindrical member made of ceramics such as SiC (silicon carbide) or cordierite, and supports a catalyst such as platinum or palladium. The carrier 20 is formed in a honeycomb structure by a plurality of partition walls 21.
The outer diameter of the carrier 20 is set slightly smaller than the inner diameter of the case 10. The carrier 20 has a predetermined gap between the inner peripheral surface of the case 10 and the electrodes 30 and 40 provided on the outer peripheral surface of the carrier 20 within the case 10. ) And exhaust gas exhausted from the engine is disposed so as to pass through the inside of the carrier 20 in the axial direction. Note that a holding member (not shown) made of alumina or the like is provided between the inner peripheral surface of the case 10 and the outer peripheral surface of the carrier 20 to prevent the carrier 20 from being displaced, A gap between the peripheral surface and the outer peripheral surface of the carrier 20 is sealed.

隔壁21は、担体20の内部空間を複数に分割するものであり、複数の隔壁21・21・・・が互いに間隔を空けて配置されると共に、直交するように配置される。このように配置される隔壁21・21・・・によって担体20を格子状のハニカム構造に構成する。隔壁21・21・・・の厚さは、隔壁21ごとに異なり、電気抵抗を部分的に変化することで担体20が均等に加熱されるように設定されている。各隔壁21の厚さの設定については後述する。   The partition wall 21 divides the internal space of the carrier 20 into a plurality of parts, and the plurality of partition walls 21, 21,... The carrier 20 is configured in a lattice-like honeycomb structure by the partition walls 21, 21. The thickness of the partition walls 21, 21... Is different for each partition wall 21 and is set so that the carrier 20 is heated evenly by partially changing the electric resistance. The setting of the thickness of each partition wall 21 will be described later.

電極30・40は、溶射によって担体20の外周面に層状に形成された銅、又はアルミニウム等からなる一対の電極である。電極30・40は、それぞれ担体20の周方向における所定範囲に設けられ、互いに180度の位相差をもって対向した状態で担体20の軸方向における両端部に亘って担体20の軸芯と平行に延出されている。担体20の周方向における電極30・40の長さは、互いに同一に設定され、担体20の軸方向における電極30・40の長さも、互いに同一に設定されている。電極30・40は、担体20と電気的に接続されており、担体20に電流を流して加熱するための電極として機能する。一対の電極30・40間においては、複数の隔壁21・21・・・を通じて担体20を通電加熱するための電流が流れる。
なお、本実施形態においては、電極30をプラス側、電極40をマイナス側の電極として、電極30から電極40に向けて電流が流れるように構成している。
The electrodes 30 and 40 are a pair of electrodes made of copper, aluminum, or the like formed in layers on the outer peripheral surface of the carrier 20 by thermal spraying. The electrodes 30 and 40 are respectively provided in a predetermined range in the circumferential direction of the carrier 20 and extend in parallel with the axis of the carrier 20 over both ends in the axial direction of the carrier 20 in a state of facing each other with a phase difference of 180 degrees. Has been issued. The lengths of the electrodes 30 and 40 in the circumferential direction of the carrier 20 are set to be the same, and the lengths of the electrodes 30 and 40 in the axial direction of the carrier 20 are also set to be the same. The electrodes 30 and 40 are electrically connected to the carrier 20 and function as electrodes for supplying current to the carrier 20 for heating. Between the pair of electrodes 30 and 40, a current for energizing and heating the carrier 20 flows through the plurality of partition walls 21 and 21.
In the present embodiment, the electrode 30 is a plus side electrode and the electrode 40 is a minus side electrode so that a current flows from the electrode 30 toward the electrode 40.

端子50・60は、電極30・40と、ケース10の外部に設けられたバッテリ等の電源とを電気的に接続するための棒状部材である。端子50・60は、それぞれ担体20における電極30・40が設けられた位置に合わせて配置され、本実施形態においては、互いに180度の位相差をもって対向するように電極30・40の中央部に配置されている。端子50・60は、それらの一端部がケース10の外部に突出するようにケース10に貫通した状態で固定されている。
端子50・60は、ケース10の外部において、ワイヤハーネス等の接続部材を介して前記電源と電気的に接続され、ケース10の内部において、それぞれ電極30・40と電気的に接続されている。つまり、端子50・60の一端部と前記接続部材とが接続され、端子50・60の他端部と電極30・40とがそれぞれ接続されている。こうして、端子50・60によって前記電源と電極30・40とが電気的に接続することを可能としている。
なお、本実施形態においては、端子50をプラス側、端子60をマイナス側の端子として、電流が端子50、電極30、担体20、電極40、端子60の順に流れるように構成している(図1参照)。
The terminals 50 and 60 are rod-shaped members for electrically connecting the electrodes 30 and 40 and a power source such as a battery provided outside the case 10. The terminals 50 and 60 are respectively arranged in accordance with the positions where the electrodes 30 and 40 are provided on the carrier 20, and in the present embodiment, the terminals 50 and 60 are arranged at the center of the electrodes 30 and 40 so as to face each other with a phase difference of 180 degrees. Has been placed. The terminals 50 and 60 are fixed in a state of penetrating the case 10 so that one end portions thereof protrude to the outside of the case 10.
The terminals 50 and 60 are electrically connected to the power source via a connecting member such as a wire harness outside the case 10, and are electrically connected to the electrodes 30 and 40, respectively, inside the case 10. That is, one end of the terminals 50 and 60 and the connecting member are connected, and the other end of the terminals 50 and 60 and the electrodes 30 and 40 are connected, respectively. In this way, the power supply and the electrodes 30 and 40 can be electrically connected by the terminals 50 and 60.
In the present embodiment, the terminal 50 is a plus side terminal and the terminal 60 is a minus side terminal, and the current flows in the order of the terminal 50, the electrode 30, the carrier 20, the electrode 40, and the terminal 60 (see FIG. 1).

