JP2011046079A - スクリューエレメントピース及びスクリュー - Google Patents

スクリューエレメントピース及びスクリュー Download PDF

Info

Publication number
JP2011046079A
JP2011046079A JP2009195962A JP2009195962A JP2011046079A JP 2011046079 A JP2011046079 A JP 2011046079A JP 2009195962 A JP2009195962 A JP 2009195962A JP 2009195962 A JP2009195962 A JP 2009195962A JP 2011046079 A JP2011046079 A JP 2011046079A
Authority
JP
Japan
Prior art keywords
arc
screw
cylinder
center
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009195962A
Other languages
English (en)
Other versions
JP5318709B2 (ja
JP2011046079A5 (ja
Inventor
Genichi Hiragori
元一 平郡
Kunihiro Hirata
邦紘 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2009195962A priority Critical patent/JP5318709B2/ja
Priority to TW099128223A priority patent/TWI560041B/zh
Priority to CN201010263646.0A priority patent/CN102001174B/zh
Priority to MYPI2010004005A priority patent/MY154296A/en
Publication of JP2011046079A publication Critical patent/JP2011046079A/ja
Publication of JP2011046079A5 publication Critical patent/JP2011046079A5/ja
Application granted granted Critical
Publication of JP5318709B2 publication Critical patent/JP5318709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • B29C48/655Screws with two or more threads having three or more threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements

Abstract

【課題】同方向完全噛み合い型の多軸押出機を用いる樹脂製品の製造において、溶融、混練の際の樹脂の温度上昇を抑えることにより、樹脂の分解による樹脂製品の品質の低下を抑えるとともに、押出機内での樹脂の反応を促進できる技術を提供する。
【解決手段】互いに回転して噛み合うn条のスクリューを備えた二軸以上のスクリュー式押出機用のスクリューエレメントピースであって、軸方向断面視において、n条のスクリューの少なくとも一つのフライト部の頂部は所定の曲率半径を有する円弧であり、上記所定の曲率半径がスクリューを配設するためのシリンダにおける上記フライト部の頂部と対向する内壁の曲率半径より小さくなり、上記フライト部の頂部とシリンダの上記内壁との間に間隙が生じるように設計されたスクリューエレメントピースを用いる。
【選択図】図5

