JP2011025876A - 自転車 - Google Patents

自転車 Download PDF

Info

Publication number
JP2011025876A
JP2011025876A JP2009175950A JP2009175950A JP2011025876A JP 2011025876 A JP2011025876 A JP 2011025876A JP 2009175950 A JP2009175950 A JP 2009175950A JP 2009175950 A JP2009175950 A JP 2009175950A JP 2011025876 A JP2011025876 A JP 2011025876A
Authority
JP
Japan
Prior art keywords
force
control
crank
pedal
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009175950A
Other languages
English (en)
Inventor
Kanato Miki
要人 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009175950A priority Critical patent/JP2011025876A/ja
Priority to CN2010102333932A priority patent/CN101987650A/zh
Publication of JP2011025876A publication Critical patent/JP2011025876A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Cycles, And Cycles In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】機械的な操作レバーを用いることなく、左右のペダルの相互の配置を走行の状態に応じて変化させる。
【解決手段】車輪に対して踏力による回転駆動力を与えるためのクランク軸130と、クランク軸130から径方向に突出する左右のクランク13Rとクランク13Lと、これらに支持される左右のペダルを有し、クランク軸130に対するクランク13Lの位置を変更可能とした踏力発生部と、車輪に回転駆動力を与えるための電動モータ114と、車輪の回転を制動するブレーキと、踏力発生部と電動モータ114とを制御する制御部と、を備えている。そして、左右のペダルを斜前下方向となす第1の制御と、電動モータ114を制御して一定の走行速度で走行する第2の制御と、をおこない、ブレーキが操作されたことを検出して、第1の制御および第2の制御を終了する。
【選択図】図3