以上のように、排気浄化装置1では、前記電源を用いて電極30から電極40に向けて通電することにより担体20を加熱することで、担体20に担持された触媒を活性温度まで昇温して、エンジンから排出されて担体20を通過する排気ガス中のHC(未燃炭化水素)、CO(一酸化炭素)、及びNOx(窒素酸化物)等の有害物質を触媒反応により浄化する。   As described above, in the exhaust gas purification apparatus 1, the catalyst carried on the carrier 20 is heated to the activation temperature by heating the carrier 20 by energizing the electrode 30 toward the electrode 40 using the power source. Thus, harmful substances such as HC (unburned hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) in the exhaust gas discharged from the engine and passing through the carrier 20 are purified by a catalytic reaction.

以下では、図3〜図5を参照して、担体20における各隔壁21の厚さの設定について詳細に説明する。
なお、以下においては、図3における上下方向を担体20の上下方向と規定して説明する。また、隔壁21・21・・・は、担体20の周方向における電極30・40の中央位置を結んだ線(図3において上下方向に結ばれる線)に対して平行、又は直交しているものとし、当該上下方向に沿って配置される隔壁21・21・・・の左右方向の長さを各隔壁21の厚さとして説明する。
つまり、ここでは、電極30・40の配置方向と直交する方向(左右方向)については電流が流れにくくなるため、上下方向に沿って配置される隔壁21・21・・・の厚みを設定することによって、担体20が均等に加熱されるように設定している。
Below, with reference to FIGS. 3-5, the setting of the thickness of each partition 21 in the support | carrier 20 is demonstrated in detail.
In the following description, the vertical direction in FIG. 3 is defined as the vertical direction of the carrier 20. Further, the partition walls 21, 21... Are parallel or orthogonal to a line connecting the center positions of the electrodes 30 40 in the circumferential direction of the carrier 20 (line connected in the vertical direction in FIG. 3). The length in the left-right direction of the partition walls 21, 21... Arranged along the vertical direction will be described as the thickness of each partition wall 21.
That is, here, since the current hardly flows in the direction (left-right direction) orthogonal to the arrangement direction of the electrodes 30, 40, the thickness of the partition walls 21, 21,. Thus, the carrier 20 is set to be heated evenly.

上記のように、各隔壁21の厚さを設定する際、各隔壁21を通り、かつ、端子50、電極30、電極40、端子60の順に流れる端子50・60間の電流経路における電気抵抗を下記の数1から算出し、すべての電流経路における電気抵抗が等しくなるようにする。つまり、電流経路長(L)が異なる各隔壁21の厚さを適宜変更することで、電流経路断面積(A)を増減して電気抵抗を等しくする。   As described above, when setting the thickness of each partition wall 21, the electrical resistance in the current path between the terminals 50, 60 passing through each partition wall 21 and flowing in the order of the terminal 50, the electrode 30, the electrode 40, and the terminal 60 is set. The electric resistance in all the current paths is made equal by calculating from the following equation (1). That is, by appropriately changing the thickness of each partition wall 21 having a different current path length (L), the current path cross-sectional area (A) is increased or decreased to equalize the electric resistance.

Figure 2011099405
Figure 2011099405

ここで、図3に示すように、任意の一つの上下方向の隔壁21を隔壁21a、及びその厚さをtとし、隔壁21aに隣接して隔壁21aよりも担体20の径方向外側に位置する隔壁21を隔壁21b、及びその厚さをtとする。更に、電流経路の始点を担体20の周方向において端子50が位置する点Aとし、隔壁21aの両端部を点B、及び点Cとし、電流経路の終点を担体20の周方向において端子60が位置する点Dとする。
この時、隔壁21aを通る電流経路は、点A、点B、点C、点Dを順に辿る経路となる。
なお、隔壁21a・21bは、担体20の周方向における電極30・40が設けられた範囲に位置するものとする。また、左右方向の隔壁21は考慮しない。
Here, as shown in FIG. 3, any one of the vertical partition wall 21 partitions 21a, and then its thickness and t 1, positioned at the radially outer side of the carrier 20 than the partition wall 21a adjacent to the partition wall 21a the partition wall 21 partition wall 21b which, and the thickness and t 2. Furthermore, the starting point of the current path is a point A where the terminal 50 is located in the circumferential direction of the carrier 20, both ends of the partition wall 21 a are the points B and C, and the end point of the current path is the terminal 60 in the circumferential direction of the carrier 20. Let it be point D.
At this time, the current path passing through the partition wall 21a is a path that follows point A, point B, point C, and point D in order.
The partition walls 21a and 21b are located in a range where the electrodes 30 and 40 in the circumferential direction of the carrier 20 are provided. Further, the partition wall 21 in the left-right direction is not considered.

