JP2010535067A - 多重焦点眼内レンズシステムおよび方法 - Google Patents

多重焦点眼内レンズシステムおよび方法 Download PDF

Info

Publication number
JP2010535067A
JP2010535067A JP2010519245A JP2010519245A JP2010535067A JP 2010535067 A JP2010535067 A JP 2010535067A JP 2010519245 A JP2010519245 A JP 2010519245A JP 2010519245 A JP2010519245 A JP 2010519245A JP 2010535067 A JP2010535067 A JP 2010535067A
Authority
JP
Japan
Prior art keywords
pupil
distance
interest
photosensor
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010519245A
Other languages
English (en)
Inventor
ホラデイ、ジャック・ティー.
Original Assignee
オキュラー・オプティクス・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オキュラー・オプティクス・インコーポレイテッド filed Critical オキュラー・オプティクス・インコーポレイテッド
Publication of JP2010535067A publication Critical patent/JP2010535067A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • A61B3/112Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6821Eye
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1624Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus having adjustable focus; power activated variable focus means, e.g. mechanically or electrically by the ciliary muscle or from the outside

Abstract

【課題】多重焦点眼内レンズシステムおよび方法を提供する。
【解決手段】
本発明は、駆動するためおよび多数の物体および変動明るさ状態を識別するための距離測定を有する多重焦点眼内レンズシステムの方法、コンポーネントおよびオペレーションに関係する。本発明はまた、眼内レンズシステムと共に使用される眼内フォトセンサーおよび眼内レンズシステム、および動的視環境中に多重焦点IOL能力を提供するコンポーネントに関係する。
【選択図】

