JP2011027430A - Instrument and method for measuring mechanical strength of silicon wafer - Google Patents

Instrument and method for measuring mechanical strength of silicon wafer Download PDF

Info

Publication number
JP2011027430A
JP2011027430A JP2009170350A JP2009170350A JP2011027430A JP 2011027430 A JP2011027430 A JP 2011027430A JP 2009170350 A JP2009170350 A JP 2009170350A JP 2009170350 A JP2009170350 A JP 2009170350A JP 2011027430 A JP2011027430 A JP 2011027430A
Authority
JP
Japan
Prior art keywords
wafer
silicon wafer
pressing
mechanical strength
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009170350A
Other languages
Japanese (ja)
Other versions
JP5287571B2 (en
Inventor
Yumi Hoshino
由美 星野
Toshiaki Ono
敏昭 小野
Original Assignee
Sumco Corp
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp, 株式会社Sumco filed Critical Sumco Corp
Priority to JP2009170350A priority Critical patent/JP5287571B2/en
Publication of JP2011027430A publication Critical patent/JP2011027430A/en
Application granted granted Critical
Publication of JP5287571B2 publication Critical patent/JP5287571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instrument and a method suitable for accurately measuring the mechanical strength of a wafer itself without cutting out a test piece from the wafer. <P>SOLUTION: This mechanical strength measuring instrument for a silicon wafer is equipped with: a pair of supporters parallel disposed leaving a prescribed space therebetween and each having a linear protrusively-curved surface; and a presser disposed in an upper position between the supporters parallel to the supporters. The arithmetic average surface roughness Ra is in the range of 0.4 to 3.0 μm, of the supporters and of the protrusively-curved surface contacting with at least the silicon wafer of the presser. The presser is let down from just above the silicon wafer mounted on the supporters while maintaining a parallel state of the presser to the surface of the silicon wafer to press the silicon wafer, the silicon wafer is bendingly deformed in a direction that wraps the presser, and the mechanical strength of the silicon wafer is measured thereby. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、シリコンウェーハの機械的強度測定装置および機械的強度測定方法に関し、特に、シリコンウェーハを試験片として切り出すことなく、シリコンウェーハ自体の機械的強度を精度よく測定するために好適な装置および方法に関する。   The present invention relates to a mechanical strength measuring apparatus and a mechanical strength measuring method for a silicon wafer, and in particular, an apparatus suitable for accurately measuring the mechanical strength of the silicon wafer itself without cutting the silicon wafer as a test piece and Regarding the method.
単結晶インゴットをスライスしたシリコンウェーハ(以下、単に「ウェーハ」という)は、ラッピング、エッチング、ポリッシング、洗浄等、様々な工程を経ることによりポリッシュドウェーハに加工される。また、ポリッシュドウェーハは更に熱処理、酸化膜の形成等の工程を経ることにより、所望の製品(アニール・ウェーハ、エピタキシャル・ウェーハ、SOIウェーハ等)に形成される。   A silicon wafer obtained by slicing a single crystal ingot (hereinafter simply referred to as “wafer”) is processed into a polished wafer through various processes such as lapping, etching, polishing, and cleaning. Further, the polished wafer is formed into a desired product (annealed wafer, epitaxial wafer, SOI wafer, etc.) through further processes such as heat treatment and oxide film formation.
上記工程では、ウェーハ端部に衝撃、応力等が負荷される場合が多いため、ウェーハ端部にはキズ、カケ等の欠陥が生じ易い。例えば、ラッピング時やポリッシング時にはウェーハ端部がホルダー内周面に当接するため、ウェーハ端部に衝撃が負荷される。また、ウェーハ搬送時にはロボットハンド等によりウェーハ端部を把持するため、ウェーハ端部に応力が負荷される。そのため、ウェーハ端部の強度が不足すると、上記衝撃、応力等に起因してウェーハ端部にキズ、カケ等の欠陥が発生し、更にはかかる欠陥を起点とした割れが生じ、破壊に至る。   In the above process, impacts, stresses, and the like are often applied to the wafer end, so that defects such as scratches and chips are likely to occur at the wafer end. For example, when lapping or polishing, the wafer end is in contact with the inner peripheral surface of the holder, so that an impact is applied to the wafer end. Further, since the wafer end is gripped by a robot hand or the like during wafer transfer, stress is applied to the wafer end. For this reason, if the strength at the edge of the wafer is insufficient, defects such as scratches and chips are generated at the edge of the wafer due to the impact, stress, and the like, and further cracks originating from such defects occur, leading to destruction.
上記理由により、ウェーハ製造工程時に懸念されるウェーハ端部のキズ、カケ、割れ等を防止するためにはウェーハ端部が所望の強度を有することが必要である。また、上記キズ、カケ、割れ等の問題を未然に防止する上では、事前にウェーハ端部の強度を正確に評価することが極めて有効である。ウェーハ端部の強度を測定する技術としては、例えば特許文献1〜3にも開示されているように、種々の技術が提案されている。   For the above reasons, it is necessary that the wafer end has a desired strength in order to prevent scratches, scratches, cracks and the like at the wafer end, which are a concern during the wafer manufacturing process. Further, in order to prevent the above-mentioned problems such as scratches, nicks and cracks, it is extremely effective to accurately evaluate the strength of the wafer edge in advance. As techniques for measuring the strength of the wafer edge, various techniques have been proposed as disclosed in, for example, Patent Documents 1 to 3.
しかしながら、近年、製品の高性能化に伴いウェーハに施される熱処理条件が益々過酷になる中、ウェーハ端部のみならずウェーハ表面からの割れが問題視されるようになった。例えば、半導体デバイス製造工程において多用されるFLA処理(フラッシュランプアニール処理)やLSA処理(レーザスパイクアニール処理)では、加熱温度:約1000〜1300℃、処理時間:約0.001sの急速昇降温熱処理がウェーハ表面に施される。このような高温・短時間加熱が施されたウェーハには局所的に大きな熱歪みが生じるため、ウェーハ表面からの割れが発生し易い。加えて、ウェーハサイズはφ300mm、更にはφ450mmと大型化される傾向にあり、従来のウェーハに比べてウェーハ表面に応力が発生し易い形状となっている。   However, in recent years, as the heat treatment conditions applied to wafers have become more severe as product performance has increased, cracks from the wafer surface as well as from the wafer edge have become a problem. For example, in FLA processing (flash lamp annealing processing) and LSA processing (laser spike annealing processing) that are frequently used in semiconductor device manufacturing processes, rapid heating and cooling heat treatment with a heating temperature of about 1000-1300 ° C and a processing time of about 0.001 s is performed. Applied to the wafer surface. Since the wafer subjected to such high-temperature and short-time heating is locally subject to large thermal strain, cracks from the wafer surface are likely to occur. In addition, the wafer size tends to be increased to φ300 mm and further to φ450 mm, and the wafer surface has a shape in which stress is likely to occur compared to a conventional wafer.
そのため、ウェーハの品質を保証する上では、ウェーハ自体の強度も正確に評価する必要があるが、上記特許文献1〜3で提案された技術は、何れもウェーハ自体の強度を直接測定したものではない。   Therefore, in order to guarantee the quality of the wafer, it is necessary to accurately evaluate the strength of the wafer itself. However, none of the techniques proposed in Patent Documents 1 to 3 directly measure the strength of the wafer itself. Absent.
