JP2011001585A - Method for dephosphorization of molten iron - Google Patents

Method for dephosphorization of molten iron Download PDF

Info

Publication number
JP2011001585A
JP2011001585A JP2009144448A JP2009144448A JP2011001585A JP 2011001585 A JP2011001585 A JP 2011001585A JP 2009144448 A JP2009144448 A JP 2009144448A JP 2009144448 A JP2009144448 A JP 2009144448A JP 2011001585 A JP2011001585 A JP 2011001585A
Authority
JP
Japan
Prior art keywords
lance
peripheral
axis
cao
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009144448A
Other languages
Japanese (ja)
Other versions
JP5353463B2 (en
Inventor
Masaki Miyata
政樹 宮田
Yoshihiko Higuchi
善彦 樋口
Teppei Tamura
鉄平 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009144448A priority Critical patent/JP5353463B2/en
Publication of JP2011001585A publication Critical patent/JP2011001585A/en
Application granted granted Critical
Publication of JP5353463B2 publication Critical patent/JP5353463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a means for improving slag formation rate and dephosphorization rate of flux in a method for dephosphorization of molten iron using a converter, by increasing interference rate of a flux powder and oxygen jet.SOLUTION: A lance having three or more concyclic pores (peripheral pores) located at equal intervals and a center pore is used for top-blowing an oxygen-containing gas from the peripheral pores and top-blowing a CaO-containing powder and an inert gas from the center pore. For each of the peripheral pores, α and β, which are defined as angles formed by Z-axis and projections of the peripheral pore on the yz plane and the xz plane in an xyz rectangular coordinate system wherein the z-axis is a lance central axis and the x-axis is a pore outlet position of the peripheral pore, satisfy the relation: 0<tanα/tanβ<2.75, and the pressure of the inert gas emitted from the center pore (i.e. the pressure when the CaO-containing powder is not top-blown) is smaller than the pressure of the oxygen-containing gas emitted from the peripheral pore.

Description

本発明は、転炉において、精錬用フラックス粉体およびガスを溶銑浴面に吹き付けて溶銑脱りんする方法に関する。   The present invention relates to a hot metal dephosphorization method in which a refining flux powder and a gas are sprayed onto a hot metal bath surface in a converter.

近年、低りん鋼の需要が増大し、転炉による脱炭精錬に先立って溶銑予備処理による脱りんを行うのが通例となっている。この技術は、脱りん反応を脱炭精錬よりも低温の溶銑で行うことにより、熱力学的な優位性から効率的に脱りんを行うことが目的である。但し、低温という条件によりスラグの融点を下げてその溶融状態を良好に保つことが必要となり、精錬用フラックス、具体的には例えば塊状生石灰等の脱りん用フラックスに加え、スラグの融点降下剤として蛍石(主成分はCaF)等のアルカリ金属やアルカリ土類金属のフッ化物や塩化物を添加する方法が採られている。 In recent years, the demand for low phosphorus steel has increased, and it is customary to perform dephosphorization by hot metal pretreatment prior to decarburization and refining by a converter. The purpose of this technique is to perform dephosphorization efficiently from a thermodynamic advantage by performing dephosphorization reaction with hot metal at a lower temperature than decarburization refining. However, it is necessary to lower the melting point of the slag under the condition of low temperature and keep its molten state well. In addition to the flux for refining, specifically dephosphorizing flux such as massive quicklime, as a melting point depressant for slag A method of adding an alkali metal or alkaline earth metal fluoride or chloride such as fluorite (the main component is CaF 2 ) has been adopted.

しかし、精錬の総コストを低減するためには、スラグ発生量を減らすこと、およびスラグを有効利用することが必要である。スラグの有効利用のためには、環境保護のためCaF等のフッ素源を用いることは好ましくない。従って、CaFの使用をできるだけ少なく抑えることが必要となる。 However, in order to reduce the total cost of refining, it is necessary to reduce the amount of slag generated and effectively use the slag. For effective use of slag, it is not preferable to use a fluorine source such as CaF 2 for environmental protection. Therefore, it is necessary to minimize the use of CaF 2 as much as possible.

すなわち、溶銑脱りんで蛍石を用いずにCaOを滓化して脱りん反応を促進する方法が求められている。
この目的を達成するために提案されている従来技術の一つに、蛍石の代わりにアルミナ含有物を用いる方法がある(特許文献1)。
That is, there is a need for a method for promoting the dephosphorization reaction by hatching CaO without using fluorite in hot metal dephosphorization.
One of the prior arts proposed to achieve this object is a method using an alumina-containing material instead of fluorite (Patent Document 1).

しかしながら、アルミナの滓化促進効果は蛍石ほど強力では無かったため、塊状生石灰の滓化率および脱りん率にはバラツキが生じてしまうという問題があった。
そこで、生石灰等のフラックスがより滓化し易いように、粉体にして溶銑脱りんに用いる方法が検討された。
However, since the hatching promoting effect of alumina was not as strong as that of fluorite, there was a problem that the hatching rate and dephosphorization rate of massive quicklime varied.
Then, the method of making powder and using it for hot metal dephosphorization was examined so that fluxes, such as quick lime, may hatch more easily.

ところが、スクラップシュートや炉上ホッパーから添加すると、フラックス粉体が溶銑浴面へ着地・補足されずに炉外へ飛散してしまい、このため、フラックス歩留まりが著しく低下し、また脱りん率も低下してしまった。   However, when added from a scrap chute or a furnace hopper, the flux powder scatters to the outside of the hot metal bath without being captured or captured on the hot metal bath surface, which significantly reduces the flux yield and the dephosphorization rate. have done.