Description

関連出願への相互参照
この出願は、2007年8月2日に提出された米国仮特許出願シリアル番号60/953,640号の優先権および利益を要求し、その内容は参照によってここに組込まれる。
発明の分野
本発明の例態様は、一般に多重焦点眼内レンズ(「IOL」)システム、特にIOLシステムと共に使用される眼内フォトセンサーおよび距離測定方法、および動的視環境に多重焦点IOL能力を提供するコンポーネントに関する。
関連技術の説明
人間視覚システムでは、20フィート未満離れた物体などの近くの物体に選択的に焦点を合わせるために、目のレンズの焦点距離が変化しなければならない。正常な目では、これは、レンズに機械的に連結された毛様筋の収縮によって達成される。毛様筋の収縮の大きさはレンズを変形し、それによりレンズの焦点距離すなわち集光力を変更する。このように選択的にレンズを変形することによって、目からの異なる距離にある物体に焦点を合わせることが可能になる。異なる距離にある物体に選択的に焦点を合わせるこのプロセスは視力調節と呼ばれる。
ジオプトリー(「D」)は、メートルで測定される焦点距離の逆数に等しいレンズの屈折力の測定の単位である。人間では、リラックスした目の合計パワーはほぼ60ジオプトリーである。角膜は、このパワーのほぼ三分の二を受け持ち、水晶体は残り三分の一を与える。人間が年を取るにつれて、視力調節の幅は、若者のほぼ15ないし20ジオプトリーから、25歳における約10ジオプトリーに、50以上におけるおよそ1ジオプトリーに減少する。50歳の場合では、そのレンズシステムは1Dの視力調節力を提供し得るだけであり、これは、各人が明りょうに焦点を合わせ得る最も近い物体が1メートルの距離にある(1メートル=1/1ジオプトリー)ことを意味する。同様に、2Dは、1/2メートル離れた物体への視力調節焦点調節を可能にし、3Dは、1/3メートル離れた物体への焦点調節を可能にする。
近距離における視力調節すなわち明りょう見える能力は、傷、疾病または自然老化プロセスを含むさまざまな理由のために低減または除去され得る。たとえば、人が年を取るにつれて、目の天然水晶体が塑性を失い、異なる近くの距離にある物体に焦点を合わせるのに十分な視力調節を達成するためにかたくなっているレンズを変形させることがますます困難になる。
白内障は、天然水晶体が曇って不透明になり視力を著しく低減する老化に関連した疾病である。白内障は一般に視力調節の損失のあとに生じる。眼内レンズ(「IOL」)は、この疾病を苦しむ患者に視力を復元するために1960年代の終わりから米国において使用され、最近ではいくつかのタイプの屈折の目の手術に使用されている。IOLは一般に、目の天然水晶体に置き換わるか補足するために眼球の内部に外科的に埋め込まれる永久的プラスティックレンズである。
IOLはまた、人間の目の屈折の機能の損失を補う役目をし得る。たとえば、筋肉毛様体が脳からの視力調節刺激に反応するときに、身体の天然水晶体が焦点を合わせる方法と同じように、(たとえば目の軌道内において物理的に変形および/または転換する)動きによって焦点を変更する視力調節IOLが導入された。不運にも、これらのタイプの視力調節IOLは、健康な天然水晶体と比較すると、パフォーマンスにおいて本質的に劣り、要求に応じて正確かつ信頼できて焦点を合わせる能力を持たない。
視力調節が可能であり、その焦点距離をさまざまな距離の物体に動的に調節し得るIOLシステムは、注目の物体とも共通に呼ばれる焦点の物体までの距離を正確に決定し得るべきである。すなわち、注意の近い物体に最適の焦点をもってくるように視覚系の焦点を調節し得るように、注目の物体までの距離が知られるべきである。
正確な多重焦点能力たとえば視力調節を達成するために、IOLシステムはまた、動的フォーカシングレンズシステムは、注目の物体までの距離に基づいて適切な焦点に調節し得るように断続的および好ましくは連続的な基礎に基づいて注目の物体までの距離を急速に正確に決定し得るべきである。
注目の物体までの距離を決定する、すなわち距離測定するために提案されたいくつかの方法があった。例は、赤外線ビームとセンサーがレンズシステムに組み込まれて、透過、反射、感知および信号処理によって距離を検出または目標設定するために使用される、レーダーに似たアプローチを含んでいる。別の提案された距離測定技術は、毛様筋に取り付けられた圧電性結晶を使用し、視覚系によって求められる視力調節の程度に随行し意図的に示す毛様筋収縮の程度に応じて結晶によって生成される電圧によって注目の物体までの距離を推測する。しかしながら、毛様体は非常に脆弱で、働くのが難しいと知られており、これらの解決策を比較的複雑で魅力のないものにする
他の提案された距離測定方法は、物体に焦点が合っていると見なされる点においてコントラスト最大値が検出されるまで光学系の焦点を連続的に調節しながらイメージのコントラストを繰り返し測定することを含んでいる。しかしながら、このアプローチに関する重大な問題は、視線上に多数の物体があり、これが注目の所望物体と介在する物体(たとえば雨滴)とを区別することを困難または不可能にすることである。
視力調節IOLシステムにおいて注目の物体までの距離を決定し、照明変化や多数の物体などのさまざまな周辺状態を識別する正確で信頼できる方法への要望が存在する。IOLシステム中に容易に単純に統合され得る、解剖学的に、生理学的に、または鋭敏さに関してのいずれにも視覚系に否定的な影響を与えない距離測定器へのさらなる要望が存在する。さまざまな周辺照明状態において注目の物体までの距離を識別し得る距離測定コンポーネントを有する動的多重焦点IOLシステムおよび周辺照明状態の変化を区別することへのまた別の要望が存在する。
発明の要約
一実施形態では、眼内フォトセンサー設計は、ひとみを通る入射光強度および分布の変化を検出することによってひとみ径およびそれの変化を測定してひとみサイズを決定するために使用される。この実施形態では、フォトセンサーは、比較的平面関係で、ひとみに並んで後方にじかに配置される。感光素子の一つ以上の直線アレイが含まれ、素子の数はひとみサイズ変化を識別するのに十分であるが、フォトセンサーは十分に透明のままである。
一実施形態では、ひとみサイズ決定は、ひとみサイズと視覚収束の関係または近方共同運動に基づいて注目の物体までの距離を推定するために使用される。別の実施形態では、注目の物体までの距離の決定は、注目の物体または近くに焦点を合わせるために動的焦点調節可能眼内レンズシステムを駆動するための入力として使用される。さらなる実施形態では、プログラマブルフォトセンサーが、IOLシステムにおける主要な距離測定器として利用される。また別の実施形態では、ひとみサイズの決定は、距離測定の補足または補充的方法として、または注目の物体までの距離を決定するために使用される。
別の実施形態では、センサーは眼内レンズシステムに統合される。眼内レンズシステムは一実施形態では多重焦点レンズシステムであり、電気活性レンズ素子を有し得、または他の多重焦点レンズコンフィギュレーションであり、レンズシステムを制御、駆動および電力供給するためのマイクロコントローラー、アクチュエーターおよび電源手段をさらに有する。ある実施形態では、フォトセンサーは、ひとみサイズを決定し、物体距離を決定し、物体に焦点を合わせるようにレンズシステムの集光力を調節するために入射光を感知し得る電気活性ピクセル化アレイレンズシステムに統合される。別の実施形態では、フォトセンサーは、非ピクセル化電気活性レンズシステムに統合される。まだ別の実施形態では、フォトセンサーは、非電気活性フォーカシングシステムのコンポーネントに統合されるかそのものである。
本発明の一実施形態は、焦点システムのパワーを調節するための多重焦点レンズシステムと、注目の物体までの距離を決定するための距離測定器と、多重焦点レンズシステムを制御および駆動するためのコントローラーおよびアクチュエーターと、システムのコンポーネントに電力供給するための電源とを有する眼内レンズシステムを有する。一実施形態では、距離測定器は、ひとみ径に基づいて注目の物体までの距離を決定するための眼内フォトセンサーおよび関連処理手段を有する。別の実施形態では、距離測定器は、注目の物体までの距離をより正確に信頼性高く決定するためにひとみサイズ測定に加えて、コントラスト測定技術などの距離測定テクノロジーを利用するフォトセンサーを有する。別の実施形態では、フォトセンサーはレンズシステムに統合される。また別の実施形態では、フォトセンサーは、システム全体の物理的に分離したモジュールのコンポーネントである。一実施形態では、フォトセンサーは、IOレンズの後方に配置される。別の実施形態では、フォトセンサーは眼内(「IO」)レンズの前方に配置される。
一実施形態では、革新的なフォトセンサーは、ひとみを通過する光強度および分布、および個別センサー素子に受けられる光強度の変化の両方を測定し決定する。分布および分布の変化を測定することによって、フォトセンサーアレイにおいて、ひとみのサイズが決定される。照明センサー素子の光強度の時間変化を測定することによって、周辺明るさのあらゆる変化も決定される。この実施形態では、明るさ反射および近方共同運動反射の両方によるひとみサイズの変化が決定され得、フォトセンサーおよび距離測定装置は、変化する照明状態および注目の物体までの距離の変化の両方を区別し得る。下で論じるように、相対的光レベルの変化を検出する能力は、明るさおよび共同運動原因の両方によるひとみ反射応答を区別するために使用され得、それにより注目の物体までの距離のほかに周辺明るさレベルの変化を正確に決定し得る。
一実施形態では、個別患者のひとみサイズが、さまざまな明るさおよび視覚収束シナリオ、およびさまざまな照明と収束組み合わせに対してひとみサイズに関連づけて確立された基線に対して測定される。この基線は、埋め込み可能であり、特異なひとみ(pupilary)応答を考慮に入れて、正確な物体距離が決定され、正確な焦点調節が各患者に対してなされるようにカスタムIOフォトセンサーまたは統合IOレンズシステムをプログラムするために使用される。別の実施形態では、共同運動収束応答だけが測定され、物体距離に対するひとみサイズを関連づける基線を確立するために使用される。まだ別の実施形態では、規格化ひとみ(pupilary)応答基線が下位母集団群のために作り出され、これらの基線は規格化IO距離測定器およびシステムをプログラムするために使用される。
これらおよび発明の他の特徴および目的は、添付図面を考慮して読まれるべき好ましい実施形態の続く詳細な説明からより完全に理解されよう。
図面の簡単な説明
添付図面は、組み込まれて明細書の一部を形成し、本発明の実施形態を例証し、説明と共に本発明の原理について説明する役目をする。
図面中