一方、特許文献4には、半導体材料の板状試料片の平面部に対して3点曲げまたは4点曲げ試験を行うことにより、半導体材料の強度を測定する技術が提案されている。しかしながら、特許文献4で提案された技術では、ウェーハ等の半導体材料から切り出した長方形の板状試料片を用いて曲げ試験を行うため、ウェーハ全体としての強度を正確に評価することができない。また、試料片を切り出す際、試料片に新たに導入され得るキズ等の欠陥が測定誤差につながり兼ねない。更に、試料片の切り出し作業も煩雑である。   On the other hand, Patent Document 4 proposes a technique for measuring the strength of a semiconductor material by performing a three-point bending or a four-point bending test on a flat portion of a plate-like sample piece of the semiconductor material. However, with the technique proposed in Patent Document 4, since a bending test is performed using a rectangular plate-shaped sample piece cut out from a semiconductor material such as a wafer, the strength of the entire wafer cannot be accurately evaluated. Further, when cutting out the sample piece, defects such as scratches that can be newly introduced into the sample piece may lead to measurement errors. Further, the work of cutting out the sample piece is complicated.
特開2006−287139号公報JP 2006-287139 A 特開2000−249637号公報JP 2000-249637 A 特開平6−201533号公報Japanese Patent Laid-Open No. 6-201533 特開平9−229838号公報Japanese Patent Laid-Open No. 9-229838
本発明は、上記現状に鑑みて開発されたもので、ウェーハを試験片として切り出すことなく、ウェーハ自体の機械的強度を精度よく測定するために好適な装置および方法の提供を目的とする。   The present invention has been developed in view of the above situation, and an object of the present invention is to provide a suitable apparatus and method for accurately measuring the mechanical strength of the wafer itself without cutting the wafer as a test piece.
本発明者らは、ウェーハ全体としての強度を正確に把握する手段として、ウェーハから試験片を切り出すことなく、ディスク状のウェーハに対して3点曲げまたは4点曲げ試験を行うことにより、ウェーハ強度を測定する手段について鋭意検討した。その結果、通常為されている3点曲げおよび4点曲げ試験をディスク状ウェーハに適用しても、ウェーハ強度を正確に測定できないことが判明した。また、更に検討した結果、以下(a)〜(c)の知見を得た。   As a means of accurately grasping the strength of the entire wafer, the present inventors performed a three-point bending test or a four-point bending test on a disk-shaped wafer without cutting a test piece from the wafer, thereby increasing the wafer strength. We have intensively studied the means to measure As a result, it was found that the wafer strength could not be measured accurately even when the usual 3-point bending and 4-point bending tests were applied to the disk-shaped wafer. As a result of further investigation, the following findings (a) to (c) were obtained.
(a)曲げ試験が具える一対の支持部材にウェーハを載置した状態で、押圧部材により上方からウェーハ表面に荷重を負荷すると、支持部材−ウェーハ間および押圧部材−ウェーハ間ですべりが生じ、測定誤差が生じる。
(b)前記支持部材および前記押圧部材の少なくともウェーハと接触する部分の表面を、所定の算術平均粗さとすることにより、上記すべりを抑制することができる。
(c)前記支持部材または前記押圧部材を、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成することにより、押圧部材による押圧時に簡易に前記支持部材および前記押圧部材をウェーハ表面に対して常に平行状態の位置関係を維持することができる。
(A) When a load is applied to the wafer surface from above by a pressing member in a state where the wafer is placed on a pair of supporting members having a bending test, slip occurs between the supporting member and the wafer and between the pressing member and the wafer, Measurement error occurs.
(B) By making the surface of at least the portion of the support member and the pressing member in contact with the wafer to have a predetermined arithmetic average roughness, the above-mentioned slip can be suppressed.
(C) The support member or the pressing member is configured such that both longitudinal end portions are rotatable in the vertical direction with the longitudinal center portion as a fulcrum, so that the supporting member and the pressing member can be easily pressed when pressed by the pressing member. It is possible to always maintain the positional relationship in a parallel state with respect to the wafer surface.
本発明は、上記知見に基づきなされたもので、その要旨は以下のとおりである。
(1)所定の間隔を置いて平行に配置されたライン状凸曲面部を有する一対の支持部材と、該支持部材間の上方位置に、支持部材と平行に配置されたライン状凸曲面部を有する押圧部材とを具え、前記支持部材および前記押圧部材の少なくともシリコンウェーハと接触する前記凸曲面部の表面における算術平均粗さRaが0.4μm以上3.0μm以下の範囲であり、前記支持部材に載置したシリコンウェーハの真上から前記押圧部材をシリコンウェーハ面との平行状態を維持しながら降下させてシリコンウェーハを押圧し、押圧部材を包む方向にシリコンウェーハを曲げ変形させることによりシリコンウェーハの機械的強度を測定することを特徴とする、シリコンウェーハの機械的強度測定装置。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A pair of support members having a line-shaped convex curved surface portion arranged in parallel at a predetermined interval, and a line-shaped convex curved surface portion arranged in parallel with the support member at an upper position between the support members. An arithmetic mean roughness Ra of the surface of the convex curved surface portion that contacts at least the silicon wafer of the support member and the pressing member is in a range of 0.4 μm or more and 3.0 μm or less, and is mounted on the support member. The silicon wafer is machined by lowering the pressing member from directly above the placed silicon wafer while maintaining the parallel state with the silicon wafer surface, pressing the silicon wafer, and bending and deforming the silicon wafer in a direction to wrap the pressing member. An apparatus for measuring the mechanical strength of a silicon wafer, wherein the mechanical strength is measured.
(2)前記押圧部材が、平行に配置された一対のライン状凸曲面部を有する押圧部材である、上記(1)に記載のシリコンウェーハの機械的強度測定装置。 (2) The silicon wafer mechanical strength measuring device according to (1), wherein the pressing member is a pressing member having a pair of line-shaped convex curved surface portions arranged in parallel.
(3)前記支持部材のうちの何れか一方の支持部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、上記(1)または(2)に記載のシリコンウェーハの機械的強度測定装置。 (3) In the above (1) or (2), any one of the support members is configured such that both end portions in the longitudinal direction are rotatable in the vertical direction with the longitudinal center portion as a fulcrum. The mechanical strength measuring apparatus of the silicon wafer as described.
(4)前記押圧部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、上記(3)に記載のシリコンウェーハの機械的強度測定装置。 (4) The silicon wafer mechanical strength measuring device according to (3), wherein the pressing member is configured such that both longitudinal end portions are rotatable in the vertical direction with the longitudinal center portion as a fulcrum.
(5)所定の間隔を置いて平行に配置されたライン状凸曲面部を有し少なくともシリコンウェーハと接触する前記凸曲面部の表面における算術平均粗さRaが0.4μm以上3.0μm以下の範囲である一対の支持部材上にシリコンウェーハを載置し、前記支持部材間の上方位置に支持部材と平行に配置されたライン状凸曲面部を有し少なくともシリコンウェーハと接触する前記凸曲面部の表面における算術平均粗さRaが0.4μm以上3.0μm以下の範囲である押圧部材を、前記支持部材に載置したシリコンウェーハの真上からシリコンウェーハ面との平行状態を維持しながら降下させてシリコンウェーハを押圧し、押圧部材を包む方向にシリコンウェーハを曲げ変形させることによりシリコンウェーハの機械的強度を測定することを特徴とする、シリコンウェーハの機械的強度測定方法。 (5) Arithmetic mean roughness Ra on the surface of the convex curved surface portion that has at least a line-shaped convex curved surface portion arranged in parallel at a predetermined interval and is in contact with the silicon wafer is in the range of 0.4 μm to 3.0 μm. A surface of the convex curved surface portion that has a line-shaped convex curved surface portion placed in parallel with the supporting member at a position above the supporting member, and is in contact with at least the silicon wafer. The silicon wafer is lowered by keeping the pressing member whose arithmetic average roughness Ra is in the range of 0.4 μm or more and 3.0 μm or less from above the silicon wafer placed on the support member while maintaining a parallel state with the silicon wafer surface. And measuring the mechanical strength of the silicon wafer by bending the silicon wafer in a direction to wrap the pressing member. Mechanical strength measurement method.