特許第3312536号公報Japanese Patent No. 3321536 特許第3496522号公報Japanese Patent No. 3396522 特開昭60−165313号公報JP 60-165313 A

そこで鋭意検討を重ねた結果、上底吹き転炉内の溶銑浴面へ、ランスの中心孔からフラックス粉体を不活性ガスとともに吹き付けて、且つ中心孔の周囲に同一円周上に等間隔に配置された複数孔から酸素ガスを吹き付けて溶銑脱りんする方法を本発明者らは想到した。   As a result of extensive studies, the powder powder was sprayed from the center hole of the lance together with the inert gas onto the hot metal bath surface in the top-bottom blowing converter, and at equal intervals around the center hole on the same circumference. The present inventors have conceived a method in which oxygen gas is blown from a plurality of holes arranged to perform hot metal dephosphorization.

この方法では、フラックス粉体の大部分を溶銑浴面へ着地・補足させることができるので、飛散ロスを大幅に低減できた。
しかしながら、この方法には以下の問題点があった。
In this method, most of the flux powder can be landed and captured on the hot metal bath surface, so that the scattering loss can be greatly reduced.
However, this method has the following problems.

すなわち、酸素ガス含有ジェットと溶銑との衝突部(火点)にCaO系フラックス粉体が吹き付けられれば、火点で生成した高温の(FeO)とCaO粉体が接触・反応して、脱りん能の極めて高いCaO・FeO融体が生成される。 That is, if CaO-based flux powder is sprayed on the collision part (fire point) between the oxygen gas-containing jet and hot metal, the high-temperature (Fe t O) generated at the fire point and CaO powder contact and react, very high CaO · Fe t O melt the dephosphorization capacity is generated.

その場合、上吹きしたCaO系フラックス粉体のほとんど全てが速やかに滓化し、その結果、実塩基度(スラグ中CaO質量濃度(未滓化CaO分は除く。)とSiO質量濃度との比、すなわち(%CaO)/(%SiO))が高いスラグが形成され、高い脱りん率が得られる。 In that case, almost all of the CaO-based flux powder blown up rapidly hatched, and as a result, the ratio between the actual basicity (CaO mass concentration in slag (excluding un-enriched CaO content) and SiO 2 mass concentration). That is, a slag having a high (% CaO) / (% SiO 2 )) is formed, and a high dephosphorization rate is obtained.

ところが、上述のごとくランスの中心孔からCaO系フラックス粉体を不活性ガスとともに吹き付けて、且つ中心孔の周囲に同一円周上に等間隔に配置された複数孔から酸素ガスを吹き付ける場合、CaO系フラックス粉体が酸素ジェットとあまり干渉しないために火点で滓化しきれず、実塩基度が上がらないことが明らかになった。   However, as described above, when CaO-based flux powder is sprayed together with an inert gas from the center hole of the lance and oxygen gas is sprayed from a plurality of holes arranged at equal intervals around the center hole, CaO It was clarified that the actual basicity does not increase due to the fact that the flux powder does not interfere with the oxygen jet so much that it cannot be hatched at the fire point.

このように実塩基度の高いスラグが形成されないため、この方法では脱りん率も低値となってしまった。
かかる現状を背景とし、本発明は、「上底吹き転炉内の溶銑浴面へ、ランスの中心孔からフラックス粉体を不活性ガスとともに吹き付けて、且つ中心孔の周囲に同一円周上に等間隔に配置された複数孔から酸素ガスを吹き付けて溶銑脱りんする方法」において、フラックス粉体と酸素ジェットとの干渉率を高めて、フラックスの滓化率および脱りん率を向上させる手段を提供することを目的とする。
Since slag having high actual basicity is not formed as described above, the dephosphorization rate is also low in this method.
Against this background, the present invention states that "flux powder is sprayed together with an inert gas from the center hole of the lance onto the hot metal bath surface in the top-bottom blowing converter, and on the same circumference around the center hole. In the `` method of spraying hot metal dephosphorization by blowing oxygen gas from a plurality of holes arranged at equal intervals '', means for improving the hatching rate and dephosphorization rate of the flux by increasing the interference rate between the flux powder and the oxygen jet The purpose is to provide.

上記課題を解決するために、本出願人が特許文献2において開示したランス先端形状を複雑にせずにジェットの流速分布を平滑化することができる溶融金属精錬用上吹きランス(以下、「ねじれランス」といい、このランス構造を「ねじれ構造」ともいう。)に本発明者らは着目した。   In order to solve the above-mentioned problem, an upper blow lance for molten metal refining (hereinafter referred to as “twist lance”) that can smooth the flow velocity distribution of the jet without complicating the shape of the tip of the lance disclosed in Patent Document 2 by the present applicant. The lance structure is also referred to as a “twisted structure”).

すなわち、中心孔から噴出するフラックス粉体と不活性ガスとからなるジェットと、周囲の複数孔から噴出される酸素ジェットを干渉させるには、同一円周上に等間隔で配置された3孔以上の孔である周縁孔をねじるのが有効と考えた。   That is, in order to cause the jet of flux powder and inert gas ejected from the central hole to interfere with the oxygen jet ejected from a plurality of surrounding holes, three or more holes arranged at equal intervals on the same circumference We thought that it was effective to twist the peripheral hole, which is a hole.

図1に特許文献2に記載のねじれを有するランスを示す。図1における符号1はランス、2は周縁孔に基づくノズルである。ねじれランス1では、各ノズル2の方向は相互にねじれた位置関係となっている。   FIG. 1 shows a lance having a twist described in Patent Document 2. Reference numeral 1 in FIG. 1 is a lance, and 2 is a nozzle based on a peripheral hole. In the torsion lance 1, the directions of the nozzles 2 are twisted relative to each other.

特許文献2には、6孔ねじれランス1において、ランスの中心軸から半径方向のジェットの動圧分布を調査し、ランス中心からみて動圧が最大となる方位と、そこから30°ずれた隣接するノズル2との境界に相当する方位(最も動圧が小さくなる方位)で、各方位でのピーク動圧値が近い値になる(円周方向の動圧変動が小さくなる)ようなねじれランス1(ねじれ度δの範囲を規定)が開示されている。   Patent Document 2 investigates the dynamic pressure distribution of the jet in the radial direction from the center axis of the lance in the six-hole torsion lance 1, the direction in which the dynamic pressure is the maximum when viewed from the center of the lance, and the adjoining by 30 ° Torsional lances such that the peak dynamic pressure value in each azimuth is the close value (the dynamic pressure fluctuation in the circumferential direction is small) in the azimuth corresponding to the boundary with the nozzle 2 (the azimuth with the smallest dynamic pressure). 1 (specifies the range of the twist degree δ) is disclosed.