図1は、目の解剖学的構造を示す。 図2Aは、本発明の一実施形態による例IOLシステムおよび埋め込み物を示す。 図2Bは、本発明の一実施形態による例IOLシステムおよび埋め込み物を示す。 図3Aは、視覚収束およびさまざまな程度の収束に対するひとみ(pupilary)共同運動収束反応の例と、変化する明るさ状態に対するひとみの明るさ反射応答の例を示す。 図3Bは、視覚収束およびさまざまな程度の収束に対するひとみ(pupilary)共同運動収束反応の例と、変化する明るさ状態に対するひとみの明るさ反射応答の例を示す。 図3Cは、視覚収束およびさまざまな程度の収束に対するひとみ(pupilary)共同運動収束反応の例と、変化する明るさ状態に対するひとみの明るさ反射応答の例を示す。 図3Dは、視覚収束およびさまざまな程度の収束に対するひとみ(pupilary)共同運動収束反応の例と、変化する明るさ状態に対するひとみの明るさ反射応答の例を示す。 図3Eは、視覚収束およびさまざまな程度の収束に対するひとみ(pupilary)共同運動収束反応の例と、変化する明るさ状態に対するひとみの明るさ反射応答の例を示す。 図3Fは、視覚収束およびさまざまな程度の収束に対するひとみ(pupilary)共同運動収束反応の例と、変化する明るさ状態に対するひとみの明るさ反射応答の例を示す。 図4Aは、本発明の一実施形態による異なる母集団群に対するさまざまな明るさレベルおよび収束状態における推定ひとみサイズを示す作表データを描く。 図4Bは、本発明の一実施形態による異なる母集団群に対するさまざまな明るさレベルおよび収束状態における推定ひとみサイズを示す作表データを描く。 図4Cは、本発明の一実施形態による異なる母集団群に対するさまざまな明るさレベルおよび収束状態における推定ひとみサイズを示す作表データを描く。 図5Aは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図5Bは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図5Cは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図5Dは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図5Eは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図5Fは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図5Gは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図5Hは、本発明の例実施形態による例フォトセンサーチップ設計を示す。 図6Aは、本発明の例実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の正面図を示す。 図6Bは、本発明の例実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の正面図を示す。 図6Cは、本発明の例実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の正面図を示す。 図6Dは、本発明の例実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の正面図を示す。 図6Eは、本発明の例実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の正面図を示す。 図6Fは、本発明の一実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の側面図を示す。 図6Gは、本発明の一実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の側面図を示す。 図6Hは、本発明の一実施形態によるひとみのサイズに依存するさまざまな状態における図5Aのフォトセンサーおよびひとみの後ろに埋め込まれたその素子の側面図を示す。 図7Aは、本発明の一実施形態による注目の物体までの距離を決定するプロセスを示す。 図7Bは、本発明の一実施形態による注目の物体までの距離を決定する例プロセスを示す。 図7Cは、本発明の一実施形態による注目の物体までの距離の決定のための例参照テーブルを示す。 図8Aは、本発明のさまざまな実施形態によるシングルチップ上に統合されたセンサーアレイおよび電気活性レンズの例を示す。 図8Bは、本発明のさまざまな実施形態によるシングルチップ上に統合されたセンサーアレイおよび電気活性レンズの例を示す。 図9は、本発明のさまざまな実施形態による単一電気活性レンズに統合されたまたは隣接するフォトセンサーの例位置を示す。 図10は、本発明の一実施形態による二つの電気活性レンズ素子の間に「はさまれた」センサーを示す。 図11は、本発明の一実施形態によるフォトセンサーを使用する例非電気活性多重焦点システムを示す。 図12は、本発明の一実施形態によるIOLシステムを示す。 図13は、本発明の一実施形態による、ひとみサイズおよび注目の物体までの距離を測定するIOフォトセンサーを使用して、注目の物体までの距離を決定し、多重焦点レンズシステムを調節するための例一般的プロセスを示す。 図14Aは、本発明の一実施形態によるひとみのサイズおよび周辺光強度に依存するさまざまな状態におけるフォトセンサーおよびその素子を示す。 図14Bは、本発明の一実施形態によるひとみのサイズおよび周辺光強度に依存するさまざまな状態におけるフォトセンサーおよびその素子を示す。 図14Cは、本発明の一実施形態によるひとみのサイズおよび周辺光強度に依存するさまざまな状態におけるフォトセンサーおよびその素子を示す。 図14Dは、本発明の一実施形態によるひとみのサイズおよび周辺光強度に依存するさまざまな状態におけるフォトセンサーおよびその素子を示す。 図14Eは、本発明の一実施形態によるひとみのサイズおよび周辺光強度に依存するさまざまな状態におけるフォトセンサーおよびその素子を示す。 図14Fは、本発明の一実施形態によるひとみのサイズおよび周辺光強度に依存するさまざまな状態におけるフォトセンサーおよびその素子を示す。 図15は、注目の物体までの距離を決定するために明るさおよび共同運動反射を識別するための例プロセスフロー図を示す。 図16は、注目の物体までの距離を決定するために明るさおよび共同運動反射を識別するための例プロセスフロー図を示す。
詳細な説明
図1は、ラベルを備えた目100の解剖学的構造を示し、結膜110と、毛様体112と、絞り114と、ひとみ118と、(水様液を包含する)前眼房116と、水晶体122と、角膜124と、外眼筋126と、強膜(scelera)128と、脈絡膜130と、黄斑132と、視神経134と、網膜136と、ガラス体液138と、包バッグ140とを有する。水晶体122は包バッグ140によって包まれている。一般的レンズ置換手術中に、天然レンズ122が包バッグ140から取り除かれ、新しいIOLが周知な外科技術によって包バッグ140の内部に埋め込まれる。IOLは、折り畳んだ状態で挿入され、それから包バッグ140の内部で広げられ得る。
図2Aは、包バッグ140の内部に埋め込まれた多重焦点IOLシステム210の一例を示す。図2Bは、図2Aに示されたIOLシステム210の拡大を示す。図2Bを参照すると、一実施形態では、埋込IOLシステム210は、印加電圧260に応じてその屈折率を変更し得る電気活性素子を有する電気活性レンズ250を有する。コントローラー270は、電気活性レンズ250に送られる必要制御信号を決定し、アクチュエーター280は、電極を介して電気活性レンズ素子250を駆動してその屈折率を変更する。この実施形態では、(感光素子とも呼ばれる)フォトセンサー素子520を有するフォトセンサーチップ290は、レンズシステム210に統合されるプログラマブル距離測定器の形態で構成される。(距離測定器フォトセンサーまたは単に距離測定器とも呼ばれる)フォトセンサーチップ290は、以下に詳しく説明されるように、ひとみ118を通過した入射光の範囲分布を検出することと、入射光分布に基づいてひとみ118のサイズを推定することとによって作動する。
ひとみ118は本質的に円形であり、ひとみ118を通過する光の量および分布は、角膜124によって十分な屈折を受け、ひとみ118に等しい半径を有する円形ビームとして有効に表わされ得る。以下により詳しく論じるように、ひとみサイズは、注目の物体までの距離を推定するために使用され、この推定に基づいて、コントローラー270は、物体に焦点を合わせるために必要とされる適切な焦点距離を決定し、アクチュエーター280に電気活性レンズ250を駆動させ、注目の物体を(網膜136上の)焦点に合わせる。周辺明るさの相対変化も、距離測定器フォトセンサー290によって測定し、ひとみ反射応答に起因するひとみサイズ変化を区別し原因を説明するために使用され得る。
上記の説明は一実施形態のみの説明である。異なるタイプの電気活性および非電気活性多重焦点レンズシステムを有するさまざまな他の実施形態が考えられる。たとえば、IOLシステムコンポーネントはまたモジュール式であり得、システムの素子は包バッグ140の外部に、また目100の外部にすら配置され得る。注目の物体までの距離を決定するための方法およびさまざまなフォトセンサーおよびIOLシステム設計の詳細をいま説明する。
図3A〜Eは、さまざまな程度の視覚収束および対応ひとみサイズ302a〜eを示し、それらは、以下に説明するように、物体距離を推定するために使用される。視覚収束の概念は、物体が近距離において見られたときに、目100のおのおのの視線がどのように交差するかの度合いである。一般に、遠方視力は、図3A(301a)に示されるように20ftを超える(〜6メートルの)距離にある物体を見るときの視力を意味し、近方視力は、図3B〜3E(301b〜30Ie)に示されるように20ft未満にある物体を見るときの視力を意味する。正常な人間視覚システムでは、近い物体(20ft未満のあらゆるもの)に焦点を合わせるプロセスおよび機構は視力調節と呼ばれ、このプロセスの間、目は物体上に交差または収束する。図3A(301a)に示されるように、物体を20ftを超える距離にある物体を見る(目のおのおのの視線が互いに有効に平行である)ときはゼロ収束である。注目の物体が目に近づけられるにつれて、図3B〜E(301b〜301e)に示されるように収束の程度は増加する。
異なる収束の程度に対してひとみ118のサイズ(302a〜302e)がどのように異なるかも例証に示される。ひとみ径の変化は、絞り114の開閉によって達成され得る。これは、共同運動反射応答または「近方共同運動」として知られるよく理解されたひとみ反射応答の結果である。特に、この反射では、ひとみ118は、目の交差または視覚収束に応じてその直径を変更する。収束の程度が大きいほど、ひとみの収縮が大きい。これは、図3A〜E(302a〜302e)に、収束の程度に対応するひとみ径の変化で示される。また特に、図3Aにおいて、注目の物体が20ft以上の距離にあるとき、目はほぼ平行であり、交差または収束の程度を示さず、ひとみ共同運動応答はない。注目の物体が近づけられるにつれて、図3B〜3Eに示されるように、収束の程度が増大し、ひとみの緊縮はそれらの直径を減少させる。たとえば、図3Aに示されるように、遠方物体を見るとき、ひとみは直径が約6mmである。図3Bに示されるように、見る人が10フィートの距離にある物体を眺めるとき、目は収束し、ひとみはたとえば5mmに収縮する。図3Cでは、見る人が5フィートにある物体を眺めるとき、収束の程度が増大し、ひとみはたとえば4mmに収縮する。図3Dと3Eでは、見られる物体がたとえば2.5ft離れているとき、目はよりさらに交差し、ひとみはよりさらにたとえば3mmに収縮し、物体が10インチにもってこられると、ひとみは約2mmに収縮する。収束の与えられた程度に対するひとみ径の実値は変更可能であり、与えられた例は例証のためだけである。
別の反射は、網膜上の光の最適量(すなわち網膜感度)を維持するために、一般に明るい光の中で収縮し、うす暗い光の中で拡張する、異なるレベルの周辺明るさに合わせてひとみ径を調節させるひとみ(pupilary)明るさ反射である。ひとみは、周辺光状態の変化のためサイズを動的に調節する。さまざまな周辺光強度下におけるひとみ径の例が図3Fに示される。明るさ応答もこの分野の当業者によってよく理解されており、たとえば、人間の目100が明るさの変化に遭遇するとき、たとえば、うす暗く照明された部屋から外の日当たりのよい環境へ行くとき、ひとみ118は収縮して網膜に影響を与える光強度を減少させる。主体が、日のさす環境からよりうす暗く照明された環境または部屋へ戻ると、ひとみは拡大してより多くの周辺光の捕獲を可能にする。
表面に影響を与える相対明るさの程度、または照度の量は、フート燭(ft−c)としても知られる1平方フィートあたりのルーメンまたはluxとしても知られる1平方メートルあたりのルーメンのいずれかの単位で共通に表現される。照度は、人間の目によって知覚されるような相対明るさ状態の光度測定を表わす。図3Fに示されるように、異なる明るさ状態の例は、直接の太陽(10000ft−cまたは〜100,000lux)、
明るい空(3000ft−cまたは〜30000lux)、くもり空(500ft−cまたは〜5000lux)、明るく照明された屋内の部屋(100ft−cまたは〜1000lux)、低いレベルの照明を備えた部屋(20ft−cまたは〜200lux)、非常にうす暗く照明された部屋(0.5ft−cまたは〜5lux)、夜間の星あかりの暗闇(0.01ft−cまたは〜0.1lux)を含んでいる。
ひとみは、明るさ応答および共同運動収束反射の両方のためその直径を変更するが、収束による共同運動反射は、より優勢な反射(すなわち光レベルの典型的な日常の範囲に対して、近方物体を見るとき、共同運動応答はひとみ径を決定することに明るさ反射よりも多くほぼ9回寄与する)である。