(6)前記押圧部材が、平行に配置された一対のライン状凸曲面部を有する押圧部材である、上記(5)に記載のシリコンウェーハの機械的強度測定方法。 (6) The method for measuring the mechanical strength of a silicon wafer according to (5), wherein the pressing member is a pressing member having a pair of line-shaped convex curved surface portions arranged in parallel.
(7)前記支持部材のうちの何れか一方の支持部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、上記(5)または(6)に記載のシリコンウェーハの機械的強度測定方法。 (7) In the above (5) or (6), any one of the support members is configured such that both ends in the longitudinal direction are rotatable in the vertical direction with the longitudinal center as a fulcrum. The mechanical strength measuring method of the silicon wafer as described.
(8)前記押圧部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、上記(7)に記載のシリコンウェーハの機械的強度測定方法。 (8) The method for measuring the mechanical strength of a silicon wafer according to (7), wherein the pressing member is configured such that both end portions in the longitudinal direction are rotatable in the vertical direction with the longitudinal center portion as a fulcrum.
本発明によると、ウェーハ自体の機械的強度を正確に評価することができる。そのため、本発明は、ウェーハ製造工程、並びに、半導体デバイス製造工程において懸念されるウェーハ表面割れを未然に防止し、製品の品質向上を図る上で極めて有益である。   According to the present invention, the mechanical strength of the wafer itself can be accurately evaluated. Therefore, the present invention is extremely useful in preventing the wafer surface cracking which is a concern in the wafer manufacturing process and the semiconductor device manufacturing process, and improving the product quality.
本発明のウェーハの機械的強度測定装置の一例を示す概略図である。It is the schematic which shows an example of the mechanical strength measuring apparatus of the wafer of this invention. 本発明のウェーハの機械的強度測定装置の他の例を示す概略図である。It is the schematic which shows the other example of the mechanical strength measuring apparatus of the wafer of this invention. 本発明のウェーハの機械的強度測定装置の支持部材および押圧部材が、長手方向中心部を支点として長手方向両端部が上下方向に回動する様子を示す図である。It is a figure which shows a mode that the support member and press member of the mechanical strength measuring apparatus of the wafer of this invention rotate a longitudinal direction both ends up and down by making a longitudinal direction center part into a fulcrum. 実施例2において、ウェーハ端部に圧疵が導入される位置を示す図である。In Example 2, it is a figure which shows the position where crushing is introduced into the wafer edge part.
以下、本発明を詳細に説明する。
本発明は、所定の間隔を置いて平行に配置されたライン状凸曲面部を有する一対の支持部材と、該支持部材間の上方位置に、支持部材と平行に配置されたライン状凸曲面部を有する押圧部材とを用い、前記支持部材および前記押圧部材の少なくともシリコンウェーハと接触する前記凸曲面部の表面における算術平均粗さRaを0.4μm以上3.0μm以下の範囲とし、前記支持部材に載置したシリコンウェーハの真上から前記押圧部材をシリコンウェーハ面との平行状態を維持しながら降下させてシリコンウェーハを押圧し、押圧部材を包む方向にシリコンウェーハを曲げ変形させることによりシリコンウェーハの機械的強度を測定することを特徴とする。
Hereinafter, the present invention will be described in detail.
The present invention relates to a pair of support members having a line-shaped convex curved surface portion arranged in parallel at a predetermined interval, and a line-shaped convex curved surface portion arranged in parallel with the support member at an upper position between the support members. The arithmetic average roughness Ra of the support member and the surface of the convex curved surface portion that contacts at least the silicon wafer of the support member and the pressing member is set in a range of 0.4 μm or more and 3.0 μm or less, and is mounted on the support member. The silicon wafer is machined by lowering the pressing member from directly above the placed silicon wafer while maintaining the parallel state with the silicon wafer surface, pressing the silicon wafer, and bending and deforming the silicon wafer in a direction to wrap the pressing member. It is characterized by measuring the mechanical strength.
図1は、本発明の一例であり、ウェーハの3点曲げ試験を行うことによりウェーハの機械的強度を測定する場合の概略図である。本発明では、所定の間隔を置いて平行に配置された一対の支持部材1a,1bにウェーハを載置した状態で、ウェーハの真上から押圧部材2を降下させてウェーハ中央部を押圧することにより試験荷重を負荷し、ウェーハが押圧部材2を包む方向へ曲げ変形させることにより、ウェーハの3点曲げ試験を行う。   FIG. 1 is an example of the present invention, and is a schematic view when the mechanical strength of a wafer is measured by performing a three-point bending test of the wafer. In the present invention, with the wafer placed on a pair of support members 1a, 1b arranged in parallel at a predetermined interval, the pressing member 2 is lowered from directly above the wafer to press the center of the wafer. A three-point bending test is performed on the wafer by applying a test load and bending the wafer in a direction to wrap the pressing member 2.
支持部材1a,1bおよび押圧部材2は互いに平行に配置される。また、支持部材1a,1bおよび押圧部材2はそれぞれライン状(棒状)の形状を有し、これらの長手方向の寸法はウェーハwの直径よりも長く設計されている。支持部材1a,1bの少なくとも一方は水平方向に移動可能に構成され、支持部材1a,1bの間隔がウェーハwの直径に応じて変更可能な構成とされている。なお、支持部材1a,1bおよび押圧部材2の長手方向の寸法をウェーハwの直径の約1.1〜1.6倍に設定し、支持部材1a,1bの間隔をウェーハwの直径の約0.5〜0.7倍に設定すると、試験荷重が安定するため好ましい。   The support members 1a and 1b and the pressing member 2 are arranged in parallel to each other. Each of the support members 1a and 1b and the pressing member 2 has a line shape (bar shape), and the longitudinal dimension thereof is designed to be longer than the diameter of the wafer w. At least one of the support members 1a and 1b is configured to be movable in the horizontal direction, and the interval between the support members 1a and 1b can be changed according to the diameter of the wafer w. The longitudinal dimensions of the support members 1a and 1b and the pressing member 2 are set to about 1.1 to 1.6 times the diameter of the wafer w, and the distance between the support members 1a and 1b is set to about 0.5 to 0.7 times the diameter of the wafer w. Setting is preferable because the test load is stabilized.
また、図2は、本発明の他の例であり、ウェーハの4点曲げ試験を行うことによりウェーハの機械的強度を測定する場合の概略図である。本発明では、所定の間隔を置いて平行に配置された一対の支持部材1a,1bにウェーハを載置した状態で、ウェーハの真上から所定の間隔を置いて平行に配置された一対の押圧部材2a,2bを降下させてウェーハ中央部を押圧することにより試験荷重を負荷し、ウェーハが押圧部材2a,2bを包む方向へ曲げ変形させることにより、ウェーハの4点曲げ試験を行う。   FIG. 2 is another example of the present invention, and is a schematic view when the mechanical strength of a wafer is measured by performing a four-point bending test of the wafer. In the present invention, in a state where the wafer is placed on the pair of support members 1a and 1b arranged in parallel at a predetermined interval, a pair of presses arranged in parallel at a predetermined interval from directly above the wafer. A test load is applied by lowering the members 2a and 2b and pressing the central portion of the wafer, and the wafer is bent and deformed in a direction to wrap the pressing members 2a and 2b, thereby performing a four-point bending test on the wafer.