上記の隔壁21aを通る電流経路は、電極30上の電流経路と、隔壁21a上の電流経路と、電極40上の電流経路とに分けることができる。担体20の電気抵抗は、電極30・40の電気抵抗よりも大きく、担体20の外周面において電極30・40が設けられている範囲では、電流が担体20よりも電極30・40を優先して流れるためである。
この時、電極30上の電流経路は、担体20の周方向における円弧ABとなり、隔壁21a上の電流経路は、直線BCとなり、電極40上の電流経路は、担体20の周方向における円弧CDとなる。
ここで、円弧ABの長さと円弧CDの長さとを加算したもの、つまり電極30・40の電流経路長をLとする。更に、直線BCの長さ、つまり隔壁21aの電流経路長をLとする。
The current path passing through the partition wall 21 a can be divided into a current path on the electrode 30, a current path on the partition wall 21 a, and a current path on the electrode 40. The electric resistance of the carrier 20 is larger than the electric resistance of the electrodes 30 and 40. In the range where the electrodes 30 and 40 are provided on the outer peripheral surface of the carrier 20, the electric current gives priority to the electrodes 30 and 40 over the carrier 20. This is because it flows.
At this time, the current path on the electrode 30 is an arc AB in the circumferential direction of the carrier 20, the current path on the partition wall 21 a is a straight line BC, and the current path on the electrode 40 is an arc CD in the circumferential direction of the carrier 20. Become.
Here, the result of the addition of the lengths of the arc CD arc AB, that is, the current path length of the electrodes 30, 40 and L e. Further, the length of the straight line BC, that is, the current path length of the partition wall 21a and L c.

担体20の軸方向から見た中心を二次元座標(xy座標)の原点Oとして、更に説明する。
ここで、図4に示すように、担体20の直径をdとすると、担体20の外周の座標(x,y)が下記の数2で表される。
The center of the carrier 20 viewed from the axial direction will be further described as an origin O of two-dimensional coordinates (xy coordinates).
Here, as shown in FIG. 4, when the diameter of the carrier 20 is d, the coordinates (x, y) of the outer periphery of the carrier 20 are expressed by the following formula 2.

Figure 2011099405
Figure 2011099405

まず、隔壁21aの電流経路長Lを求める。
隔壁21aの厚さ方向の中心部分におけるx座標をxとし、このx座標に対応する担体20の外周のy座標をyとすると、上記の数2より下記の数3のように表される。
First, the current path length L c of the partition wall 21a.
The x-coordinate in the thickness direction central portion of the partition wall 21a and x 1, when the y-coordinate of the outer circumference of the carrier 20 corresponding to the x-coordinate and y 1, is expressed as the number 3 than the number 2 below the The

Figure 2011099405
Figure 2011099405

この時、yは、隔壁21aの電流経路長(図4における隔壁21aの上下方向の長さ)Lの半分である。そのため、隔壁21aの電流経路長Lを下記の数4のように表すことができる。 In this case, y 1 is a half of (vertical length of the partition wall 21a in FIG. 4) L c current path length of the partition wall 21a. Therefore, it is possible to represent the current path length L c of the partition wall 21a as in equation 4 below.

Figure 2011099405
Figure 2011099405

次に、電極30・40の電流経路長Lを求める。
担体20における端子50の中心部から隔壁21aの厚さ方向の中心部分までの円弧(図3における円弧AB)に対する中心角の角度をθとすると、下記の数5が成立する。
Next, determine the current path length L e of the electrodes 30, 40.
When angle theta 1 of the center angle with respect to the arc from the center of the terminal 50 in the carrier 20 to the center portion in the thickness direction of the partition wall 21a (arc in Figure 3 AB), the number 5 below is established.

Figure 2011099405
Figure 2011099405

上記の数5を下記の数6に変換する。

Figure 2011099405
The above equation 5 is converted into the following equation 6.
Figure 2011099405

隔壁21aは、y軸と平行に配置されているため、担体20における隔壁21aの厚さ方向の中心部分から端子60の中心部までの円弧(図3における円弧CD)に対する中心角の角度もθであり、担体20における端子50の中心部から隔壁21aの厚さ方向の中心部分までの円弧(図3における円弧AB)の長さと、担体20における隔壁21aの厚さ方向の中心部分から端子60の中心部までの円弧(図3における円弧CD)の長さとが同一である。そのため、電極30・40の電流経路長Lを上記の数3、及び数6より下記の数7のように表すことができる。 Since the partition wall 21a is arranged in parallel with the y-axis, the angle of the central angle with respect to an arc (arc CD in FIG. 3) from the central portion of the carrier 20 in the thickness direction of the partition wall 21a to the center portion of the terminal 60 is also θ. 1 and the length of the arc (arc AB in FIG. 3) from the center portion of the terminal 50 in the carrier 20 to the center portion in the thickness direction of the partition wall 21a, and the terminal from the center portion in the thickness direction of the partition wall 21a in the carrier 20 The length of the arc to the center of 60 (arc CD in FIG. 3) is the same. Therefore, it is possible to represent the current path length L e of the electrodes 30, 40 as the number 7 below than the number 3, and 6 above.