Description

本発明は、スクリューエレメントピース及びスクリューに関する。
同方向完全噛み合い型二軸押出機は、二本のシャフトにスクリューエレメントを装着し、八の字の穴が貫通したバレルのシリンダにスクリューを通し、同方向に回転させる押出機である。この同方向完全噛み合い型二軸押出機は、その機械特性から搬送能力、溶融・混練能力、分離(脱水)能力に優れる。この同方向完全噛み合い型二軸押出機は、連続的に材料の処理も可能であるため、樹脂製品の製造プロセスの有力な合理化手段として多用されている。
上記同方向完全噛み合い型二軸押出機は、樹脂用混練・造粒機として工業化された。スクリューエレメントピースの軸方向直角断面形状は、完全噛み合い性を維持する場合、バレル内径と隣り合うシャフトの芯間距離により幾何的に形状が決定され、スクリュー軸上のどの位置の断面形状も同一である(非特許文献1)。
スクリューエレメントピースは、上記の通り、軸直角方向に同一の断面形状であり、フライトの数を意味する条数と軸方向直角断面形状がシャフトを中心として回転する捩れ角の度合いによってスクリューエレメントピースに固有の機能が生じる。シャフトを中心として連続的に回転する捩れ角を持ち、搬送能力のあるスクリューエレメントピース又はその集合体をフライトスクリュー、あるいはロータと称する。また、捩れ角がなく板状のディスクで構成されるスクリューエレメントピース又はその集合体をニーディングスクリューと称している。上記同方向完全噛み合い型二軸押出機のスクリューは、フライトスクリュー、ロータ、ニーディングディスクで構成されている。
上記同方向完全噛み合い型二軸押出機においては、溶融、混練の際に樹脂にかかるせん断力による樹脂の温度上昇により、樹脂の温度がその樹脂の分解温度を超える場合があり問題となっている。樹脂の温度が樹脂の分解温度以上に上昇すると、解重合又は樹脂の主鎖切断が起こり、樹脂製品の品質は劣化する。このため、近年、部分的に完全噛み合い性の機能を無くすことで、特徴的な機能を有するスクリューが開発されている。例えば、過大なせん断応力が発生せず、反応に必要な時間を大きくする目的で、ひとつのフライトとバレルのシリンダとのクリアランスを大きくしたスクリューが考案されている(特許文献1)。特許文献1に記載のスクリューによれば、同方向噛み合い型二軸押出機において、溶融、混練の際の樹脂の温度上昇を抑えることができる。その結果、特許文献1に記載の技術によれば、溶融、混練の際の樹脂の分解等を防ぐことができ、樹脂製品の品質低下を抑えることができる。
ところで、上記同方向完全噛み合い型二軸押出機内、又は同方向噛み合い型二軸押出機内での反応による樹脂の機能改善を行おうとする場合、押出機内で反応を促進する必要がある。反応を促進するためには、所定の時間で混練混合を行うことが必要であるが、混練混合の際に、せん断応力が発生し、結果として温度が上昇する。このため、上記同方向完全噛み合い型二軸押出機には、溶融、混練の際の樹脂の温度上昇を抑え、樹脂の分解による樹脂製品の品質の低下を抑えるとともに、押出機内での樹脂の反応を促進できる技術が求められている。
国際公開第00/47393号パンフレット
Geometry of Fully Wiped Twin−screw Equipment; Poly.Eng.Sci.,973,12(18),1978
本発明は以上の課題を解決するためになされたものであり、その目的は、噛み合い型の多軸押出機を用いる樹脂製品の製造において、溶融、混練の際の樹脂の温度上昇を抑えることにより、樹脂の分解による樹脂製品の品質の低下を抑えるとともに、押出機内での樹脂の反応を促進できる技術を提供することにある。
本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、互いに回転して噛み合うn条のスクリューを備えた二軸以上のスクリュー式押出機用のスクリューエレメントピースであって、軸方向断面視において、n条のスクリューの少なくとも一つのフライト部の頂部は所定の曲率半径を有する円弧であり、上記所定の曲率半径がスクリューを配設するためのシリンダにおける上記フライト部の頂部と対向する内壁の曲率半径より小さくなり、上記フライト部の頂部とシリンダの上記内壁との間に間隙が生じるように設計されたスクリューエレメントピースを用いることで上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。
(1) 互いに回転して噛み合うn条のスクリューを備えた二軸以上のスクリュー式押出機用のスクリューエレメントピースであって、軸方向断面視において、n条のスクリュー(nは1以上の整数)の少なくとも一つのフライト部の頂部は所定の曲率半径を有する円弧であり、前記所定の曲率半径がスクリューを配設するためのシリンダにおける前記フライト部の頂部と対向する内壁の曲率半径より小さくなり、前記フライト部の頂部とシリンダの前記内壁との間に間隙が生じるように設計されたスクリューエレメントピース。
(2) 軸方向断面視において、前記フライト部は前記円弧の両端に連結された該円弧の曲率半径より大きな曲率半径を有する第一の円弧と第二の円弧とを備え、前記円弧は、前記第一の円弧と前記第二の円弧に内接する真円の円弧である(1)に記載のスクリューエレメントピース。
(3) 軸方向断面視において、前記内接する円の中心はシリンダの中心から前記フライト部が延びる方向に所定距離ずれた位置にあり、前記互いに回転して噛み合うスクリュー間の距離をCl、シリンダの内径をR、角度φをcos−1(Cl/2Rd)、角度αをπ/n−2φ(nは1以上の整数)、前記シリンダの中心と前記内接する円の中心とを結ぶ直線を前記シリンダの中心を中心に(2(n−1)φ+(2n−1)/2・α)回転させた直線Aと前記シリンダの外周との交点を点p、前記シリンダの中心と前記内接する円の中心とを結ぶ直線を前記シリンダの中心を中心に−(2(n−1)φ+(2n−1)/2・α)回転させた直線を直線Bと前記シリンダの外周との交点を点qとしたとき、前記第一の円弧は、前記点pを中心とする半径Clの円弧であり、前記第二の円弧は、前記点qを中心とする半径Clの円弧である(2)に記載のスクリューエレメントピース。
(4) 軸方向の断面形状が、回転方向又は逆回転方向に連続的に捩れ、前記シリンダの外径Rと、リード長Lとが下記関係式(1)を満たす(1)から(3)のいずれかに記載のスクリューエレメントピース。
Figure 2011046079
(5) 複数のニーディングディスクを、前記スクリューの軸方向に配設してなる(1)から(3)のいずれかに記載のスクリューエレメントピース。
(6) (1)から(5)のいずれかに記載のエレメントピースを備えるスクリュー。
本発明によれば、少なくとも一つのフライト部の頂部の所定の曲率半径が、スクリューを配設するためのシリンダの半径より小さくなり、上記フライト部の頂部とシリンダの内壁との間に間隙が生じるように設計されている。その結果、上記間隙においては、先端に向かうほど、間隙が狭まるため、伸張圧縮効果がより高くなる。また、上記間隙の狭まり方が連続であるので、スムーズに溶融樹脂が上記間隙を通過する。また、本発明は、流路体積がより大きいため流速は遅くなり、滞留時間も長くなる。高い伸張圧縮効果、間隙における溶融樹脂のスムーズな移送、そして、流速が遅くなり、滞留時間が長くなるという効果により、同方向完全噛み合い型の多軸押出機を用いる樹脂製品の製造において、溶融、混練の際の樹脂の分解による樹脂製品の品質の低下を抑えるとともに、押出機内での樹脂の反応を促進できる。
シリンダに装着された条数が2(n=2)の場合の本発明の第一実施形態のスクリューエレメントピースの軸方向の断面を示す図である。 条数が2(n=2)の場合の従来技術のスクリューエレメントピースを示す図である。 条数が2(n=2)の場合の図1とは別の第二実施形態のスクリューエレメントピースを示す図である。 第三実施形態において条数が2(即ちn=2)のスクリューエレメントピースを示す図である。 図4に示すスクリューエレメントピースにおいて、第一フライト部の先端の真円の円弧の中心の位置b、半径rについて説明するための図である。 第三実施形態の条数が3(n=3)の場合のスクリューエレメントピースをシリンダに配設した状態のスクリュー軸方向断面図である。 図6(a)のスクリューエレメントピース1、1をさらに説明するための図である。 第一フライト部11と第三フライト部13がシリンダ外周との間にクリアランスを持つ条数が3(n=3)のスクリューエレメントピースを示す図である。 図6に示すスクリューエレメントピースにおいて、第一フライト部の先端の真円の円弧の中心の位置b、半径rについて説明するための図である。 第三実施形態において条数が1(即ちn=1)のスクリューエレメントピースを示す図である。 複数のニーディングディスクを、スクリューの軸方向に配設してなるスクリューエレメントピースを示す図である。 一枚のディスク内でスクリューが回転する方向又は回転する方向と逆方向に連続的に捩れるニーディングディスクを用いた場合のスクリューエレメントピースを示す図である。 全く捩れのないニーディングディスクであるスクリューエレメントピースを示す図である。 実施例の解析モデル及び比較例1、2の解析モデルを示す図である。
以下、本発明の実施形態について詳細に説明する。なお、本発明は以下に記載される発明に限定されない。
<スクリューエレメントピース>
本発明のスクリューピースは、互いに回転して噛み合うn条のスクリューを備えた二軸以上のスクリュー式押出機用のスクリューエレメントピースであって、スクリューの軸方向断面視において、n条のスクリューの少なくとも一つのフライト部の頂部は所定の曲率半径を有する円弧であり、上記所定の曲率半径はスクリューを配設するためのシリンダにおける上記フライト部の頂部と対向する内壁の曲率半径より小さくなり、上記フライト部の頂部とシリンダの上記内壁との間に間隙が生じるように設計されたスクリューエレメントピースである。以下、本発明のスクリューエレメントピースについて、図面を参照しながら具体例を用いてさらに詳細に説明する。具体的には、噛み合い型二軸押出機に用いるスクリューエレメントピースを例に説明する。