支持部材1a,1bおよび押圧部材2a,2bは互いに平行に配置される。また、支持部材1a,1bおよび押圧部材2a,2bはそれぞれライン状(棒状)の形状を有し、これらの長手方向の寸法はウェーハwの直径よりも長く設計されている。支持部材1a,1bの少なくとも一方は水平方向に移動可能に構成され、支持部材1a,1bの間隔がウェーハwの直径に応じて変更可能な構成とされている。同様に、押圧部材2a,2bの少なくとも一方は水平方向に移動可能に構成され、押圧部材2a,2bの間隔がウェーハwの直径に応じて変更可能な構成とされている。なお、支持部材1a,1bおよび押圧部材2a,2bの長手方向の寸法をウェーハwの直径の約1.1〜1.6倍に設定し、支持部材1a,1bの間隔をウェーハwの直径の約0.5〜0.7倍、押圧部材2a,2bの間隔をウェーハwの直径の約0.1〜0.35倍に設定すると、試験荷重が安定するため好ましい。   The support members 1a and 1b and the pressing members 2a and 2b are arranged in parallel to each other. Further, the support members 1a, 1b and the pressing members 2a, 2b each have a line shape (bar shape), and their longitudinal dimensions are designed to be longer than the diameter of the wafer w. At least one of the support members 1a and 1b is configured to be movable in the horizontal direction, and the interval between the support members 1a and 1b can be changed according to the diameter of the wafer w. Similarly, at least one of the pressing members 2a and 2b is configured to be movable in the horizontal direction, and the interval between the pressing members 2a and 2b can be changed according to the diameter of the wafer w. The longitudinal dimensions of the support members 1a, 1b and the pressing members 2a, 2b are set to about 1.1 to 1.6 times the diameter of the wafer w, and the distance between the support members 1a, 1b is about 0.5 to 0.7 of the diameter of the wafer w. It is preferable to set the interval between the pressing members 2a and 2b to about 0.1 to 0.35 times the diameter of the wafer w because the test load becomes stable.
上記3点曲げ試験、4点曲げ試験の何れの場合においても、ライン状の支持部材1a,1bおよび押圧部材2,2a,2bは、例えば円形状、半円状の断面形状を有し、ウェーハ接触部分が凸曲面に形成されているが、本発明において特記すべき点は、上記ウェーハ接触部分の表面を算術平均粗さRa:0.4μm以上3.0μm以下の範囲に規定した点である。   In any of the above three-point bending test and four-point bending test, the line-shaped support members 1a, 1b and the pressing members 2, 2a, 2b have, for example, a circular shape or a semicircular cross-sectional shape, and a wafer Although the contact portion is formed in a convex curved surface, a point to be noted in the present invention is that the surface of the wafer contact portion is defined in an arithmetic average roughness Ra: 0.4 μm or more and 3.0 μm or less.
曲げ試験を行う上では、通常、高炭素クロム鋼やステンレス鋼製の支持部材および押圧部材を使用する。本発明者らは、これらの材料からなる部材を用いてディスク状ウェーハの曲げ試験を試みたが、ウェーハに試験荷重を負荷すると、ウェーハ表面の平滑度が高いため、支持部材−ウェーハ間および押圧部材−ウェーハ間ですべりが生じ、正確な強度測定が困難であるという新たな問題に直面した。そこで、本発明者らは上記すべりを抑制する手段として、支持部材表面および押圧部材表面のうちウェーハと接触する部分に所定の表面粗さを設ける手段を着想した。   In performing a bending test, a support member and a pressing member made of high carbon chromium steel or stainless steel are usually used. The present inventors tried a bending test of a disk-shaped wafer using a member made of these materials. However, when a test load is applied to the wafer, the wafer surface has high smoothness. We faced a new problem that sliding between the member and the wafer occurred, making accurate strength measurement difficult. Accordingly, the present inventors have conceived a means for providing a predetermined surface roughness on a portion of the support member surface and the pressing member surface that comes into contact with the wafer as a means for suppressing the slip.
更に、本発明者らは、支持部材表面および押圧部材表面のうちウェーハと接触する部分について、支持部材−ウェーハ間および押圧部材−ウェーハ間でのすべりを抑制し得る表面粗さについて調査した。その結果、後述の実施例1で示すように、最もすべりが生じやすい鏡面研磨後のポリッシュドウェーハを用いた場合においても、支持部材および押圧部材のうちウェーハと接触する部分の表面における算術平均粗さRaが0.4μm以上であれば、支持部材−ウェーハ間および押圧部材−ウェーハ間でのすべりを抑制できることを確認した。   Furthermore, the present inventors investigated the surface roughness which can suppress the slip between a support member-wafer and between a press member-wafer about the part which contacts a wafer among support member surfaces and a press member surface. As a result, as shown in Example 1 to be described later, even when a polished wafer after mirror polishing that is most likely to slip is used, the arithmetic average roughness on the surface of the support member and the pressing member in contact with the wafer When the thickness Ra was 0.4 μm or more, it was confirmed that slip between the supporting member and the wafer and between the pressing member and the wafer could be suppressed.
以上の理由により、本発明では、支持部材および押圧部材の少なくともウェーハと接触する部分の表面における算術平均粗さRaを0.4μm以上に規定する。一方、支持部材および押圧部材の少なくともウェーハと接触する部分の表面が粗すぎると、ウェーハ強度測定中、支持部材および押圧部材がウェーハ表面にキズをつけてしまう。かかるキズはウェーハ強度低下の原因となるため、正確な測定結果を得るためには、支持部材および押圧部材の少なくともウェーハと接触する部分の表面の粗さを所定値以下に制限する必要がある。   For the above reasons, in the present invention, the arithmetic average roughness Ra on the surface of at least the portion of the support member and the pressing member that contacts the wafer is defined to be 0.4 μm or more. On the other hand, if the surface of at least the portion of the supporting member and the pressing member that contacts the wafer is too rough, the supporting member and the pressing member will scratch the wafer surface during the wafer strength measurement. Such scratches cause a decrease in wafer strength. Therefore, in order to obtain an accurate measurement result, it is necessary to limit the roughness of the surface of at least the portion of the support member and the pressing member that contacts the wafer to a predetermined value or less.
そこで、本発明では、支持部材および押圧部材の少なくともウェーハと接触する部分の表面における算術平均粗さRaを3.0μm以下、好ましくは1.6μm以下に規定することにより、支持部材および押圧部材との接触によるウェーハ表面キズを回避する。以上により、本発明によると、支持部材−ウェーハ間および押圧部材−ウェーハ間でのすべりを生じることなく、ウェーハの機械的強度を正確に評価することができる。   Therefore, in the present invention, the contact between the support member and the pressing member is determined by defining the arithmetic average roughness Ra on the surface of at least the portion of the support member and the pressing member that contacts the wafer to 3.0 μm or less, preferably 1.6 μm or less. Avoid wafer surface scratches due to. As described above, according to the present invention, the mechanical strength of the wafer can be accurately evaluated without causing slip between the support member and the wafer and between the pressing member and the wafer.
なお、本発明において支持部材および押圧部材に算術平均粗さRa0.4μm以上3.0μm以下の表面を形成する手段は特に問わず、例えば、研削盤による研削加工や研磨剤を使用した表面研磨等、種々の手段が挙げられる。   In the present invention, the means for forming a surface having an arithmetic average roughness Ra of 0.4 μm or more and 3.0 μm or less on the support member and the pressing member is not particularly limited, for example, surface grinding using a grinding machine or a polishing agent, etc. Various means are mentioned.
また、厚さ数百μm〜数mm程度のウェーハの3点曲げまたは4点曲げ試験を行う場合には、前記支持部材および前記押圧部材を互いに平行に設置する際、高度な平行度が要求される。しかしながら、前記支持部材および前記押圧部材を互いに平行に設置する作業は煩雑である上、高度な平行度をもって設置することは極めて困難である。   In addition, when performing a three-point bending or four-point bending test on a wafer having a thickness of several hundred μm to several mm, a high degree of parallelism is required when the support member and the pressing member are installed in parallel to each other. The However, the operation of installing the supporting member and the pressing member in parallel with each other is complicated and it is extremely difficult to install with a high degree of parallelism.
