JP2011063693A - Method for controlling molecular weight of polyoxamide resin and polyoxamide resin - Google Patents

Method for controlling molecular weight of polyoxamide resin and polyoxamide resin Download PDF

Info

Publication number
JP2011063693A
JP2011063693A JP2009214594A JP2009214594A JP2011063693A JP 2011063693 A JP2011063693 A JP 2011063693A JP 2009214594 A JP2009214594 A JP 2009214594A JP 2009214594 A JP2009214594 A JP 2009214594A JP 2011063693 A JP2011063693 A JP 2011063693A
Authority
JP
Japan
Prior art keywords
pressure
molecular weight
polyoxamide resin
polyoxamide
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009214594A
Other languages
Japanese (ja)
Other versions
JP5310429B2 (en
Inventor
Masahito Shimokawa
雅人 下川
Yoji Okushita
洋司 奥下
Noriyuki Isobe
典之 磯部
Shuichi Maeda
修一 前田
Koichiro Kurachi
幸一郎 倉知
Tomoyuki Nakagawa
知之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2009214594A priority Critical patent/JP5310429B2/en
Publication of JP2011063693A publication Critical patent/JP2011063693A/en
Application granted granted Critical
Publication of JP5310429B2 publication Critical patent/JP5310429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling the molecular weight of a polyoxamide resin, which conventional production methods of the polyoxamide resin failed to achieve. <P>SOLUTION: In the production method of the polyoxamide resin including a step in which a diester of oxalic acid is mixed with a diamine in a pressure-resistant container and pressure polymerization is performed in the presence of an alcohol produced by a condensation reaction, the method for controlling the molecular weight of the polyoxamide resin controls the pressure during the pressure polymerization to predetermined pressure within the range of 0.1(±0.07) to 3(±0.07) MPa according to the target molecular weight. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリオキサミド樹脂の分子量制御方法、及びポリオキサミド樹脂に関するものである。   The present invention relates to a method for controlling the molecular weight of a polyoxamide resin and a polyoxamide resin.

ポリオキサミド樹脂は、アミド結合と炭化水素の比率が同じ他のポリアミド樹脂と比較して融点が高いこと及び吸水率が低いことが知られている(特許文献1)。   It is known that the polyoxamide resin has a higher melting point and a lower water absorption rate than other polyamide resins having the same ratio of amide bond and hydrocarbon (Patent Document 1).

ポリオキサミド樹脂は、シュウ酸もしくはシュウ酸ジエステルと脂肪族、脂環族もしくは芳香族ジアミンとの重縮合により得られ、これまでに、種々のジアミンを用いたポリオキサミド樹脂が提案されている。しかしながら、シュウ酸は180℃を超えると熱分解するために原料としてシュウ酸を用いた場合に、高分子量のポリオキサミド樹脂が得られることはなく、合成例も無い。   Polyoxamide resins are obtained by polycondensation of oxalic acid or oxalic acid diesters with aliphatic, alicyclic or aromatic diamines, and so far, polyoxamide resins using various diamines have been proposed. However, since oxalic acid is thermally decomposed when it exceeds 180 ° C., when oxalic acid is used as a raw material, a high molecular weight polyoxamide resin is not obtained and there is no synthesis example.

一方、シュウ酸ジアルキルのようなシュウ酸ジエステルをモノマーとして用いたポリオキサミド樹脂の製造法も公知であり、種々のジアミンとの重縮合によるポリオキサミド樹脂が提案されている。例えば、ジアミン成分として1,10−デカンジアミン、1,9−ノナンジアミン、1,8−オクタンジアミンを用いたポリオキサミド樹脂(いずれも特許文献2)や1,6−ヘキサンジアミンを用いたポリオキサミド樹脂(非特許文献1)など数多くのポリオキサミド樹脂が提案されている。   On the other hand, a method for producing a polyoxamide resin using an oxalic acid diester such as dialkyl oxalate as a monomer is also known, and polyoxamide resins by polycondensation with various diamines have been proposed. For example, a polyoxamide resin using 1,10-decanediamine, 1,9-nonanediamine, or 1,8-octanediamine as a diamine component (all are Patent Document 2) or a polyoxamide resin using 1,6-hexanediamine (non- Many polyoxamide resins have been proposed, such as Patent Document 1).

しかしながら、公知のポリオキサミド樹脂の製造法において、分子量を制御する方法について具体的な記述は無く、所望の数平均分子量を有するポリオキサミド樹脂を得る制御方法が無かった。
特開2006−57033 特表平5−506466 S. W. Shalaby., J. Polym. Sci., 11, 1(1973)
However, there is no specific description about the method for controlling the molecular weight in the known polyoxamide resin production methods, and there is no control method for obtaining a polyoxamide resin having a desired number average molecular weight.
JP 2006-57033 A Special table 5-506466 SW Shalaby., J. Polym. Sci., 11, 1 (1973)

本発明が解決しようとする課題は、従来のポリオキサミド樹脂の製造法では達成し得なかったポリオキサミド樹脂の分子量制御方法を提供することにある。   The problem to be solved by the present invention is to provide a method for controlling the molecular weight of a polyoxamide resin that could not be achieved by a conventional method for producing a polyoxamide resin.

本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、耐圧容器内でシュウ酸ジエステルとジアミンとを混合し、縮合反応によって生成するアルコール存在下で加圧重合する工程を含むポリオキサミド樹脂の製造法において、原料混合終了からポリマーの融点以上まで昇温して放圧を開始するまでに保持する圧力として定義する加圧重合時の圧力と、分子鎖末端に生成するホルムアミド基の濃度との間に良好な相関関係があることを見出し、これによりポリオキサミド樹脂の数平均分子量が制御されることを確認して本発明を完成した。   As a result of intensive studies in order to solve the above problems, the present inventors include a step of mixing oxalic acid diester and diamine in a pressure-resistant vessel and performing pressure polymerization in the presence of alcohol produced by a condensation reaction. In the production method of polyoxamide resin, the pressure at the time of pressure polymerization defined as the pressure to be maintained from the end of mixing of raw materials until the temperature rises to the melting point of the polymer or higher and the pressure is released, and the formamide group generated at the end of the molecular chain It was found that there is a good correlation with the concentration, and it was confirmed that this controlled the number average molecular weight of the polyoxamide resin, thereby completing the present invention.