しかしながら、特許文献2では中心孔からのジェットと周囲の複数孔からのジェットとの干渉については何ら開示していない。そこで、本発明者らはこの点について検討を行い、中心孔周囲の複数孔、すなわち同一円周上に等間隔で配置された3孔以上の孔である周縁孔をねじることで、中心孔から噴出するフラックス粉体と不活性ガスとからなるジェットと周囲の複数孔(周縁孔)から噴出される酸素ジェットを干渉させれば、フラックス粉体と酸素ジェットとの干渉率を高めて、フラックスの滓化率および脱りん率を向上させることが可能になると考えに至った。この考えに基づいて本発明者らがさらに検討を行い、完成させた本発明は次のとおりである。   However, Patent Document 2 does not disclose any interference between a jet from the central hole and jets from a plurality of surrounding holes. Therefore, the present inventors have studied this point, and twisting a peripheral hole, which is a plurality of holes around the central hole, that is, three or more holes arranged at equal intervals on the same circumference, from the central hole. If the jet consisting of the ejected flux powder and inert gas interferes with the oxygen jet ejected from the surrounding holes (peripheral holes), the interference rate between the flux powder and the oxygen jet is increased, and the flux It came to the idea that hatching rate and dephosphorization rate could be improved. Based on this idea, the present inventors have further studied and completed the present invention as follows.

(1)転炉を用いた溶銑脱りん法において、同一円周上に等間隔で配置された3孔以上の孔である周縁孔および中心孔を有するランスを用いて、前記周縁孔から酸素含有ガスを上吹きしかつ中心孔からCaO含有粉体および不活性ガスを上吹きするに際し、前記周縁孔のそれぞれについて、ランス中心軸がz軸、周縁孔の出口位置がx軸上となるように定めたxyz直交座標系において、yz平面およびxz平面へのその周縁孔の孔軸の投影がz軸となす角度をそれぞれαおよびβとしたとき、αとβが下記(1)式を満足し、かつ中心孔から噴出する不活性ガスの圧力(CaO含有粉体を上吹きしない場合の圧力)が前記周縁孔から噴出される酸素含有ガスの圧力よりも小さいことを特徴とする溶銑の脱りん方法。
0<tanα/tanβ<2.75 (1)
(1) In the hot metal dephosphorization method using a converter, oxygen is contained from the peripheral hole using a lance having a peripheral hole and a central hole that are three or more holes arranged at equal intervals on the same circumference. When the gas is blown up and the CaO-containing powder and the inert gas are blown up from the center hole, for each of the peripheral holes, the lance center axis is on the z axis and the outlet position of the peripheral hole is on the x axis. In the defined xyz orthogonal coordinate system, α and β satisfy the following formula (1), where α and β are angles formed by the projection of the hole axis of the peripheral hole on the yz plane and the xz plane, respectively, with the z axis. And the dephosphorization of hot metal, wherein the pressure of the inert gas ejected from the central hole (pressure when the CaO-containing powder is not blown up) is smaller than the pressure of the oxygen-containing gas ejected from the peripheral hole Method.
0 <tan α / tan β <2.75 (1)

溶銑浴面に酸素含有ガスおよび精錬用フラックス粉体を吹き付ける溶銑脱りんプロセスにおいて、本発明のランスを使用することにより、CaO系フラックス粉体の溶銑浴面への着地・補足効率が高まり、火点での滓化率が高まってスラグの実塩基度が向上して、処理後溶銑中りん濃度を低減することができる。   In the hot metal dephosphorization process in which the oxygen-containing gas and the refining flux powder are sprayed onto the hot metal bath surface, the use of the lance of the present invention increases the landing and capture efficiency of the CaO-based flux powder on the hot metal bath surface. The hatching rate at the point increases, the actual basicity of the slag improves, and the phosphorus concentration in the hot metal after the treatment can be reduced.

図1(a)は通常の多孔ランスの先端部を示す概要図であり、図1(b)は特許文献2により開示されたねじれランスの先端部を示す概要図である。FIG. 1A is a schematic diagram showing a tip portion of a normal porous lance, and FIG. 1B is a schematic diagram showing a tip portion of a torsion lance disclosed in Patent Document 2. As shown in FIG. 本発明に係るねじれランス構造を有する上吹きランス先端部の6孔ランスの例を示す概要図であり、同図(a)は平面図、同図(b)は同図(a)のB−B断面のyz平面への投影図、同図(c)は同図(a)のC−C断面のxz平面への投影図である。なお、説明し易いように、図(a)中のノズルAについてのみを図(b)、図(c)に示す。It is a schematic diagram which shows the example of 6 hole lances of the upper blowing lance tip part which has a twist lance structure concerning the present invention, the figure (a) is a top view and the figure (b) is B- of the figure (a). FIG. 7C is a projection view of the B section on the yz plane, and FIG. 10C is a projection view of the CC section of FIG. For ease of explanation, only the nozzle A in FIG. 1A is shown in FIG. 本発明に係る溶融金属精錬用上吹きランスを溶融金属精錬炉で使用する場合における一のノズルとそれに対応する火点の幾何学的位置関係を示す概要図である。It is a schematic diagram which shows the geometrical positional relationship of one nozzle and the corresponding fire point in the case of using the top blowing lance for molten metal refining which concerns on this invention in a molten metal refining furnace.