Description

本発明は、自転車に関し、特に、クランク軸に対してクランクおよびペダルの位置を変化させる自転車に関するものである。
一般的な自転車は、自転車の左右側面にペダルを有する、2つのクランク(連結棒)がクランク軸(回転駆動軸)に対して相互に180度の角度を有して配置されている。このために、ペダルに踏力を与えない場合においても、左右の足はクランク軸を中心として対象の位置に配置せざるを得ず、このような姿勢は楽ではなかった。この点に鑑み。クランク軸の斜前下方向に両ペダルを位置させることのできる二輪車のペダル位置切換え装置が提案されている(特許文献1)。図16に示す特許文献1に記載の技術では、一方のペダル14を支持するクランク13Rの基端はクランク軸(回転駆動軸)11に固定され、他方のペダルを支持するクランク13Lの基端はクランク軸11に回転調節可能に取り付けられている。操作レバー機構35を操作して、クランク13Rがクランク軸11に対し斜前下方向30度の角度位置をとるようにするため、係合板12の凹部16内にロックピン45を係合させる。また、レバー44が、クランク軸11に軸方向にのみ摺動可能に嵌めたクラッチ15に作用してそれをクランク13Lから離れるように移動させ、クラッチ15がクランク13Lとの係合状態から外れるようにする。そして、リターンスプリング23の作用によって、クランク13Lをクランク13Rと同じ角度位置に回動して固定することができるものである。
特許文献2には、踏力による回転駆動力と電動モータによる回転駆動力とを後輪に対して伝達する電動補助自転車(電動アシスト自転車)の技術が記載されている。
また、別の技術として、磁歪効果(ビラリ効果)を利用して機械的な接触なしにトルクを検出するトルクセンサによってペダルの踏力を検出する技術が開示されている(非特許文献1)。
特開2000−43779号公報 特開2004−268843号公報
インターネット URL http://www.tdk.co.jp/techmag/knpwledge/200903/index.htm
特許文献1に記載の技術では、ペダル位置切換えに際しては、手動で操作レバーを動かさなければならず、操作が面倒であり、腕力も必要とされた。
本発明は、上述した課題を解決して、手動で操作レバーを動かすことなく、左右のペダルの相互の配置を走行の状態に応じて変化させることができる自転車を提供するものである。
本発明の自転車は、車輪に対して踏力による回転駆動力を与えるための回転駆動軸と、前記回転駆動軸から径方向に突出する左右の連結棒と、前記左右の連結棒の各々の先端に支持された左右のペダルと、を有し、前記回転駆動軸に対するいずれかの前記連結棒の位置を変更可能とした踏力発生部と、前記車輪に回転駆動力を与えるための電動モータと、前記車輪の回転を制動するブレーキと、前記踏力発生部と前記電動モータとを制御する制御部と、を備え、前記制御部は、前記回転駆動軸に対する前記連結棒の位置を制御して、前記左右のペダルを斜前下方向となす第1の制御をおこない、前記電動モータを制御して一定の走行速度で走行する第2の制御をおこない、前記ブレーキが操作されたことを検出して、前記第1の制御および前記第2の制御を終了する。
別の本発明の自転車は、車輪に対して踏力による回転駆動力を与えるための回転駆動軸と、前記回転駆動軸から径方向に突出する左右の連結棒と、前記左右の連結棒の各々の先端に支持された左右のペダルと、を有し、前記回転駆動軸に対するいずれかの前記連結棒の位置を変更可能とした踏力発生部と、前記車輪に回転駆動力を与えるための電動モータと、前記車輪の回転を制動するブレーキと、前記踏力発生部の前記回転駆動軸に付与される踏力の大きさを検出する踏力トルクセンサと、前記踏力発生部と前記電動モータとを制御する制御部と、を備え、前記制御部は、前記踏力トルクセンサで検出する踏力による回転駆動力の大きさに応じて前記電動モータから回転駆動力を発生させるような電動アシストモードに設定し、前記回転駆動軸に対する前記連結棒の位置を制御して、前記左右のペダルを斜前下方向となす第1の制御をおこない、前記ブレーキが操作されたことを検出して、前記第1の制御を終了して、前記回転駆動軸に対する前記左右の連結棒の位置が相互に180度異なるように制御して、前記左右のペダルに踏力を付与できるようにする。
本発明の自転車では、車輪に対して踏力による回転駆動力を与えるための回転駆動軸と、回転駆動軸から径方向に突出する左右の連結棒と、左右の連結棒の各々の先端に支持された左右のペダルと、を有し、回転駆動軸に対するいずれかの連結棒の位置を変更可能とした踏力発生部を備える。そして、制御部は、左右のペダルを斜前下方向となすか、回転駆動軸に対する左右の連結棒の位置が相互に180度異なるようになすか、を制御する。
本発明の自転車によれば、制御部からの指令によって左右のペダルの相互の配置を変化させることができるので、利便性の高い自転車を提供することができる。
実施形態の二輪車を示す図である。 踏力による回転駆動力と、電動モータによる回転駆動力とを合成する駆動系を示す図である。 第1実施形態の踏力発生部の部分拡大図である。 ばね収納部の内部を模式的に示す図である。 制御系の構成を示す図である。 踏力モード設定処理の内容を示すフローチャートである。 足載モード設定処理の内容を示すフローチャートである。 足載モード設定処理の各種設定内容を模式的に示す図である。 クランクを、斜前下方向10度(°)〜斜前下方向30度(°)の範囲となるように、5度刻みで設定する場合における、クランク軸固定板の構造を模式的に示す図である。 クランクの角度を任意に設定する場合の足載モード設定処理のフローチャートである。 第2実施形態の踏力発生部の図である。 第3実施形態の踏力発生部の図である。 第1実施例の二輪車の制御方法を示すフローチャートである。 第2実施例の二輪車の制御方法を示すフローチャートである。 第3実施例の二輪車の制御方法を示すフローチャートである。 背景技術を示す図である。
実施形態の二輪車は、車輪に対して踏力による回転駆動力を与えるためのクランク軸(回転駆動軸)と、回転駆動軸から径方向に突出する左右のクランク(連結棒)と、左右の連結棒の各々の先端に支持された左右のペダルと、を有し、クランク軸に対する左右いずれかのクランクの位置を変更可能とした踏力発生部と、車輪に回転駆動力を与えるための電動モータと、車輪の回転を制動するブレーキと、踏力発生部と電動モータとを制御する制御部と、を備えている。そして、制御部は、クランク軸に対するクランクの位置を制御して、左右のペダルが、斜前下方向となす第1の制御をおこない、電動モータを制御して一定の走行速度で走行する第2の制御をおこない、ブレーキが操作されたことを検出して、第1の制御および第2の制御を終了する。
ここで、制御部は、さらに、走行速度を検出して、走行速度が所定速度以下となったときには、第1の制御および第2の制御を終了するようにしても良い。また、制御部は、第1の制御および第2の制御を終了後に、クランク軸に対するクランクの位置が180度異なるように制御して、左右のペダルに踏力を付与できるようにするようにしても良い。
また、別の実施形態の二輪車は、車輪に対して踏力による回転駆動力を与えるためのクランク軸(回転駆動軸)と、回転駆動軸の両端から径方向に突出する左右のクランク(連結棒)と、左右のクランクの各々の先端に支持された左右のペダルと、を有し、クランク軸に対する左右いずれかの連結棒の位置を変更可能とした踏力発生部と、車輪に回転駆動力を与えるための電動モータと、車輪の回転を制動するブレーキと、踏力発生部のクランク軸に付与される踏力の大きさを検出する踏力トルクセンサと、踏力発生部と電動モータとを制御する制御部と、を備えている。そして、制御部は、踏力トルクセンサで検出する踏力による回転駆動力の大きさに応じて電動モータから回転駆動力を発生させるような電動アシストモードに設定し、クランク軸に対するクランクの位置を制御して、左右のペダルが、斜前下方向となす第1の制御をおこない、ブレーキが操作されたことを検出して、第1の制御を終了して、クランク軸に対する左右のクランクの位置が相互に180度異なるように制御して、左右のペダルに踏力を付与できるようにする。
(実施形態の二輪車の説明)
図1は、自転車の一種である、実施形態の二輪車を示す図である。図1に示す二輪車1は、踏力による回転駆動力と電動モータによる回転駆動力とを後輪107に対して伝達するタイプの二輪車である。
二輪車1は、電動アシスト自転車(電動補助自転車)として機能し、電動モータの動力で走行する電動二輪車として機能し、また、電動モータの動力を用いない自転車としても機能するものである。電動アシスト自転車は、電池を動力源として、走行力の一部を電動モータから得るものである。電動二輪車は、人力を用いることなく走行する二輪車である。
二輪車1は、一般的な自転車が通常備えると同様の、前輪106と後輪107とを有している。また、左のペダル14から左のクランク13L(図1には図示せず)を介して伝えられた踏力と、右のペダル14から右のクランク13Rとを介して伝えられた踏力とによる回転駆動力をリアスプロケット121(第1リアスプロケット)に伝達するチェン123(第1チェン)を有している。駆動力発生・制御部カバー110の内部には、動力系の一部と制御部160(図5を参照)とが配置されている。
駆動力発生・制御部カバー110の内部には、動力系の電動モータ114(図2を参照)が配されている。また、電動モータ114からの回転駆動力をリアスプロケット120(第2リアスプロケット)に伝達するチェン124(第2チェン)を有している。電動モータ114は、制御部160からのモータ駆動信号Sdm(図5を参照)によって駆動されるようになされている。また、前輪106には車輪回転速度計151が設けられており、二輪車の走行速度を検出できるようになされている。また、二輪車1には、ブレーキレバー108と、電動二輪車として機能するときに用いるアクセルレバー122とが設けられている。
図2は、ペダル14からの人力(踏力)による回転駆動力と、電動モータ114による回転駆動力とを合成する駆動系を示す図である。図2(a)は、動力系を側面から見た図であり、図2(b)は動力系を上方面から見た図である。このような動力系に類似する機構は特許文献2にも説明されている。踏力による回転駆動力と、電動モータによる回転駆動力とは、後輪107(図1を参照)の車軸126で合成される。
クラッチユニット115とクランク軸受部116とはボルトとナットで連結され、一体に構成されている。また、クラッチユニット115には電動モータ114が固着され、電動モータ114で発生する回転駆動力がクラッチユニット115に伝達されるようになされている。
踏力は、操車者が左右に配されたペダル14を踏むことによって発生され、左側に配されたクランク13Lと右側に配されたクランク13Rを介してクランク軸130を回転させる回転駆動力に変換される。クランク軸130はフロントスプロケット5に固着されており、クランク軸130に加えられる回転駆動力(トルク)によってフロントスプロケット5を回転させる。クランク軸130は、クランク軸受部116のクランク軸受116aによって回転可能に保持されている。クランク軸130の伸びる方向の途中に踏力トルクセンサ150が配されている。トルクセンサ150は、フロントスプロケット5とクランク軸固定板133(図4を参照)との間に配置しても、フロントスプロケット5とクランクRとの間に配置しても良い。
チェン123は、クランク軸130に取り付けられたフロントスプロケット5とリアスプロケット121との間に架け渡されている。リアスプロケット121と後輪107の車軸126との間には周知のワンウェイクラッチ119が取り付けられている。このような駆動力伝達機構を用いて、踏力は後輪107を回転させる回転駆動力に変換される。一方、車軸126から入力される逆入力トルクはワンウェイクラッチ119を介して伝達されるので、リアスプロケット121には伝達しない。
電動モータ114からの回転駆動力はクラッチユニット115に入力され、さらにクラッチユニット115の回転軸111からの回転駆動力がミドルスプロケット128に伝えられる。チェン124は、ミドルスプロケット128と車軸126に取り付けられたリアスプロケット120との間に架け渡されている。リアスプロケット120と車軸126とは、双方向にトルク伝達が可能となるように連結されている。
このように、チェン124をリアスプロケット120に架け、チェン123をリアスプロケット121に架けて、両方のスプロケットによって車軸126を回転させる構成では、チェン124を適正張力とした際、チェン123に緩みが生じる可能性がある。この緩みを吸収するため、チェン123の経路にはテンショナ125を配置するようにしている。
クラッチユニット115は周知の電磁クラッチである。クラッチユニット115は制御部160からのクラッチ制御信号Sdc(図5を参照)に応じて、電動モータ114の回転軸と回転軸111との間で、回転駆動力の伝達をするか否かを制御する。また、クラッチユニット115は減速歯車を備え、電動モータ114の回転軸の回転速度を減じて回転軸111に伝達する。