図1は、シリンダに装着された本発明の第一実施形態のスクリューエレメントピースの軸方向の断面を示す図である。図1(a)は、軸方向の断面の全体図であり、図1(b)はフライト部の周辺を拡大した図である。
図1に示すように、本発明のスクリューエレメントピース1、1は対になって、バレル2のシリンダ21、21に配設される。具体的には、一対のスクリューエレメントピース1、1が、隣り合い回転自在にシリンダ21、21に配設される。このように、一対のスクリューエレメント1、1は同じ形状であるため、以下の説明においては一方のスクリューエレメントを例に説明する。
図1に示すスクリューエレメントピース1は、二条のスクリューであり、第一フライト部11、第二フライト部12を備える。
第一フライト部11は、頂部が曲率半径Raの円弧である。また、シリンダ21の中心から第一フライト部11の頂部までの長さはY1である。
第二フライト部12は、頂部がシリンダ2の内壁とほぼ接するフライト部である。シリンダ2の中心から第二フライト部12の頂部までの長さはY2である。
そして、上記長さY2は、シリンダ21の中心から第一フライト部11の頂部までの長さY1よりも長い。
バレル2は、スクリューエレメントピース1、1を配設するためのシリンダ21、21を備える。
シリンダ21、21は、図1(a)に示すように、スクリューの軸方向の断面が、一対の円を両円の中間で互いに円周の一部が重なりあうような形状である。また、シリンダ21、21は、図1(a)に示すように、中心間距離がClであり、シリンダ21、21の半径(軸方向断面視においてシリンダ21の中心からそのシリンダ21の内壁までの距離)はともにRdである。シリンダ21、21は、一対のスクリューエレメントピース1、1が噛み合いながら回転自在に配設できるものであれば特に限定されない。
シリンダ21、21の半径Rdは、シリンダ21の中心から第一フライト部11の頂部までの長さY1よりも長い。その結果、第一フライト部11の先端とシリンダ21との間には間隙が存在する。間隙は、図1(b)に示すように第一フライト部11の頂部へ向かうほど狭まる(例えば、図1(b)中のYa>Yb>Yc)。このように、間隙は、第一フライト部11の頂部へ向かうほど狭まるが、連続的に狭まるようにすることが本発明の特徴の一つである。
上記の通り、第二フライト部12の頂部はシリンダ21の内壁とほぼ接する。従って、シリンダ21の半径Rdとシリンダ21の中心から第二フライト部12の頂部までの長さY2は、ほぼ同じ長さになるが、第二フライト部12とシリンダ21の内壁との接触を防ぐために0.1mmから0.9mmだけY2の方が短くなる。
本実施形態によれば、以下の作用、効果が奏される。
第一フライト部11の頂部の曲率半径Raは、シリンダ21の半径Rdより小さい。従って、図1(b)に示すように、第一フライト部11の頂部とシリンダ21の内壁との間に形成される間隙は、第一フライト部11の頂部に向かうほど連続的に狭まる。その結果、伸張圧縮効果が高まる。そして、連続的に間隙の幅が狭まるためスムーズに溶融樹脂が移送される。
さらに、本発明では、上記長さY1が上記長さY2よりも短くなっている分だけ、溶融樹脂の流路体積が大きくなる。その結果、溶融樹脂の流速は早くなり、滞留時間も長くなる。
上記のような間隙が形成されるスクリューエレメントピース1であれば、溶融樹脂の流速は、上記の通り遅くなるものの溶融樹脂内での分子の移動距離は大きくなる。その結果、押出機内での反応を伴う溶融、混練の場合には、反応を促進することができる。
上記のような間隙が形成されるスクリューエレメントピース1であれば、押出機内に溶融樹脂を充分に分配することができる。この高い分配性能のため、押出機内での反応を伴う溶融、混練の場合には、反応を促進することができる。
上記のような間隙を形成することにより、溶融、混練の際の発熱で樹脂温度が上昇し過ぎることを抑えることができるとともに、押出機内で反応を伴う溶融、混練の場合には反応を促進することができる。
一般的に、2軸押出機内で、反応を促進させる場合、ニーディングディスクで混練混合を行うが、リードの小さいフライトスクリューを使用することもある。フライトスクリューは、ニーディングディスクと比較し、混合効率は低下するが、リードを小さくすることで、滞留時間が増加し、発熱が小さくなる利点がある。本発明は、ニーディングディスク、ロータ、及びフライトスクリューに適応できる。
これに対して、図2(a)に示すような、同方向完全噛み合い型のスクリュエレメントピース(従来技術)の場合には、フライト部とシリンダとの間に隙間がほとんど無いため樹脂に対して強いせん断力がかかり、樹脂の温度が上昇しやすい。その結果、樹脂の温度が樹脂の分解温度を超えやすく、樹脂製品の品質の低下につながる。
また、図2(b)に示すような、特許文献1に記載のスクリューエレメントピースの場合には、スクリューの軸方向断面視において、一方のフライト部とシリンダとの間に間隙を備えるため、溶融、混練の際の樹脂の温度上昇を抑えることができる。しかし、特許文献1に記載のスクリューエレメントピースには、本発明のスクリューエレメントピースのような、押出機内で反応を伴う溶融、混練の場合に、押出機内での反応を促進する効果は本発明よりも劣る。図2(b)に示すスクリューエレメントピースは、軸心(シリンダーの中心)から所定の曲率半径でリカットされており、カットされたフライト部とシリンダの内壁との間隙は一定だからである。
次いで、第二実施形態のスクリューエレメントピース1について説明する。
図3には、図1とは別の第二実施形態のスクリューエレメントピースを示す。図3(a)は、第二実施形態のスクリューエレメントピースをシリンダに配設した状態のスクリュー軸方向断面図であり、図3(b)は、図3(a)のスクリューエレメントピースのフライト部周辺を拡大した図である。以下において、第一実施形態に対応する構成については、適宜その説明を省略する。
図3(a)に示すように、本実施形態のスクリューエレメントピース1、1は、第一実施形態の場合と同様に、対になってバレル2のシリンダ21、21に配設される。
図3に示す第二実施形態のスクリューエレメントピース1は、二条のスクリューであり、第一実施形態の場合と同様に、第一フライト部11、第二フライト部12を備える。
第一実施形態と異なる点は、第一フライト部11である。第二実施形態の第一フライト部11は、図3(b)に示すように、真円の円弧111、第一円弧112、第二円弧113を備える。
第二フライト部12は、第一実施形態のものと同様である。
シリンダ21は、第一実施形態と同様であり、一対のスクリューエレメントピース1、1が噛み合いながら回転自在に配設できるものであれば特に限定されない。
円弧111は、第一フライト部11の頂部に位置する真円の円弧である。円弧111の曲率半径Ra(真円の半径Ra)は、第一円弧112、第二円弧113の曲率半径よりも小さい。また、上記半径Raはシリンダ21の半径Rdよりも小さい。
第一円弧112、第二円弧113は、第一円弧112と第二円弧113とで円弧111を挟むように位置する。そして、第一円弧112、第二円弧113は、円弧111が第一円弧112、第二円弧113に内接するように円弧111を挟む。第一円弧112の曲率半径と第二円弧113の曲率半径とは等しい。そして、第一円弧112、第二円弧113の曲率半径は、円弧111の曲率半径よりも大きい。
第二実施形態によれば、第一フライト部11の頂部の円弧111が真円であり、第一フライト部11の頂部の円弧111の曲率半径Raを、シリンダ21の半径Rdより小さくして、第一フライト部11の頂部とシリンダ21との間に形成される間隙を、第一フライト部11の頂部に向かうほど連続的に狭まるようにする。このように第一フライト部11を設計することで、押出機内での反応を伴う溶融、混練の場合には、反応をさらに促進することができる。
次いで、第三実施形態のスクリューエレメントピース1について説明する。以下において、第一実施形態、第二実施形態に対応する構成については、適宜その説明を省略する。
第三実施形態のスクリューエレメントピースは、第二実施形態と同様に、少なくとも一つのフライト部が真円の円弧111、第一円弧112、第二円弧113を有する。そして、真円の円弧111は第一円弧112と第二円弧113とに挟まれ、第一円弧112、第二円弧113に内接する。
第三実施形態のスクリューエレメントピースの特徴は、軸方向断面視において、上記円弧111の真円の中心はシリンダ21の中心oから第一フライト部11が延びる方向に所定距離ずれた位置にあり、互いに回転して噛み合うスクリューエレメントピース1、1間の距離をCl、シリンダ21の半径をRd、角度φをcos−1(Cl/2Rd)、角度αをπ/n−2φ(nは1以上の整数である)、シリンダ21の中心oと円弧111の真円の中心とを結ぶ直線をシリンダ21の中心oを中心に(2(n−1)φ+(2n−1)/2・α)回転させた直線Aと前記シリンダの外周との交点を点p、前記シリンダの中心と前記内接する円の中心とを結ぶ直線を前記シリンダの中心を中心に−(2(n−1)φ+(2n−1)/2・α)回転させた直線を直線Bとし、直線Bとシリンダ21の外周との交点を点qとしたとき、上記第一円弧112は、点pを中心とする半径Clの円弧であり、第二円弧113は、点qを中心とする半径Clの円弧であることにある。
即ち、第三実施形態のスクリューエレメントピース1、1は、シリンダ21の半径Rd、一対のスクリューエレメントピース1、1の中心間距離Cl、スクリューエレメントピース1、1の条数を決めることで円弧111の形状、第一円弧112の形状、第二円弧113の形状が決まる点が構成上の特徴である。また、このような構成にすることにより、後述する通り、本発明の効果はさらに高まる。
n=2の場合について説明する。
図4には、第三実施形態において条数が2(即ちn=2)のスクリューエレメントピース1、1を示す。図4(a)は、第三実施形態のスクリューエレメントピース1、1をシリンダ21、21に配設した状態のスクリュー軸方向断面図であり、図4(b)は、図4(a)のスクリューエレメントピース1、1をさらに説明するための図である。