上記問題を解決する上では、一対の支持部材のうちの何れか一方を、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成された支持部材とすることが有効である。また、前記支持部材と同様に、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成された押圧部材を用いることがより一層効果的である。   In order to solve the above problem, it is effective to use one of the pair of support members as a support member configured such that both ends in the longitudinal direction are pivotable in the vertical direction with the longitudinal center as a fulcrum. is there. Further, similarly to the support member, it is more effective to use a pressing member in which both end portions in the longitudinal direction are configured to be rotatable in the vertical direction with the longitudinal center portion as a fulcrum.
例えば、図1において、支持部材1aは所定位置に固定する一方、支持部材1bおよび押圧部材2は、図3に示すように長手方向中心部cを支点として上下方向に回動自在に設置する。上記構成を有する支持部材1a,1bおよび押圧部材2を用いてウェーハwに3点曲げ試験を行う場合、次のようにして支持部材1a,1bおよび押圧部材2が、ウェーハ表面に対して常に平行状態の位置関係を維持することができる。   For example, in FIG. 1, the support member 1a is fixed at a predetermined position, while the support member 1b and the pressing member 2 are installed so as to be rotatable in the vertical direction with the longitudinal center c as a fulcrum as shown in FIG. When a three-point bending test is performed on the wafer w using the supporting members 1a and 1b and the pressing member 2 having the above-described configuration, the supporting members 1a and 1b and the pressing member 2 are always parallel to the wafer surface as follows. The positional relationship between the states can be maintained.
支持部材1a,1bにウェーハwを載置すると、支持部材1aのみが所定位置に固定されているため、ウェーハwはその表面が支持部材1aの長手方向と平行になるように載置される。かかる状況のもと、押圧部材2を降下させてウェーハwに接触させると、支持部材1bおよび押圧部材2の長手方向両端部は、ウェーハwの表面に沿うような方向に回動する。以上のようにして押圧部材2からウェーハwに試験荷重が負荷される際には、支持部材1a,1bおよび押圧部材2が常に互いに平行状態を維持することができるのである。   When the wafer w is placed on the support members 1a and 1b, only the support member 1a is fixed at a predetermined position. Therefore, the wafer w is placed so that the surface thereof is parallel to the longitudinal direction of the support member 1a. Under such circumstances, when the pressing member 2 is lowered and brought into contact with the wafer w, both longitudinal ends of the supporting member 1b and the pressing member 2 rotate in a direction along the surface of the wafer w. As described above, when a test load is applied from the pressing member 2 to the wafer w, the support members 1a and 1b and the pressing member 2 can always maintain a parallel state.
また、上記では図1に示す3点曲げ試験の場合に従い説明したが、図2に示す4点曲げ試験の場合には、例えば支持部材1aを所定位置に固定し、支持部材1bおよび押圧部材2a,2bを長手方向中心部を支点として上下方向に回動自在に設置すれば、上記と同様の作用により支持部材1a,1bおよび押圧部材2a,2bを互いに平行状態とすることができる。   In the above description, the three-point bending test shown in FIG. 1 has been described. However, in the four-point bending test shown in FIG. 2, for example, the support member 1a is fixed at a predetermined position, and the support member 1b and the pressing member 2a are fixed. , 2b can be pivoted in the vertical direction with the longitudinal center as a fulcrum, the support members 1a, 1b and the pressing members 2a, 2b can be made parallel to each other by the same action as described above.
本発明において、支持部材、押圧部材の長手方向両端部が長手方向中心部を支点として上下方向に回動自在となるようにする手段は特に問わず、例えば、支持部材等の長手方向中心部に支持部材等を軸支するための貫通孔を設け、ピン等の支軸を支持部材等の貫通孔に挿嵌することにより、支軸を支点として支持部材等の長手方向両端部を上下方向に回動自在とするなど、種々の手段を採用することができる。   In the present invention, there is no particular limitation on the means for making the longitudinal ends of the supporting member and the pressing member pivotable in the vertical direction with the longitudinal central portion as a fulcrum, for example, in the longitudinal central portion of the supporting member or the like. By providing a through hole for pivotally supporting the support member, etc., and inserting the pivot shaft such as a pin into the through hole of the support member etc., both longitudinal ends of the support member etc. in the vertical direction with the pivot shaft as a fulcrum Various means can be adopted, such as making it rotatable.
なお、本発明のウェーハの機械的強度測定装置について、上記した以外の構成については通常の3点曲げまたは4点曲げ試験装置と同様の構成とすることができる。   The wafer mechanical strength measuring apparatus according to the present invention can have the same configuration as that of a normal three-point bending or four-point bending test apparatus except for the above-described configuration.
次に、本発明例および比較例により本発明の効果を説明するが、本発明例はあくまでも本発明を説明する例示に過ぎず、本発明を限定するものではない。
(実施例1)
直径300mm、厚さ775±20μmの(100)ポリッシュドシリコンウェーハについて、図1に示すような3点曲げ試験を行うことによりウェーハの強度を測定した。なお、ウェーハの強度は、ウェーハ破壊時の試験荷重で評価するものとした。支持部材1a,1bおよび押圧部材2は、何れも円形断面形状の棒状部材であり、支持部材1a,1bの断面直径:30mm、押圧部材2の断面直径:20mm、支持部材1a,1bおよび押圧部材2の長さ:330mmとした。また、支持部材1a,1bおよび押圧部材2は、何れもSUJ2製の部材であり、シリコンウェーハと接触する部分には、表面研削加工により粗さを形成し、表面粗さを種々の値に変化した部材を用いて測定した。なお、支持部材1a,bの間隔は210mmとし、支持部材1aは長手方向両端部が回動しないように固定した。一方、支持部材1bおよび押圧部材2は、これらの長手方向中心部に貫通孔を設け、支軸(ピン)を上記貫通孔に挿嵌して軸支することにより、図3に示すように長手方向両端部を上下方向に回動可能な構成とした。測定結果を表1に示す。
Next, the effects of the present invention will be described by way of examples of the present invention and comparative examples. However, the examples of the present invention are merely examples for explaining the present invention, and do not limit the present invention.
Example 1
A (100) polished silicon wafer having a diameter of 300 mm and a thickness of 775 ± 20 μm was subjected to a three-point bending test as shown in FIG. 1 to measure the strength of the wafer. Incidentally, the strength of the wafer was evaluated by a test load at the time of breaking the wafer. Each of the support members 1a and 1b and the pressing member 2 is a rod-shaped member having a circular cross-sectional shape. The support members 1a and 1b have a cross-sectional diameter of 30 mm, the pressing member 2 has a cross-sectional diameter of 20 mm, and the supporting members 1a and 1b and the pressing member. 2 length: 330 mm. The support members 1a and 1b and the pressing member 2 are all made of SUJ2, and the portions that come into contact with the silicon wafer are roughened by surface grinding to change the surface roughness to various values. Measurement was performed using the prepared member. The interval between the support members 1a and 1b was 210 mm, and the support member 1a was fixed so that both ends in the longitudinal direction did not rotate. On the other hand, the support member 1b and the pressing member 2 are provided with a through hole at the center in the longitudinal direction, and a support shaft (pin) is inserted into the through hole to be supported by the shaft as shown in FIG. Both ends of the direction are configured to be rotatable in the vertical direction. The measurement results are shown in Table 1.