Figure 2011099405
Figure 2011099405

以上のように、隔壁21aの電流経路長L、及び電極30・40の電流経路長Lが求められた上で、担体20の隔壁21aにおける電気抵抗をRとし、担体20の電気抵抗率をρとし、担体20の隔壁21aにおける電流経路の断面積をAとすると、上記の数1、及び数4より下記の数8が成立する。
なお、本実施形態においては、隔壁21aの電流経路断面積Aは、隔壁21aの厚さtと、担体20の軸方向の長さであるz(図2参照)とを乗算したものである。
As described above, the current path length L c of the partition wall 21a, and on the current path length L e of the electrodes 30, 40 is determined, the electrical resistance in the partition wall 21a of the carrier 20 and R c, the electrical resistance of the carrier 20 rates and [rho c, and the cross-sectional area of the current path in the partition wall 21a of the carrier 20 and a c, the number 8 the following from the number 1, and number 4 above is satisfied.
In the present embodiment, the current path cross-sectional area Ac of the partition wall 21a is obtained by multiplying the thickness t 1 of the partition wall 21a by z (see FIG. 2) which is the axial length of the carrier 20. is there.

Figure 2011099405
Figure 2011099405

また、電極30・40の電気抵抗をRとし、電極30・40の電気抵抗率をρとし、電極30・40における電流経路の断面積をAとすると、上記の数1、及び数7より下記の数9が成立する。 Further, the electrical resistance of the electrode 30 · 40 and R e, the electrical resistivity of the electrode 30, 40 and [rho e, and the cross-sectional area of the current path in the electrode 30 · 40 and A e, the number of the 1, and the number From 7, the following formula 9 is established.

Figure 2011099405
Figure 2011099405

隔壁21aを通る電流経路(図3における点A、点B、点C、点Dを順に辿る経路)の電気抵抗をRとすると、RはRとRとの合成抵抗とみなすことができる。そのため、Rを上記の数8、及び数9より下記の数10のように表すことができる。
なお、電極30・40の電気抵抗率ρは、担体20の電気抵抗率ρと比較して極めて小さく、それに伴って電極30・40の電気抵抗Rも担体20の隔壁21aにおける電気抵抗Rと比較して極めて小さくなるため、電極30・40の電気抵抗Rを無視してもよい(R=R)。
これにより、上下方向の隔壁21の厚さの設定をより簡略にすることができる。
Current path through the partition wall 21a when the electrical resistance of the (points in FIG. 3 A, point B, point C, the route to follow the point D in this order) and R 1, R 1 is be regarded as a combined resistance of the R c and R e Can do. Therefore, R 1 can be expressed as in the following Expression 10 from Expression 8 and Expression 9 above.
Note that the electrical resistivity ρ e of the electrodes 30 and 40 is extremely small as compared with the electrical resistivity ρ c of the carrier 20, and accordingly, the electrical resistance R e of the electrodes 30 and 40 is also the electrical resistance of the partition wall 21 a of the carrier 20. because in comparison with R c becomes extremely small, it may be ignored electrical resistance R e of the electrode 30 · 40 (R 1 = R c).
Thereby, the setting of the thickness of the partition 21 in the vertical direction can be further simplified.

Figure 2011099405
Figure 2011099405

隔壁21aを通る電流経路の電気抵抗であるRを求めるのと同様に、隔壁21bの厚さ方向の中心部分におけるx座標をxとし、このx座標に対応する担体20の外周のy座標をyとし、更に担体20における端子50の中心部から隔壁21bの厚さ方向の中心部分までの円弧に対する中心角の角度をθとして、隔壁21bを通る電流経路の電気抵抗を求める。この時、隔壁21bを通る電流経路の電気抵抗をRとする。
そして、RとRとが等しくなるように、tとtとを設定する。
なお、前述のように、隔壁21a・21bは、担体20の周方向における電極30・40が設けられた範囲に位置しており、当該範囲における上下方向の隔壁21の厚さは、担体20の径方向外側に行くに従って小さく設定される。つまり、図3及び図4に示すように、隔壁21a、隔壁21bの順にその厚さが小さく設定される(t>t)。
Similarly to obtaining R 1 which is the electric resistance of the current path passing through the partition wall 21a, the x coordinate at the central portion in the thickness direction of the partition wall 21b is x 2 and the y coordinate of the outer periphery of the carrier 20 corresponding to this x coordinate. Y 2, and the angle of the central angle with respect to the arc from the center of the terminal 50 to the center of the partition 21 b in the thickness direction is θ 2 , and the electrical resistance of the current path passing through the partition 21 b is obtained. At this time, the electrical resistance of the current path through the partition wall 21b and R 2.
Then, t 1 and t 2 are set so that R 1 and R 2 are equal.
As described above, the partition walls 21 a and 21 b are located in a range where the electrodes 30 and 40 are provided in the circumferential direction of the carrier 20, and the thickness of the partition wall 21 in the vertical direction in the range is the same as that of the carrier 20. It is set smaller as it goes radially outward. That is, as shown in FIGS. 3 and 4, the thicknesses of the partition walls 21a and 21b are set to be smaller in order (t 1 > t 2 ).