以下、本発明を実施するための形態を、添付図面を参照しながら説明する。
1.ねじれランス
図2は、本発明に係る溶融金属精錬用上吹きランス1の先端部の例を示す概要図であり、同図(a)は平面図、同図(b)は同図(a)のB−B断面のyz平面への投影図、同図(c)は同図(a)のC−C断面のxz平面への投影図である。なお、説明し易いように、図(a)中のノズルAについてのみを図(b)、図(c)に示す。すなわち、図2において、ランス中心軸がz軸、同一円周上に等間隔で配置された3孔以上の孔(周縁孔)であるノズルAの出口位置がx軸上となるxyz直交座標系を用いて、説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
1. FIG. 2 is a schematic view showing an example of a tip portion of an upper blowing lance 1 for molten metal refining according to the present invention, where FIG. 2 (a) is a plan view and FIG. 2 (b) is the same drawing (a). FIG. 4C is a projection view of the BB plane of FIG. 4B on the yz plane, and FIG. 4C is a projection view of the CC section of FIG. For ease of explanation, only the nozzle A in FIG. 1A is shown in FIG. That is, in FIG. 2, the lance center axis is the z-axis, and the xyz orthogonal coordinate system in which the outlet position of the nozzle A, which is three or more holes (peripheral holes) arranged at equal intervals on the same circumference, is on the x-axis. Will be described.

このランス1には、ノズルのひねりに相当する、yz平面へのノズル軸の投影とz軸とがなす角度α(以下、「ノズル旋回角」という)、およびノズルの外側方向の傾斜に相当するxz平面へのノズル軸の投影とz軸とのなす角度β(以下、「ノズル傾斜角」という)とを有する6つのノズル2(そのうちでx軸上にある一つの孔を「ノズルA」と称する。)が、ランス軸の周りに等間隔で軸対象に配置されている。   The lance 1 corresponds to an angle α (hereinafter referred to as “nozzle turning angle”) formed by the projection of the nozzle axis onto the yz plane and the z axis, which corresponds to the twist of the nozzle, and the inclination in the outer direction of the nozzle. Six nozzles 2 (of which one hole on the x-axis is referred to as “nozzle A”) having an angle β (hereinafter referred to as “nozzle inclination angle”) formed by projection of the nozzle axis onto the xz plane and the z-axis. Are arranged on the axis object at equal intervals around the lance axis.

ノズル軸がz軸上の1点で交わる通常の多孔ランス(そのようなランスとして、特許文献3に開示されたものが例示される。)を同図の角度に適用すると、αは0°であり、βは通常のランス(すなわちねじれ構造を有していないランス)におけるノズルの角度に相当する。   When a normal porous lance in which the nozzle axis intersects at one point on the z-axis (such as the lance disclosed in Patent Document 3) is applied to the angle shown in the figure, α is 0 °. Yes, β corresponds to the angle of the nozzle in a normal lance (ie a lance that does not have a twisted structure).

図3はねじれランスを溶融金属精錬炉で使用する場合の、ノズル2とそれに対応する火点5の幾何学的位置関係を示す概要図である。
同図でノズル1本分のみを示す。同図に示すように、火点5の中心(ノズル軸の延長が溶融金属浴面4と交わる位置)からz軸に降ろした垂線のxy平面への投影とx軸とがなす角度をねじれ度δと定義すると、δ、α、β、ねじれランス1−浴面4間距離H、ノズル2の孔出口位置とランス中心軸との距離D(図2参照)との間に(2)式の関係が得られる。
tanδ=H・tanα/(H・tanβ+D) (2)
FIG. 3 is a schematic diagram showing the geometric positional relationship between the nozzle 2 and the corresponding fire point 5 when the torsion lance is used in a molten metal refining furnace.
Only one nozzle is shown in the figure. As shown in the figure, the angle formed by the projection on the xy plane of the perpendicular drawn from the center of the hot spot 5 (the position where the extension of the nozzle axis intersects the molten metal bath surface 4) to the z axis and the x axis is a twist degree. δ, α, β, the distance H 0 between the torsion lance 1 and the bath surface 4, and the distance D (see FIG. 2) between the hole outlet position of the nozzle 2 and the lance central axis, The relationship is obtained.
tan δ = H 0 tan α / (H 0 tan β + D) (2)

ここで、(2)式において、DがHに比べて十分に小さいとすると、δについて、近似的に(3)式の関係が得られる。
δ=tan−1(tanα/tanβ) (3)
Here, in Equation (2), if D is sufficiently smaller than H 0 , the relationship of Equation (3) is approximately obtained for δ.
δ = tan −1 (tan α / tan β) (3)

また、浴面上の火点5の中心とランス中心軸位置関係の距離Rは(4)式で与えられる。
R=H・(tanα+tanβ)1/2 (4)
The distance R between the center of the hot spot 5 on the bath surface and the lance center axis position is given by the equation (4).
R = H 0 · (tan 2 α + tan 2 β) 1/2 (4)

かかるねじれランス1に関し、特許文献2には、低スピッティング化に適正な範囲として(5)式が開示されている。
0<tanα/tanβ<2.75 (5)
Regarding the torsion lance 1, Patent Document 2 discloses Formula (5) as an appropriate range for reducing spitting.
0 <tan α / tan β <2.75 (5)

2.ねじれランスを用いた試験
上底吹き転炉内に溶銑を約250ton装入し、上記のねじれ構造を有する上吹きランス1の中心孔からCaO粉体を窒素ガスと共に溶銑浴面へ吹き付け、また中心孔の周囲に同一円周上に等間隔に配置された6孔、すなわち周縁孔をなすノズル2から酸素ガスを溶銑浴面へ吹き付けて、溶銑脱りん吹錬を行った。
2. Test using torsion lance About 250 tons of molten iron was charged into the top bottom blowing converter, CaO powder was sprayed together with nitrogen gas from the center hole of the top blowing lance 1 having the above twisted structure to the hot metal bath surface. The hot metal dephosphorization blowing was performed by blowing oxygen gas from the nozzle 2 forming 6 holes arranged at equal intervals around the hole, that is, the peripheral hole, to the hot metal bath surface.