表1は支持部材1a,1bおよび押圧部材2がシリコンウェーハと接触する部分の表面粗さ(算術平均粗さ)とウェーハ破壊荷重(ウェーハ破壊時の試験荷重)との関係を示す。表1から明らかであるように、上記表面粗さ(算術平均粗さ)が0.4μm未満の場合、支持部材−ウェーハ間および押圧部材−ウェーハ間にすべりが生じることに起因し、400Nを超える試験荷重を負荷してもウェーハが破壊せず、ウェーハの機械的強度を正確に測定することができなかった。また、上記表面粗さ(算術平均粗さ)が3.0μmを超える場合、ウェーハ表面のうち支持部材および押圧部材に接触する部分にキズがついてしまい、測定されたウェーハ破壊荷重が215N未満と低めの値となった。一方、上記表面粗さ(算術平均粗さ)が0.4μm以上3.0μm以下の場合には、上記すべりやキズが抑制され、測定されたウェーハ破壊荷重が250〜310Nの値に収まった。特に、上記表面粗さ(算術平均粗さ)が0.4μm以上1.6μm以下の場合には、測定されたウェーハ破壊荷重が270〜310Nの値に収まり、測定値が安定していることが確認された。   Table 1 shows the relationship between the surface roughness (arithmetic average roughness) of the portion where the supporting members 1a and 1b and the pressing member 2 are in contact with the silicon wafer and the wafer breaking load (test load when the wafer is broken). As is apparent from Table 1, when the surface roughness (arithmetic mean roughness) is less than 0.4 μm, the test exceeds 400 N due to slippage between the support member and the wafer and between the pressing member and the wafer. Even when a load was applied, the wafer was not broken, and the mechanical strength of the wafer could not be measured accurately. In addition, when the surface roughness (arithmetic average roughness) exceeds 3.0 μm, the portion of the wafer surface that comes into contact with the support member and the pressing member is scratched, and the measured wafer breaking load is less than 215 N. Value. On the other hand, when the surface roughness (arithmetic average roughness) was 0.4 μm or more and 3.0 μm or less, the above-mentioned slip and scratch were suppressed, and the measured wafer breaking load was within the range of 250 to 310N. In particular, when the surface roughness (arithmetic mean roughness) is 0.4 μm or more and 1.6 μm or less, the measured wafer breaking load falls within the range of 270 to 310 N, confirming that the measured value is stable. It was.
(実施例2)
直径300mm、厚さ775±20μmの(100) ポリッシュドシリコンウェーハであって、その表面中心部または図4に示す端部にビッカース硬度計を用いて種々のサイズの圧疵を導入したサンプルを、圧疵導入箇所・圧疵サイズ毎に10枚ずつ用意し、図1に示すような3点曲げ試験を行うことによりウェーハの強度を測定した。なお、ウェーハの強度は、ウェーハ破壊時の試験荷重で評価するものとした。支持部材1a,1bおよび押圧部材2は、何れも円形断面形状の棒状部材であり、支持部材1a,1bの断面直径:30mm、押圧部材2の断面直径:20mm、支持部材1a,1bおよび押圧部材2の長さ:330mmとした。また、支持部材1a,1bおよび押圧部材2は、何れもSUJ2製の部材であり、シリコンウェーハと接触する部分には、表面研削加工により表面に粗さを設け、その表面粗さ(算術平均粗さ)Raを0.4μmとした。なお、支持部材1a,bの間隔は210mmとし、支持部材1aは長手方向両端部が回動しないように固定した。一方、支持部材1bおよび押圧部材2は、これらの長手方向中心部に貫通孔を設け、支軸(ピン)を上記貫通孔に挿嵌して軸支することにより、図3に示すように長手方向両端部を上下方向に回動可能な構成とした。ウェーハ破壊荷重(ウェーハ破壊時の試験荷重)の平均値について、圧疵導入箇所・圧疵サイズ毎に求めた結果を表2および表3に示す。
(Example 2)
A sample of a (100) polished silicon wafer having a diameter of 300 mm and a thickness of 775 ± 20 μm, in which various sizes of crushes were introduced using a Vickers hardness tester at the center of the surface or at the end shown in FIG. Ten sheets were prepared for each pressure introduction location and size, and the strength of the wafer was measured by performing a three-point bending test as shown in FIG. Incidentally, the strength of the wafer was evaluated by a test load at the time of breaking the wafer. Each of the support members 1a and 1b and the pressing member 2 is a rod-shaped member having a circular cross-sectional shape. The support members 1a and 1b have a cross-sectional diameter of 30 mm, the pressing member 2 has a cross-sectional diameter of 20 mm, and the supporting members 1a and 1b and the pressing member. 2 length: 330 mm. The supporting members 1a and 1b and the pressing member 2 are all made of SUJ2, and the surface that is in contact with the silicon wafer is provided with surface roughness by surface grinding, and the surface roughness (arithmetic mean roughness) A) Ra was set to 0.4 μm. The interval between the support members 1a and 1b was 210 mm, and the support member 1a was fixed so that both ends in the longitudinal direction did not rotate. On the other hand, the support member 1b and the pressing member 2 are provided with a through hole at the center in the longitudinal direction, and a support shaft (pin) is inserted into the through hole to be supported by the shaft as shown in FIG. Both ends of the direction are configured to be rotatable in the vertical direction. Tables 2 and 3 show the results of obtaining the average value of the wafer breaking load (test load at the time of wafer breaking) for each crushing introduction location and crushing size.
通常、ウェーハに導入された圧疵が大きいほどウェーハ破壊荷重(ウェーハ破壊時の試験荷重)が低下するが、表2および表3に示すように、圧疵導入箇所がウェーハ表面、ウェーハ端部の何れの場合においても、圧疵サイズが大きくなるほどウェーハ破壊荷重の測定値が低下する傾向が確認される。すなわち、本発明によると、支持部材、押圧部材の平行出し等の煩雑な作業を行うことなく、ウェーハの機械的強度を正確に評価することができる。   Normally, the larger the crush introduced to the wafer, the lower the wafer destruction load (test load at the time of wafer destruction). However, as shown in Table 2 and Table 3, the crush introduction location is at the wafer surface and at the wafer edge. In any case, it is confirmed that the measured value of the wafer breaking load tends to decrease as the crush size increases. That is, according to the present invention, the mechanical strength of the wafer can be accurately evaluated without performing complicated operations such as parallel support member and pressing member.
なお、上記実施例では、機械的強度の評価対象をポリッシュドウェーハとしたが、本発明はこれに限定されず、インゴットからスライスしたウェーハ、並びに、ラッピング後のウェーハ、エッチング後のウェーハ等、ポリッシュドウェーハに加工される前のウェーハにも適用可能である。また、ポリッシュドウェーハに熱処理、酸化膜の形成等を施すことにより得られるアニール・ウェーハ、エピタキシャル・ウェーハ、SOIウェーハ等にも適用可能である。更に、本発明においては機械的強度の評価対象となるウェーハの寸法も上記実施例に限定されず、例えば、直径150mm程度のものから450mm程度、更にはこれ以上の直径を有するウェーハにも適用可能であり、厚さ数百μm〜数mm程度、更にはこれ以上の厚さを有するウェーハにも適用可能である。   In the above embodiment, the evaluation target of the mechanical strength is a polished wafer. However, the present invention is not limited to this, and a polished wafer such as a wafer sliced from an ingot, a wafer after lapping, a wafer after etching, etc. The present invention can also be applied to a wafer before being processed into a wafer. The present invention is also applicable to annealed wafers, epitaxial wafers, SOI wafers and the like obtained by subjecting polished wafers to heat treatment and oxide film formation. Furthermore, in the present invention, the dimensions of the wafer to be evaluated for mechanical strength are not limited to the above-described embodiments, and can be applied to, for example, a wafer having a diameter of about 150 mm to about 450 mm, or even a diameter larger than this. The present invention is also applicable to a wafer having a thickness of about several hundred μm to several mm, and more than that.
ウェーハを試験片として切り出すことなく、ウェーハ自体の機械的強度を精度よく測定することが可能となり、シリコンウェーハ並びに半導体デバイスの品質向上を図る上で極めて有用である。   The mechanical strength of the wafer itself can be accurately measured without cutting the wafer as a test piece, which is extremely useful for improving the quality of silicon wafers and semiconductor devices.
1a,1b … 支持部材
2,2a,2b … 押圧部材
w … ウェーハ
1a, 1b… Support member
2,2a, 2b… Pressing member
w… Wafer