本発明のポリオキサミド樹脂の分子量制御方法により、従来のポリオキサミド樹脂の製造法では達成し得なかった、ポリオキサミド樹脂の数平均分子量を8000〜50000の範囲に制御することが可能となった。   The molecular weight control method of the polyoxamide resin of the present invention makes it possible to control the number average molecular weight of the polyoxamide resin in the range of 8000 to 50000, which could not be achieved by the conventional production method of the polyoxamide resin.

(1)ポリオキサミドの構成成分
本発明で製造の対象となるポリオキサミド樹脂のシュウ酸源としては、シュウ酸ジエステルが用いられ、これらはアミノ基との反応性を有するものであれば特に制限はなく、シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸ジn−(またはi−)プロピル、シュウ酸ジn−(またはi−、またはt−)ブチル等の脂肪族1価アルコールのシュウ酸ジエステル、シュウ酸ジシクロヘキシル等の脂環式アルコールのシュウ酸ジエステル、シュウ酸ジフェニル等の芳香族アルコールのシュウ酸ジエステル等が挙げられる。これらのうち、重縮合反応により発生するアルコールに生成ポリオキサミド樹脂が良好に溶解し、続く溶融重合、固相重合温度においてアルコールを完全に取り除くことができるアルコールを生成するシュウ酸ジエステルが好ましく用いられる。このようなシュウ酸ジエステルの例としては、シュウ酸ジメチル、シュウ酸ジエチル、シュウ酸ジn−(またはi−)プロピル、シュウ酸ジn−(またはi−、またはt−)ブチルを挙げることができる。
(1) Constituent components of polyoxamide As the oxalic acid source of the polyoxamide resin to be produced in the present invention, oxalic acid diesters are used, and these are not particularly limited as long as they have reactivity with amino groups. Oxalic acid diesters of aliphatic monohydric alcohols such as dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) butyl oxalate, dicyclohexyl oxalate Oxalic acid diesters of alicyclic alcohols such as oxalic acid diesters of aromatic alcohols such as diphenyl oxalate. Of these, oxalic acid diesters that generate alcohol in which the generated polyoxamide resin is well dissolved in the alcohol generated by the polycondensation reaction and can be completely removed at the subsequent melt polymerization and solid phase polymerization temperatures are preferably used. Examples of such oxalic acid diesters include dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) butyl oxalate. it can.

原料のジアミンとしては、エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミン、1,5−ペンタンジアミン、1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、2−メチル−1,8−オクタンジアミン、5−メチル−1,9−ノナンジアミンなどの脂肪族ジアミン、さらにシクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、さらにp−フェニレンジアミン、m−フェニレンジアミン、キシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミン等から選ばれる1種または2種以上の任意の混合物が挙げられる。   As raw material diamine, ethylenediamine, propylenediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl- Aliphatic diamines such as 1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine, and alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine; Furthermore, p-phenylenediamine, m-phenylenediamine, xylenedia Emissions, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, one or more of any mixture selected from aromatic diamines, such as 4,4'-diaminodiphenyl ether and the like.

(2)ポリオキサミドの分子量制御方法
以下、本発明の分子量制御方法を具体的に説明する。まず耐圧容器に原料のシュウ酸ジエステルもしくはジアミンを仕込み、容器内を窒素のような不活性ガスで置換する。次いで、容器内の原料をもう一方の原料と混合する温度まで昇温し、ジアミンもしくはシュウ酸ジブチルを封圧下で注入して重縮合反応を開始する。容器は重縮合反応の温度および圧力に耐え得るものであれば特に制限されない。混合するシュウ酸ジエステルとジアミンの比率は、シュウ酸ジエステル/ジアミン(モル比)で、0.8〜1.2(モル比)、好ましくは0.91〜1.09、更に好ましくは0.98〜1.02(モル比)である。原料を混合する温度は、シュウ酸ジエステルおよびジアミンの融点以上、沸点未満の温度であり、かつシュウ酸ジエステルとジアミンの重縮合反応によって生じるポリオキサミドが熱分解しない温度であれば特に制限されない。例えば、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物からなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が1:99〜99:1であるジアミンとシュウ酸ジブチルを原料とするポリオキサミド樹脂の場合、上記混合温度は20℃から240℃である。
(2) Molecular weight control method of polyoxamide Hereinafter, the molecular weight control method of this invention is demonstrated concretely. First, raw material oxalic acid diester or diamine is charged into a pressure vessel, and the inside of the vessel is replaced with an inert gas such as nitrogen. Next, the temperature is raised to a temperature at which the raw material in the container is mixed with the other raw material, and diamine or dibutyl oxalate is injected under a sealing pressure to start the polycondensation reaction. The container is not particularly limited as long as it can withstand the temperature and pressure of the polycondensation reaction. The ratio of oxalic acid diester and diamine to be mixed is oxalic acid diester / diamine (molar ratio), 0.8 to 1.2 (molar ratio), preferably 0.91 to 1.09, more preferably 0.98. -1.02 (molar ratio). The temperature at which the raw materials are mixed is not particularly limited as long as it is a temperature not lower than the melting point and lower than the boiling point of the oxalic acid diester and diamine, and the polyoxamide generated by the polycondensation reaction of the oxalic acid diester and diamine is not thermally decomposed. For example, it consists of a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 1:99 to 99: In the case of a polyoxamide resin using diamine 1 and dibutyl oxalate as raw materials, the mixing temperature is 20 ° C. to 240 ° C.