続いて、担体20の周方向における電極30・40が設けられた範囲に位置しない上下方向の隔壁21について説明する。
ここで、図5に示すように、任意の一つの上下方向の隔壁21を隔壁21c、及びその厚さをtとし、隔壁21cに隣接して隔壁21cよりも担体20の径方向内側に位置する隔壁21を隔壁21d、及びその厚さをtとする。更に、電流経路の始点を担体20の周方向において端子50が位置する点Aとし、担体20の周方向における電極30の一端部(図5における右端部)と担体20の外周との接触位置を点Eとし、隔壁21cの両端部を点F、及び点Gとし、担体20の周方向における電極40の一端部(図5における右端部)と担体20の外周との接触位置を点Hとし、電流経路の終点を担体20の周方向において端子60が位置する点Dとする。
この時、隔壁21cを通る電流経路は、点A、点E、点F、点G、点H、点Dを順に辿る経路となる。
なお、隔壁21c・21dは、担体20の周方向における電極30・40が設けられていない範囲に位置するものとする。また、左右方向の隔壁21は考慮しない。
Next, the vertical partition 21 that is not located in the range where the electrodes 30 and 40 in the circumferential direction of the carrier 20 are provided will be described.
Here, as shown in FIG. 5, any one of the vertical partition wall 21 partitions 21c, and the thickness and t 3, located radially inward of the carrier 20 than the partition wall 21c adjacent to the partition wall 21c the partition wall 21 partition wall 21d that, and the thickness and t 4. Further, the starting point of the current path is a point A where the terminal 50 is located in the circumferential direction of the carrier 20, and the contact position between one end portion (the right end portion in FIG. 5) of the electrode 30 in the circumferential direction of the carrier 20 and the outer circumference of the carrier 20 is defined. Point E, both end portions of the partition wall 21c are point F and point G, and the contact position between one end portion of the electrode 40 in the circumferential direction of the carrier 20 (right end portion in FIG. 5) and the outer periphery of the carrier 20 is point H. The end point of the current path is a point D where the terminal 60 is located in the circumferential direction of the carrier 20.
At this time, the current path passing through the partition wall 21c is a path that sequentially follows point A, point E, point F, point G, point H, and point D.
The partition walls 21c and 21d are located in a range where the electrodes 30 and 40 in the circumferential direction of the carrier 20 are not provided. Further, the partition wall 21 in the left-right direction is not considered.

上記の隔壁21cを通る電流経路は、電極30上の電流経路と、担体20上の電流経路と、電極40上の電流経路とに分けることができる。担体20の電気抵抗は、電極30・40の電気抵抗よりも大きく、担体20の外周面において電極30・40が設けられている範囲では、電流が担体20よりも電極30・40を優先して流れるためである。
この時、電極30上の電流経路は、担体20の周方向における円弧AEとなり、担体20上の電流経路は、円弧EF、直線FG、及び円弧GHとなり、電極40上の電流経路は、担体20の周方向における円弧HDとなる。つまり、前記の隔壁21aを通る電流経路(図3における点A、点B、点C、点Dを順に辿る経路)と比較して、隔壁21cを通る電流経路(図5における点A、点E、点F、点G、点H、点Dを順に辿る経路)は、電極30・40が設けられていない範囲における担体20の外周を考慮する必要がある。
隔壁21cの厚さt、及び隔壁21dの厚さtの設定に関しては、隔壁21aの厚さt、及び隔壁21bの厚さtの設定と略同様であるため、詳細は省略する。
なお、前述のように、隔壁21c・21dは、担体20の周方向における電極30・40が設けられていない範囲に位置しており、当該範囲における上下方向の隔壁21の厚さは、担体20の径方向外側に行くに従って大きく設定される。つまり、図5に示すように、隔壁21d、隔壁21cの順にその厚さが大きく設定される(t>t)。
The current path passing through the partition wall 21c can be divided into a current path on the electrode 30, a current path on the carrier 20, and a current path on the electrode 40. The electric resistance of the carrier 20 is larger than the electric resistance of the electrodes 30 and 40. In the range where the electrodes 30 and 40 are provided on the outer peripheral surface of the carrier 20, the electric current gives priority to the electrodes 30 and 40 over the carrier 20. This is because it flows.
At this time, the current path on the electrode 30 is an arc AE in the circumferential direction of the carrier 20, the current path on the carrier 20 is an arc EF, a straight line FG, and an arc GH, and the current path on the electrode 40 is the carrier 20. The arc HD in the circumferential direction. That is, the current path (point A, point E in FIG. 5) passing through the partition wall 21c is compared with the current path passing through the partition wall 21a (path following points A, B, C, and D in FIG. 3 in order). , Points F, G, H, and D) in order, it is necessary to consider the outer periphery of the carrier 20 in a range where the electrodes 30 and 40 are not provided.
Since the setting of the thickness t 3 of the partition wall 21c and the thickness t 4 of the partition wall 21d is substantially the same as the setting of the thickness t 1 of the partition wall 21a and the thickness t 2 of the partition wall 21b, details are omitted. .
As described above, the partition walls 21c and 21d are located in a range where the electrodes 30 and 40 are not provided in the circumferential direction of the carrier 20, and the thickness of the partition wall 21 in the vertical direction in the range is determined by the carrier 20 It is set larger as it goes outward in the radial direction. That is, as shown in FIG. 5, the thicknesses of the partition walls 21d and the partition walls 21c are set to increase in order (t 3 > t 4 ).