Claims (8)

  1. 所定の間隔を置いて平行に配置されたライン状凸曲面部を有する一対の支持部材と、該支持部材間の上方位置に、支持部材と平行に配置されたライン状凸曲面部を有する押圧部材とを具え、前記支持部材および前記押圧部材の少なくともシリコンウェーハと接触する前記凸曲面部の表面における算術平均粗さRaが0.4μm 以上3.0μm以下の範囲であり、前記支持部材に載置したシリコンウェーハの真上から前記押圧部材をシリコンウェーハ面との平行状態を維持しながら降下させてシリコンウェーハを押圧し、押圧部材を包む方向にシリコンウェーハを曲げ変形させることによりシリコンウェーハの機械的強度を測定することを特徴とする、シリコンウェーハの機械的強度測定装置。   A pair of support members having a line-shaped convex curved surface portion arranged in parallel at a predetermined interval, and a pressing member having a line-shaped convex curved surface portion arranged in parallel with the support member at an upper position between the support members The arithmetic average roughness Ra on the surface of the convex curved surface portion that contacts at least the silicon wafer of the support member and the pressing member is in the range of 0.4 μm or more and 3.0 μm or less, and the silicon placed on the support member The mechanical strength of the silicon wafer is increased by lowering the pressing member from above the wafer while maintaining a parallel state with the silicon wafer surface to press the silicon wafer and bending the silicon wafer in a direction to wrap the pressing member. An apparatus for measuring the mechanical strength of a silicon wafer, characterized by measuring.
  2. 前記押圧部材が、平行に配置された一対のライン状凸曲面部を有する押圧部材である、請求項1に記載のシリコンウェーハの機械的強度測定装置。   The silicon wafer mechanical strength measuring device according to claim 1, wherein the pressing member is a pressing member having a pair of line-shaped convex curved surface portions arranged in parallel.
  3. 前記支持部材のうちの何れか一方の支持部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、請求項1または2に記載のシリコンウェーハの機械的強度測定装置。   3. The silicon wafer machine according to claim 1, wherein one of the support members is configured such that both ends in the longitudinal direction are pivotable in the vertical direction with the longitudinal center as a fulcrum. 4. Strength measuring device.
  4. 前記押圧部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、請求項3に記載のシリコンウェーハの機械的強度測定装置。   4. The silicon wafer mechanical strength measuring device according to claim 3, wherein the pressing member is configured such that both end portions in the longitudinal direction are rotatable in the vertical direction with the longitudinal center portion as a fulcrum. 5.
  5. 所定の間隔を置いて平行に配置されたライン状凸曲面部を有し少なくともシリコンウェーハと接触する前記凸曲面部の表面における算術平均粗さRaが0.4μm 以上3.0μm以下の範囲である一対の支持部材上にシリコンウェーハを載置し、前記支持部材間の上方位置に支持部材と平行に配置されたライン状凸曲面部を有し少なくともシリコンウェーハと接触する前記凸曲面部の表面における算術平均粗さRaが0.4μm 以上3.0μm以下の範囲である押圧部材を、前記支持部材に載置したシリコンウェーハの真上からシリコンウェーハ面との平行状態を維持しながら降下させてシリコンウェーハを押圧し、押圧部材を包む方向にシリコンウェーハを曲げ変形させることによりシリコンウェーハの機械的強度を測定することを特徴とする、シリコンウェーハの機械的強度測定方法。   A pair of line-shaped convex curved surface portions arranged in parallel at a predetermined interval, and an arithmetic mean roughness Ra on the surface of the convex curved surface portion contacting at least the silicon wafer is in a range of 0.4 μm to 3.0 μm. Arithmetic average on the surface of the convex curved surface portion which has a line-shaped convex curved surface portion placed parallel to the supporting member at an upper position between the supporting members, and is in contact with at least the silicon wafer. A pressing member having a roughness Ra in a range of 0.4 μm or more and 3.0 μm or less is lowered while maintaining a parallel state with the silicon wafer surface from directly above the silicon wafer placed on the supporting member to press the silicon wafer. Characterized in that the mechanical strength of the silicon wafer is measured by bending and deforming the silicon wafer in the direction of wrapping the pressing member. Strength measuring method.
  6. 前記押圧部材が、平行に配置された一対のライン状凸曲面部を有する押圧部材である、請求項5に記載のシリコンウェーハの機械的強度測定方法。   6. The method for measuring the mechanical strength of a silicon wafer according to claim 5, wherein the pressing member is a pressing member having a pair of line-shaped convex curved surface portions arranged in parallel.
  7. 前記支持部材のうちの何れか一方の支持部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、請求項5または6に記載のシリコンウェーハの機械的強度測定方法。   7. The silicon wafer machine according to claim 5, wherein one of the support members is configured such that both end portions in the longitudinal direction are rotatable in the vertical direction with the longitudinal center portion as a fulcrum. Strength measurement method.
  8. 前記押圧部材は、長手方向両端部が長手方向中心部を支点として上下方向に回動自在に構成してなる、請求項7に記載のシリコンウェーハの機械的強度測定方法。   The said press member is a mechanical strength measuring method of the silicon wafer of Claim 7 comprised so that a longitudinal direction both ends can be freely rotated to an up-down direction centering on a longitudinal direction center part.
JP2009170350A 2009-07-21 2009-07-21 Mechanical strength measuring apparatus and measuring method for silicon wafer Active JP5287571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009170350A JP5287571B2 (en) 2009-07-21 2009-07-21 Mechanical strength measuring apparatus and measuring method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009170350A JP5287571B2 (en) 2009-07-21 2009-07-21 Mechanical strength measuring apparatus and measuring method for silicon wafer