上に説明したように、共同運動反射のために、個人のひとみサイズは収束の程度と関係があり、収束の程度は目100から注目の物体までの距離と直接関係がある。物体が近くなるほど、ひとみは小さくなる。したがって、ひとみのサイズを決定することによって注目の物体までの距離を推定することが可能であり、それはひとみのサイズまたはひとみのサイズの変化が特定のレベルまたは範囲の周辺明るさ下における収束の程度をほぼ示すからである。たとえば、共同運動応答反射のため、注目の物体までの距離が20ftから10ftに変更されると、目は「交差」(すなわち各目の視線が収束)しなければならず、ひとみは収縮する。注目の物体が5ftに移動されると、ひとみはより小さいサイズに収縮する。同様に、物体が1ft以内にもたらされると、ひとみはさらに収縮する。ひとみ(pupilary)径と注目の物体までの距離または収束の程度との関係は、各患者に対して特異的に測定され、または年齢群または下でさらに論じるような他の下位母集団群に対してベンチマークテストされ得る。
図4A〜Cは、異なる母集団群に対するさまざまな明るさレベルおよび収束状態における推定ひとみサイズを示す作表データを描く。それぞれの母集団群に対するデータテーブルを確立するために、ひとみ径はさまざまな明るさレベルおよび物体距離の組み合わせの下で測定される。データテーブルは、注目の物体に距離を推定するため、また多重焦点IOLシステム210を駆動するために距離測定器フォトセンサー290によって使用される。
これらの測定は、さまざまな距離(収束の程度)におけるひとみサイズを決定するひとみ計(pupilometer)を使用することを含む標準的眼科学および検眼技術を使用しておこなわれ得る。たとえば、これは、この分野の当業者に明白なように、試験物体までの視距離を調節し、それによりその距離にある物体を見るときにするように患者に目を交差させる、屈折計やその他同種のものを使用して実施され得る。ひとみの明るさ応答も、標準的検眼手法を使用して、たとえば個人の目に影響を与える明るさを変更することによって、またひとみ(pupilary)サイズを測定するひとみ計(pupilometer)を使用して測定され得る。ひとみサイズを周辺明るさに関連づける基線カーブまたはテーブルが確立され得る。
明るさ状態および物体距離をそれぞれ変更することに対するひとみ(pupilary)明るさおよび共同運動応答はよく理解される。一般に、ひとみ(pupilary)応答の程度、およびひとみが収縮または拡張し得る最大の範囲は年齢とともに減少する。図4Aおよび4Bの代表的テーブルを参照すると、平均20歳のひとみは、最大で2mmのサイズまで収縮し、最大で7mmのサイズまで拡張し得るのに対して、平均70歳のひとみは、最大で2.5mmのサイズまで収縮し、最大で5mmのサイズまで拡張し得る。また、図4Cに示されるように、平均40歳のひとみは、最大で2.3mmまで収縮し、最大で6mmまで拡張し得る。
さらに、母集団群の個別患者に対する物体距離を確立するために使用され得るひとみサイズと明るさの関係が図4A〜Cに示される。下で説明される眼内センサーおよびプロセッサーはひとみを通過する入射光を検出し、ひとみサイズおよび相対明るさを推定し、測定データを患者の基線データと比較することによって注目の物体までの距離を推定するために使用される。このプロセスは図7Aおよび7Cに表わされ、下で論じられる。
一実施形態では、眼内フォトセンサー設計および方法は、ひとみを通る入射光強度および分布の変化を検出することによってひとみ径およびそれの変化を測定するために使用される。ひとみ118サイズは、注目の物体までの距離を得るために使用され得、この情報は、多重焦点IOLシステム210の焦点距離を調節するために使用され得る。
図5A〜Hは、例実施形態によるさまざまな眼内フォトセンサーチップ(またはセンサーアレイ)設計500a〜500hを示す。特に、図5A〜Hは、フォトセンサー素子設計の正面図を描く。一実施形態では、図5Aに示され、フォトセンサー(または感光)素子520aは、たとえば半導体ウェーハまたはマイクロチップ上の二つの直交直線アレイに配列される。さまざまな感光材料およびフォトセンサーテクノロジーがこの技術分野で周知であり、これに限らないが、電荷結合素子(「CCD」)および相補的金属酸化物半導体素子(「CMOS」)テクノロジーを含み、利用され得る。図5Aを参照すると、説明の目的のために、直線アレイの「脚」510aは、N、S、E、Wでラベル付けされているが、フォトセンサーチップ500aの中心515aから増進線形距離(たとえば半径)にわたって光強度を測定し得る素子の任意の配向が使用され得ることは明白である。たとえば図5B〜Hは、半導体チップまたはウェーハ上のフォトセンサー素子配向の他の例を示すが、この分野の当業者には明白なように他のものも可能である。
図5A〜5Hのフォトセンサーチップ500a〜500hは、ほぼ完全に拡張したひとみのサイズたとえば7mmであり、センサーのディスクの面がひとみの面と平行となるように配向されている。フォトセンサー素子520a〜520hのフォトセンサー径および長さをひとみ118の最大寸法に一致させることによって、ひとみ径の全領域がモニターされ検出され得る。フォトセンサーチップ500a〜500hは、この分野の当業者には明白なように、所望の適用に依存して、より大きいまたはより小さくなり得るであろう。
図6A〜Cは、ひとみ118のサイズに依存するさまざまな状態における、ひとみ118の後ろに埋め込まれた、図5Aのフォトセンサーチップ500aおよびそのフォトセンサー素子520aと、ひとみ118のサイズを測定するためにフォトセンサーチップ500aがどのように使用され得るかを示す。示されるように、ひとみの後ろのフォトセンサー素子520aだけが、光刺激のすべて(または大部分)を受ける。ひとみの外側のフォトセンサー素子は、光刺激をほとんどまたはまったく受けない。
図6F〜Hは、図6A〜Cに対応するひとみ118のサイズに依存するさまざまな状態における、ひとみ118の後ろに埋め込まれた、フォトセンサーチップ500a(図5A)およびそのフォトセンサー素子520aの側面図を示す。明りょうさのために、図面は、ひとみ118と、図6A〜Cのひとみ径に対応するひとみ118の後ろの(たとえば眼内で埋め込まれた)IOシステム(たとえば図2B、210)のフォトセンサーチップ500aだけを示す。
図6Aおよび6Fは、4mmのひとみ118と、フォトセンサーの中央部分(4mmの円)内のフォトセンサー素子520aだけが照明されることを示す。ひとみ118径の外側のフォトセンサー素子520aは光をほとんどまたはまったく受けない。図6Bおよび6Gは、完全に拡張したひとみ118と、多くのフォトセンサー素子520aが照明される(たとえばセンサーの中央の7mmの円)フォトセンサーチップ290aを示す。図6Cおよび6Hは、フォトセンサーチップ500aの極中央部分と対応するセンサー素子520aだけが照明される完全に収縮したひとみ118を示す。センサーアレイの中央のほぼ2mmのエリア内の素子だけが周辺光を受け、さらに外周の方のものは光をほとんどまたはまったく受けない。これらの値は例証としてだけ選ばれた。一般に、健康な若い大人のひとみ118の直径は2ないし7mmの間に維持されるのに対して、年上の患者では範囲がいくぶん小さく、4〜5mmを示し、中間の値である。これらの場合のおのおのにおいて、センサー素子520aの特定の分布がひとみ118のサイズに依存して照明され、それによりひとみサイズが決定される。一実施形態では、中央のフォトセンサー素子515aに加えて、フォトセンサーチップ500aの脚510aあたり8つのセンサー素子があるが、センサー素子520aの数および配向は適用に依存して調節され得る。
図6D〜Eは、個別フォトセンサー素子がひとみ118サイズおよび光強度に依存してどのように「活性化」されるかの別の表現を示す。異なる周辺光強度のために、いくつかの実施形態では、センサーアレイは、検出される周辺光に依存して、さまざまなレベルの感度にプログラムされ得る。たとえば、うす暗く照明されたすなわち暗い環境では、フォトセンサー素子520aは、増大した感度に(自動的にまたはコントローラーたとえば図2B、270からの指示でのいずれかで)動的に調節し得るのに対して、明るい環境では、フォトセンサー素子520aは減少した感度に調節し得る。
図6Eは、プログラマブルフォトセンサーチップ500aが光分布だけでなくその分布の強度をもどのように記録するかを示す。一実施形態では、センサー素子520aは、強度の階調を記録し区別するようにプログラムされる。この例では、5つの異なる強度レベルがあるが、この分野の当業者には明白なように、フォトセンサーチップ500aは、光レベルの任意の強度を区別するように設計されプログラムされ得るであろう。好ましくは、IOLシステムは、ここにおいてさらに論じるように、光強度の相対変化を記録し区別して、明るさ反射と共同運動反射を識別し得る。また、散乱光がひとみ118のエリアの外側のセンサー素子520aに到達する潜在性は可能であり、フォトセンサーチップ500aは、強度およびコントラストのしきい値レベルを確立することによってそのような「ノイズ」を捨てるようにプログラムされ得る。
フォトセンサーチップ500aは、たとえば、さまざまな照明および視覚的状態を識別するために、望むように感度の程度を変更するように設計され得る。いくらかの(たとえば散乱した)光は、ひとみ118エリア領域の外側のフォトセンサー素子520aに到達し得る。変化する明るさおよび分光感度を備えるさまざまなフォトセンサーが本実施形態のフォトセンサーとして使用され得るであろう。さらに、受信光信号の信号処理アルゴリズムは、ひとみのエリア外のフォトセンサーとひとみのエリア内のフォトセンサーとによって、異なる照明状態を区別し、また受光の相対量を区別するように調節され得る。
さらにここに説明されるように、ひとみ径は、フォトセンサーチップ500a自体から直接決定され得る(たとえば、与えられたしきい値を超えて照明されるフォトセンサーのエリアがひとみ118のエリアに直接対応する)、または適用にカスタマイズされたポスト処理信号アルゴリズムによって決定され得る。示されるひとみ118径およびフォトセンサーアレイ500aは例だけであり、この分野の当業者は、ひとみ径は、上限および下限間で連続的に変わり得、示される実施形態は、これらの限界の間のあらゆる値におけるひとみ径を決定するために容易に使用され得る、さらに他のセンサー設計も、入射光を検出しこれによりひとみのサイズを決定するように作用することを知るであろう。他のところで論じるように、一実施形態では、ひとみサイズ測定は、物体までの距離を決定するために使用され、この距離は、視界物体を焦点に合わせるその焦点特性を調節する多重焦点レンズシステム210を駆動するためにコントローラー(たとえば図2B、270)によって使用される。
フォトセンサーチップ(たとえば図2、290、図5A、500a)はひとみ118の後方かつ網膜136の前方に配置されるので、視覚に否定的影響を与え得る入射光を過度に遮断しないように十分に透明であるべきである。したがって、個別フォトセンサー素子は不透明である、すなわちそれらは入射光を吸収するが、センサー素子の数およびそれらが占めるエリアは、それらが吸収する入射光の量が、さまざまなひとみサイズを区別するのに十分であるが、視覚に影響を与えないように全入射光に対して十分に小さくなるように選ばれる。一実施形態では、アレイは95%透過性である。別の実施形態では、アレイは90%透過性である。他の透過特性は可能である。フォトセンサーチップ設計は、フォトセンサー素子の数を、入射光強度の変化を径方向に検出するのに必要であるが、ほとんどの光が網膜136(図1、2A)に到達することは可能する、また、望ましいフォトセンサー動作および検出を達成するように最適に設計されるが、光子減衰によって視覚に影響を与えはしないものに制限する。一実施形態では、個別センサー素子は、「切断」され得、たとえば、それらの状態をフォトディテクターから本質的不活性透過素子に変更し、それにより、たとえが光レベルを変更するために、活性であるフォトセンサーの数およびフォトセンサーの透過特性に動的変更を可能にするように電気的に制御され得る。