以上のように、各隔壁21を通過し、かつ、端子50、電極30、電極40、端子60の順に流れる端子50・60間の電流経路における電気抵抗を上記の数1から算出し、すべての電流経路における電気抵抗が等しくなるように、担体20におけるすべての上下方向の隔壁21・21・・・の厚さを設定する。
こうして、上下方向の隔壁21・21・・・は、担体20の周方向における電極30・40が設けられた範囲においては、担体20の径方向外側に行くに従って厚さが小さくなり、担体20の周方向における電極30・40が設けられていない範囲においては、担体20の径方向外側に行くに従って厚さが大きくなる。
これにより、電流をすべての上下方向の隔壁21・21・・・において均等に流すことができ、担体20の周方向における電極30・40の両端部近傍の電流密度が中央付近の電流密度よりも高くなることなく、担体20における電流密度のばらつきを防止することができる。したがって、担体20を均等に加熱して、エンジンのコールドスタート時においても担体に担持された触媒を活性温度まで昇温できる。
As described above, the electric resistance in the current path between the terminals 50 and 60 that passes through each partition wall 21 and flows in the order of the terminal 50, the electrode 30, the electrode 40, and the terminal 60 is calculated from the above formula 1, and all The thicknesses of all the partitions 21 in the vertical direction in the carrier 20 are set so that the electric resistances in the current paths are equal.
In this way, the vertical partition walls 21, 21,... In the range where the electrodes 30, 40 in the circumferential direction of the carrier 20 are provided, the thickness decreases toward the outside in the radial direction of the carrier 20. In a range where the electrodes 30 and 40 in the circumferential direction are not provided, the thickness increases toward the outer side in the radial direction of the carrier 20.
This allows current to flow evenly in all the vertical partition walls 21, 21..., And the current density near the ends of the electrodes 30 40 in the circumferential direction of the carrier 20 is higher than the current density near the center. Variations in current density in the carrier 20 can be prevented without increasing. Therefore, the carrier 20 can be heated uniformly, and the temperature of the catalyst supported on the carrier can be raised to the activation temperature even when the engine is cold started.

なお、図6に示すように、端子50・60が担体20の周方向における電極30・40の中央部に配置されていない場合においても、端子50・60が担体20の周方向における電極30・40の中央部に配置された場合と同様に、上下方向の隔壁21の厚さを設定することが可能である。また、前述のように、担体20上の電流経路の電気抵抗と、電極30・40上の電流経路の電気抵抗との合成抵抗を算出する際に、電極30・40に上の電流経路の電気抵抗を無視することで、上下方向の隔壁21の厚さの設定をより簡略にすることができる。   As shown in FIG. 6, even when the terminals 50 and 60 are not arranged at the center of the electrodes 30 and 40 in the circumferential direction of the carrier 20, the terminals 50 and 60 are connected to the electrodes 30 and 60 in the circumferential direction of the carrier 20. As in the case of being arranged in the central portion of 40, it is possible to set the thickness of the partition wall 21 in the vertical direction. Further, as described above, when calculating the combined resistance of the electrical resistance of the current path on the carrier 20 and the electrical resistance of the current path on the electrodes 30 and 40, the electrical current of the current path on the electrodes 30 and 40 is calculated. By ignoring the resistance, the setting of the thickness of the partition wall 21 in the vertical direction can be further simplified.

また、図7に示すように、隔壁21・21・・・が担体20の周方向における電極30・40の中央位置を結んだ線(図7において上下方向に結ばれる線)に対して平行ではない、又は直交していない場合、つまり担体20が電極30・40に対して周方向に傾いている場合においても、各隔壁21の厚さを設定することが可能である。
詳細には、任意の位置(例えば、図7に示す直線α、及び直線β)に上下方向の隔壁21があるものと仮定して、当該隔壁21の厚さを担体20が電極30・40に対して周方向に傾いていない場合(隔壁21・21・・・が担体20の周方向における電極30・40の中央位置を結んだ線に対して平行、又は直交している場合)と同様に設定し、当該設定された厚さを仮定された隔壁21の近傍に現実に存在する隔壁21(図7に示す直線α、及び直線βに交差する隔壁21であって、太線で示す部分)の厚さとする。
As shown in FIG. 7, the partition walls 21, 21... Are not parallel to the line connecting the center positions of the electrodes 30, 40 in the circumferential direction of the carrier 20 (line connected in the vertical direction in FIG. 7). The thickness of each partition wall 21 can be set even when it is not or not orthogonal, that is, when the carrier 20 is inclined in the circumferential direction with respect to the electrodes 30 and 40.
More specifically, assuming that there is a vertical partition wall 21 at an arbitrary position (for example, a straight line α and a straight line β shown in FIG. 7), the thickness of the partition wall 21 is set to the electrodes 30 and 40. As opposed to the case where it is not inclined in the circumferential direction (when the partition walls 21, 21... Are parallel or orthogonal to the line connecting the center positions of the electrodes 30 and 40 in the circumferential direction of the carrier 20). The partition 21 that actually exists in the vicinity of the assumed partition 21 (the partition 21 intersecting the straight line α and the straight line β shown in FIG. 7 and indicated by a thick line) is set. Thickness.