上記の通り、スクリューエレメントピース1、1の中心間距離Cl、シリンダ21、21の半径Rdを決めるとφが決まる。また、n=2の場合、φとαとの間には2π=4α+8φの関係がある。シリンダ21は、それぞれ、図4(b)に示すように軸方向の断面形状は円である。この円は、図4(b)に示すように、中心角がαの扇型と中心角が2φの扇型が交互に並ぶように放射状にシリンダ21の中心oから分割することができる。
n=2の場合、フライト部の数は2である。第一フライト部11が延びる方向に第一フライト部11を二分割する直線が、中心角がαの扇型を中心角がα/2の二つの扇型に分割する直線Cと重なるように第一フライト部11を設ける。直線Cと後述する円弧111との交点をfとする。また、第一フライト部11と同じ方向に延びる中心角αの扇型を形成する直線と円弧111との交点をn、eとする。
次いで、第二フライト部12の位置について説明する。第二フライト部12が延びる方向に第二フライト部12を二分割する直線が、直線Cをシリンダ21の中心oを中心に(2α+4φ)回転した直線Dと重なるように第二フライト部12を設ける。また、第二フライト部12と同じ方向に延びる中心角αの扇型を形成する直線とシリンダ21の外周との交点をi、hとする。
第一フライト部11、第二フライト部12のいずれか一方の頂部の円弧が、第一円弧と第二円弧とに挟まれる真円の円弧であり、頂部の円弧が第一円弧と第二円弧とに内接する真円の円弧であればよい。ここでは、第一フライト部11の頂部に上記円弧を設ける場合について説明する。
第一フライト部11は、円弧111と第一円弧112と第二円弧113とを備える。
円弧111は真円の円弧であり、第一フライト部11の頂部に位置する。その真円の中心bは、第一フライト部11が延びる方向に所定距離ずれた位置にある。即ち、その中心bは直線C上に存在する。そして、真円の半径rは、中心bから第一円弧112又は第二円弧113に垂線を引いたときのその垂線の長さである。第一円弧112に対して中心bから引いた垂線と第一円弧112との交点をc1、第二円弧113に対して中心bから引いた垂線と第二円弧113との交点をc2とする。c1からc2までの円弧が円弧111である。また、点bから点c1までの距離又は点bから点c2までの距離が真円の半径rである。第一フライト部11の頂部に位置する円弧111とシリンダ21との間には間隙が存在する。
次いで、第一円弧112について説明する。直線Cをシリンダ21の中心oを中心に(2φ+3/2α)回転させた直線を直線Aとし、直線Aとシリンダ21の外周との交点を点pとする。第一円弧112は、図4(b)に示すように、点pを中心とする半径Clの円弧である。
次いで、第二円弧113について説明する。直線Cをシリンダ21の中心oを中心に−(2φ+3/2α)回転させた直線を直線Bとし、直線Bとシリンダ21の外周との交点を点qとする。第二円弧は、図4(b)に示すように、点qを中心とする半径Clの円弧である。
第一フライト部11と第二フライト部12との間にある中心角αの扇型を形成する直線とスクリューエレメントピース1の外周との交点をそれぞれ、l、m、j、dとする。これらの中心角αの扇型の円弧は、半径Rsの真円の円弧である。なお、この半径Rsを谷径と呼ぶ。
したがって第一円弧112はdからc1までの円弧であり、第二円弧113はmからc2までの円弧である。
即ち、第一円弧112は点uをシリンダ21の中心oを中心に(2α+2φ)回転させた点pを中心とした半径Clの真円の円弧である。また、第二円弧113は、点tをシリンダ21の中心oを中心に−(2α+2φ)回転させた点qを中心とした半径Clの真円の円弧である。
次いで、第二フライト部12について説明する。第二フライト部12も第一フライト部11と同様に三つの円弧を備える。具体的には、i、h間の円弧121とi、j間の円弧122とh、l間の円弧123とを備える。また、第一フライト部11と第二フライト部12との間にある中心角αの扇型を形成する直線とシリンダ21の外周との交点はp、q、s、gである。
i、h間の円弧121は、中心角がαであり、半径がRdより0.1mmから0.9mm程度小さい真円の円弧である。i、j間の円弧122は、gを中心とする半径Clの真円の円弧である。h、l間の円弧123は、sを中心とする半径Clの真円の円弧である。
i、j間の円弧122は、点g(点iをシリンダ21の中心oを中心に−(2α+2φ)回転させた点)を中心とする半径Clの真円の円弧である。また、h、l間の円弧123は、点s(点hをシリンダ21の中心oを中心に(2α+2φ)回転させた点)を中心とする半径Clの円弧である。
このように円弧を挟む両端の円弧については、第一フライト部11。第二フライト部12ともに、フライト部と同じ方向に延びる中心角αの扇型を形成する直線とシリンダ21の外周との交点を所定の角度点oを中心に回転移動させた点を中心とする半径Clの円弧である。
上記の通り、円弧111は真円の円弧であり、この真円は、第一円弧112と第二円弧113に内接する。真円の半径rはシリンダ21の半径Rdよりも小さい。したがって、第一フライト部11の頂部とシリンダ21との間に形成される間隙は、第一フライト部11の頂部に向かうほど連続的に狭まる。その結果、第一実施形態、第二実施形態のスクリューエレメントピースの場合と同様に、溶融、混練の際の発熱で樹脂温度が上昇し過ぎることを抑えることができるとともに、押出機内で反応を伴う溶融、混練の場合には反応を促進することができる。本実施形態のような第一フライト部11にすることで、上記の効果はさらに高まる。
本実施形態の特徴は、真円の円弧111にある。そこで、その真円の中心の位置、半径についてさらに詳細に説明する。
上記真円の中心の位置b、半径rについて図5を参照しながら説明する。
∠opbをθとする(0<θ<φ)
上記の通り、第一円弧112は半径Clの真円の円弧である。そして、点bと点c1との間の距離はrである。したがって、点pと点bとの間の距離は、Cl−rである。
また、∠pobは、図5に示すように、
∠pob=∠pog+∠goe+∠eob=∠α+2φ+α/2=3/2・α+2φ
・・・(I)
である。
また、
∠obp=π−∠opb−∠pob=π−θ−(3/2・α+2φ)・・・(II)
である。
また、
(点bと点pとの間の距離(図ではbpと示す))/sin(∠pob)=(点oと点pとの間の距離(図ではopと示す))/sin(∠obp)・・・(III)
である。
ここで、式(III)に式(I)及び式(II)を代入すると、
(Cl−r)/sin(3/2・α+2φ)=Rd/sin(π−(θ+3/2・α+2φ))となり、さらに変形すると、
(Cl−r)/sin(3/2・α+2φ)=Rd/sin(θ+3/2・α+2φ)
以上より、円弧の半径r=Cl−Rd(sin(2φ+3/2・α)/sin(θ+2φ+3/2・α)となる。
次いで、シリンダ21の中心oから点bまでの距離の導出を行う。
(中心oから点bまでの距離(図中ではobと示す))/sin(∠opb)=(中心oと点pとの間の距離(図中ではopと示す))/sin(∠obp)・・・(IV)
式(IV)に式(II)を代入すると、
(中心oから点bまでの距離)/sin(θ)=Rd/sin(π−(θ+3/2・α+2φ))となり、
(中心oから点bまでの距離)=Rd(sinθ/sin(θ+2φ+3/2α))となる。
次いで、n=3の場合について、図6を参照しながら説明する。
図6(a)は、第三実施形態のn=3の場合のスクリューエレメントピースをシリンダに配設した状態のスクリュー軸方向断面図であり、図6(b)は、図6(a)のスクリューエレメントピース1、1をさらに説明するための図である。
n=3の場合、φとαとの間には2π=6α+12φの関係がある。したがって、図6(a)に示すように、n=2の場合と同様に中心角がαの扇型と中心角が2φの扇型が交互に並ぶように放射状にシリンダ21の中心oから分割することができる。
n=3の場合、フライト部の数は3である。したがって、スクリューエレメントピース1は、図6(a)、(b)に示すように、第一フライト部11と第二フライト部12と第三フライト部13とを備える。
図6(b)に示すように、第一フライト部11が延びる方向に第一フライト部11を二分割する直線が、中心角がαの扇型を中心角がα/2の二つの扇型に分割する直線Cと重なるように第一フライト部11を設ける。直線Cと後述する円弧111との交点をfとする。また、第一フライト部11と同じ方向に延びる中心角αの扇型を形成する直線と円弧111との交点をn、eとする。
次いで、第二フライト部12の位置について図6(b)を参照しながら説明する。第二フライト部12が延びる方向に第二フライト部12を二分割する直線が、直線Cをシリンダ21の中心oを中心に(2α+4φ)回転した直線Dと重なるように第二フライト部12を設ける。また、第二フライト部12と同じ方向に延びる中心角αの扇型を形成する直線とスクリューエレメントピース1の外周との交点をg、pとする。
次いで、第三フライト部13の位置について説明する。第三フライト部13が延びる方向に第三フライト部13を二分割する直線が、直線Dをシリンダ21の中心oを中心に(2α+4φ)回転した直線Eと重なるように第三フライト部13を設ける。また、第三フライト部13と同じ方向に延びる中心角αの扇型を形成する直線とスクリューエレメントピース1の外周との交点をq、sとする。
即ち、以上の通り、第二フライト部12は直線Cをシリンダ21の中心oを中心に(2α+4φ)回転した直線Dと重なるように設け、第三フライト部13は直線Cをシリンダ21の中心oを中心に{2×(2α+4φ)}回転した直線Eと重なるように設ける。
第一フライト部11、第二フライト部12、第三フライト部13の少なくとも一つのフライト部の頂部の円弧が、第一円弧と第二円弧とに挟まれる真円の円弧であり、上記頂部の円弧が第一円弧と第二円弧とに内接する真円の円弧であればよい。ここでは、第一フライト部11の頂部に上記円弧を設ける場合について説明する。
第一フライト部11は、円弧111と第一円弧112と第二円弧113とを備える。