電動モータの回転駆動力を利用した走行中、つまり、「電動アシストモード」、「電動二輪車モード」では、クラッチユニット115の作用によって、クラッチは接続状態(クラッチ接)とされ、電動モータ114からの回転駆動力は、リアスプロケット120に伝達される。このモータトルクと踏力トルクとが、車軸126で合成されるため、二輪車をアシスト走行、または、電動二輪車走行とさせることが可能となる。アシスト走行において、踏力と電動モータ114の動力との割合は制御部160で制御されるが、この制御は踏力トルクセンサ150からの踏力を検出することによっておこなわれる。
非特許文献1にもこのような、踏力トルクセンサが説明されている。踏力トルクセンサ150は、磁歪材と検出コイルとを備えている。また、磁気効果を拡大するための溝である、ナーリングが磁歪材配されている。踏力による回転駆動力はクランク13Rの方向から磁歪材伝わる。その力によって、磁歪材にはビラリ効果が生じ透磁率が変化する。検出コイルは、ビラリ効果に応じて変化する信号を検出する。踏力による回転駆動力に応じてビラリ効果信号の大きさは変化する。よって、ビラリ効果信号より検出する踏力トルク信号Ssb(図5を参照)は踏力による回転駆動力に対応したものとなる。
電動アシスト自転車として機能させる場合には、制御部160は踏力トルク信号Ssbを検出して、踏力による回転駆動力の大きさと電動モータ114からの回転駆動力の大きさとが所定比率となるように電動モータ114のトルクを制御する。
また、モータアシストのない走行中は、クラッチユニット115の作用によって、クラッチは切断状態(クラッチ断)とされ、後輪107の回転トルクが回転軸111を介して電動モータ114の回転軸に逆入力されることがないようにされている。このようにして、踏力による回転駆動力が、電動モータ114、クラッチユニット115の減速歯車の内部摩擦等によって無駄に消費されないようになされている。
また、電動二輪車として走行するときは、上述したように、ワンウェイクラッチ119の作用によって、後輪107の回転力がフロントスプロケット5に及ぶことはなく、フロントスプロケット5を踏力に応じて自由に回転させることが可能である。
本実施形態では、走行のモードとして、「電動アシストモード」、電動モータのアシストのない「人力走行モード(自転車モード)」、電動二輪車として走行する「電動二輪車モード」、のいずれを選択するかは、制御部160に、操作入力部162(図5を参照)から走行モード設定信号Sss(図5を参照)を送ることによって設定される。
また、本実施形態では、左右のペダル14に踏力を与える「踏力モード」と、左右のペダル14に踏力を与えないで、ペダル14を足載せとして用いる「足載モード」とを設けている。「踏力モード」と「足載モード」とのいずれを選択するかは、制御部160に、操作入力部162からペダルモード設定信号Sms(図5を参照)を送ることによって設定される。
また、本実施形態では、制御部160に、操作入力部162から自動走行設定信号Sacを送ることによって、「自動走行モード」に設定することもできる。「自動走行モード」では、「電動アシストモード」、「人力走行モード」または「電動二輪車モード」と、「踏力モード」または「足載モード」とを、制御部160の判断に応じて組み合わせる走行が可能とされている。「自動走行モード」の内容については、後述する。
(第1実施形態の踏力発生部)
図3は、第1実施形態の踏力による動力を発生する部分(踏力発生部)の部分拡大図である。図3(a)は、踏力による動力を発生させる場合の各部の動作を模式的に示す図である。踏力による動力を発生させる「踏力モード」の場合には、二輪車は、電動モータ114の動力を利用しない通常の自転車、または、電動モータ114の動力の補助を受けた電動アシスト自転車として動作する。
図3(b)は、踏力による動力を発生させず、両方の脚を楽な位置に保ち二輪車を走行させる「足載モード」の場合の各部の動作を模式的に示す図である。つまり、図3(b)に示す状態では、二輪車は、踏力の駆動回転力、電動モータ114の駆動回転力を用いず、坂道を自走する自転車、または、電動モータ114の動力で動作する電動二輪車として動作する。
図3(a)、図3(b)に表された各部について説明をする。クランク軸受部116は、クランク軸受116aとプランジャ131(第1プランジャ)とプランジャ132(第2プランジャ)とを有している。クランク軸受116aはボールベアリングを有しており、クランク軸130(第1クランク軸)がクランク軸受部116に対して自由に回転できるようになされている。また、クランク軸130には踏力トルクセンサ150が配されている。
クランク軸固定板133(第1クランク軸固定板)は、円盤形状をしており、その中心に設けられた貫通孔にクランク軸130が貫通されて、クランク軸130とは、ねじ、または、溶接等で固着されている。
クランク軸136に、ねじ、または、溶接等で固着されたクランク軸固定板134(第2クランク軸固定板)は、円盤形状をしており、その中心に設けられた貫通孔にクランク軸130が貫通される。クランク軸固定板134は、クランク軸136(第2クランク軸)と固着されている。クランク軸136にはクランク軸受136a(第2クランク軸受)が配され、クランク軸130に対してクランク軸136とクランク軸固定板134とが回動できるようにされている。クランク軸130とクランク軸136とは、ばね部材で相互間に回転力が生じるように付勢されており、付勢の機構部は、ばね収納部129に収められている。
クランク軸固定板133には貫通孔133aが設けられている。貫通孔133aの大きさは、プランジャ131の磁性体シャフト131aが無理なくゆとりを有して貫通できる大きさに設定されている。また、クランク軸固定板134には貫通孔134aが設けられている。貫通孔134aの大きさは、プランジャ132の磁性体シャフト132aが無理なくゆとりを有して貫通できる大きさに設定されている。
クランク軸固定板133とクランク軸固定板134の各々の外周部には、歯車が形成されており、クランク軸固定板133は歯車141と噛み合うようにされ、クランク軸固定板134は歯車142と噛み合うようにされている。また、歯車141と歯車142とはシャフト144で連結されている。シャフト144は回転軸受部143の回転軸受143aで保持されている。回転軸受部143は圧電素子145で保持され、圧電素子145に電圧を印加することによって、クランク軸固定板133と歯車142との噛み合いを解除し、また、クランク軸固定板134と歯車142との噛み合いを解除するようになされている。
図3(a)に示す、踏力による動力を発生させる場合(「踏力モード」)においては、ばね収納部129に収められているばねの付勢によって、クランク13Lのペダル14の伸びる方向とクランク13Rのペダル14の伸びる方向とは、180度異なるようになされる。このような左右のペダル14の180度異なる配置は、一旦、クランク軸固定板133と歯車142との噛み合いを解除し、クランク軸固定板134と歯車142との噛み合いを解除することによって、クランク軸136とクランク軸130とがばねの付勢によって回動して所定位置関係となり達成できる。
そして、クランク13Lのペダル14の伸びる方向とクランク13Rのペダル14の伸びる方向とが、180度異なるようになされ後は、圧電素子145に印加される電圧は0Vとされる。この状態では、クランク軸固定板133とクランク軸固定板134は、同期して回転をするようになり、クランク軸130とクランク軸136は、あたかも、一本の軸のように回転させられる。そして、各々の伸びる方向が180度異なるようになされ左右のペダル14によって、通常の自転車と同様にして踏力をフロントスプロケット5に与えることができるようになされる。
図3(b)に示す、踏力による動力を発生させない場合(「足載モード」)においては、クランク軸固定板133の貫通孔133aにはプランジャ131の磁性体シャフト131aが貫通するようになされており、クランク軸固定板133と固着されたクランク軸130とクランク13Rとは、クランク軸受部116に対して所定位置関係とされている、ここで、所定位置関係とは、二輪車が水平路面上に在るときに、クランク13Rの伸びる方向が垂線に対して、例えば、斜前下方向30度とされる。所定位置関係は、クランク軸固定板133の貫通孔133aと磁性体シャフト131aとの相互の位置関係によって定まるものである。
また、踏力による動力を発生させない場合(「足載モード」)においては、クランク軸固定板134の貫通孔134aにはプランジャ132の磁性体シャフト132aが貫通するようになされており、クランク軸固定板134と固着されたクランク軸136とクランク13Lとは、クランク軸受部116に対して所定位置関係とされる。所定位置関係とは、二輪車が水平路面上に在るときに、クランク13Lの伸びる方向が垂線に対して、例えば、斜前下方向30度とされる。所定位置関係は、クランク軸固定板134の貫通孔134aと磁性体シャフト132aとの相互の位置関係によって定まるものである。
また、図3(b)では、クランク軸固定板133は歯車141との噛み合いを解除し、クランク軸固定板134は歯車142との噛み合いを解除するように記載されているが、「踏力モード」と「足載モード」との中間の遷移状態において、上述した噛み合いが解除されていれば良く、図3(b)に示す、状態では、クランク軸固定板133は歯車141と噛み合い、クランク軸固定板134は歯車142と噛み合うようにしても動作に支障は生じない。
図4は、ばね収納部129の内部を模式的に示す図である。クランク軸130に、ばね端部接続部130bが固着され、クランク軸136に、ばね端部接続部136bが固着されている。ばね139(破線で模式的に示す)は、ばねの一端が連結される端部接続部130bからばねの他端が連結されるばね端部接続部136bまで、渦巻状に巻かれて、ばね端部接続部130bとばね端部接続部136bとの間には相互が圧接する方向の回転力が付勢されている。
図4(a)に示すように、クランク軸130とクランク軸136とが自由に回動する場合には、ばね139の付勢によって、ばね端部接続部130bと、ばね端部接続部136bとは圧接する位置に配置される。このとき、クランク13Lとクランク13Rとの、各々のペダル14の伸びる方向は、図3(a)に示すように180度異なっている。そして、図3(a)に示すように、連結された歯車141と歯車142の作用によってクランク軸130とクランク軸136とは固着状態とされ、クランク軸130とクランク軸136とからの回動力はクランク軸130を介してフロントスプロケット5に伝えられる。
図4(b)に示すように、クランク軸130とクランク軸136とが自由に回動する状態にしておき、ばね139の付勢に抗して、左右のペダル14の間に踏力を与えて、クランク軸130とクランク軸136との間に回動力を付与し、ばね端部接続部130bと、ばね端部接続部136bの圧接を解除することができる。そして、踏力の大きさを調整して、左右のペダル14が180度異なる位置にばね端部接続部130bと、ばね端部接続部136bを配置させることができる。このとき、クランク13Lとクランク13Rとの、各々のペダル14の伸びる方向は、図3(b)に示すように同方向とされる。このようなペダル14の配置の状態で、磁性体シャフト131a、磁性体シャフト132aの作用によって、クランク13L、クランク13Rをクランク軸受部116に固着すれば、このような固着によって、ばねの付勢が、クランク13Lとクランク13Rとに及ばないようにできる。そして、左右のペダル14が180度異なる位置に配置された状態が維持できる。
図5は、実施形態の二輪車の制御系の構成を示す図である。図5を参照して制御系の説明をする。制御系においては、制御部160が中心となって制御をおこなう。
制御部160は、いずれも図示しない、CPU(中央演算装置)、RAM(ラム)、ROM(ロム)、I/Oインターフェイス回路(入出力インターフェイス回路)を有している。バスライン(アドレスバスライン・データバスライン)にはCPU、RAM(ラム)、ROM(ロム)、I/Oインターフェイス回路が接続されている。
ROMはCPUで実行されるプログラムを記憶し、RAMはCPUでの演算データを一時記憶する。また、I/Oインターフェイス回路は外部回路とCPUとの間での信号の入出力のためのA/D変換器、D/A変換器等を有している。
制御部160には、アクセルレバー122からのアクセル信号Salが入力される。また、ブレーキレバー108からのブレーキ信号Sbkが入力される。また、操作入力部162からの自動走行設定信号Sacとペダルモード設定信号Smsと走行モード設定信号Sssとが入力される。また、車輪回転速度計151からの走行速度信号Svbが入力される。また、踏力トルクセンサ150からの踏力トルク信号Ssbが入力される。また、制御部160からは、電動モータ114に対するモータ駆動信号Sdmが出力される。また、クラッチユニット115に対するクラッチ制御信号Sdcが出力される。また、プランジャ131に対するプランジャ信号Sdp1が出力される。また、プランジャ132に対するプランジャ信号Sdp2が出力される。また、圧電素子145に対する圧電素子駆動信号Sdaが出力される。
(踏力発生部の作用)
以上の、図1〜図5に示した各部構成図に基づいて、第1実施形態の踏力発生部の作用を説明する。図6は、踏力による動力を発生させる「踏力モード」に設定する処理(踏力モード設定処理)の内容を示すフローチャートである。図7は、踏力を発生させないでペダル14を足載せとして用いる「足載モード」に設定する処理(足載モード設定処理)の内容を示すフローチャートである。