明るさ反射および共同運動反射の両方がひとみ径に影響することがある。注目の物体までの距離が一定であるならば、ひとみの直径のどんな変化も主として明るさ応答、周辺光レベルの変化による応答による。反対に、明るさレベルが比較的一定であるならば、ひとみの直径の変化が主として共同運動応答、注目の物体の距離の変化による応答による。しかしながら、日常生活では、ほとんどの個人は幅広く変動する明るさレベルに遭遇し、連続的に熟視を変え、いくらか遠方へまたはいくらか近方の異なる距離にある注目の物体を見るために焦点を合わせる。したがって、明るさ反射および共同運動反射の両方は、明るさレベルおよび注目の物体までの距離にしたがってひとみ118にサイズを変更させる重要で一致する影響を及ぼし得る。好ましくは、上に説明したIOLシステム210は明るさレベルとひとみ径の両方を測定し、患者のベンチマークデータと一緒のこれらの二つのデータ入力は、一実施形態における注目の物体までの距離を推定するために使用される。
一実施形態では、明るさレベルの変化および注意の距離の変化に対するひとみ118応答およびサイズのベンチマーク関係が既に説明したように標準的検眼技術を使用してさまざまな明るさおよび収束状態の下において患者のひとみ径を測定することによって確立される。上に説明したように、図4A〜Cは、異なる母集団群に対する測定の一組を示すが、そのような測定およびデータ作表は個別患者に対しておこなわれ、各患者に290に対して距離測定器フォトセンサーをカスタマイズするために使用され得ると理解すべきである。
図7Aは、一実施形態による注目の物体までの距離を決定するための代表的プロセス700aを示し、図7Cは、一実施形態による注目の物体までの距離を決定するための参照テーブルを示す。ブロック705において、眼内フォトセンサーチップ290(図2A)は空間的広がりおよびひとみを通る入射光の強度の両方を検出する。ひとみ径および周辺の強度の両方の推定は、たとえばフォトセンサーチップ290に統合されたプロセッサーによって、ブロック710,715において得られる。ブロック710において決定された決定推定ひとみ径および決定されたブロック715において決定された明るさレベルは次に、ブロック720に示されるように、注目の物体までの距離を推定するコンパレーターを使用して患者のベンチマークデータと比較される。一実施形態では、(たとえば図4A〜Cのような)患者のベンチマークデータはブロック725においてプロセッサーメモリーに記憶される。このデータは、さまざまな明るさおよび物体距離の組み合わせに対するひとみサイズを含んでいる。測定ひとみサイズおよび明るさは、ブロック720においてブロック725に記憶されたベンチマークデータと比較され、物体距離の推定値がブロック730において得られる。患者に対する参照テーブルの例が図7Cに示される。たとえば、図7Cの患者のベンチマークデータを使用して、ひとみサイズが4.1mmであると推定され、相対明るさが1ft−Cであると推定されるならば、物体距離は1.2メートルであると推定される。同様に、ひとみサイズが4.1mmであると推定され、相対明るさが100のft−Cであると推定されるならば、物体距離は少なくとも6メートルの距離にあると推定される。この分野の当業者には明白なように、プロセッサーコンパレーターおよび距離推定器ロジックは、参照テーブルまたはリアルタイム重み付けアルゴリズム計算を含む多くの技術によって実施され得る。
図7Bは、別の実施形態による注目の物体までの距離を決定するための代表的プロセス700bを示す。ブロック735において、ひとみを入る光が検出される。この実施形態では、先のひとみ状態からのひとみサイズ変化の推定値および明るさ変化が(たとえば図7Aに示される測定から)それぞれブロック740、745に示されるように決定される。ブロック725において記憶された患者のベンチマークデータを使用して、ブロック750に示されるように、識別器が明るさの変化によるひとみ変化の量を推定する。ブロック755において、それから、物体焦点の変化、近方共同運動による推定ひとみサイズ変化が決定され、その推定に基づいてブロック760に注目の物体までの距離の変化の推定値が決定される。明るさレベル変化およびその変化によるひとみサイズ変化を識別することは、下でさらに論じるように、注目の物体までの距離が推定されることを可能にする。
フォトセンサー素子アレイは、個別のコンポーネントとして存在し得る、またはIOLシステムの他のコンポーネントに統合され得る。図8に示される一実施形態では、フォトセンサーアレイはシングルチップ上のレンズ素子に統合される。この実施形態では、フォトセンサーアレイ805および電気活性レンズ810は、フォトセンサー素子820と電気活性素子825と関連回路類を有するチップである単一の半導体のウェーハ815に統合される。特に、チップ810の電気活性レンズ部分は、ピクセル化アレイの形態の電気活性レンズ素子825の薄層から成る。そのようなレンズの例は米国の特許出願公開20060095128号に説明され、それは参照によってここに組込まれる。フォトセンサー素子820の数の配向は、(たとえば図5A〜Hに示されるセンサー設計に関して上に説明したような)適用に応じて調節され得る。
図8Bに示される別の実施形態では、フォトセンサーアレイ805は、ピクセル化レンズアレイ810上に配置された(たとえばレンズチップの前または後ろに取り付けられた)または(前または後ろに)レンズに隣接して配置された個別のチップである。
図9は、IOレンズシステム900の一部としてフォトセンサー901を有する他に実施形態を示す。この実施形態は非ピクセル化電気活性レンズ905を使用する。たとえば、そのようなレンズシステムは米国特許第6,638,304号に記述され、それは参照によってここに組込まれる。電気活性レンズ905は、透明電極910に取り付けられた電気活性レンズ材料(たとえばネマチック)を有する。一実施形態では、フォトセンサー901は、電気活性レンズ905と透明電極910の間に配置される。別の実施形態では、電気活性レンズ905は、フォトセンサー901レンズの前に配置される。別の実施形態では、電気活性レンズ905は、フォトセンサー901の後ろ(前は、目の前に向かってすなわちひとみに最も接近して方向づけられた方向をいう)に配置される。
図10は、一実施形態による二つの電気活性レンズ素子1005の間に「はさまれた」フォトセンサー901を示す。二つの透明電極910も示される。電気活性レンズ1005はコントローラー1010によって制御される。
さらに別の実施形態では、フォトセンサーアレイはさまざまなIOL設計に統合され、取り付けられ、または隣接して配置され、それらは、機械的または他の力によって変形可能に調節される変形可能レンズを有する非電気活性レンズを利用するIOLシステム、マルチレンズシステムを有する移動可能レンズシステム、焦点距離を調節可能な任意のレンズシステムを含む。図11は、固定レンズ1110および集束レンズ1105を有する非電気活性多重焦点システムと共にフォトセンサー901がどのように使用されるかの例を示す。
図12に示される一実施形態では、フォトディテクターセンサーアレイは、光学の多重焦点レンズおよび関連コントローラーおよびアクチュエーターに統合され、注目の物体までの距離、相対周辺明るさレベルおよびそれまたは両方の変化を決定するために使用される。センサーアレイは一実施形態ではプログラマブルアレイである。センサー素子のイルミネーションの程度および分布は、ひとみを通過する任意の所定の瞬間の分布および強度を示し、このデータは、その瞬間またはその近くにおけるひとみのサイズを決定するために使用される。一実施形態では、活性化される(すなわちしきい値光強度を超えて受ける)フォトセンサー素子の数またはパターンおよびいくつかの場合には光強度の程度がレンズ素子を駆動するためにコントローラーによって直接使用される。別の実施形態では、照明されたフォトセンサー素子を表わすデータは、たとえばアルゴリズム処理または参照テーブルと比較によってさらに処理され、たとえばひとみサイズを決定し既知のひとみ応答基線から物体距離を得ることによって注目の物体までの距離を決定する。
特に、図12は、注目の物体までの距離を得るために入射光を検出するための、またひとみサイズまたは周辺光強度の変化またはそれら両方を決定するためのセンサー1210を有するIOLシステム1200のブロック図を示す。データ処理および指示制御のためのマイクロコントローラー1205、合焦素子を駆動するためのアクチュエーター1220および多重焦点レンズ素子1215も含まれる。電源(またはエネルギー源)1225は、コントローラー1205、距離測定フォトセンサー1210およびアクチュエーター1220に電力を供給する。
図13は、注目の物体までの距離を決定し、一実施形態による多重焦点レンズシステムを調節するためのプロセス1300を示す。ブロック1305において、ひとみを通って受けられた分布が測定される。入射光に基づいたひとみサイズがブロック1310において決定される。今度は、ひとみサイズに基づいた注目の物体までの距離がブロック1315において決定され、ブロック1320において、物体距離に適切なレンズシステムの焦点距離が決定される。ブロック1325において、アクチュエーターがレンズ焦点を調節するために駆動される。
図13に示されるように、マイクロコントローラー1330は、プロセス1300のブロック1310〜1325をおこなうための指示で符号化される。これは、ファームウェアまたはソフトウェアで実行され得る。実施形態では、指示は、ハードウェア(たとえばエイシック(asic))で直接符号化される。指示は、(図示しない)ピクセル化アレイおよびフォトセンサー1335を備えたシングルチップ上で符号化され得る。マイクロコントローラーの指示は、フォトセンサー1335データからデータを受け取るための、また注目の物体までの距離を決定するための指示を含む。たとえば、フォトセンサー1335からの生データは、マイクロコントローラー1330にアクチュエーターへ指示を出させてもよく、それが次にレンズシステムを動作させて焦点距離変更を達成する。そのような装置では、フォトセンサー1335の活性化された素子または照明された素子の特定の群または配向がマイクロコントローラー1330の焦点調節指示をもたらす。この機能は、参照テーブルまたは類似物によって実行され得る。テーブルは、(標的距離を表わす)センサー素子イルミネーションパターンとレンズシステムからの必要とされる集光力との間のマッピングを表わす。
あるいは、フォトセンサー1335からのデータは、マイクロコントローラー1330、およびアクチュエーターを指示するマイクロコントローラー1330によって使用されるこの後の処理計算の結果によってさらに処理されてもよく、それは、システムの焦点距離を変更する。全体のオペレーションおよび結果は、フォトセンサーからの入力に基づいて、注目の物体までの距離が決定または推定され、必要な焦点調節力が決定され、望ましいパワーを得るためにその屈折率を変更するためにレンズシステムに作用するようにアクチュエーターが駆動される。電源は、コントローラー、距離測定フォトセンサーおよびアクチュエーターに電力を供給する。たとえば、統合距離測定器センサー、アクチュエーターおよびレンズシステムの場合に、単一の電源が三つすべてに供給し得る、または個別の電源が各コンポーネントに電力を供給し得る。システムのための電源は、バッテリー、コンデンサーなどの再充電可能なエネルギー蓄積装置またはこの技術分野で既知な他のエネルギー貯蔵であり得る。エネルギー発生手段の例は、システムによる使用または貯蔵のために、光子、熱的および力学的エネルギーをそれぞれ獲得可能な光電子、熱電気および圧電トランスデューサーを含んでいる。誘導カップリング、レーザーまたはRFエネルギーによるエネルギー伝達および貯蔵は他の例であるが、本発明はいかなる特定電力生成または貯蔵手段にも制限されない。
一実施形態のIOLシステムは、連続的に変化する焦点特性および集光力を有する。別の実施形態では、レンズシステムは、多くの特定の集光力に制限される。たとえば、システムは、+2と−10Dの間で0.1Dの増分で連続的に調節するように構成されてもよく、またシステムは、三つの異なる集光力、たとえば遠方視力用の0D、中間視力用の1Dおよび近方視力用の3Dだけを有するように設計されてもよい。特定の適用または要望に応じて、広範囲のオプションが、注目の物体までの距離を決定する際の正確さの程度、範囲および感度、およびシステムの焦点調節力を合わせる能力を有するシステムから入手可能である。