続いて、容器内の圧力を調節しながらポリオキサミド樹脂の融点以上で、かつ熱分解しない温度以下に昇温する。例えば、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が85:15であるジアミンとシュウ酸ジブチルを原料とするポリオキサミド樹脂の場合、融点は235℃であることから235℃から280℃に昇温するのが好ましい。昇温中は、重縮合反応によって生成したアルコールを留去しつつ、容器内の圧力を一定に調節する。一定に調節する圧力の範囲は0.1(±0.07)〜3(±0.07)MPaが好ましい。加圧重合時の圧力を0.1(±0.07)〜3(±0.07)MPaの範囲で一定に調節することにより、ポリオキサミド樹脂の数平均分子量を8000〜50000の範囲に制御することが可能となった。具体的には0.1(±0.07)〜3(±0.07)MPaの範囲内で加圧重合時の圧力を高くするほど、分子量が小さくなる傾向がある。圧力が0.1(±0.07)MPa未満では、生成したポリマーが反応容器内で析出して溶液状態、もしくはスラリー状態を維持できなくなるために好ましくなく、3(±0.07)MPaを超えると、得られるポリマーの分子量が低く物性が低下するために好ましくない。更に好ましい圧力としては0.1〜1.5MPaであり、特に好ましくは0.25〜1.0MPaである。   Subsequently, the temperature is raised to a temperature not lower than the melting point of the polyoxamide resin and not thermally decomposed while adjusting the pressure in the container. For example, a diamine and shu comprising 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 85:15. In the case of a polyoxamide resin using dibutyl acid as a raw material, the melting point is 235 ° C., and therefore the temperature is preferably raised from 235 ° C. to 280 ° C. During the temperature rise, the pressure in the container is adjusted to be constant while distilling off the alcohol produced by the polycondensation reaction. The range of the pressure to be adjusted is preferably 0.1 (± 0.07) to 3 (± 0.07) MPa. The number average molecular weight of the polyoxamide resin is controlled in the range of 8000 to 50000 by adjusting the pressure during the pressure polymerization to a constant value in the range of 0.1 (± 0.07) to 3 (± 0.07) MPa. It became possible. Specifically, the molecular weight tends to decrease as the pressure during pressure polymerization is increased within the range of 0.1 (± 0.07) to 3 (± 0.07) MPa. If the pressure is less than 0.1 (± 0.07) MPa, the generated polymer is precipitated in the reaction vessel and cannot be maintained in a solution state or a slurry state. If it exceeds, the molecular weight of the resulting polymer is low and the physical properties are lowered, which is not preferable. A more preferable pressure is 0.1 to 1.5 MPa, and particularly preferably 0.25 to 1.0 MPa.

生成するポリマーの融点以上の温度に到達後、アルコール蒸気を放出し、その後、必要に応じて常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。減圧重合を行う場合の好ましい最終到達圧力は760〜0.1Torrである。温度は、235〜280℃が好ましい。また、容器から放出されたアルコール蒸気は水冷コンデンサーで冷却して液化し、回収する。 After reaching a temperature equal to or higher than the melting point of the polymer to be produced, alcohol vapor is released, and then a polycondensation reaction is continued under an atmospheric pressure of nitrogen or reduced pressure as necessary. The preferable final pressure in the case of carrying out the vacuum polymerization is 760 to 0.1 Torr. The temperature is preferably 235 to 280 ° C. In addition, the alcohol vapor released from the container is cooled with a water-cooled condenser to be liquefied and recovered.

本発明から得られるポリオキサミド樹脂には本発明の効果を損なわない範囲で、他のジアミン成分を混合する事が出来る。1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミン以外の他のジアミン成分としては、エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、5−メチル−1,9−ノナンジアミンなどの脂肪族ジアミン、さらにシクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、さらにp−フェニレンジアミン、m−フェニレンジアミン、p−キシレンジアミン、m−キシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンなどを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。   The polyoxamide resin obtained from the present invention can be mixed with other diamine components as long as the effects of the present invention are not impaired. Examples of diamine components other than 1,9-nonanediamine and 2-methyl-1,8-octanediamine include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, and 1,8-octanediamine. 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1 , 6-hexanediamine, aliphatic diamines such as 5-methyl-1,9-nonanediamine, alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, p-phenylenediamine, m-phenylenediamine, p -Xylenediamine, m-xylenediamine, 4,4'-di Mino diphenylmethane, 4,4'-diaminodiphenyl sulfone, 4,4'-and aromatic diamines, such as diaminodiphenyl ether by itself, or may be added to any mixture thereof during the polycondensation reaction.

(3)ポリオキサミドの性状および物性
本発明により得られるポリオキサミドの分子量に特別の制限はないが、数平均分子量が8000〜50000の範囲内である。数平均分子量が8000より低いと成形物が脆くなり物性が低下する。一方、数平均分子量が50000より高いと溶融粘度が高くなり、成形加工性が悪くなる。また、本発明により得られるポリオキサミド樹脂の末端基は、アミノ基、アルコキシ基、ホルムアミド基のうちのいずれかである。ホルムアミド基は下記式1で示される末端基で、下記式2に示されるように、原料中および反応系中の(1)水分とアルコキシ基の反応、または、(2)アミノ基とアルコキシ基の反応により生成する。
(3) Properties and physical properties of polyoxamide There is no particular limitation on the molecular weight of the polyoxamide obtained by the present invention, but the number average molecular weight is in the range of 8000 to 50000. When the number average molecular weight is lower than 8000, the molded product becomes brittle and the physical properties deteriorate. On the other hand, when the number average molecular weight is higher than 50000, the melt viscosity becomes high and the molding processability is deteriorated. Moreover, the terminal group of the polyoxamide resin obtained by this invention is either an amino group, an alkoxy group, or a formamide group. The formamide group is a terminal group represented by the following formula 1, and, as represented by the following formula 2, (1) reaction of moisture and alkoxy group in the raw material and reaction system, or (2) amino group and alkoxy group Produced by reaction.