Publications (2)

Publication Number Publication Date
JP2011027430A true JP2011027430A (en) 2011-02-10
JP5287571B2 JP5287571B2 (en) 2013-09-11

Family

ID=43636362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170350A Active JP5287571B2 (en) 2009-07-21 2009-07-21 Mechanical strength measuring apparatus and measuring method for silicon wafer

Country Status (1)

Country Link
JP (1) JP5287571B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117327A1 (en) * 2011-02-28 2012-09-07 Rec Wafer Norway As On-line testing for mechanical stability of sheet material
CN109253923A (en) * 2018-10-10 2019-01-22 彩虹(合肥)液晶玻璃有限公司 A kind of end face strength detection device and method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161641U (en) * 1987-10-13 1989-04-19
JPH02284040A (en) * 1989-04-25 1990-11-21 Asahi Glass Co Ltd Instrument and method for measuring mechanical strength of semiconductor wafer
JPH03109148U (en) * 1990-02-23 1991-11-08
JPH03125750U (en) * 1990-03-31 1991-12-19
JPH05264424A (en) * 1992-03-19 1993-10-12 Ngk Insulators Ltd Bending-strength testing jig
JPH06201533A (en) * 1992-12-26 1994-07-19 Sumitomo Sitix Corp Method and device for evaluating wafer end face strength
JPH0725673Y2 (en) * 1989-05-30 1995-06-07 株式会社島津製作所 Bending tester
JPH08247908A (en) * 1995-03-10 1996-09-27 Nippon Steel Corp Corrosion fatigue test piece and testing method
JPH09229838A (en) * 1996-02-24 1997-09-05 Shin Etsu Handotai Co Ltd Method and instrument for measuring mechanical strength of semiconductor material
JPH11183349A (en) * 1997-12-19 1999-07-09 Mitsubishi Heavy Ind Ltd Crack generation limit test method for coating
JP2000249637A (en) * 1999-03-01 2000-09-14 Komatsu Electronic Metals Co Ltd Evaluation apparatus for end-face strength of semiconductor wafer
JP2004175053A (en) * 2002-11-29 2004-06-24 Pentel Corp Ballpoint pen
JP3666527B2 (en) * 1996-09-03 2005-06-29 信越半導体株式会社 Semiconductor wafer evaluation method and evaluation apparatus
JP2006258454A (en) * 2005-03-15 2006-09-28 Toray Ind Inc Bending fatigue test method of lightweight sandwich panel
JP2006287139A (en) * 2005-04-05 2006-10-19 Shin Etsu Handotai Co Ltd Apparatus and method for measuring mechanical strength of semiconductor wafer
JP2007218713A (en) * 2006-02-16 2007-08-30 Renesas Technology Corp Method of measuring piezoresistance coefficient

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0161641U (en) * 1987-10-13 1989-04-19
JPH02284040A (en) * 1989-04-25 1990-11-21 Asahi Glass Co Ltd Instrument and method for measuring mechanical strength of semiconductor wafer
JPH0725673Y2 (en) * 1989-05-30 1995-06-07 株式会社島津製作所 Bending tester
JPH03109148U (en) * 1990-02-23 1991-11-08
JPH03125750U (en) * 1990-03-31 1991-12-19
JPH05264424A (en) * 1992-03-19 1993-10-12 Ngk Insulators Ltd Bending-strength testing jig
JPH06201533A (en) * 1992-12-26 1994-07-19 Sumitomo Sitix Corp Method and device for evaluating wafer end face strength
JPH08247908A (en) * 1995-03-10 1996-09-27 Nippon Steel Corp Corrosion fatigue test piece and testing method
JPH09229838A (en) * 1996-02-24 1997-09-05 Shin Etsu Handotai Co Ltd Method and instrument for measuring mechanical strength of semiconductor material
JP3666527B2 (en) * 1996-09-03 2005-06-29 信越半導体株式会社 Semiconductor wafer evaluation method and evaluation apparatus
JPH11183349A (en) * 1997-12-19 1999-07-09 Mitsubishi Heavy Ind Ltd Crack generation limit test method for coating
JP2000249637A (en) * 1999-03-01 2000-09-14 Komatsu Electronic Metals Co Ltd Evaluation apparatus for end-face strength of semiconductor wafer
JP2004175053A (en) * 2002-11-29 2004-06-24 Pentel Corp Ballpoint pen
JP2006258454A (en) * 2005-03-15 2006-09-28 Toray Ind Inc Bending fatigue test method of lightweight sandwich panel
JP2006287139A (en) * 2005-04-05 2006-10-19 Shin Etsu Handotai Co Ltd Apparatus and method for measuring mechanical strength of semiconductor wafer
JP2007218713A (en) * 2006-02-16 2007-08-30 Renesas Technology Corp Method of measuring piezoresistance coefficient

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117327A1 (en) * 2011-02-28 2012-09-07 Rec Wafer Norway As On-line testing for mechanical stability of sheet material
CN109253923A (en) * 2018-10-10 2019-01-22 彩虹(合肥)液晶玻璃有限公司 A kind of end face strength detection device and method

Also Published As

Publication number Publication date
JP5287571B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5287571B2 (en) Mechanical strength measuring apparatus and measuring method for silicon wafer
KR101893277B1 (en) METHOD FOR ESTIMATING DEPTH OF LATENT SCRATCHES IN SiC SUBSTRATES
JP2011187706A (en) Manufacturing method of silicon wafer
JP4415893B2 (en) Semiconductor wafer mechanical strength measuring apparatus and mechanical strength measuring method
US20130140752A1 (en) Method and jig for holding silicon wafer
JP6520754B2 (en) Method of predicting occurrence of slip dislocation, method of manufacturing silicon wafer using the method, method of heat treating silicon wafer, and silicon wafer
JP6281401B2 (en) Wafer cleavage method and wafer evaluation method
JP2006256922A (en) Annealing apparatus and annealing method for glass substrate
JP4956934B2 (en) Wafer crack evaluation device and crack evaluation method
JP6298403B2 (en) Support jig for silicon wafer heat treatment
JP5633537B2 (en) Semiconductor wafer evaluation method and semiconductor wafer evaluation apparatus
JP4794164B2 (en) Wafer inspection method
Cheng et al. Characterization of the Flexural Strength and Fatigue Life of Ultrathin Glass After Dicing
TWI737339B (en) Determination method of resistivity of single crystal silicon
TWI558864B (en) Polycrystalline silicon wafers
JPWO2010035510A1 (en) Silicon wafer and manufacturing method thereof
WO2020003947A1 (en) Method for inspecting end section strength of glass plate, method for manufacturing glass plate, and device for inspecting end section strength of glass plate
JP2007115870A (en) Wafer crack inspecting apparatus, crack inspecting method and wafer manufacturing method
TW202117108A (en) Determination method of resistivity of single crystal silicon
JP6183074B2 (en) Multi-wire processing method and multi-wire processing apparatus capable of reducing warpage
KR102277625B1 (en) Copper or copper alloy bath for vapor chamber
JP2020178039A (en) Method for evaluating resistance to slip dislocation of silicon wafer
KR20090066110A (en) Holder unit and apparatus for slicing ingot having the holder unit
JP2006286874A (en) Jig for heat treating wafer and heat treated wafer
JP2005050781A (en) Glass neck pipe for cathode-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250