ランスの中心孔からは、CaO粉体を窒素ガスと共に上吹きし、中心孔周囲の複数孔(周縁孔)からは、酸素ガスを上吹きした。
上記条件での溶銑脱りん吹錬を例として、ノズル傾斜角度、ランス高さ、中心孔の直径を検討した。その結果を以下に示す。
CaO powder was blown up together with nitrogen gas from the center hole of the lance, and oxygen gas was blown up from a plurality of holes (peripheral holes) around the center hole.
As an example of hot metal dephosphorization blowing under the above conditions, nozzle inclination angle, lance height, and diameter of the center hole were examined. The results are shown below.

後述の実施例でも示すように、上記(3)式により求められるノズル2のねじれ度δが70°以上であると、ジェットの旋回流速が大きくなり過ぎて、CaO系粉体が飛散し、脱りん反応に寄与しない割合が増加する。したがって、ねじれ度δは70°未満とすることで、CaO系フラックス粉体の溶銑浴面4への着地・補足効率が高まり、火点5での滓化率が高まってスラグの実塩基度が向上して、処理後溶銑中りん濃度を低減することが実現される。   As shown in the examples described later, when the twist degree δ of the nozzle 2 obtained by the above equation (3) is 70 ° or more, the swirling flow velocity of the jet becomes too large, and the CaO-based powder is scattered and detached. The proportion that does not contribute to the phosphorus reaction increases. Therefore, when the twist degree δ is less than 70 °, the landing / capturing efficiency of the CaO-based flux powder on the hot metal bath surface 4 is increased, the hatching rate at the hot spot 5 is increased, and the actual basicity of the slag is increased. Improving and reducing the phosphorus concentration in the hot metal after treatment is realized.

好適なねじれ度δは70°未満であるから、上記(3)式から、0°<tan−1(tanα/tanβ)<70°である。したがって、αとβとの好適な関係は0<tanα/tanβ<2.75となる。 Since the suitable twist degree δ is less than 70 °, from the above equation (3), 0 ° <tan −1 (tan α / tan β) <70 °. Therefore, a preferable relationship between α and β is 0 <tan α / tan β <2.75.

すなわち、ねじれランス1を構成するノズルのそれぞれについて、上記の0<tanα/tanβ<2.75を満たすようにαとβとを設定することにより、各ノズルから噴出するジェットは溶銑浴面4上に旋回流を作る。この旋回流の中心部にCaO系フラックス粉体に供給されるため、CaO系フラックス粉体が炉外に飛散することが抑制され、火点5での滓化率が高まり、溶銑の脱りん反応を効率的に進行させることが可能となる。この旋回流を適切に形成する観点からは、ノズル全体のtanα/tanβのばらつきは小さいことが好ましく、少なくとも設計上は全てのノズルについてtanα/tanβを同一とすることが好ましい。なお、このばらつきの許容範囲は、ノズル数、ノズルから供給される酸素の流速、CaO系フラックス粉体の質量や形状などが影響するため、これらを考慮して適宜設定すればよい。   That is, by setting α and β so as to satisfy the above 0 <tan α / tan β <2.75 for each of the nozzles constituting the torsion lance 1, the jets ejected from the nozzles on the hot metal bath surface 4 Make a swirl flow. Since the CaO-based flux powder is supplied to the center of the swirling flow, the CaO-based flux powder is prevented from scattering outside the furnace, the hatching rate at the hot spot 5 is increased, and the hot metal dephosphorization reaction. Can be efficiently advanced. From the viewpoint of appropriately forming this swirl flow, it is preferable that the variation in tan α / tan β of the entire nozzle is small, and at least in design it is preferable that tan α / tan β be the same for all nozzles. Note that the allowable range of this variation is influenced by the number of nozzles, the flow rate of oxygen supplied from the nozzles, the mass and shape of the CaO-based flux powder, and may be set appropriately in consideration of these.

ここで、ねじれランス1と液面4間の距離Hについて述べる。Hを小さくし過ぎると、溶銑飛散によるランス1の溶損や熱変形が発生しやすく、ランス寿命を短くすることになる。一方、Hが大きすぎるとジェットの広がりが大きくなり、ノズル傾斜角度を大きくし過ぎたときと同様COガスの二次燃焼や耐火物損耗の問題を生じてしまう。また、ランス中心孔から噴出されるCaO粉体の溶銑浴面4への着地・補足率が低下してしまう。したがって、溶銑脱りん操業におけるHは2000〜4000mm程度とすることが望ましい。 Here, the distance H 0 between the torsion lance 1 and the liquid level 4 will be described. If H 0 is made too small, the lance 1 is likely to be melted or thermally deformed due to hot metal scattering, and the lance life is shortened. On the other hand, if H 0 is too large, the spread of the jet becomes large, and problems such as secondary combustion of CO gas and refractory wear occur as in the case where the nozzle inclination angle is excessively increased. Further, the landing / supplement rate of CaO powder ejected from the lance center hole to the hot metal bath surface 4 is lowered. Therefore, it is desirable that H 0 in the hot metal dephosphorization operation is about 2000 to 4000 mm.

また、本発明に係るランス1では、中心孔を除くノズル2(周縁孔)の設置数は3以上とする。その設置数が2以下では転炉内での反応の対称性が失われるためである。ねじれノズル2の設置数の上限は定めないが、その設置数が過大であるとランス1の先端の構造が複雑になること、ノズル2の1本当たりのジェットの運動量が過小になること等から、10以下とするのが望ましい。   In the lance 1 according to the present invention, the number of nozzles 2 (peripheral holes) excluding the central hole is set to 3 or more. This is because if the number of installations is 2 or less, the symmetry of the reaction in the converter is lost. Although the upper limit of the number of twisted nozzles 2 is not set, if the number of twisted nozzles 2 is excessive, the structure of the tip of the lance 1 becomes complicated, and the momentum of the jet per nozzle 2 becomes excessively small. 10 or less is desirable.