図6に示す踏力モード設定処理では、制御部160は以下のように各部を制御する。
ステップST10では、制御部160は、操作入力部162が操作され、「踏力モード」の指令が入力されたことを検知する。
例えば、「踏力モード」と表示した釦を操作入力部162に配して、操車者がこの釦を押してペダルモード設定信号Smsを出力する。そして、制御部160がペダルモード設定信号Smsを検知する。
ステップST11では、制御部160は、圧電素子145に電圧を印加して、クランク軸固定板133と歯車142との噛み合いを解除し、クランク軸固定板134と歯車142との噛み合いを解除する。
操車者は、この時点から、所定時間(例えば、3秒間)は、左足をペダル14から離して、クランク13Lの回動を妨げないようにする。
ステップST12では、制御部160は、ステップST11の処理の開始から上述した所定時間、経過するまで待機して、ステップST11の処理を継続する。
この間は、歯車141歯車、歯車142の噛み合いが解除されているので、ばね139の付勢によって、図4(a)に示すように、ばね端部接続部130bと、ばね端部接続部136bとが圧接するまで回動する。そして、クランク13Lとクランク13Rとの、各々のペダル14の伸びる方向は、図3(a)に示すように180度異なるようになる。
ステップST13では、制御部160は、圧電素子145への電圧の印加を停止する。
これによって、クランク軸固定板133は歯車141と噛み合い、クランク軸固定板134は歯車142との噛み合うようになる。
そして処理は終了する。
この後は、クランク軸固定板133が歯車142と噛み合い、クランク軸固定板134が歯車142との噛み合う状態を維持するので、クランク13Lとクランク13Rとの、各々のペダル14の伸びる方向は、図3(a)に示すように180度異なる状態に維持されて、ペダル14を介して踏力がフロントスプロケット5に伝達される。
図7に示す足載モード設定処理では、制御部160は以下のように各部を制御する。
ステップST20では、制御部160は、操作入力部162が操作されて「足載モード」の指令が入力されたことを検知する。
例えば、「足載モード」と表示した釦を操作入力部162に配して、操車者がこの釦を押してペダルモード設定信号Smsを出力する。そして、制御部160がペダルモード設定信号Smsを検知する。
ステップST21では、制御部160は、圧電素子145に電圧を印加して、クランク軸固定板133は歯車141との噛み合いを解除し、クランク軸固定板134は歯車142との噛み合いを解除する。
操車者は、この時点から、所定時間内(例えば、3秒以内)に、左足でペダル14を操作して、クランク13Lがロックする位置を探す。同様に、左足でペダル14を操作して、クランク13Rがロックする位置を探す。
ステップST22では、制御部160は、プランジャ131にプランジャ信号Sdp1を出力し、プランジャ132にプランジャ信号Sdp2を出力する。
これによって、プランジャ131の磁性体シャフト131aはクランク軸固定板133に対して突出する。貫通孔133a以外では、クランク軸固定板133の側面を磁性体シャフト131aの先端が小さな力で押圧するだけであり、クランク軸固定板133は自由に回動が可能である。そして、プランジャ131の磁性体シャフト131aが貫通孔133aを貫通するとクランク軸固定板133はロックされて回動することはできなくなる。
同様に、プランジャ132の磁性体シャフト132aはクランク軸固定板134に対して突出する。貫通孔134a以外では、クランク軸固定板134の側面を磁性体シャフト132aの先端が小さな力で押圧するだけであり、クランク軸固定板134は自由に回動が可能である。そして、プランジャ132の磁性体シャフト132aが貫通孔134aを貫通するとクランク軸固定板134はロックされて回動することはできなくなる。
クランク軸固定板133とクランク軸固定板134の各々には、1個の貫通孔133aと1個の貫通孔134aとが設けられている場合にはロックする位置は各々一箇所である。
ステップST23では、制御部160は、ステップST21の処理の開始から上述した所定時間、例えば3秒間、経過する待機して、ステップST21の処理を継続する。
この間は、歯車141歯車、歯車142の噛み合いが解除されているので、クランク13Lとクランク13Rとを自由に回動させて、各々のクランクと連動するクランク軸固定板133とクランク軸固定板134の各々をロックさせる位置を探すことができる。
ロック状態では、各々のペダル14の伸びる方向は、図3(b)に示すように斜前下方向30度となる。
ここで、斜前下方向30度となるのは、クランク軸固定板133の中心から伸びるクランク13Rの方向に対して、クランク軸固定板133の中心から貫通孔133aに延びる線の方向が、そのような位置関係となるように、予め配置されているからである。同様に、クランク軸固定板134の中心から伸びるクランクLの方向に対して、クランク軸固定板134の中心から貫通孔134aに延びる線の方向が、そのような位置関係となるように、予め配置されているからである。
ステップST24では、制御部160は、圧電素子145への電圧の印加を停止する。これによって、クランク軸固定板133は歯車141と噛み合い、クランク軸固定板134は歯車142と噛み合う。
ステップST24の処理は必ずしも必要な処理ではないが、電力消費量削減のための処理である。この処理によって、圧電素子145へ無駄な電力を加える必要がなくなり、電力消費量を削減できる。そして、処理は終了する。
(足載モード設定処理の第1変形例)
以上の、踏力モード設定処理、足載モード設定処理は、いずれも、何度も繰り返すことができるので、ペダル14から足を離すのを忘れ、または、ペダル14を足で押して所望の位置とすることを忘れて、所望の設定ができなかった場合には何度でも再設定が可能である。よって、確実な動作は必ずしも要求されない。しかしながら、足載モード設定処理において、プランジャ131の巻線コイルのインダクタンス、プランジャ132の巻線コイルのインダクタンスを監視して、より信頼性を増すことができる。プランジャの巻線コイルのインダクタンスの監視は制御部160がおこなう。
図7に示す足載モード設定処理のステップST24では、所定時間が経過すると、制御部160は、圧電素子145への電圧の印加を停止するので、プランジャ131の磁性体シャフト131aが貫通孔133aを貫通しているか否か、プランジャ132の磁性体シャフト132aが貫通孔134aを貫通しているか否かにかかわりなく、それ以降は、クランク13Lとクランク13Rとを別個に独立して回動させることはできなくなる。そこで、プランジャ131、プランジャ132の巻線コイルのインダクタンスを検出して、貫通孔133a、または、貫通孔134aを各々の磁性体シャフトが貫通しているか否かを検出して、両方の磁性体シャフトが貫通するまで、圧電素子145への電圧の印加を停止するようにして、クランク13Lとクランク13Rとのロックをより容易なものとすることができる。
ここで、プランジャ131に磁性体シャフト131aが挿入されている状態、または、プランジャ132に磁性体シャフト132aが挿入されている状態では、磁性体で形成された磁性体シャフトは磁気コアとして機能するので、プランジャの巻線コイルのインダクタンスは大きな値となる。また、プランジャ131から磁性体シャフト131aが突出している状態、または、プランジャ132から磁性体シャフト132aが突出している状態では、プランジャの巻線に磁気コアが十分に挿入されていないので、プランジャの巻線コイルのインダクタンスは小さな値となる。プランジャの巻線コイルのインダクタンスを測定するに際しては、プランジャの巻線コイルに直流電力を印加しながら、交流電力を重畳して、制御部160が検出する交流電力の交流電圧の値と交流電流の値との比から、プランジャの巻線コイルのインダクタンスを検出する。そして、制御部160は、以下のような制御をおこなう。
第1変形例では、図7におけるステップST23の処理に替えて、制御部160は、プランジャ131の巻線コイルのインダクタンスが所定値以下となり、かつ、プランジャ131の巻線コイルのインダクタンスが所定値以下となるまで、ステップST21とステップST22の処理を継続する。
または、プランジャ131の巻線コイルとプランジャ131の巻線コイルとを直列接続して、ステップST23の処理に替えて、制御部160は、直列のインダクタンスが所定値以下となるまで、ステップST21とステップST22の処理を継続する。
このようにすると、プランジャ131の磁性体シャフト131aが貫通孔133aに貫通し、かつ、プランジャ132の磁性体シャフト132aが貫通孔134aに貫通するまで、クランク13Lとクランク13Rとを別個に独立して回動させることができるので、ロックの検出をより容易にすることができる。
(足載モード設定処理の第2変形例)
足載モードでは、クランク13Lとクランク13Rとの位置は、例えば、斜前下方向30度と固定されたが、以下のようにすることによって、例えば、5度刻みで、所望の値とすることができる。また、クランク13Lとクランク13Rとを異なる角度、例えば、クランク13Lを斜前下方向30度、クランク13Rを斜前下方向20度に配置することもできる。
図8は、足載モード設定処理の各種設定内容を模式的に示す図である。図8(a)は、クランク13Lとクランク13Rとの両方が斜前下方向30度の場合、図8(b)は、クランク13Lとクランク13Rとの両方が斜前下方向20度の場合、図8(c)は、クランク13Lが斜前下方向30度、クランク13Rが斜前下方向20度の場合、図8(d)は、クランク13Lが斜前下方向20度、クランク13Rが斜前下方向30度の場合、を各々示すものである。
図9は、クランク13L、クランク13Rを、斜前下方向10度(°)〜斜前下方向30度(°)の範囲となるように、5度刻みで設定する場合における、クランク軸固定板133とクランク軸固定板134の構造を模式的に示すものである。符号a〜符号eは、貫通孔133a、貫通孔134aの配置を示すものである。符号aに示す位置において貫通孔133a、貫通孔134aがロックされる場合に、クランク13L、クランク13Rが斜前下方向10度の配置となるように予め設定しておく。
そうすると、符号bに示す位置において貫通孔133a、貫通孔134aがロックされる場合には、クランク13L、クランク13Rは斜前下方向15度となる。符号cに示す位置において貫通孔133a、貫通孔134aがロックされる場合には、クランク13L、クランク13Rは斜前下方向20度となる。符号dに示す位置において貫通孔133a、貫通孔134aがロックされる場合には、クランク13L、クランク13Rは斜前下方向25度となる。符号eに示す位置において貫通孔133a、貫通孔134aがロックされる場合には、クランク13L、クランク13Rは斜前下方向30度となる。
図10は、クランク13Lとクランク13Rとの両方の角度を任意に設定する場合の足載モード設定処理のフローチャートである。
ステップST30では、制御部160は、操作入力部162が操作されて「足載モード」の指令が入力されたことを検知する。
例えば、「足載モード」と表示した釦を操作入力部162に配して、操車者がこの釦を押してペダルモード設定信号Smsを出力する。そして、制御部160がペダルモード設定信号Smsを検知する。
ステップST31では、制御部160は、圧電素子145に電圧を印加して、クランク軸固定板133と歯車141との噛み合いを解除し、クランク軸固定板134と歯車142との噛み合いを解除する。
操車者は、この時点から、左足でペダル14を操作して、クランク13Lが好みの角度付近になるように脚を用いて設定することができる。同様に、左足でペダル14を操作して、クランク13Rが好みの角度付近になるように脚を用いて設定することができる。
ステップST32では、制御部160は、操作入力部162が操作されて「右クランクロック」の指令が入力されたことを検知する。
例えば、「右クランクロック」と表示した釦を操作入力部162に配して、操車者が、ペダル14を右足で押圧して所望する角度付近に右クランク設定した後、この釦を押してペダルモード設定信号Smを出力する。
制御部160は、「右クランクロック」に対応したペダルモード設定信号Smsを検知する。
ステップST33では、制御部160は、「右クランクロック」を検出して、プランジャ131にプランジャ信号Sdp1を出力する。
これによって、プランジャ131の磁性体シャフト131aはクランク軸固定板133に対して突出する。貫通孔133a以外では、クランク軸固定板133の側面を磁性体シャフト131aの先端が小さな力で押圧するだけであり、所望する角度付近でクランク軸固定板133は自由に回動が可能である。
そして、プランジャ131の磁性体シャフト132aが貫通孔133aを貫通するとクランク軸固定板133はロックされて、クランク13Rは回動することができなくなる。
ステップST34では、制御部160は、「左クランクロック」の指令が入力されたことを検知する。
例えば、「左クランクロック」と表示した釦を操作入力部162に配して、操車者が、ペダル14を左足で押圧して所望する角度付近に左クランク設定した後、この釦を押してペダルモード設定信号Smを出力する。
制御部160は、「左クランクロック」に対応したペダルモード設定信号Smsを検知する。
ステップST35では、制御部160は、プランジャ132にプランジャ信号Sdp2を出力する。