円弧111は真円の円弧であり、第一フライト部11の頂部に位置する。その真円の中心bは、第一フライト部11が延びる方向に所定距離ずれた位置(点b)にある。即ち、その中心は直線C上に存在する。そして、真円の半径rは、中心bから第一円弧112又は第二円弧113に垂線を引いたときの垂線と同じ長さである。第一円弧112に対して中心bから引いた垂線と第一円弧112との交点をc1、第二円弧113に対して中心bから引いた垂線と第二円弧113との交点をc2とする。したがって、点bから点c1までの距離又は点bから点c2までの距離が半径rであり、c1からc2までの円弧が円弧111である。また、第一フライト部11の頂部に位置する円弧111とシリンダ21との間には間隙が存在する。間隙の最も狭い部分は第一フライト部11の頂部の点fからシリンダ21までの最短距離である。
次いで、第一円弧112について説明する。直線Cをシリンダ21の中心oを中心に(4φ+5/2・α)回転させた直線とシリンダ21の外周との交点を点pとする。第一円弧112は、図6(b)に示すように、点pを中心とする半径Clの円弧である。
次いで、第二円弧113について説明する。直線Cをシリンダ21の中心oを中心に―(4φ+5/2・α)回転させた直線とシリンダ21の外周との交点を点qとする。第二円弧は、図6(b)に示すように、点qを中心とする半径Clの円弧である。
以上の通り、n=3の場合の第一フライト部11は、n=2の場合の第一フライト部と同様に考えることができる。
第一フライト部11と第二フライト部12との間にある中心角αの扇型を形成する直線とスクリューエレメントピース1の外周との交点をそれぞれ、l、mとする。この中心角αの扇型の円弧は、半径Rsの真円の円弧であり、この半径を谷径と呼ぶ。第二フライト部12と第三フライト部13との間、第三フライト部13と第一フライト部11との間も同様に考えることができる。なお、第二フライト部12と第三フライト部13との間、にある中心角αの扇型を形成する直線とスクリューエレメントピース1の外周との交点をd、jとする。
したがって、第一円弧112、第二円弧113についてもn=2の場合と同様に半径Rsの真円の円弧の一端から円弧111の一端までの円弧である。
以上の通りフライト部とフライト部との間に形成される円弧についてもn=2の場合と同様に考えることができる。
次いで、第二フライト部12、第三フライト部13について説明する。第二フライト部12と第三フライト部13とは、同じ形状であるため、第二フライト部12についてのみ説明する。第二フライト部12も第一フライト部11と同様に三つの円弧を備える。具体的には、g、p間の円弧121とg、m間の円弧122とp、d間の円弧123とを備える。
g、p間の円弧121は、中心角αの半径がおよそRd(Rdより0.1mmから0.9mm短い。)の円の円弧である。g、m間の円弧122は、sを中心とする半径Clの真円の円弧である。p、d間の円弧123は、t’を中心とする半径Clの真円の円弧である。なお、t’はoとt’を結ぶ直線とシリンダ21の外周との交点である。
以上の通り、第二フライト部12についてもn=2の場合と同様に設けることができる。また、図7に示すように、第二フライト部12も第三フライト部13も、頂部は中心角α、半径がおよそRdの円弧である。そして、頂部の円弧を挟む円弧については、フライト部と同じ方向に延びる中心角αの扇型を形成する直線とシリンダ21の外周との交点を所定の角度、点oを中心に回転移動させた点を中心とする半径Clの円弧である。
次に、円弧111の真円の中心の位置、半径について、図7を参照しながらさらに詳細に説明する。n=2の場合と同様に考えることができるため適宜説明を省略する。
∠opbをθ(0<θ<2φ)とすると、図7に示すように、n=2の場合と同様に点pと点bとの間の距離は、Cl−rであり、式(V)、式(VI)、式(VII)が成立する。
∠pob=5/2・α+4φ ・・・(V)
∠obp=π−θ−(5/2・α+4φ) ・・・(VI)
(点bと点pとの間の距離(図ではbpと示す))/sin(∠pob)=(点oと点pとの間の距離(図ではopと示す))/sin(∠obp) ・・・(VII)
である。
ここで、式(VII)に式(V)及び式(VI)を代入すると、
(Cl−r)/sin(5/2・α+4φ)=Rd/sin(π−(θ+5/2・α+4φ))となり、さらに変形すると、
(Cl−r)/sin(5/2・α+4φ)=Rd/sin(θ+5/2・α+4φ)
以上より、
円弧の半径r=Cl−Rd(sin(4φ+5/2・α)/sin(θ+4φ+5/2・α)となる。
次いで、シリンダ21の中心oから点bまでの距離の導出を行う。
(中心oから点bまでの距離(図中ではobと示す))/sin(∠opb)=(中心oと点pとの間の距離(図中ではopと示す))/sin(∠obp) ・・・(VIII)
式(VIII)に式(VI)を代入すると、
(中心oから点bまでの距離)/sin(θ)=Rd/sin(π−(θ+5/2・α+4φ))となり、
(中心oから点bまでの距離)=Rd(sinθ/sin(θ+4φ+5/2α))となる。
以上のn=3の場合の説明では、第一フライト部11のみがシリンダ外周との間にクリアランスを持つ。本願発明においては他のフライト部も第一フライト部と同様の形状にしてもよい。例えば、図6(c)に示すような、第一フライト部11と第三フライト部13がシリンダ外周との間にクリアランスを持つ形状にしてもよい。
n=1の場合について説明する。n=2、3のものが好ましいが、n=1の場合でも本発明の効果は奏される。
図8には、第三実施形態において条数が1(即ちn=1)のスクリューエレメントピース1を示す。図8(a)は、第三実施形態のスクリューエレメントピース1をシリンダ21に配設した状態のスクリュー軸方向断面図であり、図8(b)は、図8(a)のスクリューエレメントピース1をさらに説明するための図である。
上記の通り、スクリューエレメントピース1、1の中心間距離Cl、シリンダ21、21の半径Rdを決めるとφが決まる。また、n=1の場合、φとαとの間には2π=2α+4φの関係がある。シリンダ21は、それぞれ、図8(b)に示すように軸方向の断面形状は円である。この円は、図8(b)に示すように、中心角がαの扇型と中心角が2φの扇型が交互に並ぶように放射状にシリンダ21の中心oから分割することができる。
n=1の場合、フライト部の数は1である。第一フライト部11が延びる方向に第一フライト部11を二分割する直線が、中心角がαの扇型を中心角がα/2の二つの扇型に分割する直線Cと重なるように第一フライト部11を設ける。直線Cと後述する円弧111との交点をfとする。また、第一フライト部11と同じ方向に延びる中心角αの扇型を形成する直線と円弧111との交点をn、eとする。
次いで、直線Cをシリンダ21の中心oを中心に(1/2α)回転した直線Aとシリンダ外周との交点を、p,iとする。直線Cをシリンダ21の中心oを中心に−(1/2α)回転した直線Bとシリンダ外周との交点を、q,hとする。
第一フライト部11の頂部の円弧は、第一円弧と第二円弧とに挟まれる真円の円弧であり、頂部の円弧が第一円弧と第二円弧とに内接する真円の円弧であればよい。
第一フライト部11は、円弧111と第一円弧112と第二円弧113とを備える。
円弧111は真円の円弧であり、第一フライト部11の頂部に位置する。その真円の中心bは、第一フライト部11が延びる方向に所定距離ずれた位置にある。即ち、その中心bは直線C上に存在する。そして、真円の半径rは、中心bから第一円弧112又は第二円弧113に垂線を引いたときのその垂線の長さである。第一円弧112に対して中心bから引いた垂線と第一円弧112との交点をc1、第二円弧113に対して中心bから引いた垂線と第二円弧113との交点をc2とする。c1からc2までの円弧が円弧111である。また、点bから点c1までの距離又は点bから点c2までの距離が真円の半径rである。第一フライト部11の頂部に位置する円弧111とシリンダ21との間には間隙が存在する。
次いで、第一円弧112について説明する。直線Cをシリンダ21の中心oを中心に(1/2α)回転させた直線を直線Aとし、直線Aとシリンダ21の外周との交点を点pとする。第一円弧112は、図8(b)に示すように、点pを中心とする半径Clの円弧である。
次いで、第二円弧113について説明する。直線Cをシリンダ21の中心oを中心に−(1/2α)回転させた直線を直線Bとし、直線Bとシリンダ21の外周との交点を点qとする。第二円弧は、図8(b)に示すように、点qを中心とする半径Clの円弧である。
図8(b)に示すように、直線Aとスクリューピースとの交点がe、l、シリンダ21の外周との交点がp、iである。また、直線Bとスクリューピースとの交点がn、m、シリンダ21の外周との交点をh、qである。円弧lmは、中心角αの扇型円弧で、半径Rsの真円の円弧である。なお、この半径Rsを谷径と呼ぶ。
したがって第一円弧112はlからc1までの円弧であり、第二円弧113はmからc2までの円弧である。
上記の通り、円弧111は真円の円弧であり、この真円は、第一円弧112と第二円弧113に内接する。真円の半径rはシリンダ21の半径Rdよりも小さい。したがって、第一フライト部11の頂部とシリンダ21との間に形成される間隙は、第一フライト部11の頂部に向かうほど連続的に狭まる。その結果、第一実施形態、第二実施形態のスクリューエレメントピースの場合と同様に、溶融、混練の際の発熱で樹脂温度が上昇し過ぎることを抑えることができるとともに、押出機内で反応を伴う溶融、混練の場合には反応を促進することができる。本実施形態のような第一フライト部11にすることで、上記の効果はさらに高まる。
本実施形態の特徴は、真円の円弧111にある。そこで、その真円の中心の位置、半径についてさらに詳細に説明する。
上記真円の中心の位置b、半径rについて図8(b)を参照しながら説明する。
∠opbをθとする(0<θ<φ/2)
上記の通り、第一円弧112は半径Clの真円の円弧である。そして、点bと点c1との間の距離はrである。したがって、点pと点bとの間の距離は、Cl−rである。