ランス中心孔径は、中心孔から噴出する不活性ガスの圧力(粉体は供給していない状態)が、中心孔周囲の複数孔から噴出する酸素ガスの圧力を超えないように適宜定めればよい。   The diameter of the lance center hole may be appropriately determined so that the pressure of the inert gas ejected from the center hole (in the state where powder is not supplied) does not exceed the pressure of the oxygen gas ejected from a plurality of holes around the center hole. .

これにより、上吹き酸素ガス流量と不活性ガス流量とから、中心孔径と周囲に同一円周上に等間隔に配置された複数孔(周縁孔)であるノズル2の径(もしくは中心孔の断面積と周囲の孔の総断面積)との関係が決まる。   As a result, the diameter of the nozzle 2 (or the breakage of the center hole), which is a plurality of holes (peripheral holes) arranged at equal intervals around the center hole diameter and the periphery, based on the oxygen gas flow rate and the inert gas flow rate. The relationship between the area and the total cross-sectional area of the surrounding holes) is determined.

なお、各ガスの圧力は、バルブステーション出口からランスまでの配管のいずれかで測定した値を用いればよい。
中心孔から噴出する不活性ガスの圧力の方が高いと、中心孔からのジェットが強いため、周囲の複数孔から噴出する酸素ジェットと干渉し難くなる。
In addition, what is necessary is just to use the value measured in either of the piping from a valve station exit to a lance for the pressure of each gas.
When the pressure of the inert gas ejected from the central hole is higher, the jet from the central hole is strong, and thus it is difficult to interfere with oxygen jets ejected from a plurality of surrounding holes.

その結果、CaO系フラックス粉体が着地した溶銑浴面4付近に(FeO)があまり生成されておらず、CaO系フラックス粉体が未滓化のままスラグ中に残留してしまう。そして脱りん率が悪化してしまう。   As a result, not so much (FeO) is generated in the vicinity of the hot metal bath surface 4 on which the CaO-based flux powder has landed, and the CaO-based flux powder remains in the slag without being unhulled. And dephosphorization rate will get worse.

本発明を、実施例を参照しながら、より具体的に説明する。
・上底吹き転炉内に溶銑(Si濃度:約0.3質量%、P濃度:約0.1質量%)を約250ton装入し、上吹きランスの中心孔からCaO粉体を約1.4〜1.8kg/min/tの速度で窒素ガス0.2Nm/min/tと共に溶銑浴面へ吹き付けた。また中心孔の周囲に同一円周上に等間隔に配置された6孔または5孔(一部のランスについては、これらの孔を上述のごとくねじってある。)から酸素ガスを1.6〜2.1Nm/min/tで溶銑浴面へ吹き付けた。さらに、底吹き羽口からはNガスを0.35〜0.4Nm/min/tで吹き込み、ランス高さを2.5〜2.6mとして溶銑脱りん吹錬を行った。
The present invention will be described more specifically with reference to examples.
・ About 250 tons of hot metal (Si concentration: about 0.3% by mass, P concentration: about 0.1% by mass) is charged into the top-bottom blowing converter, and about 1 CaO powder is placed from the center hole of the top blowing lance. It was sprayed on the hot metal bath surface with nitrogen gas 0.2Nm 3 / min / t at a rate of 4-1.8 kg / min / t. In addition, oxygen gas is supplied from 1.6 holes to 6 holes or 5 holes arranged at equal intervals around the center hole (for some lances, these holes are twisted as described above). It sprayed on the hot metal bath surface at 2.1 Nm < 3 > / min / t. Further, N 2 gas was blown from the bottom blowing tuyere at 0.35 to 0.4 Nm 3 / min / t, and lance height was set to 2.5 to 2.6 m to perform hot metal dephosphorization blowing.

ランスはねじれの無い従来ランスまたは各ノズルの方向が互いにねじれの位置関係となり、ねじれ度δは10°〜70°かつ中心孔があり、中心孔から噴出する不活性ガスの圧力(粉体は供給していない状態、値は絶対圧)と、中心孔周囲の6孔または5孔から噴出する酸素ガスの圧力との差を変化させた。なお、各ランスにおける中心孔周囲の6孔または5孔のα、β、δは同一とした。   The lance is a conventional lance without twisting or the direction of each nozzle is twisted relative to each other, the twist δ is 10 ° to 70 ° and has a central hole, and the pressure of the inert gas ejected from the central hole (powder is supplied) The difference between the state of not being carried out and the value being absolute pressure) and the pressure of oxygen gas ejected from 6 or 5 holes around the central hole was changed. In addition, α, β, and δ of 6 holes or 5 holes around the center hole in each lance were the same.

処理後溶銑中C濃度は3.4〜3.6質量%、処理後鍋中温度は1351〜1380℃、装入塩基度(CaO/SiOの質量濃度比)は2.6であった。
処理後スラグの実塩基度(採取したスラグのCaO質量濃度から未滓化CaO質量濃度を差し引いた値を、SiO質量濃度で除した値、すなわち、{(%CaO)−(%f−CaO)}/(%SiO))、および処理後溶銑中[P](りん濃度、単位:質量%)を調査した。
The C concentration in the hot metal after treatment was 3.4 to 3.6 mass%, the temperature in the pan after treatment was 1351 to 1380 ° C., and the charging basicity (the mass concentration ratio of CaO / SiO 2 ) was 2.6.
The actual basicity of the slag after the treatment (the value obtained by subtracting the unoxidized CaO mass concentration from the CaO mass concentration of the collected slag by the SiO 2 mass concentration, that is, {(% CaO) − (% f-CaO )} / (% SiO 2 )) and [P] (phosphorus concentration, unit: mass%) in the hot metal after the treatment.