これによって、プランジャ132の磁性体シャフト132aはクランク軸固定板134に対して突出する。貫通孔134a以外では、クランク軸固定板134の側面を磁性体シャフト132aの先端が小さな力で押圧するだけであり、所望する角度付近でクランク軸固定板134は自由に回動が可能である。
そして、プランジャ132の磁性体シャフト132aが貫通孔134aを貫通するとクランク軸固定板134はロックされて、クランク13Lは回動することができなくなる。
操車者は、クランク13Rとクランク13Lのロックを確認した後に次のステップST36の処理へ移る。
なお、クランクRとクランクLのどちらのロックを先にするかは適宜に選択が可能であり。ステップST32〜ステップST34までの処理が早くおこなわれるように、連続して釦を押せば、両方のロックを略同時にさせることができる。
ステップST36では、制御部160は、圧電素子145への電圧の印加を停止する。これによって、クランク軸固定板133は歯車141と噛み合い、クランク軸固定板134は歯車142との噛み合うようになる。
例えば、「圧電素子電圧解除」と表示した釦を操作入力部162に配して、操車者が、この釦を押してペダルモード設定信号Smsを出力する。
そして、制御部160が、「圧電素子電圧解除」に対応したペダルモード設定信号Smsを検知する。
ステップST36の処理は必ずしも必要な処理ではないが、電力消費量削減のための処理である。この処理によって、圧電素子145へ無駄な電力を加える必要がなくなり、電力消費量を削減できる。そして処理は終了する。
(第2実施形態の踏力発生部)
図11は別の実施形態(第2実施形態)の踏力発生部の図である。第2実施形態の踏力発生部は、図3に示す第1実施形態の踏力発生部に変更を加えたものであるので、同一構成部分には、第1実施形態の踏力発生部におけると同一の符号を付して、説明を省略する。
第2実施形態の踏力発生部が第1実施形態の踏力発生部と異なる点は、ばね収納部129に替えて回動制限部材135を用いた点と、回動力をばね139ではなく、クランク軸固定板回動モータ118によって付与する点である。
回動制限部材135は、ばね収納部129において、ばね139を取り除いた点が異なる。回動制限部材135は、ばね端部接続部130bとばね端部接続部136bと同様の構造物によって、単に回動量を制限する機能のみを有している。クランク軸固定板回動モータ118の固定部側は、クランク軸受部116に固着され、クランク軸固定板回動モータ118の回転軸に固着された歯車118aを有している。そして、回動力が必要な場合には、ばね139と同様の方向に回動力を付与するようにクランク軸固定板回動モータ118に電流を流す。
クランク軸固定板回動モータ118はクランク13Lを回動させる力があれば十分であり、それ以上に大きなトルクを発生すると操車者の脚にクランク13Lが触れたときに危険であるので、小型で小電力のモータが用いられる。そのために、ばね端部接続部130bとばね端部接続部136bと同様の構造物が圧接された状態でクランク軸固定板回動モータ118を動作させても、クランク軸固定板回動モータ118に過大な電流が流れることはなく、短時間であれば、クランク軸固定板回動モータ118が熱で損傷を受けることもない。
クランク軸固定板134と歯車118aとは、常時、噛み合ったままとされている。クランク軸固定板回動モータ118に回動力を発生させるとき以外において、クランク軸固定板回動モータ118を駆動する駆動回路の出力インピーダンスを高くなるようにしておけば、踏力がクランク軸固定板回動モータ118を介して消費されることもない。
クランク軸固定板回動モータ118は、図6に示すステップST12の処理の時間、図7に示すステップST23の処理の時間、図10に示すステップST31〜ステップST36までの処理の時間、だけ電流が制御部160の制御によって流され、ばね139と同様に作用する。
(第3実施形態の踏力発生部)
図12はさらに別の実施形態(第3実施形態)の踏力発生部の図である。図12に示す踏力発生部は、特許文献1に記載されたペダル位置切換え装置に変更を加えたものである。図12(a)は、踏力を発生させる状態を示す図である。図12(c)は、ペダル14が斜前下方向30度に位置する場合を示す図である。図12(b)は、図12(a)に示す状態から、図12(c)で示す状態へ遷移する途中の状態を示す図である。
第3実施形態の踏力発生部の作用を説明する。図12(a)に示すように、制御部160によって制御されるプランジャ70の巻線コイル72に電流が流されることによって、磁性体シャフト71はプランジャ70の内部に引き込まれ、ばね73を圧縮する。そして、操作レバー機構35のロッド連結孔57と、磁性体シャフト71とに各々の端部が連結されたロッド74によって、レバー44は固定枢着ピン56周りで時計方向に回動する。ここで、レバー44の中間部の孔部55に挿入した固定枢着ピン56によりレバー44は二輪車のフレームFに水平面内で回動自在に支持されている。また、フレームFにはクランク軸11を回転可能に支持するスリーブ60が一体的に設けられている。
また、クラッチ15はクランク軸11に沿ってクランク13Lの側へ移動する。このため、クラッチ15の小鍔部37がローラ32を介してレバー44の二股部に作用し、レバー44のロックピン45は、係合板12の凹部16から外れる。ここで、レバー44の各二股部の先端にはローラ47が回転可能に取り付けられている。これらのローラ47は前記クラッチ15の小鍔部37の側面に当接可能になっており、ローラ47は小鍔部37の側面に当接するとクラッチ15の回転にならって回転するようになっている。
ここで、クランク13Lの基端部には円盤部19を有して、円盤部19の周縁沿いには円盤部19の内面21より凹入する2つの係合凹部22が形成されている。そして、クラッチ15の両内側凸部39は、クランク13Lの両係合凹部22に嵌合される。このとき、クランク13Lがクランク13Rに対しクランク軸11周りで180゜の角度をなして反対方向に向くように設計されている。したがって、左右のペダル14は、通常の自転車と同じペダル配置となり踏力を発生し、フロントスプロケット5を回転させることができる。よって、図12(a)に示す状態では、取付孔26、取付孔31によって、クランク13L、クランク13Rに取り付けられた左右のペダル14に踏力を与えることができる。
一方、ペダル14を踏力発生の目的ではなく、足載(例えば、電動二輪車として機能させる場合の足載、あるいは自転車として機能する場合の坂道走行時の足載)を目的で機能させる場合には、図12(b)に示すように、制御部160によって制御されるプランジャ70の巻線コイル72の電流を切断することによって、ばね73の付勢によってロッド74を左方へ引く。これにより、レバー44は固定枢着ピン56周りで反時計方向に回動する。このとき、レバー44のロックピン45が凹部16に嵌合し、係合板12は操作レバー機構35によってロックされる。このロック状態でクランク13Rがクランク軸11の斜前下方向30゜の位置に保持されるように設計しておけば、クランク13Rはその位置に固定される。
操作レバー44の固定枢着ピン56周りでの反時計方向回動によって、クラッチ15はレバー44のローラに押されて、スプリング34の力に抗してクランク軸11に沿ってクランク13Rの側へ移動する。そして、図12(c)に示すように、クラッチ15の両内側凸部39は、クランク13Lの両係合凹部22から外れて、リターンスプリング23の付勢力によってクランク13Lは反時計方向に180゜回転して外側凸部43の端面にクランク13Lの凸部25の側面が当接する。この当接位置でクランク13Lがクランク13Rと同じ角度位置をとるように設計してあることにより、クランク13Rとクランク13Lとは共に斜前下方向30゜の位置を保持する。よって、図12(c)に示す状態では、左右のペダル14を足載として機能させることができる。
図12(c)の状態から図12(a)の状態にするには上述したと逆の手順をおこなう。このようにして、踏力モードに設定し、または、足載モードに設定することができる。
このような制御をおこなう制御部160は、要約すると、「踏力モード」に設定するに際しては、プランジャ70の巻線コイル72に電流を流し、「足載モード」に設定するに際しては、プランジャ70の巻線コイル72の電流を切断する。
以上に説明をした第1実施形態の踏力発生部も、第2実施形態の踏力発生部も、第3実施形態の踏力発生部も、以下の構成を有する点で共通している。車輪に対して踏力による回転駆動力を与えるための回転駆動軸(クランク軸)と、回転駆動軸から径方向に突出する左右の連結棒(クランク)と、左右の連結棒の各々の先端に支持された左右のペダルと、を有し、回転駆動軸に対する連結棒の位置を変更可能としている。ここで、位置の変更は電磁的手段によっておこなっている。電磁的手段は、第1実施形態の踏力発生部ではプランジャと圧電素子であり、第2実施形態の踏力発生部ではプランジャと電動モータであり、第3実施形態の踏力発生部ではプランジャである。
(実施形態の二輪車の制御方法)
第1実施形態の踏力発生部〜第3実施形態の踏力発生部を用いることによって、「踏力モード」と「足載モード」とを自由に選択できるようになる。ここで、2つのペダルモードである「踏力モード」と「足載モード」と、3つの走行モードである「電動アシストモード」、「人力走行モード」、「電動二輪車モード」との組み合わせによって、従来は実現できなかったような、利便性の高い二輪車を提供することができる。実施形態では、操作が容易となるように、予め、このような組み合わせをプログラム化した走行のモード(「自動走行モード」と称する)を有するようにしている。
(第1実施例の二輪車の制御方法)
第1実施例の「自動走行モード」では、二輪車は、「電動二輪車モード」で動作する。
電動二輪車として機能する場合には、常に手を捻った状態でアクセルレバー122を操作しなければならず、手が疲労する。また、ハンドル操作とアクセル操作とを同時に手でおこなうので、商店街の人が多いところを通過する場合、狭い通路を走行する場合には細かなハンドル操作をし難く、事故を招き易い。また、電動二輪車として機能する場合には、踏力によらず走行することができる一方、電動モータ114による駆動力の大きさは回動式スイッチ、または、実施形態のようにアクセルレバー122で調整されるようになされている。このために、走行を急に停止したい場合に、アクセルレバー122で走行状態とされながらブレーキレバー108が操作される場合があり、このような操作は、危険を伴う場合もある。第1実施例の二輪車の制御方法は、このような不具合が生じるのを防止するという課題を解決するものである。
図13は第1実施例の二輪車の制御方法を示すフローチャートである。図13を参照して、第1実施例の「自動走行モード」について説明をする。第1実施例の「自動走行モード」で二輪車を走行させる場合には、操作入力部162の「第1自動走行モード」と表示された釦を押すことによって、制御部160は、「第1自動走行モード」に対応した自動走行設定信号Sacを受け取り、図13で示すフローチャートの処理を実行する。
ステップST40では、制御部160は、操作入力部162からの「足載モード」の設定を検知する。
例えば、「足載モード」の表示が操作入力部162に表示される。
操車者がこの表示に対応する釦を押した場合に操作入力部162からペダルモード設定信号Smsが出力され、制御部160がペダルモード設定信号Smsを検知する。
ステップST41では、制御部160は「第1の制御」をおこなう。
第1の制御の内容は、「足載モード」に設定する処理である。
第1実施形態の踏力発生部(図3を参照)を利用する場合には、図7に示すステップST21〜ステップST24の処理、または、図10に示すステップST31〜ステップST36の処理である。第2実施形態の踏力発生部を利用する場合には、図7、図10に示す処理に加えてクランク軸固定板回動モータ118の制御もおこなう。
また、第1の制御の内容は、第2実施形態の踏力発生部(図12を参照)を利用する場合には、プランジャ70に流れる電流を切断する処理である。
いずれの実施形態においても、「足載モード」とする制御をおこなうことによって、クランク13L、クランク13Rが斜前下方向に所定角度で配置され、ペダル14に両足を乗せる楽な姿勢を保つことができる。ここで、所定角度とは、例えば、10度〜30度の範囲である。
ステップST42では、制御部160は「第2の制御」をおこなう。
「第2の制御」の内容を以下に説明をする。
まず、「電動二輪車モード」として電動モータのみの駆動力で走行するようにする。
そして、制御部160は走行速度信号Svbを検出して、このときの走行速度信号Svbを目標値とする。または、予め定める速度を目標値とする。
そして、制御部160は、電動二輪車が目標値の走行速度で走り続けるようなモータ駆動信号Sdmを出力して、フィードバック制御系の作用によって一定速度で走行させる。
つまり、「第2の制御」は、定速度で走行する電動二輪車モードの制御である。
第1実施形態の踏力発生部〜第3実施形態の踏力発生部を利用する場合のいずれにおいても、電動モータを備える限り「第2の制御」は実施可能である。
ステップST43では、制御部160は、ブレーキレバー108からのブレーキ信号Sbkを検出する。