1 排気浄化装置
10 ケース
20 担体
21 隔壁
21a、21b、21c、21d 隔壁
30、40 電極
50、60 端子
DESCRIPTION OF SYMBOLS 1 Exhaust purification device 10 Case 20 Carrier 21 Partition 21a, 21b, 21c, 21d Partition 30, 40 Electrode 50, 60 Terminal

Claims (1)

外装をなす中空のケースと、
前記ケースの内部に収納され、触媒が担持される担体と、
前記担体の外周面に設けられる一対の電極と、
前記一対の電極に電気的に接続され、前記ケースの外部に突出する一対の端子と、を具備し、
前記一対の電極を通じて前記担体を通電加熱して前記触媒を活性温度まで昇温する排気浄化装置であって、
前記担体は、複数の隔壁によってハニカム構造に形成され、
前記複数の隔壁を通じて、前記担体を通電加熱するための電流が前記一対の電極間を流れ、
下記の数1から算出される、前記端子間のすべての電流経路の電気抵抗が等しくなるように前記担体の隔壁の厚さが設定される排気浄化装置。
Figure 2011099405
A hollow case that forms the exterior;
A carrier housed in the case and carrying a catalyst;
A pair of electrodes provided on the outer peripheral surface of the carrier;
A pair of terminals electrically connected to the pair of electrodes and projecting to the outside of the case;
An exhaust gas purification apparatus that heats the carrier through the pair of electrodes and heats the catalyst to an activation temperature,
The carrier is formed into a honeycomb structure by a plurality of partition walls,
Through the plurality of partition walls, a current for energizing and heating the carrier flows between the pair of electrodes,
An exhaust emission control device in which the thickness of the partition wall of the carrier is set so that the electric resistances of all the current paths between the terminals calculated from the following formula 1 are equal.
Figure 2011099405
JP2009255521A 2009-11-06 2009-11-06 Exhaust emission control device Pending JP2011099405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009255521A JP2011099405A (en) 2009-11-06 2009-11-06 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009255521A JP2011099405A (en) 2009-11-06 2009-11-06 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2011099405A true JP2011099405A (en) 2011-05-19

Family

ID=44190776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009255521A Pending JP2011099405A (en) 2009-11-06 2009-11-06 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2011099405A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202396A (en) * 2011-03-28 2012-10-22 Toyota Motor Corp Catalyst converter device
JP2013032774A (en) * 2011-07-05 2013-02-14 Toyota Motor Corp Electrically heated catalyst
EP2717649A1 (en) * 2012-03-22 2014-04-09 NGK Insulators, Ltd. Heater
EP2784046A2 (en) 2013-03-29 2014-10-01 NGK Insulators, Ltd. Honeycomb structure and manufacturing method of the same
JP5663003B2 (en) * 2010-03-31 2015-02-04 日本碍子株式会社 Honeycomb structure
EP2921466A1 (en) 2014-03-19 2015-09-23 NGK Insulators, Ltd. Composite body, honeycomb structural body, and method for manufacturing composite body
EP3002270A1 (en) 2014-10-03 2016-04-06 NGK Insulators, Ltd. Joined body and method for manufacturing the same
EP3070068A1 (en) 2015-03-20 2016-09-21 NGK Insulators, Ltd. Composite body, honeycomb structure, and method for producing composite body
CN110314710A (en) * 2018-03-28 2019-10-11 日本碍子株式会社 Honeycomb structure
CN110314705A (en) * 2018-03-28 2019-10-11 日本碍子株式会社 Honeycomb structure
JP7509636B2 (en) 2020-09-24 2024-07-02 イビデン株式会社 Honeycomb substrate and honeycomb structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115794A (en) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd Waste gas purifying apparatus
JPH05115796A (en) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd Waste gas purifying apparatus
JPH09150062A (en) * 1988-04-25 1997-06-10 Emitec G Fuer Emissions Technol Mbh Conductive honeycomb body and actuation method therefor
JPH10325314A (en) * 1998-05-25 1998-12-08 Ngk Insulators Ltd Heater of resistance adjusting type and catalytic converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150062A (en) * 1988-04-25 1997-06-10 Emitec G Fuer Emissions Technol Mbh Conductive honeycomb body and actuation method therefor
JPH05115794A (en) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd Waste gas purifying apparatus
JPH05115796A (en) * 1991-09-02 1993-05-14 Usui Internatl Ind Co Ltd Waste gas purifying apparatus
JPH10325314A (en) * 1998-05-25 1998-12-08 Ngk Insulators Ltd Heater of resistance adjusting type and catalytic converter