表1に本発明および比較例のランスを用いた操業時の処理後スラグの実塩基度と処理後溶銑中[P]を示す。
これらの値は、各ランスを10〜20Ch使用したときの平均値である。
Table 1 shows the actual basicity of the treated slag during operation using the lances of the present invention and the comparative example and [P] in the treated hot metal.
These values are average values when 10-20 Ch of each lance is used.

総合評価は比較例1を基準として、実塩基度が2.4以上となった場合且つ処理後[P]が所望の値(0.0020質量%以下)に到達した場合にのみ効果有り(表中、「○」)とした。   Comprehensive evaluation is effective only when the basicity is 2.4 or more and the [P] after treatment reaches a desired value (0.0020% by mass or less) based on Comparative Example 1 (Table) Middle, “○”).

Figure 2011001585
Figure 2011001585

実験結果について、まずは、比較例1、2について述べる。
ねじれ度δが0°のランスを基準にした場合、ねじれ度δを70°まで大きくすると、ジェットの旋回流が強くなりすぎてCaO系フラックス粉体の飛散ロスが増えて実塩基度が低下して、処理後[P]が0.025〜0.027質量%と高かった。
Regarding the experimental results, first, Comparative Examples 1 and 2 will be described.
When the torsion δ is based on a lance with 0 °, if the torsion δ is increased to 70 °, the whirling flow of the jet becomes too strong and the scattering loss of the CaO-based flux powder increases and the actual basicity decreases. After the treatment, [P] was as high as 0.025 to 0.027% by mass.

比較例3では、ねじれ度δを30°としても、中心孔から上吹きする窒素の圧力が0.2MPaと低かったため、中心孔から上吹きしたCaO粉体の溶銑浴面への着地・補足効率が低く、実塩基度が低かった。このため、処理後[P]が0.028質量%と高かった。   In Comparative Example 3, since the pressure of nitrogen blown up from the center hole was as low as 0.2 MPa even when the twist degree δ was 30 °, landing / supplemental efficiency of CaO powder blown up from the center hole on the hot metal bath surface The basicity was low. For this reason, [P] after processing was as high as 0.028 mass%.

比較例4、5では、ねじれ度δを30°としても、中心孔から上吹きする窒素の圧力が中心孔周囲の6孔から噴出する酸素ガスの圧力と同等かそれ以上であったため、中心孔から噴出したジェットの運動量が非常に大きくなった。このため、中心孔から噴出したジェットと周囲の6孔から噴出した酸素ジェットの干渉が弱くなり、CaO系フラックス粉体の滓化率が低下して実塩基度が低値になった。   In Comparative Examples 4 and 5, even when the twist degree δ was set to 30 °, the pressure of nitrogen blown up from the center hole was equal to or higher than the pressure of oxygen gas ejected from the six holes around the center hole. The momentum of the jet erupted from is very large. For this reason, the interference between the jet ejected from the central hole and the oxygen jet ejected from the surrounding six holes was weakened, the hatching rate of the CaO-based flux powder was lowered, and the actual basicity was lowered.

続いて、実施例1〜4について述べる。中心孔から上吹きする窒素の圧力が中心孔周囲の6孔から噴出する酸素ガスの圧力より低い場合、ランスのねじれ度δを10〜60°とすることで、中心孔から噴出したCaO粉体が周囲の6孔または5孔から噴出した酸素ガスジェットと接触・混合しながら溶銑浴面へ衝突したと考えられる。このため、酸素ガス含有ジェットと溶銑との衝突部(火点)で生成した高温の(FeO)とCaO粉体が接触・反応して、脱りん能の極めて高いCaO・FeO融体が生成されて、処理後[P]が0.017〜0.019質量%にまで低下した。 Subsequently, Examples 1 to 4 will be described. When the pressure of nitrogen blown up from the center hole is lower than the pressure of oxygen gas ejected from the six holes around the center hole, the CaO powder ejected from the center hole is adjusted by setting the twist δ of the lance to 10 to 60 °. Is considered to have collided with the hot metal bath surface while contacting and mixing with the oxygen gas jet ejected from the surrounding 6 or 5 holes. For this reason, the high temperature (Fe t O) generated at the collision part (fire point) of the oxygen gas-containing jet and hot metal contacts and reacts with the CaO powder, so that the CaO · Fe t O melt with extremely high dephosphorization ability is obtained. A body was produced, and after the treatment, [P] was reduced to 0.017 to 0.019% by mass.

1 ランス
2 ノズル
3 中心孔
4 浴面
5 火点
α ノズル旋回角
β ノズル傾斜角
δ ねじれ度
D ノズル出口とランス中心間距離
ランスと浴面間距離
1 Lance 2 Nozzle 3 Center hole 4 Bath surface 5 Fire point α Nozzle turning angle β Nozzle tilt angle δ Twist degree D Nozzle outlet and lance center distance H 0 Lance and bath surface distance

Claims (1)

転炉を用いた溶銑脱りん法において、同一円周上に等間隔で配置された3孔以上の孔である周縁孔および中心孔を有するランスを用いて、前記周縁孔から酸素含有ガスを上吹きしかつ中心孔からCaO含有粉体および不活性ガスを上吹きするに際し、
前記周縁孔のそれぞれについて、ランス中心軸がz軸、周縁孔の出口位置がx軸上となるように定めたxyz直交座標系において、yz平面およびxz平面へのその周縁孔の孔軸の投影がz軸となす角度をそれぞれαおよびβとしたとき、αとβが下記(1)式を満足し、かつ
中心孔から噴出する不活性ガスの圧力(CaO含有粉体を上吹きしない場合の圧力)が前記周縁孔から噴出される酸素含有ガスの圧力よりも小さいことを特徴とする溶銑の脱りん方法。
0<tanα/tanβ<2.75 (1)
In the hot metal dephosphorization method using a converter, the oxygen-containing gas is increased from the peripheral hole by using a lance having a peripheral hole and a central hole which are three or more holes arranged at equal intervals on the same circumference. When blowing and blowing CaO-containing powder and inert gas from the center hole,
For each of the peripheral holes, projection of the hole axis of the peripheral hole onto the yz plane and the xz plane in an xyz orthogonal coordinate system in which the lance center axis is the z axis and the outlet position of the peripheral hole is on the x axis Α and β satisfy the following formula (1), and the pressure of the inert gas ejected from the center hole (when the CaO-containing powder is not blown up) The hot metal dephosphorization method is characterized in that the pressure is smaller than the pressure of the oxygen-containing gas ejected from the peripheral hole.
0 <tan α / tan β <2.75 (1)
JP2009144448A 2009-06-17 2009-06-17 How to remove hot metal Active JP5353463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144448A JP5353463B2 (en) 2009-06-17 2009-06-17 How to remove hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144448A JP5353463B2 (en) 2009-06-17 2009-06-17 How to remove hot metal