ブレーキ信号Sbkは、ブレーキレバー108が操作されるときに出力される。また、ブレーキレバー108が操作されることによって、従来の自転車におけると同様に、ブレーキシュー(図示せず)が車輪に押圧され車輪の回転速度を落とす。
ステップST44では、制御部160は、検出されたブレーキ信号Sbkによって、ブレーキ操作がされたか否かを判断する。
ブレーキ操作がされたと判断する場合(Yes)には、処理はステップST45へ移動する。
一方、ブレーキ操作がされたと判断しない場合(No)には、処理はステップST43へ移動する。
ステップST45では、制御部160は、「第1の制御」と「第2の制御」とを終了して、「第3の制御」をおこなう。
第3の制御の内容は、「踏力モード」とする制御をおこなうことである。
第1実施形態の踏力発生部を利用する場合には、図6に示すステップST11〜ステップST13の処理である。第2実施形態の踏力発生部を利用する場合には、図6に示す処理に加えてクランク軸固定板回動モータ118の制御もおこなう。
また、第3の制御の内容は、第3実施形態の踏力発生部を利用する場合には、プランジャ70に電流を流す処理である。
いずれの実施形態においても、「踏力モード」とする制御をおこなうことによって、クランク13Lとクランク13Rとは180度の角度を有することとなる。
そして、クランク13Lとクランク13Rの各々のペダル14に踏力を与えることができるようになる。
ステップST46では、制御部160は、「電動アシストモード」、または、「人力走行モード」に設定する。
そして、制御部160は、アクセルレバー122からの、アクセル信号Salを無視する。
ステップST46の処理が終了すると、処理はステップST40へ移る。
このような、「第1自動走行モード」では、一定速度で長距離を走行する場合には、ペダルに両足を載せた状態として、かつ、脚を前方に伸ばして楽な姿勢で走行することができる。一方、ブレーキを操作した時点で、「第1の制御」と「第2の制御」とが終了され、「電動二輪車」としての機能は終了し、「足載モード」も終了される。このようにして、ブレーキが操作されたことによって危険回避のモードである「第3の制御」へ移行する。なお、図13のフローチャートにおいて、ステップST41の「第1の制御」をおこなう処理と、ステップST42の「第2の制御」をおこなう処理との実行の順序を入れ替え、先に、第2の制御をおこない、その後に第1の制御をおこなうようにしても、同様の効果を得ることができる。
(第2実施例の二輪車の制御方法)
第2実施例の「自動走行モード」では、二輪車は、第1実施例と同様に「電動二輪車モード」で動作することを特徴とするが、二輪車の走行速度が所定速度以下となった場合も、「第3の制御」をおこなう点が第1実施例の二輪車の制御方法とは異なる。
第1実施例の二輪車の制御方法では、電動二輪車が走行しているときに、電池からの電力の供給が不足した場合、急な坂道を登る場合、泥道で車輪が空転した場合等においては、一定速度を維持できない状況であるにもかかわらず、「足載モード」で走行し続けることとなる。このような場合には危険回避のモードに変更することが望ましい。第2実施例の二輪車の制御方法は、このような課題を解決するものである。第2実施例の「自動走行モード」で二輪車を走行させる場合には、操作入力部162の「第2自動走行モード」と表示された釦を押すことによって、制御部160は、図14で示すフローチャートの処理を実行する。
図14は第2実施例の二輪車の制御方法を示すフローチャートである。図14に示すステップST50〜ステップST54は、ステップST40〜ステップST44と略同様の処理であるので、これらについては説明を省略する。ただし、ステップST53の処理では、ブレーキ信号Sbkを検出し、加えて走行速度信号Svbを検出している点が、ステップST43の処理とは異なる。
ステップST54では、制御部160は、検出されたブレーキ信号Sbkによってブレーキ操作がされたか否かを判断する。
ブレーキ操作がされたと判断する場合(Yes)には、処理はステップST56へ移動する。
一方、ブレーキ操作がされたと判断しない場合(No)には、処理はステップST55へ移動する。
ステップST55では、制御部160は、検出された走行速度信号Svbが所定速度以下か否かを検出する。
所定速度は、例えば、2km/h(時速2キロメートル)とされる。
走行速度信号Svbが所定速度以下であると判断する場合(Yes)には、処理はステップST56へ移動する。
一方、走行速度信号Svbが所定速度以下であると判断しない場合(No)には、処理はステップST53へ移動する。
ステップST56では、制御部160は、「第1の制御」、「第2の制御」を終了して、「第3の制御」をおこなう。
第3の制御の内容は、「踏力モード」とする制御をおこなうことである。
第1実施形態の踏力発生部を利用する場合には、図6に示すステップST11〜ステップST13の処理である。第2実施形態の踏力発生部を利用する場合には、図6に示す処理に加えてクランク軸固定板回動モータ118の制御もおこなう。
また、第3の制御の内容は、第3実施形態の踏力発生部を利用する場合には、プランジャ70に電流を流す処理である。
いずれの実施形態においても、「踏力モード」とする制御をおこなうことによって、クランク13Lとクランク13Rとは180度の角度を有することとなる。
そして、クランク13Lとクランク13Rの各々のペダル14に踏力を与えることができるようになる。
第2実施例では、このように、ブレーキ操作がされたと判断する場合(Yes)、または、走行速度信号Svbが所定速度以下であると判断する場合(Yes)には、「踏力モード」とする制御をおこなうようにしている。
よって、ブレーキ操作をしない場合であっても、走行速度が下がってしまった場合には、二輪車に異常があるか走行路面に異常があるかは、別として、「踏力モード」とする制御をおこなって、より安全な走行モードとすることができる。
(第3実施例の二輪車の制御方法)
第3実施例の「自動走行モード」では、二輪車は、「電動アシストモード」で動作することを特徴とする。
図15は、第3実施例の二輪車の制御方法を示すフローチャートである。図15を参照して第3実施例の二輪車の制御方法について説明をする。第2実施例の「自動走行モード」で二輪車を走行させる場合には、操作入力部162の「第3自動走行モード」と表示された釦を押すことによって、制御部160は、図15で示すフローチャートの処理を実行する。
ステップST60では、制御部160は「第4の制御」をおこなう。
第4の制御の内容は、「電動アシストモード」とする制御をおこなうことである。
電動アシストモードでは、制御部160は、踏力トルクセンサ150で検出する踏力による回転駆動力の大きさよりも電動モータ114で発生する回転駆動力の大きさが小さい範囲で、踏力による回転駆動力の大きさに応じて電動モータ114から回転駆動力を発生させるようにする。
ステップST61では、制御部160は、操作入力部162からの「足載モード」の設定を検知する。
例えば、「足載モード」の表示が操作入力部162に表示される。
操車者がこの表示に対応する釦を押した場合に操作入力部162からペダルモード設定信号Smsが出力され、制御部160がペダルモード設定信号Smsを検知する。
ステップST62では、制御部160は「第1の制御」をおこなう。
第1の制御の内容は、「足載モード」に設定する処理である。
第1実施形態の踏力発生部を利用する場合には、図7に示すステップST21〜ステップST24の処理、または、図10に示すステップST31〜ステップST36の処理である。第2実施形態の踏力発生部を利用する場合には、図7、図10の処理に加えてクランク軸固定板回動モータ118の制御もおこなう。
また、第1の制御の内容は、第3実施形態の踏力発生部を利用する場合には、プランジャ70に流れる電流を切断する処理である。
いずれの実施形態においても、「足載モード」とする制御をおこなうことによって、クランク13L、クランク13Rが斜前下方向に所定角度で配置され、ペダル14に両足を乗せる楽な姿勢を保つことができる。ここで、所定角度とは、例えば、10度〜30度の範囲である。
「電動アシストモード」で、第1の制御をおこなうのに適切な場合としては、坂道を下る場合がある。坂道では踏力を与える必要はないからである。
ステップST63では、制御部160は、ブレーキレバー108からのブレーキ信号Sbkを検出する。
ブレーキ信号Sbkは、ブレーキレバー108が操作されるときに出力される。また、ブレーキレバー108が操作されることによって、従来の自転車におけると同様に、ブレーキシューが車輪に押圧され車輪の回転速度を落とす。
ステップST64では、制御部160は、検出されたブレーキ信号Sbkによってブレーキ操作がされたか否かを判断する。
ブレーキ操作がされたと判断する場合(Yes)には、処理はステップST65へ移動する。
一方、ブレーキ操作がされたと判断しない場合(No)には、処理はステップST63へ移動する。
ステップST65では、制御部160は「第3の制御」をおこなう。
第3の制御の内容は、「踏力モード」とする制御をおこなうことである。
第1実施形態の踏力発生部を利用する場合には、図6に示すステップST11〜ステップST13の処理である。第2実施形態の踏力発生部を利用する場合には、図6に示す処理に加えてクランク軸固定板回動モータ118の制御もおこなう。
また、第3の制御の内容は、第3実施形態の踏力発生部を利用する場合には、プランジャ70に電流を流す処理である。
いずれの実施形態においても、「踏力モード」とする制御をおこなうことによって、クランク13Lとクランク13Rとは180度の角度を有することとなる。そして、クランク13Lとクランク13Rの各々のペダル14に踏力を与えることができるようになる。
ステップST65の処理が終了すると処理はステップST61に戻る。
そして、ステップST61において、操作入力部162から「足載モード」に設定をする指示を出して、制御部160がこれを検知しない限り、「踏力モード」が維持される。
このような制御をおこなえば、電動アシストモードであっても踏力を与える必要がない場合には、「足載モード」として、楽な姿勢で走行し、危険回避のためにブレーキレバー108を操作した場合には、再び、「踏力モード」とすることによってより安全な走行を確保できる。ここで、ステップST64におけるブレーキ操作がされたか否かの判断に際して、強いブレーキ操作(急ブレーキ操作)がされたときのみ、ブレーキ操作がされた(Yes)と判断するようにすれば、長い坂道でも軽いブレーキの作用を併用しながら、楽な姿勢で長時間の走行が可能となる。
なお、ブレーキ操作されたが、急ブレーキであるか否かの判断は、ブレーキの強度(ブレーキシューが車輪を押圧する強度)をブレーキレバー108から検出することによって可能となる。例えば、ブレーキレバー108にポテンショメータを取り付け、ブレーキの強度をアナログ電圧信号として取り出せるようにして、このような信号をブレーキ信号Sbkとして用いる。このようにすれば、制御部160で判断する、ブレーキ操作されたか否かの判断のレベルを自由に設定して、急ブレーキであるか否かを判断することができる。
上述した、実施形態では、自転車が二輪車であるとして説明をおこなってきたが、自転車が三輪車、四輪車である場合でも、以上説明した実施形態は応用することができる。
1 二輪車、 5 フロントスプロケット、 11 クランク軸、 12 係合板、 13L、13R クランク、 14 ペダル、 15 クラッチ、 16 凹部、 22 両係合凹部、 23 リターンスプリング、 25 凸部、 26 取付孔、 31 取付孔、 32 ローラ、 34 スプリング、 35 操作レバー機構、 37 小鍔部、 39 両内側凸部、 43 外側凸部、 44 レバー、 45 ロックピン、 47 ローラ、 55 孔部、 56 固定枢着ピン、 57 ロッド連結孔、 70 プランジャ、 71 磁性体シャフト、 72 巻線コイル、 74 ロッド、 106 前輪、 107 後輪、 108 ブレーキレバー、 110 駆動力発生・制御部カバー、 111 回転軸、 114 電動モータ、 115 クラッチユニット、 116 クランク軸受部、 116a クランク軸受、 118 クランク軸固定板回動モータ、 119 ワンウェイクラッチ、 120、121 リアスプロケット、 122 アクセルレバー、 123、124 チェン、 125 テンショナ、 126 車軸、 128 ミドルスプロケット、 129 ばね収納部、 130 クランク軸、 130b ばね端部接続部、 131、132 プランジャ、131a、132a 磁性体シャフト、 133 クランク軸固定板、 133a 貫通孔、 134 クランク軸固定板、 134a 貫通孔、 135 回動制限部材、 136 クランク軸、 136a クランク軸受、 136b ばね端部接続部、 139 ばね、 141、142 歯車、 143 回転軸受部、 143a 回転軸受、 144 シャフト、 145 圧電素子、 150 踏力トルクセンサ、 151 車輪回転速度計、 160 制御部、 162 操作入力部、 F フレーム、 Sac 自動走行設定信号、 アクセル信号Sal、 ブレーキ信号Sbk、 Sda 圧電素子駆動信号、 Sdc クラッチ制御信号、 Sdm モータ駆動信号、 Sdp1、Sdp1 プランジャ信号、 Sms ペダルモード設定信号、 Ssb 踏力トルク信号、 Sss 走行モード設定信号、 Svb 走行速度信号