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663003B2 (en) * 2010-03-31 2015-02-04 日本碍子株式会社 Honeycomb structure
JP2012202396A (en) * 2011-03-28 2012-10-22 Toyota Motor Corp Catalyst converter device
JP2013032774A (en) * 2011-07-05 2013-02-14 Toyota Motor Corp Electrically heated catalyst
US9383119B2 (en) 2012-03-22 2016-07-05 Ngk Insulators, Ltd. Heater
EP2717649A1 (en) * 2012-03-22 2014-04-09 NGK Insulators, Ltd. Heater
EP2717649A4 (en) * 2012-03-22 2015-04-22 Ngk Insulators Ltd Heater
EP2784046A2 (en) 2013-03-29 2014-10-01 NGK Insulators, Ltd. Honeycomb structure and manufacturing method of the same
US9279356B2 (en) 2013-03-29 2016-03-08 Ngk Insulators, Ltd. Honeycomb structure and manufacturing method of the same
EP2921466A1 (en) 2014-03-19 2015-09-23 NGK Insulators, Ltd. Composite body, honeycomb structural body, and method for manufacturing composite body
US10115494B2 (en) 2014-03-19 2018-10-30 Ngk Insulators, Ltd. Composite body, honeycomb structural body, and method for manufacturing composite body
US9908307B2 (en) 2014-10-03 2018-03-06 Ngk Insulators, Ltd. Honeycomb structural body and method for manufacturing the same
EP3002270A1 (en) 2014-10-03 2016-04-06 NGK Insulators, Ltd. Joined body and method for manufacturing the same
EP3002271A1 (en) 2014-10-03 2016-04-06 NGK Insulators, Ltd. Honeycomb structural body and method for manufacturing the same
US9987825B2 (en) 2014-10-03 2018-06-05 Ngk Insulators, Ltd. Joined body and method for manufacturing the same
US10538058B2 (en) 2015-03-20 2020-01-21 Ngk Insulators, Ltd. Composite body, honeycomb structure, and method for producing composite body
EP3070068A1 (en) 2015-03-20 2016-09-21 NGK Insulators, Ltd. Composite body, honeycomb structure, and method for producing composite body
CN110314710A (en) * 2018-03-28 2019-10-11 日本碍子株式会社 Honeycomb structure
CN110314705A (en) * 2018-03-28 2019-10-11 日本碍子株式会社 Honeycomb structure
US11396009B2 (en) 2018-03-28 2022-07-26 Ngk Insulators, Ltd. Honeycomb structure
US11420195B2 (en) 2018-03-28 2022-08-23 Ngk Insulators, Ltd. Honeycomb structure
CN110314705B (en) * 2018-03-28 2023-01-31 日本碍子株式会社 Honeycomb structure
CN110314710B (en) * 2018-03-28 2024-02-13 日本碍子株式会社 honeycomb structure
DE102019203467B4 (en) 2018-03-28 2024-05-29 Ngk Insulators, Ltd. HONEYCOMB STRUCTURE
DE102019203879B4 (en) 2018-03-28 2024-06-27 Ngk Insulators, Ltd. HONEYCOMB STRUCTURE
JP7509636B2 (en) 2020-09-24 2024-07-02 イビデン株式会社 Honeycomb substrate and honeycomb structure

Similar Documents

Publication Publication Date Title
JP2011099405A (en) Exhaust emission control device
US9732651B2 (en) Electrically heated catalyst device
EP3078410B1 (en) Method for producing an electrically heated catalyst device
JP6568378B2 (en) Electric heating type catalyst
JP2015132256A (en) Internal combustion engine catalyst device
JP5783037B2 (en) Electric heating catalyst device and method for manufacturing the same
KR20090118824A (en) Plasma processing device
JP2019173600A (en) Exhaust emission control device for internal combustion engine
JP6387976B2 (en) Electric heating type catalyst
JP5293833B2 (en) Exhaust purification device
JP6036716B2 (en) Catalytic converter device
JP2015029928A (en) Catalytic converter
JP2011106308A (en) Exhaust gas purification device
JP2013244438A (en) Catalytic converter
JP5757274B2 (en) Electric heating type catalytic converter
JP5664517B2 (en) Electric heating type catalytic device
US20160032807A1 (en) Electrically heated catalyst device
US20160290209A1 (en) Catalytic converter
JP2012172580A (en) Exhaust emission control device
JP2008202511A (en) Exhaust emission control device for diesel engine
JP2011247162A (en) Electrically heated catalyst apparatus
JP2015148204A (en) Exhaust emission control catalyst converter device
JP5626375B2 (en) Electric heating catalyst
JP2002235530A (en) Catalyst heating up device of internal combustion engine
JP2015098796A (en) Exhaust gas emission control system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015