また、∠pobは、図8に示すように、
∠pob=1/2・α ・・・(IX)
また、
∠obp=π−∠opb−∠pob=π−θ−(1/2・α) ・・・(X)
また、
(点bと点pとの間の距離(図ではbpと示す))/sin(∠pob)=(点oと点pとの間の距離(図ではopと示す))/sin(∠obp) ・・・(XI)
である。
ここで、式(III)に式(I)及び式(II)を代入すると、
(Cl−r)/sin(1/2・α)=Rd/sin(π−(θ+1/2・α))となり、さらに変形すると、
(Cl−r)/sin(1/2・α)=Rd/sin(θ+1/2・α)
以上より、
円弧の半径r=Cl−Rd(sin(1/2・α)/sin(θ+1/2・α)となる。
次いで、シリンダ21の中心oから点bまでの距離の導出を行う。
(中心oから点bまでの距離(図中ではobと示す))/sin(∠opb)=(中心oと点pとの間の距離(図中ではopと示す))/sin(∠obp) ・・・(XII)
式(XII)に式(X)を代入すると、
(中心oから点bまでの距離)/sin(θ)=Rd/sin(π−(θ+1/2・α))となり、
(中心oから点bまでの距離)=Rd(sinθ/sin(θ+1/2α))となる。
続いて、n条の場合(n=nの場合)について簡単に説明する。
頂部が真円で、外周部とクリアランスを持つフライトの円弧の半径は、
円弧の半径r=Cl−Rd(sin(2(n−1)φ+(2n−1)/2・α)/sin(θ+(2(n−1)φ+(2n−1)/2・α)となる。
円弧の中心bとシリンダの中心oとの距離
(中心oから点bまでの距離)=Rd(sinθ/sin(θ+2(n−1)φ+(2n−1)/2α))となる。
次いで、スクリューエレメントピース全体の形状について説明する。
本発明のスクリューエレメントピースは、軸直角方向に同一の上記断面形状であれば特に限定されない。
スクリューは、複数のスクリューエレメントピースの組み合わせで構成される。例えば、材料を移送するためのスクリューエレメントピース、材料を溶融、混練するためのスクリューエレメントピース等、用途に応じて様々な形状のスクリューエレメントピースを用いる。また、スクリューエレメントピースの長さも適宜好ましい長さに設定する。本明細書において、スクリューエレメントピースとは、上記のようなスクリューを構成する独立した一部品を指す。上記の通り、本発明のスクリューエレメントピースは、溶融、混練の際の発熱で樹脂温度が上昇し過ぎることを抑えることができるとともに、押出機内で反応を伴う溶融、混練の場合には反応を促進することができることが特徴である。以下、スクリューエレメントピースについて、具体例を示しながらさらに説明する。
例えば、スクリューが回転する方向又は回転する方向と逆方向に連続的に捩れるスクリューエレメントピースが挙げられる。スクリューが捩れてから一回転(360°回転)するまでスクリュー軸方向の長さをLとする。一般的に上記のようなスクリューは、押出機内で材料を移送するため利用される。しかし、長さLを4Rd≦L≦20Rdに調整する場合、材料を押し潰し溶融、混練するスクリューにもなる。したがって、スクリューが回転する方向又は回転する方向と逆方向に連続的に捩れるスクリューエレメントピースの場合には、4Rd≦L≦20Rdを満たすように調整されたスクリューエレメントピースに好ましく本発明を適用することができる。
また、本発明のスクリューエレメントピースの一例として、図9に示すような、複数のニーディングディスクを、スクリューの軸方向に配設してなるスクリューエレメントピースが挙げられる。ニーディングスクリューはその回転により樹脂材料に強いせん断力を加え、樹脂材料を溶融、混練するためのスクリューとして用いられる。上記の通り、本発明の特徴は、溶融、混練の際の発熱で樹脂温度が上昇し過ぎることを抑えることができるとともに、押出機内で反応を伴う溶融、混練の場合には反応を促進することができることである。したがって、図9に示すようなスクリューエレメントに対して本発明を好ましく適用することができる。
また、複数のニーディングディスクを、スクリューの軸方向に配設してなるスクリューエレメントピースとしては、図9に示すようなスクリューエレメントピースの他に、図10に示すようなスクリューエレメントピースが挙げられる。図10に示すスクリューエレメントピースは、一枚のディスク内でスクリューが回転する方向又は回転する方向と逆方向に連続的に捩れる点で、図9に示すスクリューエレメントピースと異なる。なお、図10に示すような連続的に捩れる場合の他に段階的に捩れるものであってもよい。
また、本発明において、スクリューエレメントピースとは、上記の通り、スクリューを構成する部品である。したがって、独立した部品であれば、図11に示すような、全く捩れのないニーディングディスクも本発明のスクリューエレメントピースに含まれる。
<スクリュー>
本発明のスクリューエレメントピースを備えるスクリューは、上述の通り、溶融、混練の際の発熱で樹脂温度が上昇し過ぎることを抑えることができるとともに、押出機内で反応を伴う溶融、混練の場合には反応を促進することができる。
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
2軸押出機内3次元流動解析ソフト(アールフロー社製ScrewFlow−Multi)を用いて同方向完全噛み合い型2軸押出機内の樹脂挙動を解析した。
解析の際に用いた支配方程式は、連続式(A)、ナビエ−ストークス式(B)、温度バランス式(C)である。なお、下記式(A)から(E)は、J.M.Ottino(Ottino, J.M. : The Kinematics of Mixing Stretching, Chaos and Transport (1989), Canbridge University Press, Cambridge)、Yao, Weiguang(Seikei−Kakou, vol.10, No.3 (1998))に記載されている。
Figure 2011046079
Figure 2011046079
Figure 2011046079
解析仮定として、非圧縮性流体で、完全溶融・完全充満とした。また、粘度近似式はアレニウス近似及びWLF近似を使用した。解析手法は、有限体積法、SOR法、SIMPLEアルゴリズムであり、計算としては、まず定常解析を行い、これを初期値として、非定常解析を行った。非定常解析の後、トレーサー粒子を配置(約5000個)して、トレーサー粒子にかかる局所情報を収集した。(粒子追跡解析)
反応の進行に影響する平均伸張歪は、以下の式(D)、(E)により、各粒子にかかる混合効率を求め、平均した値である。
Figure 2011046079
Figure 2011046079
解析モデルを図12に示す。
解析モデル1(実施例):スクリューの軸方向の断面形状が図5に示す形状である複数のニーディングディスクをスクリュー軸方向に配設してなるスクリューエレメントピースである(図12(a))。各ニーディングディスク間の捩れ角(位相角)は90°である。
また、バレル内径は69mmで、第一フライト部11の頂部からシリンダ21までの最短距離は、5.305mmである。
解析モデル2(比較例1):スクリューの軸方向の断面形状が図2(a)に示す形状である複数のニーディングディスクをスクリュー軸方向に配設してなるスクリューエレメントピースである。各ニーディングディスク間の捩れ角(位相角)は90°である(図12(b))。バレル内径は69mmで、フライト部の先端部とシリンダとの間の間隔は等間隔であり、その大きさは0.75mmである(間隔が非常に狭いため、図2(a)では、フライト部の先端部とシリンダの内壁とが接するように記載されている)。
解析モデル3(比較例2):スクリューの軸方向の断面形状が図2(b)に示す形状である複数のニーディングディスクをスクリュー軸方向に配設してなるスクリューエレメントピースである。各ニーディングディスク間の捩れ角(位相角)は90°である。バレル内径は69mmで、フライト部の先端部とシリンダとの間の間隙は等間隔(図2(b)中の矢印部分間の長さ)であり、その大きさは5.305mmである。
上記の解析モデルについて、0.5D×4ピース分の2D分の各種モデルと、本発明の3D分,4D分のモデルを解析した。なおDはシリンダの直径(D=2Rd)である。結果を示す表1中にはL/Dとして示した。Lは上記の通り、スクリューが捩れてから一回転(360°回転)するまでスクリュー軸方向の長さである。
境界条件は、押出量と流入面における流路断面積とから求めた流入速度を固定し、温度初期値として、樹脂の流入初期温度200℃、バレル温度180℃とした。
解析条件であるが、押出機は、バレル内径Φ69mmの同方向完全噛み合い型2軸押出機で、流量Q=600kg/hr、スクリュー回転数Ns=300rpmの条件で、樹脂は、POMのDuracon M90−44を用いた。解析結果を表1に示した。
Figure 2011046079
実施例の解析モデルと、比較例1の解析モデルを比較した場合(同一のL/Dについて)、分配指標とされる「伸張歪み」と衝突回数に関する指標としての押出機内の「粒子移動量」は、ほぼ同等である。しかし、実施例の解析モデルの場合、流出面の温度が低下しており、滞留時間は120%に増加している。これは、本発明は、攪拌及び分配効果においては、比較例1と同等であるが、樹脂温度の上昇が抑えられ、滞留時間も長くなっており、非常に反応に適した特徴を有しているといえる。流出面の樹脂温度制限があり、比較例1と実施例とが同じ流出面温度になるようにすると、本発明は、比較例1の180%の滞留時間を持つことが可能である。
一方、実施例の解析モデルと比較例2の解析モデルとを比較した場合(同一のL/Dについて)、流出面の樹脂温度は同等であるものの、比較例2では攪拌及び分配効果においては劣り、滞留時間も小さくなることから、発明が、より反応に適しているといえる。
1 スクリューエレメントピース
11 第一フライト部
111 円弧
112 第一円弧
113 第二円弧
12 第二フライト部
2 バレル
21 シリンダ