(式1)

Figure 2011063693
(Formula 1)
Figure 2011063693

(式2)
ホルムアミド基生成反応式
(1)水とアルコキシ基の反応

Figure 2011063693

(2)アミノ基とアルコキシ基の反応
Figure 2011063693
式中のR1はポリマーの残基、または脂肪族ジアミン、脂環族ジアミン、芳香族ジアミンのアミノ基を1つ除いた残基のうちいずれかを示し、R2はアルキル基、シクロアルキル基、アリール基のうちいずれかを示す。 (Formula 2)
Formamide group formation reaction formula (1) Reaction of water and alkoxy group
Figure 2011063693

(2) Reaction of amino group and alkoxy group
Figure 2011063693
In the formula, R1 represents either a polymer residue or a residue obtained by removing one amino group of an aliphatic diamine, alicyclic diamine, or aromatic diamine, and R2 represents an alkyl group, a cycloalkyl group, or an aryl group. Indicates any of the groups.

(4)ポリオキサミド樹脂に配合できる成分
本発明から得られるポリオキサミド樹脂には本発明の効果を損なわない範囲で、他のジアミン成分を混合する事が出来る。1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミン以外の他のジアミン成分としては、エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、5−メチル−1,9−ノナンジアミンなどの脂肪族ジアミン、さらにシクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、さらにp−フェニレンジアミン、m−フェニレンジアミン、p−キシレンジアミン、m−キシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンなどを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。
(4) Components that can be blended in the polyoxamide resin The polyoxamide resin obtained from the present invention can be mixed with other diamine components as long as the effects of the present invention are not impaired. Examples of diamine components other than 1,9-nonanediamine and 2-methyl-1,8-octanediamine include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, and 1,8-octanediamine. 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1 , 6-hexanediamine, aliphatic diamines such as 5-methyl-1,9-nonanediamine, alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, p-phenylenediamine, m-phenylenediamine, p -Xylenediamine, m-xylenediamine, 4,4'-dia Aromatic diamines such as minodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 4,4′-diaminodiphenyl ether can be added alone or in any mixture thereof during the polycondensation reaction.

また、本発明には本発明の効果を損なわない範囲で、他のポリオキサミドや、芳香族ポリアミド、脂肪族ポリアミド、脂環式ポリアミドなどポリアミド類を混合することが可能である。更に、ポリアミド以外の熱可塑性ポリマー、エラストマー、フィラーや、補強繊維、各種添加剤を同様に配合することができる。   In the present invention, other polyoxamides, polyamides such as aromatic polyamides, aliphatic polyamides, and alicyclic polyamides can be mixed within a range not impairing the effects of the present invention. Furthermore, thermoplastic polymers other than polyamide, elastomers, fillers, reinforcing fibers, and various additives can be similarly blended.

さらに、本発明により得られるポリオキサミド樹脂には必要に応じて、銅化合物などの安定剤、着色剤、紫外線吸収剤、光安定化剤、酸化防止剤、帯電防止剤、難燃剤、結晶化促進剤、ガラス繊維、可塑剤、潤滑剤などを重縮合反応時、またはその後に添加することもできる。   Further, the polyoxamide resin obtained by the present invention may contain a stabilizer such as a copper compound, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a flame retardant, and a crystallization accelerator, if necessary. Glass fiber, plasticizer, lubricant and the like can be added during or after the polycondensation reaction.

(5)ポリオキサミド樹脂の成形加工
本発明により得られるポリオキサミド樹脂の成形方法としては、射出、押出、中空、プレス、ロール、発泡、真空・圧空、延伸などポリアミドに適用できる公知の成形加工法はすべて可能であり、これらの成形法によってフィルム、シート、成形品、繊維などに加工することができる。
(5) Polyoxamide resin molding process The polyoxamide resin molding process obtained by the present invention includes all known molding process methods applicable to polyamides such as injection, extrusion, hollow, press, roll, foaming, vacuum / compression, and stretching. The film can be processed into a film, a sheet, a molded product, a fiber, or the like by these molding methods.

(6)ポリオキサミド成形物の用途
本発明によって得られるポリオキサミドの成形物は、従来ポリアミド成形物が用いられてきた各種成形品、シート、フィルム、パイプ、チューブ、モノフィラメント、繊維、容器等として自動車部材、コンピューター及び関連機器、光学機器部材、電気・電子機器、情報・通信機器、精密機器、土木・建築用品、医療用品、家庭用品など広範な用途に使用できる。
(6) Use of Polyoxamide Molded Product The molded product of polyoxamide obtained by the present invention includes various molded products, sheets, films, pipes, tubes, monofilaments, fibers, containers, etc. for which polyamide molded products have been conventionally used. It can be used in a wide range of applications such as computers and related equipment, optical equipment components, electrical / electronic equipment, information / communication equipment, precision equipment, civil engineering / building supplies, medical supplies, and household goods.

[評価方法]
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらにより何ら制限されるものではない。なお、実施例中の構造解析、数平均分子量の算出、末端基濃度の算出、相対粘度の測定は以下の方法により行った。
[Evaluation methods]
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the structural analysis in the examples, the calculation of the number average molecular weight, the calculation of the terminal group concentration, and the measurement of the relative viscosity were performed by the following methods.

(1)構造解析
一次構造の同定は、1H−NMRにより行った。1H−NMRは、ブルカー・バイオスピン社製 AVANCE500を使用して、溶媒:重硫酸、積算回数:1024回の条件で測定した。
(1) Structural analysis The primary structure was identified by 1 H-NMR. 1 H-NMR was measured using AVANCE 500 manufactured by Bruker BioSpin Corporation under the conditions of solvent: bisulfuric acid and integration: 1024 times.