上に説明したように、注目の物体までの距離の正確な決定は、ひとみサイズおよび周辺明るさレベルを測定し、それらの測定値を経験的に確立された患者のひとみサイズ基線と比較することによって実施され得る。調整可能多重焦点レンズシステムと連結されたこの距離測定能力は、注目の物体に焦点を合わせるために、レンズシステムが適切に調節されることを可能にする。明るさの変化および物体距離の変化に応じたひとみサイズおよびひとみサイズの変化を関する患者または母集団の基線も、距離測定のさらなる改善および精度を可能にするために作成され得る。下で説明されるように、個別フォトセンサーの照明の強度の変化は、周辺明るさの変化の尺度を提供し、このデータは、ひとみ(pupilary)反射応答を識別し、不正確さを解決するために使用され得る。
たとえば、個人は、あるレベルの明るさから別のレベルの明るさに移行し得、明るさレベルの変化は重大なひとみ(pupilary)明るさ応答を引き起こす。たとえば、室内環境を去って明るい日光の外に散歩しに行くことや、以前は暗かった部屋の明るいライトをつけることは、数桁の周辺明るさの変化および重大なひとみ(pupilary)収縮をもたらす。これらの状況の逆は、すなわち明るく照明された環境から相対的暗やみへの移行は、重大なひとみ(pupilary)膨脹をもたらす。これらの状況では、ひとみ(pupilary)明るさ応答は一時的に(たとえば網膜が調節するまで)共同運動応答を支配し得、ひとみ径の迅速な変化は、注目の物体までの距離が変化したことを必ずしも示すものではなく、むしろ明るさのレベルが変化したことを示すものであろう。
一実施形態では、個別センサー素子の明るさレベルの時間変化が測定され、あらゆる潜在的な不正確さを区別し解決するために使用される。相対明るさの変化を個別センサー素子において時間の機能として測定することによって、システムがたとえば明るさが増加しているか減少しているかを決定することを可能にする。
図14A〜Fは、明るさ反射のためにひとみサイズ変化をもたらす仮説のシナリオ、および距離測定器フォトセンサーが明るさレベル変化によるひとみ(pupilary)応答をどのように区別するかを示す。しきい値レベルを超えて照明されるフォトセンサー素子520の数は、ひとみサイズを決定する情報を提供する。各センサー素子の照明の強度の変化は周辺光レベルの変化を示す。
図14Aは、たとえば100ft−cの明るさの明るい部屋内で1mにある物体(1ジオプトリー)見ている被験者の目の4mmのひとみ径を示す。4mmのひとみ径に対応する中央のフォトセンサー素子520は100の相対強度で照明される。1ジオプトリーの収束視力調節を必要とする1mの注目距離の物体に対応する100の相対明るさの4mmのこのひとみ径は、一実施形態にしたがって上に論じたような個別患者の基線測定から得られる。図14Bは、ルームライトが10ft−cに暗くされ、それが、たとえば、ひとみを5mmに拡張させる場合を示す。ひとみサイズの増大のために追加の周辺のフォトセンサー素子が照明されるが、4mmの元のひとみサイズに対応する中央のセンサーの相対強度は10に落ちる。内側のセンサー素子の強度のこの減少および照明されるフォトセンサー素子520の数の同時増加は、注目の物体までの距離が変化したからではなく、相対明るさの減少のためにひとみが拡張したことをシステムに示す。同様の結果が、ライトが1ft−cにさらに暗くされた図14Cに示される。この場合、ひとみは拡張し、照明されるフォトセンサー素子520の数および径方向の広がりは増大し、それによりひとみの拡大を示すが、一(1)の相対値への輝度の急激な減少は、ひとみ拡張が注目の物体までの距離の変化でなく明るさレベルの変化によるものであったことを示す。この状況の距離測定システムまたはコントローラーは、一実施形態によれば、注目の物体までの距離の変化によるのではなく、相対明るさの変化を伴うひとみ変化と相関があり、IO多重焦点システムは焦点距離を変更しない例である。
図14Dは、たとえば100ft−cの明るさの明るい部屋内で1mにある物体(1ジオプトリー)見ている被験者の目の4mmのひとみ径を示す。4mmのひとみ径に対応する中央のフォトセンサー素子520は100の相対強度で照明される。図14Eは、ルームライトが500ft−cに明るくされ、それが、たとえば、ひとみを5mmに収縮させる場合を示す。100fft−cで照明されたほとんど周辺のフォトセンサー素子520は、明るさ反射によって引き起こされたひとみサイズの減少のためにもはや照明されない。しかしながら、3mmの新しいひとみサイズに対応する中央のフォトセンサー素子の相対強度は500に増大する。内側のフォトセンサー素子の強度のこの増大および照明されるセンサーの数の同時減少は、注目の物体までの距離が変化したからではなく、相対明るさの増大のためにひとみが収縮したことをシステムに示す。同様の結果が、ひとみが2500ft−c(たとえば明るい空)に増大された光強度に遭遇する図14Fに示される。ひとみは恐らく最大に収縮し、照明されるフォトセンサー素子520の数および径方向の広がりは減少し、それによりひとみの収縮を示すが、2500の値への相対輝度の急激な増大は、ひとみ収縮が注目の物体までの距離の変化ではなく明るさレベルの変化によるものであったことを示す。この状況の距離測定システムまたはコントローラーは、一実施形態によれば、注目の物体までの距離の変化によるのではなく、相対明るさの変化を伴うひとみ変化と相関があり、IO多重焦点システムは焦点距離を変更しない例である。
一般に、これらの実施形態は、周辺明るさレベルの変化を考慮に入れながらひとみサイズおよび物体距離を決定する眼内フォトセンサーおよびプロセッサーを利用して注目の物体までの距離を正確に決定する方法を提供する。ひとみ(pupilary)明るさ反射が重大な量のひとみ(pupilary)サイズ変化を与えるほどに相対明るさが著しく急速に増大または減少するならば、システムは、ひとみ(pupilary)収縮または膨脹が明るさ反射か共同運動反射にためのいずれかであるか、またどの程度であるかを推定または決定し、それにより変化する相対明るさ状態下においても注目の物体までの距離を正確に連続的に決定する。
図15および16は、例が、変化する明るさの状態下において注目の物体までの距離を決定するための他の実施形態による例総括的プロセスフロー図を示す。おのおのは、明るさおよび近方収束シナリオを変更および変化させることに関するひとみサイズおよびその変化の個別患者または母集団群基線を初期に確立することを含む。これらの基線は、たとえば臨床医のオフィスの経験測定によって、または文献を参照して作成され得、基線は、特定の適用要望および感度に必要であるのと同じくらい多いまたは少ないパラメーターおよびデータ点を有し得る。基線は、IO距離測定器システムへのプログラミング入力として使用され、それは、ひとみを通過した光を測定し、ひとみのサイズ、相対明るさレベルおよびそれらの物理変数の変化を推定するためのセンサーユニットを有する。この分野の当業者には明白なように、この分野で知られる重み付けアルゴリズム、ニューラルネットワークその他を含むさまざまな数学的手法がそのような基線を確立するために使用され、さまざまな処理手段(たとえばエイシック(asic))が測定眼内分布および強度変化と基線の相関をとる相関機能を実行するために使用され得るであろう。
図15を参照すると、ブロック1502において、各センサー素子における放射が検出される。ブロック1504において、各センサー素子の光強度レベルおよび強度の変化率d/(dt)が決定され、ブロック1506に供給される。図15に示されるように、ブロック1504および1506は並行に動作する二つの別個のプロセスであり得る。ブロック1506は、センサー素子によって検出される強度の空間分布を決定し、ひとみを通過する光の空間強度分布を示す。空間分布の変化d/(dt)(空間分布)がブロック1510において決定される。ブロック1512は、ブロック1508において得られる周辺明るさレベルおよび明るさの変化d/dt(明るさ)の推定値に加えて、ブロック1510において得られる情報を使用して、ひとみサイズおよびひとみサイズの変化d/(dt)(ひとみサイズ)を推定する。
ブロック1520において、患者の基線が、さまざまな明るさレベルおよび物体距離ならびにそれらの組み合わせに対するひとみサイズを測定することによって初期化される。(並列または連続のいずれかの)ブロック1522において、さまざまな変化する明るさおよび物体距離に対するひとみサイズの変化が測定される。ブロック1520および1522から得られる情報に基づいて、ブロック1524において、場合が、明るさレベル、物体距離、明るさおよび距離の変化、およびおのおのの組み合わせになり得るとき、ひとみサイズおよび/またはサイズ変化、返答時間、その他に関する一般的な関係またはカーブが得られるおよび/または適合される。ブロック1514において、測定および計算されたデータが一般化カーブまたは参照テーブルと相関がとられ、ブロック1516において、注目の物体までの距離が決定される。ブロック1518において、注目の物体までの距離の変化が決定される。
図16を参照すると、ブロック1602において、入射光分布および強度が測定され、ブロック1604において、各センサー素子によって記録された強度がその素子における先の測定値と比較される。さらに、ブロック1610において、(たとえば径方向の)入射光の分布に基づいてひとみサイズが決定される。ブロック1606において、強度の変化がしきい値Δ(+1/−)を超えるかどうかの決定がなされる。そうでないならば、次にブロック1608において、注目の物体までの距離がひとみサイズに基づいて計算される。
変化がしきい値を越えるならば、ブロック1612において、相対明るさの変化が先の測定値から決定され、ブロック1618において、明るさ変化によるひとみサイズの予想される変化が決定される(または計算される)。ブロック1612および1616に続いて、ブロック1620において、ひとみサイズの変化が明るさの変化と相関がとられ、明るさ応答を修正する。この情報に基づいて、ブロック1622において、注目の物体までの距離が決定される。
一実施形態では、各患者のひとみサイズは、患者のひとみ応答基線を確立するために光強度および距離(収束)の9つの異なる状態の下で測定され、
ひとみサイズは、3つの距離測定(20ft、10ft、1ft)のおのおのに対して、低い、中間および高いレベルの明るさにおいて測定される。別の実施形態では、各距離に対して明るさの2つの測定だけがおこなわれる。また別の実施形態では、6つの異なる距離に対して6レベルの明るさが測定され、合計36の測定を必要とする。適用と感度に応じてあらゆる数の組み合わせが可能である。この分野の当業者には明白なように、明るさと距離の各組み合わせをカバーする関係カーブを得るために得られたデータは内挿および外挿される。いくつかの実施形態では、実験データが得られ、対応ひとみ応答関係が、一般母集団、母集団下位群および個別患者に対して確立される。実験データが得られうるであろう、またひとみサイズと明るさレベルの対応関係が、たとえば年齢に基づく一般母集団、母集団下位群、または個別患者に対して確立されうるであろう、またそれらのデータは、個人または母集団群に依存するさまざまなレベルのカスタマイズおよび焦点調節の微調を提供するために使用した。
別の実施形態では、さまざまな照明および標的距離組み合わせに対して決定される結果ひとみサイズだけでなく、実際のひとみ応答、たとえば、サイズ、速度およびオバーシュートまたは微調節の程度が、光レベルおよび標的距離の両方の同時または近同時変化とともにどのように変化するかが測定され、それらのデータはほとんど実世界状態に対する個人基線応答をより正確に決定するために使用した。
個人または母集団をベンチマークおよび確立することによって、相対明るさの影響およびひとみ径上の物体距離の両方を考慮に入れる特定のひとみ(pupilary)応答は、本発明の実施形態を利用するさまざまな照明状態において注目の物体までの距離の正確な決定を可能にする。一実施形態では、各IOLシステムは、さまざまな光レベルにおいて決定されるひとみサイズが、物体距離の正確な決定をもたらし、また個別患者に対して最適の焦点をもたらすようにIOコントローラーをプログラムすることによって、各個別患者にカスタマイズされる。
特定の実施形態への参照によってこの発明が例証されたが、本発明の明らかに範囲内にあるさまざまな変更および改造がおこなわれてもよいことはこの分野の当業者には明白である。本発明は、添付の特許請求の範囲の要旨および範囲内において広く保護されることが意図される。