Claims (6)

  1. 互いに回転して噛み合うn条のスクリュー(nは1以上の整数)を備えた二軸以上のスクリュー式押出機用のスクリューエレメントピースであって、
    軸方向断面視において、n条のスクリューの少なくとも一つのフライト部の頂部は所定の曲率半径を有する円弧であり、
    前記所定の曲率半径がスクリューを配設するためのシリンダにおける前記フライト部の頂部と対向する内壁の曲率半径より小さくなり、前記フライト部の頂部とシリンダの前記内壁との間に間隙が生じるように設計されたスクリューエレメントピース。
  2. 軸方向断面視において、前記フライト部は前記円弧の両端に連結された該円弧の曲率半径より大きな曲率半径を有する第一の円弧と第二の円弧とを備え、
    前記円弧は、前記第一の円弧と前記第二の円弧に内接する真円の円弧である請求項1に記載のスクリューエレメントピース。
  3. 軸方向断面視において、前記内接する円の中心はシリンダの中心から前記フライト部が延びる方向に所定距離ずれた位置にあり、
    前記互いに回転して噛み合うスクリュー間の距離をCl、
    シリンダの半径をRd、
    角度φをcos−1(Cl/2Rd)、
    角度αをπ/n−2φ(nは1以上の整数である)、
    前記シリンダの中心と前記内接する円の中心とを結ぶ直線を前記シリンダの中心を中心に(2(n−1)φ+(2n−1)/2・α)回転させた直線Aと前記シリンダの外周との交点を点p、前記シリンダの中心と前記内接する円の中心とを結ぶ直線を前記シリンダの中心を中心に−(2(n−1)φ+(2n−1)/2・α)回転させた直線を直線Bと前記シリンダの外周との交点を点qとしたとき、
    前記第一の円弧は、前記点pを中心とする半径Clの円弧であり、
    前記第二の円弧は、前記点qを中心とする半径Clの円弧である請求項2に記載のスクリューエレメントピース。
  4. 軸方向の断面形状が、回転方向又は逆回転方向に連続的に捩れ、
    前記シリンダの半径Rdと、リード長Lとが下記関係式(1)を満たす請求項1から3のいずれかに記載のスクリューエレメントピース。
    Figure 2011046079
  5. 複数のニーディングディスクを、前記スクリューの軸方向に配設してなる請求項1から3のいずれかに記載のスクリューエレメントピース。
  6. 請求項1から5のいずれかに記載のエレメントピースを備えるスクリュー。
JP2009195962A 2009-08-26 2009-08-26 スクリューエレメントピース及びスクリュー Active JP5318709B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009195962A JP5318709B2 (ja) 2009-08-26 2009-08-26 スクリューエレメントピース及びスクリュー
TW099128223A TWI560041B (ja) 2009-08-26 2010-08-24
CN201010263646.0A CN102001174B (zh) 2009-08-26 2010-08-25 螺杆捏合块及螺杆
MYPI2010004005A MY154296A (en) 2009-08-26 2010-08-25 Screw element piece and screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195962A JP5318709B2 (ja) 2009-08-26 2009-08-26 スクリューエレメントピース及びスクリュー