Claims (5)

  1. 車輪に対して踏力による回転駆動力を与えるための回転駆動軸と、前記回転駆動軸から径方向に突出する左右の連結棒と、前記左右の連結棒の各々の先端に支持された左右のペダルと、を有し、前記回転駆動軸に対するいずれかの前記連結棒の位置を変更可能とした踏力発生部と、
    前記車輪に回転駆動力を与えるための電動モータと、
    前記車輪の回転を制動するブレーキと、
    前記踏力発生部と前記電動モータとを制御する制御部と、を備え、
    前記制御部は、
    前記回転駆動軸に対する前記連結棒の位置を制御して、前記左右のペダルを斜前下方向となす第1の制御をおこない、
    前記電動モータを制御して一定の走行速度で走行する第2の制御をおこない、
    前記ブレーキが操作されたことを検出して、前記第1の制御および前記第2の制御を終了することを特徴とする自転車。
  2. 前記制御部は、さらに、走行速度を検出して、該走行速度が所定速度以下となったときには、前記第1の制御および前記第2の制御を終了することを特徴とする請求項1に記載の自転車。
  3. 前記制御部は、
    前記第1の制御および前記第2の制御を終了後に、
    前記回転駆動軸に対する前記左右の連結棒の位置が相互に180度異なるように制御して、前記左右のペダルに踏力を付与できるようにすることを特徴とする請求項1または請求項2に記載の自転車。
  4. 車輪に対して踏力による回転駆動力を与えるための回転駆動軸と、前記回転駆動軸から径方向に突出する左右の連結棒と、前記左右の連結棒の各々の先端に支持された左右のペダルと、を有し、前記回転駆動軸に対するいずれかの前記連結棒の位置を変更可能とした踏力発生部と、
    前記車輪に回転駆動力を与えるための電動モータと、
    前記車輪の回転を制動するブレーキと、
    前記踏力発生部の前記回転駆動軸に付与される踏力の大きさを検出する踏力トルクセンサと、
    前記踏力発生部と前記電動モータとを制御する制御部と、を備え、
    前記制御部は、
    前記踏力トルクセンサで検出する踏力による回転駆動力の大きさに応じて前記電動モータから回転駆動力を発生させるような電動アシストモードに設定し、
    前記回転駆動軸に対する前記連結棒の位置を制御して、前記左右のペダルを斜前下方向となす第1の制御をおこない、
    前記ブレーキが操作されたことを検出して、前記第1の制御を終了して、前記回転駆動軸に対する前記左右の連結棒の位置が相互に180度異なるように制御して、前記左右のペダルに踏力を付与できるようにすることを特徴とする自転車。
  5. 前記踏力発生部は、
    前記回転駆動軸に対する前記連結棒の位置を電磁的手段によって変更することを特徴とする請求項1ないし請求項4の1項に記載の自転車。
JP2009175950A 2009-07-29 2009-07-29 自転車 Withdrawn JP2011025876A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009175950A JP2011025876A (ja) 2009-07-29 2009-07-29 自転車
CN2010102333932A CN101987650A (zh) 2009-07-29 2010-07-19 自行车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009175950A JP2011025876A (ja) 2009-07-29 2009-07-29 自転車