(2)数平均分子量(Mn)
数平均分子量(Mn)は、H−NMRスペクトルから求めたシグナル強度をもとに、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が85:15であるジアミンとシュウ酸ジブチルを原料とするポリオキサミド樹脂〔以下、PA92(NMDA/MODA=85/15)と略称する〕の場合は下式により算出した。
Mn=np×212.30+n(NH2)×157.28+n(OBu)×129.14+n(NHCHO)×29.14
(2) Number average molecular weight (Mn)
The number average molecular weight (Mn) is composed of 1,9-nonanediamine and 2-methyl-1,8-octanediamine based on the signal intensity obtained from the 1 H-NMR spectrum, and 1,9-nonanediamine and 2 -In the case of polyoxamide resin (hereinafter abbreviated as PA92 (NMDA / MODA = 85/15)) using diamine having a molar ratio of methyl-1,8-octanediamine of 85:15 and dibutyl oxalate as raw materials Calculated by the formula.
Mn = np × 212.30 + n (NH 2 ) × 157.28 + n (OBu) × 129.14 + n (NHCHO) × 29.14

また、前記式中の各項は以下のように規定される。
・np=Np/[(N(NH2)+N(NHCHO)+N(OBu))/2]
・n(NH2)=N(NH2)/[(N(NH2)+N(NHCHO)+N(OBu))/2]
・n(NHCHO)=N(NHCHO)/[(N(NH2)+N(NHCHO)+N(OBu))/2]
・n(OBu)=N(OBu)/[(N(NH2)+N(NHCHO)+N(OBu))/2]
・Np=[(Sp/sp)−1]/sp−N(NHCHO)
・N(NH2)=S(NH2)/s(NH2)
・N(NHCHO)=S(NHCHO)/s(NHCHO)
・N(OBu)=S(OBu)/s(OBu)
Moreover, each term in the said formula is prescribed | regulated as follows.
Np = Np / [(N (NH 2 ) + N (NHCHO) + N (OBu)) / 2]
N (NH 2 ) = N (NH 2 ) / [(N (NH 2 ) + N (NHCHO) + N (OBu)) / 2]
N (NHCHO) = N (NHCHO) / [(N (NH2) + N (NHCHO) + N (OBu)) / 2]
N (OBu) = N (OBu) / [(N (NH 2 ) + N (NHCHO) + N (OBu)) / 2]
Np = [(Sp / sp) -1] / sp-N (NHCHO)
・ N (NH 2 ) = S (NH 2 ) / s (NH 2 )
N (NHCHO) = S (NHCHO) / s (NHCHO)
N (OBu) = S (OBu) / s (OBu)

但し、各項は以下の意味を有する。
・Np:PA92(NMDA/MODA=85/15)の末端ユニットを除いた、分子鎖中の繰り返しユニット総数。
・np:分子1本当たりの分子鎖中の繰り返しユニット数。
・Sp:PA92(NMDA/MODA=85/15)の末端を除いた、分子鎖中の繰り返しユニット中のオキサミド基に隣接するメチレン基のプロトンに基づくシグナル(3.1ppm付近)の積分値。
・sp:積分値Spにカウントされる水素数(2個)。
・N(NH2):PA92(NMDA/MODA=85/15)の末端アミノ基の総数。
・n(NH2):分子1本当たりの末端アミノ基の数。
・S(NH2):PA92(NMDA/MODA=85/15)の末端アミノ基に隣接するメチレン基のプロトンに基づくシグナル(2.6ppm付近)の積分値。
・s(NH2):積分値S(NH2)にカウントされる水素数(2個)。
・N(NHCHO):PA92(NMDA/MODA=85/15)の末端ホルムアミド基の総数。
・n(NHCHO):分子1本当たりの末端ホルムアミド基の数。
・S(NHCHO):PA92(NMDA/MODA=85/15)のホルムアミド基のプロトンに基づくシグナル(7.8ppm)の積分値。
・s(NHCHO):積分値S(NHCHO)にカウントされる水素数(1個)。
・N(OBu):PA92(NMDA/MODA=85/15)の末端ブトキシ基の総数。
・n(OBu):分子1本当たりの末端ブトキシ基の数。
・S(OBu):PA92(NMDA/MODA=85/15)の末端ブトキシ基の酸素原子に隣接するメチレン基のプロトンに基づくシグナル(4.1ppm付近)の積分値。
・s(OBu):積分値S(OBu)にカウントされる水素数(2個)。
However, each term has the following meaning.
Np: Total number of repeating units in the molecular chain excluding the terminal unit of PA92 (NMDA / MODA = 85/15).
Np: the number of repeating units in the molecular chain per molecule.
Sp: Integration value of a signal (near 3.1 ppm) based on the proton of the methylene group adjacent to the oxamide group in the repeating unit in the molecular chain excluding the end of PA92 (NMDA / MODA = 85/15).
Sp: Number of hydrogens counted in the integrated value Sp (2).
· N (NH 2): The total number of terminal amino groups of PA92 (NMDA / MODA = 85/ 15).
N (NH 2 ): number of terminal amino groups per molecule.
· S (NH 2): PA92 integration value of (NMDA / MODA = 85/15 ) signal based on the protons of the methylene group adjacent to the terminal amino group of (around 2.6 ppm).
S (NH2): The number of hydrogens (2) counted in the integral value S (NH2).
N (NHCHO): total number of terminal formamide groups of PA92 (NMDA / MODA = 85/15).
N (NHCHO): number of terminal formamide groups per molecule.
-S (NHCHO): The integral value of the signal (7.8 ppm) based on the proton of the formamide group of PA92 (NMDA / MODA = 85/15).
S (NHCHO): The number of hydrogens (one) counted in the integral value S (NHCHO).
N (OBu): the total number of terminal butoxy groups of PA92 (NMDA / MODA = 85/15).
N (OBu): number of terminal butoxy groups per molecule.
S (OBu): integral value of a signal (around 4.1 ppm) based on protons of a methylene group adjacent to an oxygen atom of a terminal butoxy group of PA92 (NMDA / MODA = 85/15).
S (OBu): The number of hydrogens (2) counted in the integral value S (OBu).