Publications (3)

Publication Number Publication Date
JP2011046079A true JP2011046079A (ja) 2011-03-10
JP2011046079A5 JP2011046079A5 (ja) 2012-01-19
JP5318709B2 JP5318709B2 (ja) 2013-10-16

Family

ID=43809005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195962A Active JP5318709B2 (ja) 2009-08-26 2009-08-26 スクリューエレメントピース及びスクリュー

Country Status (4)

Country Link
JP (1) JP5318709B2 (ja)
CN (1) CN102001174B (ja)
MY (1) MY154296A (ja)
TW (1) TWI560041B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090585A1 (ja) * 2010-12-28 2012-07-05 ポリプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
KR20150023471A (ko) * 2012-05-23 2015-03-05 요제프 아. 블라흐 자체-클리닝 컨베이어 스크류를 갖는 다중 스크류 압출기

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111941798A (zh) * 2020-06-08 2020-11-17 东南大学 一种双螺杆挤出机的双头-三头捏合块的组合

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131371A (en) * 1977-08-03 1978-12-26 E. I. Du Pont De Nemours And Company Co-rotating multiple screw processor
JPS60208209A (en) * 1984-04-02 1985-10-19 Werner & Pfleiderer Same-direction rotating type double screw kneader with kneading plate
JP2002086541A (ja) * 2000-09-13 2002-03-26 Japan Steel Works Ltd:The 同方向回転二軸押出機
WO2009152947A2 (de) * 2008-06-20 2009-12-23 Bayer Materialscience Ag Verfahren zur extrusion plastischer massen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829733B2 (ja) * 1977-11-19 1983-06-24 Sekisui Chemical Co Ltd
GB1595850A (en) * 1978-05-31 1981-08-19 Hpm Corp Extruder with multi-channel wave screw
JPS61141522A (en) * 1984-12-13 1986-06-28 Toshiba Mach Co Ltd Thermoplastic resin kneading screw
US4733970A (en) * 1985-09-09 1988-03-29 Sterling Extruder Corporation Extruder screw
US5487602A (en) * 1994-06-03 1996-01-30 Farrel Corporation Multi-screw, extrusion-compounding machine with modular mixing elements
JP3499414B2 (ja) * 1996-12-24 2004-02-23 株式会社神戸製鋼所 2軸混練機
DE59901472D1 (de) * 1998-10-05 2002-06-20 Coperion Werner & Pfleiderer Gleichdralldoppelschneckenextruder
DE19860256A1 (de) * 1998-12-24 2000-06-29 Krupp Werner & Pfleiderer Gmbh Zwei-Wellen-Extruder
DE10114727B4 (de) * 2001-03-22 2005-05-12 Berstorff Gmbh Schneckenelement für gleichsinnig drehende Mehrschneckenextruder
DE102008029303A1 (de) * 2008-06-20 2009-12-24 Bayer Technology Services Gmbh Schneckenelemente mit verbesserter Dispergierwirkung und geringem Energieeintrag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131371A (en) * 1977-08-03 1978-12-26 E. I. Du Pont De Nemours And Company Co-rotating multiple screw processor
JPS60208209A (en) * 1984-04-02 1985-10-19 Werner & Pfleiderer Same-direction rotating type double screw kneader with kneading plate
JP2002086541A (ja) * 2000-09-13 2002-03-26 Japan Steel Works Ltd:The 同方向回転二軸押出機
WO2009152947A2 (de) * 2008-06-20 2009-12-23 Bayer Materialscience Ag Verfahren zur extrusion plastischer massen
JP2011524278A (ja) * 2008-06-20 2011-09-01 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト プラスチック組成物を押し出しするプロセス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090585A1 (ja) * 2010-12-28 2012-07-05 ポリプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
JP2012140526A (ja) * 2010-12-28 2012-07-26 Polyplastics Co 熱可塑性樹脂組成物の製造方法
KR20150023471A (ko) * 2012-05-23 2015-03-05 요제프 아. 블라흐 자체-클리닝 컨베이어 스크류를 갖는 다중 스크류 압출기
JP2015523237A (ja) * 2012-05-23 2015-08-13 アー ブラハ、ヨーゼフ マルチシャフト押出機
KR101715461B1 (ko) * 2012-05-23 2017-03-13 요제프 아. 블라흐 자체-클리닝 컨베이어 스크류를 갖는 다중 스크류 압출기

Also Published As

Publication number Publication date
JP5318709B2 (ja) 2013-10-16
TW201119836A (en) 2011-06-16
CN102001174B (zh) 2014-09-17
CN102001174A (zh) 2011-04-06
TWI560041B (ja) 2016-12-01
MY154296A (en) 2015-05-29

Similar Documents

Publication Publication Date Title
JP5631296B2 (ja) 混練用セグメント
JP5685595B2 (ja) 多軸ウォームマシーンにおける材料を処理するための処理要素及び多軸ウォームマシーン
JP5518853B2 (ja) 改善された分散効果があり電力入力が低いウォームエレメント
US20110075511A1 (en) Method for constructing co-rotating, contiguous bodies and computer program product for carrying out said method
JP5860973B2 (ja) 押出機混合要素
JP5318709B2 (ja) スクリューエレメントピース及びスクリュー
WO2012017619A1 (ja) 連続混練機及び混練方法
RU2550175C2 (ru) Шнековые элементы для экструзии вискоэластичных масс, применение и способ
KR101773635B1 (ko) 동일한 방향으로 회전하며 서로 접촉하는 바디의 제작 방법 및 상기 방법을 수행하기 위한 컴퓨터 시스템
JP5137613B2 (ja) ニーディングディスクセグメント及び2軸押出機
JP2012532775A (ja) 押出機
WO2014030598A1 (ja) 混練ロータ及び混練機
JP5531059B2 (ja) 二軸スクリュ押出機
JP6396953B2 (ja) ニーディングディスク、スクリュエレメント及び押出機
CN105612041A (zh) 用于多轴螺杆式机器的螺杆元件
JP2011201311A (ja) 連続混練装置
WO2012161286A1 (ja) 連続混練機
JP5684063B2 (ja) 押出機における脱揮装置及び方法
JP5406173B2 (ja) 熱可塑性樹脂組成物の製造方法
JP6735135B2 (ja) スクリュ式押出機
JP5635047B2 (ja) 二軸スクリュ押出機及び混練方法
WO2015122105A1 (ja) 連続混練装置
JP5175822B2 (ja) 混練装置
RU2536844C1 (ru) Устройство для деформационной обработки материалов (варианты)
WO2016108716A1 (ru) Устройство для деформационной обработки материалов (варианты)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5318709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250