Publications (1)

Publication Number Publication Date
JP2011025876A true JP2011025876A (ja) 2011-02-10

Family

ID=43635147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175950A Withdrawn JP2011025876A (ja) 2009-07-29 2009-07-29 自転車

Country Status (2)

Country Link
JP (1) JP2011025876A (ja)
CN (1) CN101987650A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130551A1 (de) * 2011-04-01 2012-10-04 Robert Bosch Gmbh Kurbeltrieb für ein fahrrad
CN109969329A (zh) * 2017-12-28 2019-07-05 株式会社岛野 人力驱动车辆的控制装置
JP2021142914A (ja) * 2020-03-12 2021-09-24 本田技研工業株式会社 自転車
EP3778367A4 (en) * 2018-08-27 2021-10-27 Servando Soto Velasco AUTOMATED LOCKING / RELEASING SYSTEM FOR PEDALING LEVER DRIVE SYSTEMS

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206615A1 (de) 2012-04-23 2013-10-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Pedalfahrzeugs
CN108163123B (zh) * 2017-12-21 2023-04-18 浙江大学 一种用于自行车的自供能-自感应式智能刹车系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222120B2 (ja) * 1991-09-05 2001-10-22 ヤマハ発動機株式会社 電動モータ付き自転車
JP3472375B2 (ja) * 1995-04-04 2003-12-02 本田技研工業株式会社 アシストモータ付き自転車におけるクランクペダル位置制御装置
JP2989173B1 (ja) * 1998-07-29 1999-12-13 三桜工業株式会社 二輪車等のペダル位置切換え装置
JP2001315682A (ja) * 2000-05-10 2001-11-13 Suzuki Motor Corp 電動補助自転車
JP4036776B2 (ja) * 2003-03-11 2008-01-23 Ntn株式会社 電動補助自転車

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130551A1 (de) * 2011-04-01 2012-10-04 Robert Bosch Gmbh Kurbeltrieb für ein fahrrad
JP2014509574A (ja) * 2011-04-01 2014-04-21 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 自転車用のクランク駆動装置
CN109969329A (zh) * 2017-12-28 2019-07-05 株式会社岛野 人力驱动车辆的控制装置
EP3778367A4 (en) * 2018-08-27 2021-10-27 Servando Soto Velasco AUTOMATED LOCKING / RELEASING SYSTEM FOR PEDALING LEVER DRIVE SYSTEMS
JP2021142914A (ja) * 2020-03-12 2021-09-24 本田技研工業株式会社 自転車
JP7231577B2 (ja) 2020-03-12 2023-03-01 本田技研工業株式会社 自転車

Also Published As

Publication number Publication date
CN101987650A (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
JP2011025876A (ja) 自転車
JP6557930B2 (ja) 電動車両
JP5986150B2 (ja) 自転車用制御装置、自転車用制御装置を備える電動アシスト自転車、及び電動アシスト自転車のモータ制御方法
US8958935B2 (en) Bicycle drive apparatus
JP5247863B2 (ja) 自転車用制御装置
US8777804B2 (en) Bicycle control apparatus
JP5202769B1 (ja) 電動アシスト自転車
JP5566760B2 (ja) 自転車用ブレーキレバー及びそれを用いた自転車用回生制動制御装置
JP5842105B2 (ja) 電動アシスト自転車
JP6325596B2 (ja) 自転車用制御装置、及び自転車用制御装置を備える電動アシスト自転車
WO2014184826A1 (ja) 電動アシスト自転車
JP6193931B2 (ja) 自転車用制御装置
JP6226115B2 (ja) 電動アシスト自転車
JP2010013028A (ja) アシスト力付き車両
US11046388B2 (en) Drive system, and vehicle including the drive system
JP2010120599A (ja) 電動車
JP2020040479A (ja) 人力駆動車用制御装置
KR20120129064A (ko) 전기 자전거 및 그 제어방법
JP2020055484A (ja) 制御装置および変速システム
JP2000118481A (ja) 電動アシスト自転車
JP2000108978A (ja) 電動補助自転車の駆動力補助装置
TWI771511B (zh) 煞車系統
JP2008168881A (ja) 電動自転車の駆動構造
JPH11245876A (ja) 補助動力付人力走行車
JP2003252280A (ja) 電動アシスト装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002