Publications (2)

Publication Number Publication Date
JP2011001585A true JP2011001585A (en) 2011-01-06
JP5353463B2 JP5353463B2 (en) 2013-11-27

Family

ID=43559778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144448A Active JP5353463B2 (en) 2009-06-17 2009-06-17 How to remove hot metal

Country Status (1)

Country Link
JP (1) JP5353463B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037599A (en) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal Method of refining molten iron
JP2015059237A (en) * 2013-09-18 2015-03-30 新日鐵住金株式会社 Method of refining molten iron
JP2015101734A (en) * 2013-11-21 2015-06-04 新日鐵住金株式会社 Converter blowing top-blow lance
JP2015113524A (en) * 2013-12-16 2015-06-22 新日鐵住金株式会社 Refining method of molten pig iron
JP2015218341A (en) * 2014-05-14 2015-12-07 新日鐵住金株式会社 Converter melting method of iron-containing raw material
CN109521730A (en) * 2017-09-20 2019-03-26 上海梅山钢铁股份有限公司 The on-line calculation method of the top of the slag in a kind of ladle
CN110621792A (en) * 2017-08-21 2019-12-27 日本制铁株式会社 Top-blowing lance for converter blowing and method for refining molten iron
JP2022006385A (en) * 2020-06-24 2022-01-13 Jfeスチール株式会社 Top-blown lance for converter dephosphorization treatment and converter blowing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001714A (en) * 1998-06-18 2000-01-07 Sumitomo Metal Ind Ltd Top-blown lance for refining molten metal
JP2006336033A (en) * 2005-05-31 2006-12-14 Jfe Steel Kk Blowing method in converter and top-blown lance for blowing in converter
JP2006348331A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Top-blowing lance for refining molten metal, and blowing method for molten metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001714A (en) * 1998-06-18 2000-01-07 Sumitomo Metal Ind Ltd Top-blown lance for refining molten metal
JP2006336033A (en) * 2005-05-31 2006-12-14 Jfe Steel Kk Blowing method in converter and top-blown lance for blowing in converter
JP2006348331A (en) * 2005-06-14 2006-12-28 Jfe Steel Kk Top-blowing lance for refining molten metal, and blowing method for molten metal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037599A (en) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal Method of refining molten iron
JP2015059237A (en) * 2013-09-18 2015-03-30 新日鐵住金株式会社 Method of refining molten iron
JP2015101734A (en) * 2013-11-21 2015-06-04 新日鐵住金株式会社 Converter blowing top-blow lance
JP2015113524A (en) * 2013-12-16 2015-06-22 新日鐵住金株式会社 Refining method of molten pig iron
JP2015218341A (en) * 2014-05-14 2015-12-07 新日鐵住金株式会社 Converter melting method of iron-containing raw material
CN110621792A (en) * 2017-08-21 2019-12-27 日本制铁株式会社 Top-blowing lance for converter blowing and method for refining molten iron
CN109521730A (en) * 2017-09-20 2019-03-26 上海梅山钢铁股份有限公司 The on-line calculation method of the top of the slag in a kind of ladle
CN109521730B (en) * 2017-09-20 2021-07-09 上海梅山钢铁股份有限公司 Online calculation method for slag surface in ladle
JP2022006385A (en) * 2020-06-24 2022-01-13 Jfeスチール株式会社 Top-blown lance for converter dephosphorization treatment and converter blowing method
JP7380444B2 (en) 2020-06-24 2023-11-15 Jfeスチール株式会社 Top blowing lance for converter dephosphorization treatment and converter blowing method

Also Published As

Publication number Publication date
JP5353463B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5353463B2 (en) How to remove hot metal
KR101529843B1 (en) Converter steelmaking method
JP5037290B2 (en) Hot metal dephosphorization method
JP2006348331A (en) Top-blowing lance for refining molten metal, and blowing method for molten metal
JP5181520B2 (en) Hot metal dephosphorization method
JP5855477B2 (en) Hot metal refining method
CN109790590B (en) Dephosphorization apparatus and dephosphorization method of molten iron using the same
WO2016158714A1 (en) Method for operating top-blown converter
JP3496522B2 (en) Top blowing lance for refining molten metal
JP2014037599A (en) Method of refining molten iron
JP6191437B2 (en) Hot metal refining method
KR20190099018A (en) Decoiling method of charter ship
JP6291998B2 (en) How to remove hot metal
JP4069837B2 (en) Hot phosphorus dephosphorization method
JP2019090078A (en) Immersion lance for blowing and refining method of molten iron
JP6578939B2 (en) Top blowing lance for converter blowing and converter blowing method
JP2004190114A (en) Method for dephosphorizing molten pig iron
TWI662133B (en) Dephosphorization method of hot metal and refining agent
JP5435106B2 (en) Hot metal dephosphorization method
JP5304816B2 (en) Manufacturing method of molten steel
JP6760237B2 (en) Desiliconization method of hot metal
JP6347199B2 (en) Hot metal refining method
JP5404268B2 (en) Dephosphorization method
JP2010255054A (en) Method for dephosphorizing molten iron
JP2019116668A (en) Method of operating top and bottom blown converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350