Claims (81)

  1. 注目の物体までの距離を決定するための方法であり、
    物体に関する目のひとみのサイズを測定するステップと、
    測定ひとみサイズに基づいて注目の物体までの距離を推定するステップとを有する方法。
  2. ひとみのサイズを測定することは、ひとみを通過する光量および分布の少なくとも一方を測定することによって実施される請求項1の方法。
  3. ひとみのサイズを使用して視覚収束の程度を推定して、注目の物体までの距離を推定するステップをさらに有する請求項1の方法。
  4. ひとみを通過する光量および分布の少なくとも一方を測定することは目に埋め込まれたフォトセンサーによって実施され、ひとみサイズおよび注目の物体までの距離を推定することはプロセッサーによっておこなわれる請求項2の方法。
  5. ひとみを通過する光の強度の変化を検出することによって目に影響を与える周辺明るさの変化の推定するステップをさらに有する請求項1の方法。
  6. 周辺明るさの変化によるひとみサイズ変化の量を推定するステップをさらに有する請求項1の方法。
  7. 周辺明るさ変化によるひとみサイズ変化と注目の物体までの距離の変化とを識別するステップをさらに有し、ひとみサイズに基づく注目の物体までの距離の精度は周辺明るさの変化に本質的に影響されない請求項1の方法。
  8. (a)それぞれのひとみサイズおよび注目の物体距離の少なくとも一方と(b)個別患者または患者集団の間のそれぞれの周辺明るさレベルとの間の複数の個別基線関係を確立するステップと、
    事前確立関係に基づいて距離を推定するステップとをさらに有する請求項1の方法。
  9. ひとみサイズ、周辺明るさおよび距離の変化の推定はプログラマブルフォトセンサーおよびプロセッサーを使用して実施される請求項8の方法。
  10. プログラマブルフォトセンサーは眼内に埋め込まれる請求項9の方法。
  11. 眼内多重焦点レンズシステムにおける焦点距離を調節することへの使用のための注目の物体までの距離を推定する方法であり、
    目のひとみに入る光子エネルギーを検出することと、
    検出の間に得られる光子エネルギーの分布に基づいてひとみサイズの推定することと、
    ひとみサイズに基づいて注目の物体までの距離を推定することとを有する方法。
  12. ひとみが、視覚収束の程度の推定値を表わす請求項11の方法。
  13. 目に影響を与えるひとみサイズの対応する光強度の変化を推定することと、
    明るさの変化によるひとみサイズ変化に基づいて注目の物体までの距離を推定することとをさらに有する請求項11の方法。
  14. 人間視覚システムに影響を与える相対明るさの変化を検出するための方法であり、
    ひとみを通って目に入った光子エネルギーの最初の分布を測定することと、
    最初の分布の少なくとも一部分の強度の変化を検出することと、
    目に影響を与える明るさの相対変化を推定することとを有する方法。
  15. 光子エネルギーの最初の分布の測定は、複数のセンサー素子を有する眼内フォトセンサーを使用して実施される請求項14の方法。
  16. プログラマブルフォトセンサーを目の中に埋め込むことと、
    プロセッサーを使用してひとみサイズおよび注目の物体までの距離を推定することとをさらに有する請求項14の方法。
  17. ひとみサイズ、周辺明るさの変化の推定、および距離の推定は、プログラマブルフォトセンサーおよびプロセッサーを使用して実施され、プログラマブルフォトセンサーおよびプロセッサーの両方は目の内に埋め込まれ、第一時刻に照明された第一組のセンサー素子の相対光強度は第二時刻に照明された第一組のセンサー素子の光強度よりも小さく、これにより周辺明るさの低下を示す請求項14の方法。
  18. 周辺明るさを変更する状態下において注目の物体までの距離を推定するための方法であり、
    第一時刻にひとみを通って目に入った光子エネルギーの第一空間分布および強度を測定することと、
    第二時刻にひとみを通って目に入った光子エネルギーの第二空間分布および強度を測定することと、
    第一時刻におけるひとみサイズと第二時刻におけるひとみサイズとを推定することと、
    第一時刻と第二時刻との間のひとみサイズの変化を推定することと、
    第一時刻と第二時刻とにおけるひとみに入射する光の強度の変化を推定することと、
    注目の物体までの距離と注目の物体までの距離の変化の少なくとも一方を推定することとを有する方法。
  19. 注目の物体までの距離は、少なくとも一部分が、ひとみサイズとひとみサイズの変化、および視覚収束の程度と視覚収束の程度の変化の関係を使用することによって推定される請求項18の方法。
  20. 第一時刻と第二時刻における目に影響を与える光強度の変化に主によるひとみサイズ変化の量を推定することと、明るさの変化に主による第一時刻と第二時刻との間のひとみサイズの変化を考慮に入れて視覚収束および近方共同運動の少なくとも一方の程度を推定して注目の物体までの距離を推定することとをさらに有する請求項18の方法。
  21. 多重焦点眼内レンズシステムを調節して注目の物体に焦点を合わせる方法であり、
    ひとみを通過する光の空間分布を測定することと、
    空間分布に基づいて注目の物体までの距離を推定することと、
    距離に基づいて多重焦点レンズシステムの焦点距離を調節して注目の物体に焦点を合わせることとを有する方法。
  22. ひとみを通過する光の空間分布を測定することは目に埋め込まれたフォトセンサーによって実施され、ひとみサイズおよび注目の物体までの距離を推定することはプロセッサーによっておこなわれる請求項21の方法。
  23. ひとみサイズ測定に基づいて注目の物体までの距離の変化を決定するときに周辺明るさのそれぞれの変動によるひとみサイズ変化を考慮に入れるための方法であり、
    ひとみサイズ、光強度、光強度の変化、および視覚収束の程度を測定し推定する眼内フォトセンサーおよびプロセッサーを使用してひとみ(pupilary)明るさ反射と共同運動反射を識別することと、
    前記識別に基づいて注目の物体までの距離を推定することとを有する方法。
  24. 目のひとみに入射する光を検出することを実施可能なフォトセンサーと、
    フォトセンサーによって検出された光に基づいて注目の物体までの距離を推定することを実施可能なプロセッサーとを有する距離測定装置。
  25. プロセッサーは、ひとみに入射する検出光の分布によってひとみサイズを推定することを実施可能である請求項24の装置。
  26. 推定ひとみサイズは、視覚収束の程度を推定するために、また注目の物体までの距離を推定するために使用される請求項25の装置。
  27. プロセッサーは、目に影響を与える周辺明るさの変化を推定することを実施可能である請求項24の装置。
  28. プロセッサーは、周辺明るさの変化によるひとみサイズ変化の量を推定することを実施可能である請求項27の装置。
  29. プロセッサーは、周辺明るさの変化と注目の物体までの距離の変化とによるひとみサイズ変化を識別することを実施可能であり、ひとみサイズに基づく注目の物体までの距離の推定の精度は周辺明るさの変化に著しく影響されない請求項27の装置。
  30. プロセッサーは、個別患者の基線と一致する、複数のひとみサイズおよびそれぞれの注目の物体距離、周辺明るさレベル、ひとみサイズ変化および注目の物体距離変化を推定し識別するように特定患者基線ひとみ応答データでプログラムされる請求項29の装置。
  31. フォトセンサーとプロセッサーはシングルチップ上に統合される請求項24の装置。
  32. フォトセンサーは感光素子のアレイを有する請求項24の装置。
  33. アレイは直線構成アレイである請求項32の装置。
  34. アレイは単一直線アレイである請求項32の装置。
  35. 感光素子の数は約50未満である請求項32の装置。
  36. 感光素子の数は約35未満である請求項32の装置。
  37. 感光素子の数は約12未満である請求項32の装置。
  38. 装置に動力を供給する電源をさらに有する請求項24の装置。
  39. 電源は、入射光から力を得るように構築される請求項38の装置。
  40. 電源は、眼内電力手段を構成する請求項38の装置。
  41. フォトセンサーチップは少なくとも95%透過性である請求項31の装置。
  42. フォトセンサーチップは少なくとも80%透過性である請求項31の装置。
  43. フォトセンサーの感光素子の各々は個別にプログラム可能であり、フォトセンサーとプロセッサーは、スペクトル光強度の範囲、空間光強度の範囲、および分布を検出して、さまざまな光強度および分布を区別して、ひとみを通過する光強度および分布の変化を検出することを実施可能である請求項24の装置。
  44. 装置は、眼内に埋め込まれて作動するのに適している請求項24の装置。
  45. フォトセンサーは、個別患者または下位母集団群にカスタマイズされる請求項24の装置。
  46. カスタマイズは、個人および母集団群に対する複数の異なる物体距離および複数の異なる明るさ状態の少なくとも一つに対するひとみ(pupilary)応答の確立基線に基づく請求項45の装置。
  47. フォトセンサーチップは少なくとも95%透過性である請求項46の装置。
  48. 装置は、注目の物体までの距離の推定値をレンズシステムに供給するための多焦点レンズシステムに連結される請求項24の装置。
  49. 目のひとみを通過した光を測定するための眼内フォトセンサーであり、
    光の空間分布を検出するための手段と、
    空間分布の変化を検出するための手段と、
    複数の相対強度を検出するための手段と、
    複数の相対強度の変化を検出するための手段とを有する眼内フォトセンサー。
  50. ひとみサイズを推定するための手段と、
    注目の物体までの距離を推定するための手段とをさらに有する請求項49に記載の眼内フォトセンサー。
  51. 人間に視力を増強することに使用される装置であり、
    調整可能焦点距離を有し、焦点距離を調節するためのアクチュエーターを有するレンズシステムと、
    注目の物体までの距離を推定するための距離測定器と、
    距離測定器によって得られる推定距離に基づいてレンズシステムの焦点距離の調節をコントロールするためのレンズシステムおよび距離測定器に結合されたコントローラーとを有する装置。
  52. 屈折率と焦点距離の少なくとも一方を調節するための手段と、
    注目の物体までの距離を推定するための手段と、
    注目の物体への焦点調節を達成するために推定距離に基づいて屈折率と焦点距離の少なくとも一方を調節するための手段とを有するレンズシステム装置。
  53. 装置は、眼内に埋め込まれて作動するように構築される請求項51の装置。
  54. ひとみに入射する検出光の量および分布の少なくとも一方によってひとみサイズを推定することを実施可能なプロセッサーをさらに有する請求項51の装置。
  55. 推定ひとみサイズは、視覚収束の程度を推定して注目の物体までの距離を推定するために使用される請求項54の装置。
  56. プロセッサーは、目に影響を与える周辺明るさの変化を推定することをさらに実施可能である請求項51の装置。
  57. プロセッサーは、周辺明るさの変化によるひとみサイズ変化の量を推定することをさらに実施可能である請求項51の装置。
  58. プロセッサーは、周辺明るさ変化および注目の物体までの距離の変化によるひとみサイズ変化を識別することをさらに実施可能であり、ひとみサイズに基づく注目の物体までの距離の推定の精度は周辺明るさの変化に著しく影響されない請求項51の装置。
  59. プロセッサーは、各個別患者の基線と一致する、ひとみサイズおよび注目の物体距離、周辺明るさレベル、および、ひとみサイズ、注目の物体距離および周辺明るさレベルの変化を推定し識別するように特定患者基線ひとみ応答データでプログラムされる請求項54の装置。
  60. 距離測定器はさらにフォトセンサーを有する請求項51の装置。
  61. フォトセンサーとプロセッサーはシングルチップ上に統合される請求項60の装置。
  62. 距離測定器は感光素子のアレイをさらに有する請求項51の装置。
  63. 感光素子のアレイは直線構成アレイである請求項62の装置。
  64. 感光素子のアレイは単一直線アレイである請求項62の装置。
  65. 感光素子の数は約50未満である請求項62の装置。
  66. 感光素子の数は約35未満である請求項62の装置。
  67. 感光素子の数は約12未満である請求項62の装置。
  68. 装置に動力を供給するように構築された電源をさらに有する請求項51の装置。
  69. 電源は眼内電源である請求項68の装置。
  70. フォトセンサーは少なくとも95%透過性である請求項60の装置。
  71. フォトセンサーチップは少なくとも80%透過性である請求項60の装置。
  72. フォトセンサーはプログラム可能であり、フォトセンサーの複数の素子は個々にプログラム可能であり、フォトセンサーとプロセッサーはスペクトルおよび空間光強度および分布を検出してひとみを通過するさまざまな光強度および分布を区別することを実施可能である請求項60の装置。
  73. 距離測定器は、個別患者および下位母集団群の少なくとも一方にカスタマイズされる請求項51の装置。
  74. 距離測定器は、異なる物体距離に対するひとみ(pupilary)応答の基線と個人および母集団群の少なくとも一方に対する異なる明るさ状態との少なくとも一方を確立するカスタマイズによってカスタマイズされる請求項73の装置。
  75. 目のひとみを通過した光を測定するための眼内フォトセンサーであり、
    光の空間分布を検出するための手段と、
    空間分布の変化を検出するための手段とを有する眼内フォトセンサー。
  76. 光の相対強度を検出するための手段と、
    相対強度の変化を検出するための手段とさらに有する請求項75の眼内フォトセンサー。
  77. 注目の物体までの距離を推定するための手段をさらに有する請求項75の眼内フォトセンサー。
  78. 注目の物体までの距離の変化を推定するための手段をさらに有する請求項75の眼内フォトセンサー。
  79. ひとみを通った入射光を検出することと、
    ひとみのサイズを推定することと、
    入射光の相対明るさを推定することと、
    注目の物体までの距離を推定することとを有する方法。
  80. 初期時間からのひとみのサイズの変化の推定することと、
    初期時間からの相対明るさの変化を推定することと、
    初期時間からの注目の物体までの距離の変化を推定することとをさらに有する請求項79の方法。
  81. 注目の物体までの距離および距離の変化の少なくとも一方に応じて、多重焦点レンズシステムの焦点距離および屈折率の少なくとも一方を調節して注目の物体に焦点を合わせるステップをさらに有する請求項79のいずれかの方法。
JP2010519245A 2007-08-02 2008-08-01 多重焦点眼内レンズシステムおよび方法 Pending JP2010535067A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95364007P 2007-08-02 2007-08-02
PCT/US2008/071957 WO2009042289A1 (en) 2007-08-02 2008-08-01 Multi-focal intraocular lens system and methods