(3)末端基濃度:蓚酸ジブチルを用いた場合、末端アミノ基濃度[NH]、末端ブトキシ基濃度[OBu]、末端ホルムアミド基濃度[NHCHO]は次の式に従ってそれぞれ求めた。
・末端アミノ基濃度[NH]=n(NH)/Mn
・末端ブトキシ基濃度[OBu]=n(OBu)/Mn
・末端ホルムアミド基濃度[NHCHO]=n(NHCHO)/Mn
(3) Terminal group concentration: When dibutyl oxalate was used, the terminal amino group concentration [NH 2 ], the terminal butoxy group concentration [OBu], and the terminal formamide group concentration [NHCHO] were determined according to the following formulas.
Terminal amino group concentration [NH 2 ] = n (NH 2 ) / Mn
Terminal butoxy group concentration [OBu] = n (OBu) / Mn
Terminal formamide group concentration [NHCHO] = n (NHCHO) / Mn

(4)相対粘度(ηr)
ηrはポリオキサミドの96%硫酸溶液(濃度:1.0g/dl)を使用してオストワルド型粘度計を用いて25℃で測定した。
(4) Relative viscosity (ηr)
ηr was measured at 25 ° C. using an Ostwald viscometer using a 96% sulfuric acid solution of polyoxamide (concentration: 1.0 g / dl).

[実施例1]
撹拌機、窒素導入管、原料投入口、原料フィードライン、ブタノール留出管、コンデンサー、凝縮液タンク、コールドトラップを備えた内容積が206Lの耐圧容器内に、漏斗を用いてシュウ酸ジブチル28.12kg(139.1モル)を仕込んだ。その後、純度が99.9999%の窒素ガスを導入して1.0MPaの加圧下に保ち、次いで留出管から窒素を0.1MPaまで放圧する操作を5回繰り返した後、常圧まで窒素を放圧し、封圧下、系内を昇温した。1時間かけて内部温度を100℃にした後、1,9−ノナンジアミン1.32kg(8.35モル)と2−メチル−1,8−オクタンジアミン20.74kg(131.0モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)を原料フィードポンプにより流速2.12L/分で19分間かけて反応容器内に注入すると同時に昇温した。注入直後の耐圧容器内の内圧は、重縮合反応により生成した1−ブタノールによって0.33MPaまで上昇し、内部温度は147℃まで上昇させた。注入直後から生成したブタノールの放圧を開始し、加圧重合時の圧力を1.0MPaに保持したまま、1.5時間かけて内部温度を235℃にした。内部温度が235℃に達した直後から放圧口より重縮合反応によって生成した1−ブタノールを30分間かけて抜き出した。放圧後、300L/分の窒素気流下において昇温を開始し、2時間かけて内部温度を260℃にし、その後、攪拌を止めて系内を窒素で1MPaに加圧して30分間静置した後、内圧1.0MPaで重合物を圧力容器下部より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の重合物はペレタイザーによってペレット化した。得られた重合物は白色のポリマーであり、末端封止反応により生じた末端ホルムアミド基の末端基濃度は4.5×10−5eq/gであった。
[Example 1]
Dibutyl oxalate 28. In a pressure-resistant vessel having a volume of 206 L equipped with a stirrer, nitrogen introduction pipe, raw material inlet, raw material feed line, butanol distillation pipe, condenser, condensate tank, and cold trap, using a funnel. 12 kg (139.1 mol) was charged. Thereafter, nitrogen gas having a purity of 99.9999% was introduced and kept under a pressure of 1.0 MPa, and then the operation of releasing the nitrogen from the distillation pipe to 0.1 MPa was repeated 5 times, and then the nitrogen was released to the normal pressure. The pressure was released and the system was heated up under sealing pressure. After the internal temperature was brought to 100 ° C. over 1 hour, a mixture of 1.32 kg (8.35 mol) of 1,9-nonanediamine and 20.74 kg (131.0 mol) of 2-methyl-1,8-octanediamine (131.0 mol) The molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine was 6:94) was injected into the reaction vessel at a flow rate of 2.12 L / min for 19 minutes by a raw material feed pump, and the temperature was increased at the same time. . The internal pressure in the pressure vessel immediately after injection was increased to 0.33 MPa by 1-butanol produced by the polycondensation reaction, and the internal temperature was increased to 147 ° C. Release of butanol generated immediately after injection was started, and the internal temperature was set to 235 ° C. over 1.5 hours while maintaining the pressure during pressure polymerization at 1.0 MPa. Immediately after the internal temperature reached 235 ° C., 1-butanol produced by the polycondensation reaction was extracted from the pressure release port over 30 minutes. After releasing the pressure, heating was started under a nitrogen stream of 300 L / min, the internal temperature was increased to 260 ° C. over 2 hours, and then the stirring was stopped and the system was pressurized to 1 MPa with nitrogen and allowed to stand for 30 minutes. Thereafter, the polymer was extracted in a string form from the lower part of the pressure vessel at an internal pressure of 1.0 MPa. The string-like polymer was immediately cooled with water, and the water-cooled string-like polymer was pelletized with a pelletizer. The obtained polymer was a white polymer, and the terminal group concentration of the terminal formamide group generated by the terminal blocking reaction was 4.5 × 10 −5 eq / g.

[実施例2]
シュウ酸ジブチルを28.05kg(138.8モル)、1,9−ノナンジアミンを1.32kg(8.34モル)、2−メチル−1,8−オクタンジアミンを20.69kg(130.7モル)(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)、ジアミン注入後の加圧重合時の圧力を0.75MPaとしたほかは、実施例1と同様に反応を行い、生成物を得た。得られたものは白色の強靭な重合物であり、末端封止反応により生じた末端ホルムアミド基の末端基濃度は4.0×10−5eq/gであった。
[Example 2]
28.05 kg (138.8 mol) of dibutyl oxalate, 1.32 kg (8.34 mol) of 1,9-nonanediamine, and 20.69 kg (130.7 mol) of 2-methyl-1,8-octanediamine (The molar ratio of 1,9-nonanediamine to 2-methyl-1,8-octanediamine is 6:94), except that the pressure during pressure polymerization after diamine injection was 0.75 MPa. To give a product. What was obtained was a white tough polymer, and the terminal group concentration of the terminal formamide group generated by the terminal blocking reaction was 4.0 × 10 −5 eq / g.