Publications (1)

Publication Number Publication Date
JP2010535067A true JP2010535067A (ja) 2010-11-18

Family

ID=40337217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010519245A Pending JP2010535067A (ja) 2007-08-02 2008-08-01 多重焦点眼内レンズシステムおよび方法

Country Status (9)

Country Link
US (3) US7964833B2 (ja)
EP (1) EP2187841A4 (ja)
JP (1) JP2010535067A (ja)
BR (1) BRPI0814757A2 (ja)
CA (1) CA2694908A1 (ja)
IL (1) IL203682A (ja)
RU (1) RU2489991C2 (ja)
WO (1) WO2009042289A1 (ja)
ZA (1) ZA201000758B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108072A (ko) * 2013-02-28 2014-09-05 존슨 앤드 존슨 비젼 케어, 인코포레이티드 다중-입력 선출 방식을 갖는 전자 안과용 렌즈

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2187841A4 (en) 2007-08-02 2016-09-21 Ocular Optics Inc MULTIFOCAL INTRAOCULAR LENS SYSTEM AND METHODS
JP2011526817A (ja) * 2008-07-03 2011-10-20 オキュラー・オプティクス・インコーポレイテッド 遠近調節のトリガーを検出するセンサー
WO2011008846A1 (en) * 2009-07-14 2011-01-20 Ocular Optics, Inc. Folding designs for intraocular lenses
CN103037790A (zh) 2010-06-20 2013-04-10 伊兰扎公司 具有专用集成电路的眼科装置和方法
EP2598934A4 (en) 2010-07-26 2018-01-17 Elenza, Inc. Hermetically sealed implantable ophthalmic devices and methods of making same
WO2012033752A1 (en) 2010-09-07 2012-03-15 Elenza, Inc. Installation and sealing of a battery on a thin glass wafer to supply power to an intraocular implant
WO2013059195A1 (en) * 2011-10-17 2013-04-25 Elenza, Inc. Methods, apparatus, and system for triggering an accommodative implantable ophthalmic device based on changes in intraocular pressure
WO2013059663A2 (en) * 2011-10-20 2013-04-25 Elenza, Inc. Patient screening factors for accommodative implantable ophthalmic devices
US8574295B2 (en) 2012-01-17 2013-11-05 Vista Ocular, Llc Accommodating intra-ocular lens system
US8919953B1 (en) 2012-08-02 2014-12-30 Google Inc. Actuatable contact lenses
US8834566B1 (en) 2012-09-12 2014-09-16 David Jones Presbyopia-correcting intraocular lens implant
CN103908219B (zh) * 2013-01-08 2016-07-06 荣晶生物科技股份有限公司 图像检测系统及获取图像的方法
US9658469B2 (en) * 2013-03-15 2017-05-23 Johnson & Johnson Vision Care, Inc. Ophthalmic devices incorporating metasurface elements
DE102013103333A1 (de) * 2013-04-03 2014-10-09 Karl Storz Gmbh & Co. Kg Kamera zur Erfassung von optischen Eigenschaften und von Raumstruktureigenschaften
KR102256992B1 (ko) * 2013-04-25 2021-05-27 에씰로 앙터나시오날 착용자에게 적응된 헤드 장착형 전자-광학 장치를 제어하는 방법
CN103353663B (zh) 2013-06-28 2016-08-10 北京智谷睿拓技术服务有限公司 成像调整装置及方法
CN103353667B (zh) 2013-06-28 2015-10-21 北京智谷睿拓技术服务有限公司 成像调整设备及方法
CN103353677B (zh) 2013-06-28 2015-03-11 北京智谷睿拓技术服务有限公司 成像装置及方法
CN103431840B (zh) 2013-07-31 2016-01-20 北京智谷睿拓技术服务有限公司 眼睛光学参数检测系统及方法
CN103424891B (zh) 2013-07-31 2014-12-17 北京智谷睿拓技术服务有限公司 成像装置及方法
CN103439801B (zh) 2013-08-22 2016-10-26 北京智谷睿拓技术服务有限公司 视力保护成像装置及方法
CN103431980A (zh) 2013-08-22 2013-12-11 北京智谷睿拓技术服务有限公司 视力保护成像系统及方法
CN103500331B (zh) 2013-08-30 2017-11-10 北京智谷睿拓技术服务有限公司 提醒方法及装置
CN103605208B (zh) 2013-08-30 2016-09-28 北京智谷睿拓技术服务有限公司 内容投射系统及方法
CN103558909B (zh) 2013-10-10 2017-03-29 北京智谷睿拓技术服务有限公司 交互投射显示方法及交互投射显示系统
AU2015283848A1 (en) * 2014-07-03 2017-01-12 Amo Wavefront Sciences, Llc Optical measurement system and method with target brightness level adjustment
RU2608199C2 (ru) * 2015-05-14 2017-01-17 Татьяна Николаевна Михайлова Устройство для аккомодации глаза
JP6582604B2 (ja) * 2015-06-23 2019-10-02 富士通株式会社 瞳孔検出プログラム、瞳孔検出方法、瞳孔検出装置および視線検出システム
US9877824B2 (en) 2015-07-23 2018-01-30 Elwha Llc Intraocular lens systems and related methods
US10307246B2 (en) 2015-07-23 2019-06-04 Elwha Llc Intraocular lens devices, systems, and related methods
US10154897B2 (en) * 2015-07-23 2018-12-18 Elwha Llc Intraocular lens systems and related methods
US10376357B2 (en) 2015-07-23 2019-08-13 Elwha Llc Intraocular lens systems and related methods
US10324309B2 (en) 2015-07-23 2019-06-18 Elwha Llc Modifiable-focus lens devices, systems, and related methods
JP2018526137A (ja) 2015-09-03 2018-09-13 エレンザ, インコーポレイテッド 再充電可能な眼内インプラント
JP2018536305A (ja) * 2015-09-07 2018-12-06 フィリップス ライティング ホールディング ビー ヴィ 光へのデータの埋め込み
US10702375B2 (en) 2015-09-18 2020-07-07 Vista Ocular, Llc Electromyographic sensing and vision modification
US10670413B2 (en) * 2016-01-11 2020-06-02 International Business Machines Corporation Travel planning based on minimizing impact of vehicular emission
US10783835B2 (en) * 2016-03-11 2020-09-22 Lenovo (Singapore) Pte. Ltd. Automatic control of display brightness
US9933633B1 (en) * 2016-11-08 2018-04-03 Paul Douglas Becherer Bifocal contact lenses providing reduced glare and blurriness in dim lighting
CN111867517B (zh) * 2018-01-16 2024-03-01 赛弗-伊奥尔股份有限公司 植入到患者眼前房中的眼科组件及调节患者视力的方法
US11839495B2 (en) 2018-03-26 2023-12-12 Samsung Electronics Co., Ltd Electronic device for monitoring health of eyes of user and method for operating the same
US20220160494A1 (en) * 2020-11-25 2022-05-26 Strathspey Crown, LLC Intraocular Device Responsive to Commands
CN114689013A (zh) * 2022-02-17 2022-07-01 歌尔科技有限公司 测距方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508826A (ja) * 1993-04-07 1996-09-17 ザ テクノロジィー パートナーシップ ピーエルシー 切換可能レンズ
JP2005535942A (ja) * 2002-08-09 2005-11-24 イー・ビジョン・エルエルシー 電気駆動のコンタクトレンズ系
US7061693B2 (en) * 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
WO2007020184A1 (de) * 2005-08-16 2007-02-22 Forschungszentrum Karlsruhe Gmbh Künstliches akkommodationssystem

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300818A (en) 1978-03-13 1981-11-17 Schachar Ronald A Multifocal ophthalmic lens
US4309603A (en) 1979-10-17 1982-01-05 Honeywell Inc. Auto focus system
US4373218A (en) 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4466703A (en) 1981-03-24 1984-08-21 Canon Kabushiki Kaisha Variable-focal-length lens using an electrooptic effect
US4601545A (en) 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
US4787903A (en) 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US5066301A (en) 1990-10-09 1991-11-19 Wiley Robert G Variable focus lens
EP0611286B1 (en) * 1990-12-14 1998-07-08 Humphrey Engineering, Inc. Method and apparatus for controlling perceived brightness using a time varying shutter
RU2052772C1 (ru) * 1992-03-30 1996-01-20 Пермяков Евгений Михайлович Устройство для измерения дальности
US5653751A (en) 1994-12-07 1997-08-05 Samiy; Nassrollah Systems and methods for projecting an image onto a retina
US5800530A (en) * 1995-08-18 1998-09-01 Rizzo, Iii; Joseph Intra-ocular lens system including microelectric components
US7345684B2 (en) * 1998-06-25 2008-03-18 Intel Corporation Perceptually based display
US6282449B1 (en) 1998-10-21 2001-08-28 William Kamerling Method and device for causing the eye to focus on a near object
US6790232B1 (en) 1999-04-30 2004-09-14 Advanced Medical Optics, Inc. Multifocal phakic intraocular lens
US6200342B1 (en) 1999-05-11 2001-03-13 Marie-Jose B. Tassignon Intraocular lens with accommodative properties
US6619799B1 (en) 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6706066B1 (en) 1999-09-02 2004-03-16 Medennium, Inc. Floating phakic refractive lens design for preserving eye dynamics
US6638304B2 (en) * 2001-07-20 2003-10-28 Massachusetts Eye & Ear Infirmary Vision prosthesis
US20050174535A1 (en) * 2003-02-13 2005-08-11 Lai Shui T. Apparatus and method for determining subjective responses using objective characterization of vision based on wavefront sensing
BRPI0415059A (pt) * 2003-10-06 2006-11-28 Crs & Asociates Companhia Amer método para aumentar a acomodação ocular, e, sistema para uso em aumentar a capacidade de acomodação de um indivìduo
JP4409332B2 (ja) * 2004-03-30 2010-02-03 株式会社トプコン 光画像計測装置
US7387387B2 (en) * 2004-06-17 2008-06-17 Amo Manufacturing Usa, Llc Correction of presbyopia using adaptive optics and associated methods
US7341345B2 (en) * 2004-07-19 2008-03-11 Massachusetts Eye & Ear Infirmary Ocular wavefront-correction profiling
US8778022B2 (en) * 2004-11-02 2014-07-15 E-Vision Smart Optics Inc. Electro-active intraocular lenses
US20070168027A1 (en) * 2006-01-13 2007-07-19 Brady Daniel G Accommodating diffractive intraocular lens
BRPI0807560A2 (pt) 2007-02-23 2014-07-01 Pixeloptics Inc Abertura oftálmica dinâmica
EP2187841A4 (en) 2007-08-02 2016-09-21 Ocular Optics Inc MULTIFOCAL INTRAOCULAR LENS SYSTEM AND METHODS
AU2009225638A1 (en) 2008-03-18 2009-09-24 Pixeloptics, Inc. Advanced electro-active optic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508826A (ja) * 1993-04-07 1996-09-17 ザ テクノロジィー パートナーシップ ピーエルシー 切換可能レンズ
JP2005535942A (ja) * 2002-08-09 2005-11-24 イー・ビジョン・エルエルシー 電気駆動のコンタクトレンズ系
US7061693B2 (en) * 2004-08-16 2006-06-13 Xceed Imaging Ltd. Optical method and system for extended depth of focus
WO2007020184A1 (de) * 2005-08-16 2007-02-22 Forschungszentrum Karlsruhe Gmbh Künstliches akkommodationssystem
JP2009504291A (ja) * 2005-08-16 2009-02-05 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング 遠近調節能力の回復用装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140108072A (ko) * 2013-02-28 2014-09-05 존슨 앤드 존슨 비젼 케어, 인코포레이티드 다중-입력 선출 방식을 갖는 전자 안과용 렌즈
JP2014170210A (ja) * 2013-02-28 2014-09-18 Johnson & Johnson Vision Care Inc 多入力投票スキームを有する電子眼科レンズ
KR102073539B1 (ko) * 2013-02-28 2020-02-05 존슨 앤드 존슨 비젼 케어, 인코포레이티드 다중-입력 선출 방식을 갖는 전자 안과용 렌즈

Also Published As

Publication number Publication date
RU2010107474A (ru) 2011-09-10
US7964833B2 (en) 2011-06-21
US8384002B2 (en) 2013-02-26
US9066796B2 (en) 2015-06-30
IL203682A (en) 2015-11-30
CA2694908A1 (en) 2009-04-02
EP2187841A1 (en) 2010-05-26
WO2009042289A1 (en) 2009-04-02
RU2489991C2 (ru) 2013-08-20
BRPI0814757A2 (pt) 2015-03-03
EP2187841A4 (en) 2016-09-21
US20110213462A1 (en) 2011-09-01
US20090032679A1 (en) 2009-02-05
ZA201000758B (en) 2010-10-27
US20140063464A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP2010535067A (ja) 多重焦点眼内レンズシステムおよび方法
US11583696B2 (en) Device for projecting images on the retina
US10729539B2 (en) Electro-chromic ophthalmic devices
RU2567401C2 (ru) Электронные офтальмологические линзы с парой излучатель-детектор
JP6030089B2 (ja) 電気駆動眼内レンズ
RU2569696C2 (ru) Электронная офтальмологическая линза с датчиком положения века
US9254189B2 (en) Aberration-correcting vision prosthesis
KR20170049404A (ko) 수면 모니터링을 갖는 전자 안과용 렌즈
US20130261744A1 (en) Implantable ophthalmic device with an aspheric lens
JP2014506173A (ja) 動的焦点整合動作の装置及び方法
US20190083236A1 (en) Intraocular lens systems and related methods
JP2013538623A (ja) 遠近調節を検出する方法及び装置
US10835118B2 (en) Systems and methods for pupil size detection
TW201836545A (zh) 用於眼用裝置之阻抗感測電路
US20230144121A1 (en) Device for projecting images on the retina

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130430

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140205

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708