[実施例3]
シュウ酸ジブチルを28.10kg(139.0モル)、1,9−ノナンジアミンを1.32kg(8.34モル)、2−メチル−1,8−オクタンジアミンを20.68kg(130.6モル)(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)、ジアミン注入後の加圧重合時の圧力を0.5MPaとしたほかは、実施例1と同様に反応を行い、生成物を得た。得られたものは白色の強靭な重合物であり、末端封止反応により生じた末端ホルムアミド基の末端基濃度は3.4×10−5eq/gであった。
[Example 3]
28.10 kg (139.0 mol) of dibutyl oxalate, 1.32 kg (8.34 mol) of 1,9-nonanediamine, and 20.68 kg (130.6 mol) of 2-methyl-1,8-octanediamine (The molar ratio of 1,9-nonanediamine to 2-methyl-1,8-octanediamine is 6:94), except that the pressure during pressure polymerization after diamine injection was 0.5 MPa, as in Example 1. To give a product. What was obtained was a white tough polymer, and the terminal group concentration of the terminal formamide group generated by the terminal blocking reaction was 3.4 × 10 −5 eq / g.

[実施例4]
シュウ酸ジブチルを28.06kg(138.7モル)、1,9−ノナンジアミンを1.32kg(8.34モル)、2−メチル−1,8−オクタンジアミンを20.64kg(130.4モル)(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)、ジアミン注入後の加圧重合時の圧力を0.25MPaとしたほかは、実施例1と同様に反応を行い、生成物を得た。得られたものは白色の強靭な重合物であり、末端封止反応により生じた末端ホルムアミド基の末端基濃度は3.2×10−5eq/gであった。
[Example 4]
28.06 kg (138.7 mol) of dibutyl oxalate, 1.32 kg (8.34 mol) of 1,9-nonanediamine, and 20.64 kg (130.4 mol) of 2-methyl-1,8-octanediamine (The molar ratio of 1,9-nonanediamine to 2-methyl-1,8-octanediamine is 6:94), except that the pressure during pressure polymerization after diamine injection was 0.25 MPa, as in Example 1. To give a product. The obtained product was a white tough polymer, and the terminal group concentration of the terminal formamide group generated by the terminal blocking reaction was 3.2 × 10 −5 eq / g.

[実施例5]
5.6Lの耐圧容器を用い、1,9−ノナンジアミンを697.14g(4.4071モル)と2−メチル−1,8−オクタンジアミンを123.04g(0.77772モル)(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が85:15)耐圧容器内に仕込んでおき、シュウ酸ジブチルを1048.01g(5.18447モル)注入し、常圧重合時の窒素を260mL/分で流したほかは、実施例1と同様に反応を行い、生成物を得た。得られたものは白色の強靭な重合物であり、末端封止反応により生じた末端ホルムアミド基の末端基濃度は5.7×10−5eq/gであった。
[Example 5]
Using a 5.6 L pressure vessel, 1,97-14 g (4.4071 mol) of 1,9-nonanediamine and 123.04 g (0.77772 mol) of 2-methyl-1,8-octanediamine (1,9- Nonanediamine and 2-methyl-1,8-octanediamine molar ratio was 85:15) charged in a pressure vessel, and 1048.01 g (5.18447 mol) of dibutyl oxalate was injected, and nitrogen during atmospheric pressure polymerization. Was allowed to flow at 260 mL / min, and a reaction was carried out in the same manner as in Example 1 to obtain a product. The obtained product was a white tough polymer, and the terminal group concentration of the terminal formamide group generated by the terminal blocking reaction was 5.7 × 10 −5 eq / g.

[実施例6]
5.6Lの耐圧容器を用い、シュウ酸ジブチルを1051.75g(5.2030モル)、1,9−ノナンジアミンを699.75g(4.4236モル)、2−メチル−1,8−オクタンジアミンを123.48g(0.78062モル)(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が85:15)、ジアミン注入後の加圧重合時の圧力を0.5MPaとしたほかは、実施例5と同様に反応を行い、生成物を得た。得られたものは白色の強靭な重合物であり、末端封止反応により生じた末端ホルムアミド基の末端基濃度は5.5×10−5eq/gであった。
[Example 6]
Using a 5.6 L pressure vessel, 1051.75 g (5.2030 mol) of dibutyl oxalate, 699.75 g (4.4236 mol) of 1,9-nonanediamine, and 2-methyl-1,8-octanediamine 123.48 g (0.78062 mol) (1,9-nonanediamine and 2-methyl-1,8-octanediamine molar ratio is 85:15), the pressure during pressure polymerization after diamine injection is 0.5 MPa The reaction was carried out in the same manner as in Example 5 to obtain a product. What was obtained was a white tough polymer, and the terminal group concentration of the terminal formamide group generated by the terminal blocking reaction was 5.5 × 10 −5 eq / g.

実施例1〜6、および比較例1によって得られたポリオキサミド樹脂のηr、末端基濃度、数平均分子量を表1に示す。   Table 1 shows the ηr, end group concentration, and number average molecular weight of the polyoxamide resins obtained in Examples 1 to 6 and Comparative Example 1.

Figure 2011063693
Figure 2011063693

本発明の方法は、以上詳述したように、加圧重合時の圧力を調節することにより、末端封止反応による末端ホルムアミド基の生成を制御し、ポリオキサミド樹脂を所望の数平均分子量に制御する事ができる。   As described in detail above, the method of the present invention controls the generation of terminal formamide groups by terminal blocking reaction by adjusting the pressure during pressure polymerization, and controls the polyoxamide resin to a desired number average molecular weight. I can do things.

Claims (4)

耐圧容器内でシュウ酸ジエステルとジアミンとを混合し、縮合反応によって生成するアルコール存在下で加圧重合する工程を含むポリオキサミド樹脂の製造法において、加圧重合時の圧力を目的とする分子量に応じて0.1(±0.07)〜3(±0.07)MPaの範囲の所定の圧力に調節することを特徴とするポリオキサミド樹脂の分子量制御方法。 In the production method of polyoxamide resin including the step of pressure polymerizing in the presence of alcohol produced by condensation reaction by mixing oxalic acid diester and diamine in a pressure vessel, depending on the target molecular weight the pressure during pressure polymerization And adjusting the pressure to a predetermined pressure in the range of 0.1 (± 0.07) to 3 (± 0.07) MPa. 炭素数6〜12のジアミンを原料とする請求項1に記載のポリオキサミド樹脂の分子量制御方法。 The method for controlling the molecular weight of a polyoxamide resin according to claim 1, wherein the raw material is a diamine having 6 to 12 carbon atoms. 原料ジアミンが1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が1:99〜99:1であるジアミン成分からなる請求項1に記載のポリオキサミド樹脂の分子量制御方法。   The raw material diamine consists of 1,9-nonanediamine and 2-methyl-1,8-octanediamine, and the molar ratio of 1,9-nonanediamine and 2-methyl-1,8-octanediamine is 1:99 to 99: 1. The method for controlling the molecular weight of the polyoxamide resin according to claim 1, comprising a diamine component. 数平均分子量が8000〜50000である請求項1〜3に記載の製造法により製造されるポリオキサミド樹脂。   The number average molecular weight is 8000-50000, The polyoxamide resin manufactured by the manufacturing method of Claims 1-3.
JP2009214594A 2009-09-16 2009-09-16 Method for controlling molecular weight of polyoxamide resin, and polyoxamide resin Expired - Fee Related JP5310429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214594A JP5310429B2 (en) 2009-09-16 2009-09-16 Method for controlling molecular weight of polyoxamide resin, and polyoxamide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214594A JP5310429B2 (en) 2009-09-16 2009-09-16 Method for controlling molecular weight of polyoxamide resin, and polyoxamide resin

Publications (2)

Publication Number Publication Date
JP2011063693A true JP2011063693A (en) 2011-03-31
JP5310429B2 JP5310429B2 (en) 2013-10-09

Family

ID=43950273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214594A Expired - Fee Related JP5310429B2 (en) 2009-09-16 2009-09-16 Method for controlling molecular weight of polyoxamide resin, and polyoxamide resin

Country Status (1)

Country Link
JP (1) JP5310429B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063694A (en) * 2009-09-16 2011-03-31 Ube Industries Ltd Method for controlling molecular weight of polyoxamide resin and polyoxamide resin
JP2016121217A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912713A (en) * 1995-06-26 1997-01-14 Kuraray Co Ltd Polyamide and polyamide composition
JP2006057033A (en) * 2004-08-23 2006-03-02 Ube Ind Ltd Material with low water absorbency
WO2008072754A1 (en) * 2006-12-11 2008-06-19 Ube Industries, Ltd. Polyamide resin
WO2008123531A1 (en) * 2007-03-27 2008-10-16 Ube Industries, Ltd. Method for production of polyamide resin
JP2011063694A (en) * 2009-09-16 2011-03-31 Ube Industries Ltd Method for controlling molecular weight of polyoxamide resin and polyoxamide resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912713A (en) * 1995-06-26 1997-01-14 Kuraray Co Ltd Polyamide and polyamide composition
JP2006057033A (en) * 2004-08-23 2006-03-02 Ube Ind Ltd Material with low water absorbency
WO2008072754A1 (en) * 2006-12-11 2008-06-19 Ube Industries, Ltd. Polyamide resin
WO2008123531A1 (en) * 2007-03-27 2008-10-16 Ube Industries, Ltd. Method for production of polyamide resin
JP2011063694A (en) * 2009-09-16 2011-03-31 Ube Industries Ltd Method for controlling molecular weight of polyoxamide resin and polyoxamide resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063694A (en) * 2009-09-16 2011-03-31 Ube Industries Ltd Method for controlling molecular weight of polyoxamide resin and polyoxamide resin
JP2016121217A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin

Also Published As

Publication number Publication date
JP5310429B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5170085B2 (en) Manufacturing method of polyamide resin
WO2008072754A1 (en) Polyamide resin
JP5796573B2 (en) Polyamide resin
WO2008123534A1 (en) Molding material for fuel component and fuel component using the same
JP2009235225A (en) Polyamide resin
JP5141331B2 (en) Manufacturing method of polyamide resin
JP2011063694A (en) Method for controlling molecular weight of polyoxamide resin and polyoxamide resin
JP5310429B2 (en) Method for controlling molecular weight of polyoxamide resin, and polyoxamide resin
JP5593978B2 (en) Production method of polyoxamide resin
JP5482426B2 (en) Method for producing polyoxamide resin by solid phase polymerization
JP6485143B2 (en) Production method of polyoxamide resin
JP2016121217A (en) Manufacturing method of polyoxamide resin
JP6428253B2 (en) Production method of polyoxamide resin
JP2013095777A (en) Polyamide resin composition for printed board surface mounting component and printed board surface mounting component obtained by molding the same
KR101498159B1 (en) Method of producing heat-resistant polyamide
JP6451082B2 (en) Polyamide resin
JP6464567B2 (en) Polyamide resin and molded article produced using the same
JP2011213978A (en) Method for producing polyoxamide resin
JP2015034276A (en) Polyamide resin
TWI545146B (en) Polyamide production method
JP2013095799A (en) Polyamide resin composition for ic tray and ic tray obtained by molding the same
JP2013095792A (en) Filler-containing polyamide resin composition
JP2011063695A (en) Transparent member using polyamide resin
JP2013095803A (en) Polyamide resin composition and heat-resistant molded product obtained by molding the same
JP2013095780A (en) Polyamide resin composition for injection molding and injection-molded product obtained by injection-molding the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5310429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees