JP2010529744A - 無線通信システム内のエアリンク資源の改善された利用のための方法および装置 - Google Patents

無線通信システム内のエアリンク資源の改善された利用のための方法および装置 Download PDF

Info

Publication number
JP2010529744A
JP2010529744A JP2010510453A JP2010510453A JP2010529744A JP 2010529744 A JP2010529744 A JP 2010529744A JP 2010510453 A JP2010510453 A JP 2010510453A JP 2010510453 A JP2010510453 A JP 2010510453A JP 2010529744 A JP2010529744 A JP 2010529744A
Authority
JP
Japan
Prior art keywords
signal
different
transformation
information
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010510453A
Other languages
English (en)
Other versions
JP5474771B2 (ja
Inventor
リチャードソン、トマス
ジン、フイ
ラロイア、ラジブ
リ、ジュンイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2010529744A publication Critical patent/JP2010529744A/ja
Application granted granted Critical
Publication of JP5474771B2 publication Critical patent/JP5474771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2604Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

マルチプル送信アンテナを備えた基地局を含む、例えばOFDM MIMOシステム等の無線通信システム内のエアリンク資源の利用を改善するための方法および装置が記載されている。ダウンリンクにおける重ね合わせシグナリングが利用される。重ね合わせられた信号は、第1変換結果信号と第2低電力信号とを含む。第1変換結果信号は第1信号から生成され、それは、例えばヌルの成分と高電力の非ヌルの成分とを含む位置変調を使用する。第1変換結果信号の異なる成分は、異なる送信アンテナに向けられる。第1変換結果信号は第1無線端末、例えば劣った(weak)受信機等、に情報を通信する。第1変換結果信号の非ヌルの受信要素は、チャネル推定を決定するためにパイロットとして、例えば優れた受信機等の、第2無線端末によって使用される。第2無線端末は受信された第2信号を復調するために該決定されたチャネル推定を使用する。

Description

関連出願
本出願は、本出願の譲渡人に譲渡され本明細書において特に参考文献とされている2007年5月29日に出願された米国仮特許出願第60/940,660号に基づいて優先権を主張する。
本発明は無線通信方法および装置に関し、具体的には、マルチプル送信アンテナ素子(multiple transmit antenna elements)を有する通信デバイスを含む無線通信システム内のエアリンク資源(air link resources)の利用(utilization)を改善するための方法および装置に関する。
MIMOを用いた802.20規格などの、ブロックホップされた(hopped)OFDMでは、複数のサポートパイロットがしばしば埋め込まれる。チャネルの粗く弱いサンプリングは、性能の損失になる。これとは別に、重ね合わせ(superposition)符号化(coding)により容量を増やすことができることが知られている。新規の方法および装置が無線システムの容量を増やすことができるならば、それは有益であろう。
様々な実施形態は、複数のマルチプル送信アンテナ素子を有する、例えば基地局等の、通信デバイスを含む無線通信システム内の複数のエアリンク資源の利用を改善するための方法および装置に関する。様々な実施形態では、基地局は、複数の送信アンテナ素子を同時に使用し、またダウンリンクでは重ね合わせシグナリング(superposition signaling)を用いている。様々な新規の特徴は、MIMOを実装する無線通信システムに特によく適しているが、しかしながら、多くの特徴はまた、複数の非MIMO構成で実装される場合に有益である。
いくつかの実施形態では、基地局は、例えばOFDMトーンシンボル(tone-symbols)のセット等の、複数の時間周波数資源のセットにより複数のアンテナ素子を使用して、重ね合わせられダウンリンク信号を送信する。信号の送信先である無線端末は、単一の受信アンテナ素子またはマルチプルの受信アンテナ素子を使用することができる。重ね合わせられ送信された信号は、第1変換結果信号と第2信号とを含む。第1変換結果信号は高電力信号であり、第2信号は低電力信号である。例えば非ヌル(non-null)の高電力QPSK変調シンボル(symbols)と複数のヌル(nulls)との混合等の、位置符号化された信号(position coded signal)である、第1信号は、第1変換結果信号を生成するために複数の所定の変換のうちの1つにかけられる。当該変換の異なる複数の要素(elements)は、異なる複数の送信アンテナ素子に対応する異なる複数の複素定数である。いくつかの実施形態では、当該異なる複数の複素定数は、さまざまな量の位相偏移(phase shift)を表す。第1変換結果信号の異なる複数の部分は、異なる複数の送信アンテナ素子に対応しており、またそれら複数の送信アンテナ素子上で出力される。
第1信号情報が通信されている第1無線端末、例えば劣った(inferior)受信機は、高電力の第1変換結果信号を受信し、当該信号を復号し、通信されている情報を回復する。第2信号情報が通信されている第2無線端末、例えば優れた(superior)受信機は、該受信された第1変換結果信号を処理してチャネル推定を決定する際または進行中の(ongoing)チャネル推定をさらに正確なものにする(refining)際に第1変換結果信号の高電力の非ヌルの成分をパイロットとして利用することができる。得られたチャネル推定は、次いで、該第2信号に対応した通信されている受信されたシンボルの復調において第2無線端末により利用されることができる。したがって、様々な実施形態にしたがって、エアリンク資源を共有し、優れた受信機に複数のパイロットを提供し、同時に劣ったユーザに情報を送信することにより、容量が増やされる。
様々な実施形態では、第1変換結果信号の生成に使用される変換は、基地局と無線端末の両方がに知られている所定のパターンに従って、例えば1つのOFDMシンボル送信時間間隔から次のOFDMシンボル送信時間間隔へと変えられる。いくつかのそのような実施形態では、利用されるさまざまな変換のうちの少なくともいくつかは、互いに線形に独立している。
様々な実施形態による基地局を動作させる例示的な方法は、第1変換結果信号を生成するために、第1所定変換を第1信号に適用すること、複数の時間および周波数送信資源の第1セットと複数のアンテナの所定の組み合わせを使用して前記第1変換結果信号を送信すること、および複数のアンテナの前記所定の組み合わせと複数の時間および周波数送信資源の前記第1セットを使用して第2信号を送信することであって、前記第2信号は、第1変換結果信号を送信する際に使用された少なくとも1つのアンテナで前記第1変換結果信号より低い電力で送信されることを備える。様々な実施形態による例示的な基地局は、複数のアンテナ素子と、結合信号(combined signal)を生成するために使用される第1変換結果信号を生成するために第1信号に第1所定変換を適用するための変換モジュールと、結合信号を生成するために前記第1変換結果信号を第2信号と結合するための重ね合わせモジュール(superposition module)と、前記第2信号は前記第1信号より低い電力レベルを有する、及び複数の時間および周波数資源のセットで複数の異なるアンテナ素子を使用して前記結合信号の複数の異なる部分の送信を制御するための送信制御モジュールとを備える。
無線端末を動作させる例示的な方法は、複数の時間および周波数資源の同じセットで第1および第2信号を受信すること、前記第1信号を復号すること、チャネル推定を生成するために前記第1信号を使用してチャネル推定動作を実行すること、および前記第2信号に関して復号動作を実行するために前記生成されたチャネル推定を使用することを含む。様々な実施形態による例示的な無線端末は、複数の時間および周波数資源の同じセットで第1および第2信号を受信するための受信機と、前記第1信号を復号するための第1信号回復モジュールと、前記第1信号を使用してチャネル推定を生成するためのチャネル推定生成モジュールと、該第2信号に関する復号動作を実行するために該生成されたチャネル推定を使用して前記第2信号に関する復号動作を実行するための第2信号回復モジュールとを含む。
上記の「発明の概要」で様々な実施形態を説明したが、必ずしもすべての実施形態が同じ特徴を含んでいるわけではなく、またいくつかの実施形態では上記の特徴のうちのいくつかは必須ではないが、望ましいものであることができることを理解されたい。多くの追加的な特徴、実施形態、および利点を以下で詳細に説明する。
様々な実施形態による例示的な無線通信システムの図。 様々な実施形態により実施される例示的な基地局の図。 様々な実施形態にしたがって実施される、例えば移動ノード(mobile node)等の、例示的な無線端末を示す図。 様々な実施形態によるマルチプルアンテナ(multiple antennas)を利用した例示的な重ね合わせシグナリングを示す図。 様々な実施形態によるマルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図。 様々な実施形態によるマルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図。 マルチプルアンテナを利用した例示的な重ね合わせシグナリングを示す図。 様々な実施形態によるマルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図。 様々な実施形態によるマルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図。 マルチプルアンテナを利用した例示的な重ね合わせシグナリングを示す図。 様々な実施形態による、例えば基地局等の、装置を動作させる例示的な方法のフローチャート。 様々な実施形態による無線端末を動作させる例示的な方法のフローチャート。 様々な実施形態による例示的な無線通信システムの図。
図1は、様々な実施形態による例示的な無線通信システム100の図である。例示的な無線通信システム100は、例えば、マルチプル送信アンテナ素子を使用し、ダウンリンクでの重ね合わせシグナリングをサポートする基地局を含むマルチプルアクセス直交周波数分割多重(multiple access orthogonal frequency division multiplexing)(OFDM)の無線通信システムである。様々な新規に実施された方法は、チャネル推定を容易にする。
例示的な無線通信システム100は、複数の基地局(基地局1 102、・・・、基地局N 104)を含み、各基地局は対応する無線カバレージエリア(セル1 114、・・・、セルN 116)をそれぞれ有する。いくつかの実施形態では、マルチセクタ基地局も使用される。基地局(102、104)は、それぞれネットワークリンク(108、110)を介して、ルータなどのネットワークノード106に結合されている。ネットワークノード106は、ネットワークリンク112を介して、例えば他のルータ、基地局、AAAノード、ホームエージェント(home agent)ノードなどの他のネットワークノード、および/またはインターネットに結合されている。ネットワークリンク(108、110、112)は、例えば光ファイバーリンクである。
システム100はまた、複数の無線端末も含む。該無線端末の少なくともいくつかは、システム100を通過することのできる移動ノードである。(WT 1 118、・・・、WT N 120)は、現在、それぞれ無線リンク(122、・・・、124)を介して基地局1 102に結合されている。(WT 1’ 126、・・・、WT N’ 128)は、現在、それぞれ無線リンク(130、・・・、132)を介して基地局N 104に結合されている。図1に示すように、WTs(118、120、126、128)は、マルチプルアンテナ素子(multiple antenna elements)を含み、MIMOアンテナ構成を使用して基地局との通信をサポートする。いくつかの実施形態では、少なくともいくつかの無線端末またはいくつかの基地局に関しては、信号を送受信するために同じアンテナが使用される。いくつかの実施形態では、少なくともいくつかの無線端末またはいくつかの基地局に関しては、信号を送受信するためにさまざまなアンテナが使用される。様々な実施形態は、マルチプル送信アンテナを有する基地局と、マルチプル受信アンテナ(multiple receive antennas)を有する無線端末とを含む。いくつかの実施形態は、マルチプル送信アンテナ(multiple transmit antennas)を有する基地局と、単一受信アンテナを使用する無線端末とを含む。いくつかの実施形態は、マルチプル送信アンテナを有する基地局と、あるものが単一の受信アンテナを有し、他のものが複数の受信アンテナを有する無線端末の混合とを含む。いくつかの実施形態は、マルチプル送信アンテナ素子を有するスタンドアロン(standalone)基地局と、複数の無線端末とを含む。
図13は、様々な実施形態による、例示的な無線通信システム1300の図である。例示的な無線通信システム1300は、例えば、マルチプル送信アンテナ素子を使用し、ダウンリンクでの重ね合わせシグナリングをサポートする基地局を含むダウンリンクブロードキャスト直交周波数分割多重(OFDM)の無線通信システムである。様々な新規に実施された方法は、チャネル推定を容易にする。
例示的な無線通信システム1300は、複数の基地局(基地局1 1302、・・・、基地局N 1304)を含み、各基地局は対応する無線カバレージエリア(セル1 1314、・・・、セルN 1316)をそれぞれ有する。いくつかの実施形態では、マルチセクタ(multi-sector)基地局もまた使用される。基地局(1302、1304)は、それぞれネットワークリンク(1308、1310)を介して、ルータなどのネットワークノード1306に結合されている。ネットワークノード1306は、ネットワークリンク1312を介して、他のルータ、コンテントプロバイダノード、基地局、AAAノードなどの他のネットワークノード、および/またはインターネットに結合されている。ネットワークリンク(1308、1310、1312)は、例えば光ファイバーリンクである。
システム1300はまた、複数の無線端末も含む。該無線端末のうちの少なくともいくつかは、システム1300を通過することのできる移動ノードである。(WT 1 1318、・・・、WT N 1320)は、現在、それぞれ、無線ダウンリンクリンク(1322、・・・、1324)を介して基地局1 1302に結合されている。(WT 1’ 1326、・・・、WT N’ 1328)は、現在、それぞれ、無線ダウンリンクリンク(1330、・・・、1332)を介して基地局N 1304に結合されている。図13に示すように、WTs(1318、1320、1326、1328)は、マルチプルアンテナ素子を含み、MIMOアンテナ構成を使用して該基地局との通信をサポートする。様々な実施形態は、マルチプル送信アンテナを有する基地局と、マルチプル受信アンテナを有する無線端末とを含む。いくつかの実施形態は、マルチプル送信アンテナを有する基地局と、単一の受信アンテナを使用する無線端末とを含む。いくつかの実施形態は、マルチプル送信アンテナを有する基地局と、あるものが単一の受信アンテナを有し、他のものが複数の受信アンテナを有する無線端末の混合とを含む。いくつかの実施形態は、マルチプル送信アンテナ素子を有するスタンドアロン基地局と、複数の無線端末とを含む。
図2は、様々な実施形態により実施される例示的な基地局200の図である。基地局200は、例えば図1のシステム100または図13のシステム1300の複数の基地局の1つである。基地局200は、ある種のアクセスノードの一例である。例示的な基地局200は、複数の送信アンテナ素子を含み、重ね合わせダウンリンク シグナリングをサポートする。例示的な基地局200は、様々な素子がデータおよび情報を交換することができるバス212を介して互いに結合された送信モジュール202、プロセッサ206、I/Oインターフェース208、およびメモリ210を含む。例えば基地局がアップリンク シグナリングもサポートするいくつかの実施形態等の、いくつかの実施形態では、基地局は受信機モジュール204を含み、それはまたバス212に結合されている。例えば基地局200が複数のユーザの複数のセットにダウンリンク信号をブロードキャストするいくつかの実施形態等の、いくつかの実施形態では、基地局は無線端末からアップリンク信号を受信せず、受信機モジュール204を含まない。
例えば送信制御モジュール226に応答するOFDM送信機等の、送信モジュール202は、複数の送信アンテナ素子(送信アンテナ素子1 201、送信アンテナ素子2 203、・・・、送信アンテナ素子K 205)に結合され、これらを介して基地局200はダウンリンク信号を無線端末に送信する。送信モジュール202は、例えば高電力の信号と低電力の信号等の、重ね合わせられた(superposed)信号を含むダウンリンク信号を、同じエアリンク資源を使用して送信する。
受信機モジュール204、例えばOFDM受信機は受信アンテナ207に結合されており、これを介して基地局200は無線端末からアップリンク信号を受信する。アップリンク信号は、例えばチャネル状態(channel condition)情報を含むフィードバック報告を含む。いくつかの実施形態では、基地局200は、送受信のために同じ1つまたは複数のアンテナを使用する。
I/Oインターフェース208は、基地局200を他の複数のネットワークノード、例えば、他の複数の基地局、複数のルータ、複数のAAAノード、複数のコンテントサーバノード、複数のホームエージェント(home agent)ノードなど、および/またはインターネットに結合する。I/Oインターフェース208は、該基地局200をバックホール(backhaul)ネットワークに結合し、該バックホールネットワークは、基地局200をそのネットワーク接続点(point of network attachment)として使用する無線端末が、別の基地局をそのネットワーク接続点として使用するピア(peer)ノードと通信することを可能にする。
メモリ210は、複数のルーチン214とデータ/情報216とを含む。プロセッサ206、例えばCPUは、該複数のルーチン214を実行し、またメモリ210内のデータ/情報216を使用して基地局200の動作を制御し複数のメソッド(methods)を実施する。
複数のルーチン214は、高電力の信号生成モジュール218、変換モジュール220、低電力の信号生成モジュール222、重ね合わせ(superposition)モジュール224、送信制御モジュール226、選択モジュール228、およびスケジューリング(scheduling)モジュール230を含む。いくつかの実施形態、例えば受信機モジュール204を含むいくつかの実施形態では、複数のルーチン214はチャネル状態決定モジュール232を含む。
高電力の信号生成モジュール218は、位置符号化(position coding)モジュール219とQPSKモジュール221とを含む。高電力の信号生成モジュール218は、送信される比較的高電力の信号を生成し、該生成された信号は位置符号化およびQPSK変調を使用して情報を伝達する。位置符号化モジュール219は、例えば複数のトーンシンボル(tone-symbols)等の複数のエアリンク資源単位(units)が複数の非ヌルの(non-null)QPSK変調シンボルを伝達し、及び例えば複数のトーンシンボル等の複数のエアリンク資源が例えばトーンシンボルのセット等のエアリンク資源のセット及び生成された高電力の信号に関するヌルの(null)複数の変調シンボルを伝達する、宛先(destination)によって情報を符号化する。QPSKモジュール221は、例えばトーンシンボルのセット等のエアリンク資源の該セット及び該生成された高電力の信号に関して非ヌルである(複数の)QPSK変調シンボルの(複数の)値によって情報を符号化する。
変換モジュール220は、複数の乗算器モジュール(乗算器モジュール1 233、・・・、乗算器モジュールn 225)を含む。他の実施形態では、変換モジュール220は、時分割される(time shared)単一の乗算器モジュールを含む。変換モジュール220は、変換結果信号を生成するために信号に所定変換を適用する。例えば、変換モジュール220は、第1変換結果信号を生成するために、例えば第1の高電力の信号等の第1信号に第1所定変換を適用し、該第1変換結果信号は送信される結合信号を生成するために使用される。この例を続けて述べると、変換モジュール220はまた、第2変換結果信号を生成するために、例えば別の高電力の信号等の第3信号に第2所定変換を適用する。
変換モジュール220は、前記複数のアンテナ素子に含まれる少なくとも2つの異なるアンテナ素子のために異なる出力を生成する。例えば、第1変換結果信号は、第1アンテナ素子に対応する第1部分と第2アンテナ素子に対応する第2非重複(non-overlapping)部分とを含む。
変換モジュール220は、1つまたはそれより多くの乗算器モジュール(223、・・・、225)を使用して、複数の異なるアンテナ素子に対応する複数の定数を第1信号に乗じ、ここにおいて複数の異なるアンテナ素子に対応する複数の異なる定数のうちの少なくとも2つは異なる。
したがって、第1変換結果信号は、複数の異なるアンテナ素子に対応する複数の異なる部分を含む。変換モジュール220はまた、1つまたはそれより多くの乗算器モジュール(223、・・・、225)を使用して、複数の異なるアンテナ素子に対応する複数の定数を第3信号に乗じ、ここにおいて複数の異なるアンテナ素子に対応する複数の異なる定数のうちの少なくとも2つは、第2変換結果信号を生成するために異なる。したがって、第2変換結果信号は、複数の異なるアンテナ素子に対応する複数の異なる部分を含む。
様々な実施形態では、第1変換結果信号を生成するために変換モジュール220によって第1所定変換が使用され、第2変換結果信号を生成するために変換モジュール220によって第2変換が使用され、これらは線形に独立している。
低電力の信号生成モジュール222は、送信される比較的低電力の信号を生成する。該生成された低電力の信号は、高電力の変換結果信号に重ね合わせられることができ、また、時々重ね合わせられる。該生成された低電力の信号は、複数の個別の成分を有する、例えばQPSK、QAM 16、QAM 64、QAM 256タイプの信号等の、例えば従来のQAM信号等であり、または複数の個別の成分を有する例えば8PSK信号等、例えば、従来のPSK信号等である。
重ね合わせモジュール224は変換結果信号を別の信号と結合して結合信号を生成し、該別の信号は該変換結果信号よりも低い電力レベルを有する。例えば、重ね合わせモジュール224は、第1高電力信号に関して動作する変換モジュール222の出力である第1変換結果信号を、低電力の信号である第2信号と結合し、該第2信号は低電力信号生成モジュール222の出力である。
いくつかの実施形態では、低電力レベルは、複数の非ヌルの信号部分に関する1つの送信単位当たりの電力レベル(per transmission unit power level)である。例えば、いくつかの実施形態では、特定のOFDMトーンシンボルスロットに指定された非ヌルの変換結果の第1信号の変調シンボルは、同じアンテナ素子を使用して同じOFDMトーンシンボルスロットにより伝送されるよう指定された第2信号の変調シンボルより高い電力レベルを有する。別の例として、いくつかの実施形態においては、送信単位当たりのベースで(on a per transmission unit basis)、第1平均電力レベル値が第1変換結果信号の非ヌルの成分に関して決定され、第2平均電力レベル値が第2信号の非ヌルの成分に関して決定される場合、第2の値は第1の値よりも低い。いくつかの実施形態では、この差は少なくとも3dBである。
送信制御モジュール226は、複数の時間周波数資源のセットに関して複数の異なるアンテナ素子を使用して結合信号の複数の異なる部分の送信を制御する。例えば、結合信号は、複数の異なるアンテナ素子のそれぞれに対応する非重複部分を含むことができる。例えば、1つの結合信号を送信するために使用される複数のエアリンク資源は複数のOFDMトーンシンボルのセットであると考え、該結合信号を送信するために3つの送信アンテナ素子が使用されると考えると、該結合信号は3つの非重複部分を含み、1つの非重複部分が各アンテナ素子に関連付けられる。さらに複数のOFDMトーンシンボルの該セットは4つのOFDMトーンシンボルのセットであると考えると、1つのアンテナ素子に関連付けられた該結合信号の各非重複部分に関して4つの要素(elements)があり、OFDMトーンシンボルにつき1つの要素が送信される。このような結合信号中には、12の要素が存在する。
送信制御モジュール226はまた、複数の時間および周波数資源の第2セットに関して複数の異なるアンテナ素子を使用して第2変換結果信号の複数の異なる部分の送信を制御し、複数の時間および周波数資源の前記第2セットは、第1変換結果信号を含む結合信号を送信するために使用された複数の時間周波数資源の前記セットとは異なる。このようないくつかの実施形態では、該第1変換結果信号を伝送するために使用されることと関連付けられた、複数の時間周波数資源の該第1セットは、該第2変換結果信号を伝送するために使用されることと関連付けられた、複数の時間周波数資源の該第2セットと重複しない。
選択モジュール228は、複数のエアリンク資源の特定のセットについて使用すべき変換を、複数の異なる変換から選択する。例えば、複数のエアリンク資源の第1セットに対応して、選択モジュール228は、第1変換、例えば変換1 240を、変換情報の格納された(stored)複数のセット234から選択する。次いで、変換モジュール220は、該選択された第1変換を使用して、該第1高電力信号を処理し、第1変換結果信号を生成する。変換モジュール220の処理には、いくつかの実施形態では、複数の高電力信号要素と複数の複素数定数との乗算が含まれる。この例を続けて述べると、複数のエアリンク資源の第2セットに対応して、該第1および第2セットは非重複であり、選択モジュール228は、第2変換、例えば変換N 242を、変換情報の格納された複数のセット234から選択する。
スケジューリング(scheduling)モジュール230は、いくつかの実施形態では、複数のユーザおよび/または複数のユーザの複数のセットを、例えば、複数のダウンリンクセグメントおよび/または複数のアップリンクセグメント等の複数のエアリンク資源の複数のセットにスケジュールする(schedules)。スケジューリングモジュール230の複数の動作には、重ね合わせられたダウンリンク信号に関してどのユーザが低電力信号を受信し使用するようにスケジュールされているか、およびどのユーザが高電力の信号を受信するようスケジュールされるかを、判断することが含まれる。スケジューリングモジュール230は、いくつかの実施形態では、高電力の信号および低電力の信号で通信されるように複数の異なるタイプの情報をスケジュールする。
チャネル状態決定モジュール232は、当該基地局を接続点として使用して複数の異なる無線端末に対応する複数のチャネル状態を決定する。チャネル状態決定モジュール232は、例えば複数のSNR報告、複数のSIR報告、複数の雑音報告、チャネル推定ベクトル情報等の、チャネル状態情報を伝える複数の無線端末からの複数のフィードバック報告を処理する。チャネル状態決定モジュール232の複数の結果は、どの無線端末が高電力信号を受信することになり、どれが低電力信号を受信することになるかを判断する際に、スケジューリングモジュール230によって使用される。
データ/情報216は、変換情報234、無線端末データ/情報236、およびタイミング/周波数構造情報238を含む。変換情報234は、複数の異なる変換(変換1情報240、・・・、変換N情報242)を含む。様々な実施形態では、複数の異なる変換のいくつかは線形に独立している。いくつかの実施形態では、複数の異なる変換のそれぞれは、線形に独立している。変換1情報240は、例えば1つの行列を規定する複数の複素定数の1つの所定のセットである。いくつかの実施形態では、複数の複素定数の該所定のセットは、適用される位相偏移の異なる量を規定する。
いくつかの実施形態では、第1および第2変換は、それぞれ、第1および第2シンボル送信時間間隔で送信される第1および第2変換結果信号を生成するために使用され、前記第2シンボル送信時間間隔は前記第1シンボル送信時間間隔の直後に続く。
WTデータ/情報236は、基地局からの情報(WT 1データ/情報244、・・・、WT Nデータ/情報246)を受信する複数の異なる無線端末に対応するデータ/情報の複数のセットを含む。タイミング周波数構造情報238は、ダウンリンクシグナリングに使用される複数のエアリンク資源の複数のセットに関する情報(エアリンク資源セット1情報248、・・・、エアリンク資源セットM情報250)を含む。複数のエアリンク資源のセットは、例えば、複数のOFDMトーンシンボルのセットである。複数のOFDMシンボルの該セットは、例えば、ダウンリンクセグメントまたはダウンリンクセグメントの部分であり、そこで結合信号は送信される。複数のエアリンク資源の該セットは、該結合信号を通信する際に複数の異なる送信アンテナ素子によって同時に使用される。
いくつかの実施形態では、例えば位置符号化を使用する高電力信号等の、第1および第3信号は複数のユーザの第1セットに向けられ、例えば従来のQAM方式を使用する低電力信号等の、第2および第4信号は、複数のユーザの第1セットのサブセットである複数のユーザの第2セットに向けられる。このようないくつかの実施形態では、第2セットのユーザは、第1セットのユーザより良好なチャネル状態を有する。例えば、本実施形態は、第1、第2、第3、および第4信号がブロードキャスト・ダウンリンク信号である一実施形態であることができる。
図3は、様々な実施形態により実施される、例えば移動ノード等の、例示的な無線端末300の図である。無線端末300は、例えば、図1のシステム100または図13のシステム1300の複数の無線端末のうちの1つである。例示的な無線端末300は、様々な素子がデータおよび情報を交換し得るバス314を介して互いに結合されたメモリ312、複数のユーザI/Oデバイス310、プロセッサ308、受信機モジュール302を含む。いくつかの実施形態では、無線端末300は、受信機Kモジュール304のような1つまたはそれより多くの追加の受信機モジュールを含む。いくつかの実施形態では、無線端末300は、基地局に複数のアップリンク信号を送信するために送信機モジュール306を含む。いくつかの他の実施形態では、該無線端末は無線送信機モジュールを含まず、該無線端末は、例えば、複数のブロードキャストプログラム等の、複数のブロードキャスト・ダウンリンク信号を受信するように機能する。
受信機1モジュール302、例えばOFDM受信機は、受信アンテナ1 301に結合され、これを介して該無線端末は、例えば複数のOFDMダウンリンク信号等の複数のダウンリンク信号を基地局から受信する。該受信されたダウンリンク信号のうちの少なくともいくつかは複数の重ね合わせられた信号であり、該受信された複数のダウンリンク信号のうちの少なくともいくつかは無線端末300に複数の信号を送るために複数の同じエアリンク資源を同時に使用するマルチプル送信アンテナ素子を使用して基地局によって送信されたものである。例えば、1つの高電力信号と1つの低電力信号を含む1つの重ね合わせられた信号は、マルチプル送信アンテナ素子および同じ複数のエアリンク資源を使用して基地局200により送信され、高電力信号と低電力信号のうちの一方は該無線端末にデータを通信することを意図されている。都合のよいことに、該基地局200は、高電力信号の生成に関しては複数のエアリンク資源の別のセットに関しては複数の異なる変換を使用し、これは、該重ね合わせられた信号の高電力信号と低電力信号のどちらが特定の無線端末300にデータを通信しているかに関わらず、無線端末300によるチャネル推定を容易にする。
したがって、受信機1モジュール302は、例えばダウンリンクセグメントまたはダウンリンクセグメントの一部分を備えた複数のOFDMトーンシンボルのセット等の、複数の時間周波数資源の同じセットで第1および第2信号を受信する。受信機1モジュール302はまた、複数の時間および周波数資源の追加のセットで追加の第1信号を受信する。
受信機Kモジュール304、例えば追加OFDM受信機はアンテナK 303に結合され、これを介して無線端末は基地局からダウンリンク信号を受信する。無線端末300は、複数の受信機モジュールと受信機アンテナとを実装している場合、例えば基地局200と協力して(in cooperation with)、MIMOアンテナ通信モードで機能することができ、また、実時々機能する。
例えばOFDM送信機等の送信機モジュール306は送信アンテナ305に結合され、これを介して該無線端末300は複数の基地局に複数のアップリンク信号を送信する。複数のアップリンク信号は、例えば複数のチャネル推定報告、複数の雑音報告、SNRおよび/またはSIRの複数のフィードバック報告等の、複数のチャネル状態報告を含む。いくつかの実施形態では、送受信のために無線端末300により同じ1つまたは複数のアンテナが使用される。
複数のユーザI/Oデバイス310は、マイクロフォン、スピーカー、キーボード、キーパッド、複数のスイッチ、カメラ、ディスプレイなどを含む。複数のユーザI/Oデバイス310は、オペレータがユーザのデータ/情報を入力し、出力データ/情報にアクセスし、及び/または無線端末300の少なくともいくつかの機能を制御し、例えば通信セッションを開始し、ブロードキャストプログラムを選択すること等を可能にする。
メモリ312は、複数のルーチン316とデータ/情報318とを含む。プロセッサ308、例えばCPUは、該複数のルーチン316を実行し、またメモリ312内の該データ/情報318を使用して、無線端末300の動作を制御し複数のメソッドを実施する。ルーチン316は、第1信号回復モジュール320、チャネル推定生成モジュール322、第2信号回復モジュール324、および逆変換選択モジュール326を含む。このようないくつかの実施形態では、複数のルーチン316は、チャネル状態報告モジュール328を含む。
第1信号回復320モジュールは、情報を通信するために位置符号化およびQPSK変調を使用して、例えば比較的高電力の信号等の受信された第1信号を復号する。第1信号回復モジュール320は、位置復号モジュール330とQPSK復号モジュール332とを含む。位置復号モジュール330は、第1信号を送信するために使用された複数の時間周波数資源の該セット内における該第1信号の複数の高電力変調シンボルの位置を識別し、該第1信号の当該識別された複数の高電力変調シンボルの位置により伝達された情報を回復する。QPSK復号モジュール332は、該第1信号の複数の高電力QPSK変調シンボルにより伝達された情報を回復する。
第1信号回復モジュール320は、前記受信された第1信号を処理するために第1逆変換を使用し、前記受信された追加の第1信号を処理するために第2逆変換を使用し、前記第1と第2逆変換は異なる。
いくつかの実施形態では、第1信号回復モジュール320は、該受信された第1信号を復号するために該格納されたアンテナ組み合わせ情報332を使用する。様々な実施形態では、該第1信号の復号は第1チャネル推定を使用して実行され、チャネル推定生成モジュール322からの該生成されたチャネル推定は、例えば該第1チャネル推定が対応する同じチャネルの改善された推定等の、第2チャネル推定である。
チャネル推定生成モジュール322は、第1信号を使用してチャネル推定を生成する。いくつかの実施形態では、チャネル推定生成モジュール322は、チャネル推定を生成する際に前記第1信号に加えて前記追加の第1信号を使用する。
無線端末が複数の受信機を含むいくつかの実施形態では、チャネル推定モジュール322は、前記複数の受信機のそれぞれに関して複数の異なるチャネル推定を生成する。
いくつかの実施形態では、チャネル推定生成モジュール322は、前記第1信号に対応する独立したチャネル推定と前記第1の追加信号に対応する独立したチャネル推定とを生成する。
第2信号回復モジュール324は、該チャネル推定生成モジュール322から得られた該生成されたチャネル推定を使用して、例えば第1信号に重ね合わせられた低電力信号等の、第2信号に対して復号動作を実行する。
逆変換選択モジュール326は、例えばダウンリンクセグメントまたはダウンリンクセグメントの部分に対応する等の、複数のエアリンク資源のセットに対応する第1信号回復モジュール320により使用される逆変換を選択する。例示すると、例えば、セグメント1等の複数のエアリンク資源の第1セットに対応して、無線端末は逆変換1 350を使用することを選択する。何故ならそれは、受信された第1信号に対応した出力信号を生成する際に該基地局が変換1 336を使用していることを、該無線端末が認識しているからである。例を続けて説明すると、例えばセグメント2等の複数のエアリンク資源の第2セットに対応して、該無線端末は、逆変換N 352を使用することを選択する。しこれは、受信された第1信号に対応した出力信号を生成する際に、基地局が変換N 338を使用していることを該無線端末が認識しているからである。
チャネル状態報告モジュール328は、送信アンテナ305により送信機モジュール306を介して基地局に送信される、例えば、チャネル推定ベクトル報告、雑音報告、SIR報告、SNR報告等のチャネル状態フィードバック報告を生成する。基地局はチャネル状態報告情報を使用して、複数のユーザをスケジュールし、例えば、例えば高電力信号等の第1信号または例えば低電力信号等の第2信号のいずれを使用してユーザはデータ/情報を送られるべきかを判断する。
データ/情報318は、割り当て情報330、アンテナ組み合わせ情報332、変換情報334、決定されたチャネル推定情報(determined channel estimate information)340、第1信号からの回復されたデータ/情報342、第2信号からの回復されたデータ/情報344、逆変換情報348、およびタイミング/周波数構造情報354を含む。いくつかの実施形態では、データ/情報318は、チャネル状態報告情報346を含む。
割り当て情報330は、いくつかの実施形態では、無線端末300に割り当てられた信号タイプおよび、または複数のエアリンク資源を識別する情報を含む。割り当て情報330は、例えばWT 300がブロードキャスト受信機である一実施形態等の、いくつかの実施形態では、信号タイプ情報および/または複数のエアリンク資源の複数のセットに関連付けられたチャネルおよび、またはプログラムを識別する情報を含む。
格納されたアンテナ組み合わせ情報332は、無線端末300に情報を送信するために使用された複数の異なるアンテナ組み合わせに関する情報を提供する。いくつかの実施形態では、第1信号回復モジュール320は、第1信号を復号するために該格納されたアンテナ組み合わせ情報332を使用する。
変換情報334は、変換情報(変換1情報336、・・・、変換N情報338)の複数のセットを含む。変換情報334は、複数の異なる送信機アンテナ組み合わせに関する複数の異なる変換を示す情報を含む。逆変換情報348は、逆変換情報(逆変換1情報350、・・・、逆変換1情報352)の複数のセットを含む。タイミング/周波数構造情報354は、複数のタイミング/周波数構造情報のセット(エアリンク資源セット1情報356、・・・、エアリンク資源セットM情報358)を含む。複数のエアリンク資源のセットは、例えば複数のOFDMトーンシンボルのセットである。OFDMシンボルのセットは、例えばダウンリンクセグメントまたはダウンリンクセグメントの部分である。エアリンク資源のセットは、結合信号を通信する際に、基地局の複数の異なる送信アンテナ素子により同時に使用される。
決定されたチャネル推定情報340はチャネル推定生成モジュール322の出力であり、チャネル状態報告情報346はチャネル状態報告モジュール328の出力である。第1信号342からの回復されたデータ情報は第1信号回復モジュール320の出力であり、第2信号344からの回復されたデータ/情報は第2信号回復モジュール324の出力である。
図4は、様々な実施形態による、マルチプルアンテナを利用した例示的な重ね合わせシグナリングを示す図400である。図400は、上部図面402、下部図面404、および説明文(legend)406を含む。説明文406は、四角いグリッド ボックス(square grid box)414がエアリンク資源の基本単位、OFDMトーンシンボルを表していることを示す。説明文406はまた、大きな円416は第1信号の非ヌルの成分を表し、第1信号は高電力信号であること、小さな円418は第2信号の成分を表し、第2信号は低電力信号であることも示している。
エアリンク時間/周波数資源412は、16個のOFDMトーンシンボルを含んでいる。上部図面402は、アンテナ1 420を介して送信される信号を表し、下部図面404は、アンテナ2 422を介して送信される信号を表している。エアリンク資源412は、2つのアンテナ420と422に同様に対応している。横軸(horizontal axis)410は時間、例えばOFDMシンボル送信時間間隔インデックス(index)を表しており、縦軸(vertical axis)408は周波数、例えばトーン インデックスを表している。
高電力信号である第1信号は、高電力の非ヌルの成分といくつかのヌルの成分とを備える1つの信号であり、一部の(some)情報は高電力の非ヌルの成分の位置で符号化され、一部の情報は例えばQPSK変調シンボル等の非ヌルの成分によって伝送されている変調シンボルの値で符号化される。
資源412内の高電力信号の非ヌルの成分の位置は、両方のアンテナについて意図的に同じになっている。この例においては、周波数インデックス=3およびOFDMシンボル送信時間インデックス=2であるトーンシンボルは、第1信号の高電力の非ヌルの成分をたまたま伝送する。アンテナ2 422を使用して送信された高電力信号成分HC424の値は、アンテナ1 420を使用して送信された高電力信号成分Cの値の変換である。
第1信号は基準となることができ、またユーザ、例えばSNRの不十分な(poor)遠方ユーザに情報を伝送するために使用されることができ、そして、ときどき使用される。第1ユーザは、高電力信号を抜き取り(pick off)、それを復号して該伝達された情報を回復することができる。
低電力信号である第2信号は、別のユーザ、例えばSNRの高い近隣ユーザに向けられことができる。第2ユーザは、高電力信号を抜き取り、受信された高電力信号を処理し、高電力信号情報を使用してチャネル状態を推定し、及び/またはチャネル推定をさらに正確なものにすることができる。したがって、第2ユーザの観点からすると、第1信号の非ヌルの成分をパイロットとして使用することができる。推定されたチャネル状態は、受信された第2信号成分、例えばQAM256変調シンボル信号のようなQAM変調シンボル信号を処理し、伝達中の第2信号情報を回復する際に利用される。
図5は、様々な実施形態による、マルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図500である。図5は、第1信号502、第1変換504、第1変換結果信号506、エアリンク資源グラフ508、第1アンテナ510、第2アンテナ512、および第3アンテナ514を含む。第1信号502は、4つの要素(S1,1 516、S1,2 518、S1,3 520、S1,4 522)を含む。第1変換504は、3つの要素(H1,1 524、H1,2 526、H1,3 528)を含む。第1信号502と第1変換504との乗算の結果である第1変換結果信号506は12の成分を含み、それらは4つの成分の3セット(530、532、534)にグループ化される。エアリンク資源グラフ508は、横軸536に時間を表示し、縦軸538に周波数を表示する。本実施例では、エアリンク資源の基本単位は、1つのOFDMシンボル送信時間間隔の持続期間(duration)に関して1つのトーンを表すトーンシンボルである。4つのトーンシンボル(TS1,1 540、TS1,2 542、TS1,3 544、TS1,4 546)の同じエアリンク資源は、該第1変換結果信号の複数の部分を送信するためにアンテナ(アンテナ1 510、アンテナ2 512、アンテナ3 514)によって使用される。
ブロック548は、第1変換結果信号506の第1部分530が複数のOFDMトーンシンボル(540、542、544、546)を使用してアンテナ1 510により送信されることを示している。ブロック550は、第1変換結果信号506の第2部分532が複数のOFDMトーンシンボル(540、542、544、546)を使用してアンテナ2 512によって送信されることを示す。ブロック552は、第1変換結果信号506の第3部分534が複数のOFDMトーンシンボル(540、542、544、546)を使用してアンテナ3 514により送信されることを示す。
次に、より詳細な例を記載する。第1信号は情報を伝達するために位置符号化を使用する信号であるとする。例えば、第1信号の第1要素のうちの1つは非ゼロであり、他の3要素はゼロであり、該非ゼロ要素の位置が情報を伝達する。ブロック502’は、このような例示的な第1信号を表す。例示的な第1変換504’は3つの要素を含み、それぞれが異なる量の位相偏移(ejθ1、ejθ2、ejθ3)を表す。第1変換結果信号506’は、第1部分530’、第2部分532’、および第3部分534’を含む。
ブロック548’は、第1変換結果信号506’の第1部分530’がOFDMトーンシンボル(540、542、544、546)を使用してアンテナ1 510によって送信されることを示している。ブロック550’は、第1変換結果信号506’の第2部分532’がOFDMトーンシンボル(540、542、544、546)を使用してアンテナ2 512によって送信されることを示している。ブロック552’は、第1変換結果信号506’の第3部分534’がOFDMトーンシンボル(540、542、544、546)を使用してアンテナ3 514によって送信されることを示している。
図6は、様々な実施形態による、マルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図600である。図6は、第3信号602、第2変換604、第2変換結果信号606、エアリンク資源グラフ608、第1アンテナ510、第2アンテナ512、および第3アンテナ514を含む。第3信号602は、4つの要素(S3,1 616、S3,2 618、S3,3 620、S3,4 622)を含む。第2変換604は、3つの要素(H2,1 624、H2,2 626、H2,3 628)を含む。第3信号602と第2変換604の乗算の結果である第2変換結果信号606は12の成分を含み、それらは4つの成分の3セット(630、632、634)にグループ化される。エアリンク資源グラフ608は、横軸536に時間を表示し、縦軸538に周波数を表示する。この例では、複数のエアリンク資源の基本単位は、1つのOFDMシンボル送信時間間隔の持続期間に関して1つのトーンを表すトーンシンボルである。4つのトーンシンボル(TS2,1 640、TS2,2 642、TS2,3 644、TS2,4 646)の同じ複数のエアリンク資源は、第2変換結果信号の複数の部分を送信するためにアンテナ(アンテナ1 510、アンテナ2 512、アンテナ3 514)によって使用される。
ブロック648は、第2変換結果信号606の第1部分630がOFDMトーンシンボル(640、642、644、646)を使用してアンテナ1 510によって送信されることを示している。ブロック650は、第2変換結果信号606の第2部分632がOFDMトーンシンボル(640、642、644、646)を使用してアンテナ2 512によって送信されることを示している。ブロック652は、第2変換結果信号606の第3部分634がOFDMトーンシンボル(640、642、644、646)を使用してアンテナ3 514によって送信されることを示している。
次に、より詳細な例を記載する。第3信号は情報を伝達するために位置符号化を使用する信号であるとする。例えば、第1信号の第1要素のうちの1つは非ゼロであり、他の3要素はゼロであり、非ゼロ要素の位置が情報を伝達する。ブロック602’は、このような例示的な第3信号を表す。例示的な第2変換604’は3つの要素を含み、それぞれが異なる量の位相偏移(ejθ4、ejθ5、ejθ6)を表す。第2変換結果信号606’は、第1部分630’、第2部分632’、および第3部分634’を含む。
ブロック648’は、第2変換結果信号606’の第1部分630’がOFDMトーンシンボル(640、642、644、646)を使用してアンテナ1 510によって送信されることを示している。ブロック650’は、第2変換結果信号606’の第2部分632’がOFDMトーンシンボル(640、642、644、646)を使用してアンテナ2 512によって送信されることを示している。ブロック652’は、第2変換結果信号606’の第3部分634’がOFDMトーンシンボル(640、642、644、646)を使用してアンテナ3 514によって送信されることを示している。
図7は、様々な実施形態による、マルチプルアンテナを利用した例示的な重ね合わせシグナリングを示す。図7は、図6および図5に表された送信された複数の信号および複数のエアリンク資源の複合(composite)を示す。図7は、第1変換結果信号に重ね合わせられる例示的な第2信号の追加を含む。例示的な第2信号は、複数の成分(S2,1、S2,2、S2,3、S2,4、S2,5、S2,6、S2,7、S2,8、S2,9、S2,10、S2,11、S2,12)を含む。図7は、第2変換結果信号に重ね合わせられる例示的な第4信号の追加も含む。例示的な第4信号は、複数の成分(S4,1、S4,2、S4,3、S4,4、S4,5、S4,6、S4,7、S4,8、S4,9、S4,10、S4,11、S4,12)を含む。
第1変換結果信号は高電力信号であり、第2信号は低電力信号である。第2変換結果信号は高電力信号であり、第4信号は低電力信号である。
エアリンク資源グラフ702は、横軸536に時間を表示し、縦軸538に周波数を表示する。8つのトーンシンボル(TS1,1 540、TS1,2 542、TS1,3 544、TS1,4 546、TS2,1 640、TS2,2 642、TS2,3 644、TS2,4 646)の同じ複数のエアリンク資源は、信号を送信するためにアンテナ(アンテナ1 510、アンテナ2 512、アンテナ3 514)によって使用される。列(column)704は、第2信号の成分(S2,1、S2,2、S2,3、S2,4)との、第1変換結果信号(0、0、ejθ1S1、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(540、542、544、546)を使用して、第1OFDMシンボル送信時間間隔中に、アンテナ1 510によって送信される信号を示している。列706は、第4信号の成分(S4,1、S4,2、S4,3、S4,4)との、第2変換結果信号(0、ejθ4S3、0、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(640、642、644、646)を使用して、第2OFDMシンボル送信時間間隔中に、アンテナ1 510によって送信される信号を示している。
列708は、第2信号の成分(S2,5、S2,6、S2,7、S2,8)との、第1変換結果信号(0、0、ejθ2S1、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(540、542、544、546)を使用して、第1OFDMシンボル送信時間間隔中に、アンテナ2 512によって送信される信号を示している。列710は、第4信号の成分(S4,5、S4,6、S4,7、S4,8)との、第2変換結果信号(0、ejθ5S3、0、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(640、642、644、646)を使用して、第2OFDMシンボル送信時間間隔中に、アンテナ2 512によって送信される信号を示している。
列712は、第2信号の成分(S2,9、S2,10、S2,11、S2,12)との、第1変換結果信号(0、0、ejθ3S1、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(540、542、544、546)を使用して、第1OFDMシンボル送信時間間隔中に、アンテナ3 514によって送信される信号を示している。列714は、第4信号の成分(S4,9、S4,10、S4,11、S4,12)との、第2変換結果信号(0、ejθ6S3、0、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(640、642、644、646)を使用して、第2OFDMシンボル送信時間間隔中に、アンテナ3 514によって送信される信号を示している。
3つのアンテナを使用した例示的な実施形態について図5、6、および7に示したが、様々な他の実施形態は、2つのアンテナまたは3つより多くのアンテナを含む。さらに、別の実施形態では、例えば第1変換結果信号を伝送するために使用されるトーンシンボルの数等の、資源の量は、4とは異なる所定の数であり、例えば2、8、16である。
図8は、様々な実施形態による、マルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図800である。図8は、第1信号802、第1変換804、第1変換結果信号806、エアリンク資源グラフ808、第1アンテナ810、第2アンテナ812、および第3アンテナ814を含む。第1信号802は、4つの要素(S1,1 816、S1,2 818、S1,3 820、S1,4 822)を含む。第1変換804は、3つの要素(H1,1 824、H1,2 826、H1,3 828)を含む。第1信号802と第1変換804の乗算の結果である第1変換結果信号806は、4成分ずつ3セット(830、832、834)にグループ化された12の成分を含む。エアリンク資源グラフ808は、横軸836に時間を表示し、縦軸838に周波数を表示する。本実施例では、エアリンク資源の基本単位は、1つのOFDMシンボル送信時間間隔の持続期間に関して1つのトーンを表すトーンシンボルである。4つのトーンシンボル(TS1,1 840、TS2,1 842、TS3,1 844、TS4,1 846)の同じエアリンク資源は、第1変換結果信号の複数の部分を送信するためにアンテナ(アンテナ1 810、アンテナ2 812、アンテナ3 814)によって使用される。
ブロック848は、第1変換結果信号806の第1部分830がOFDMトーンシンボル(840、842、844、846)を使用してアンテナ1 810によって送信されることを示している。ブロック850は、第1変換結果信号806の第2部分832がOFDMトーンシンボル(840、842、844、846)を使用してアンテナ2 812によって送信されることを示している。ブロック852は、第1変換結果信号806の第3部分834がOFDMトーンシンボル(840、842、844、846)を使用してアンテナ3 814によって送信されることを示している。
次に、より詳細な例を記載する。第1信号は情報を伝達するために位置符号化を使用する信号であるとする。例えば、第1信号の第1要素のうちの1つは非ゼロであり、他の3要素はゼロであり、非ゼロ要素の位置が情報を伝達する。ブロック802’は、このような例示的な第1信号を表す。例示的な第1変換804’は3つの要素を含み、それぞれが異なる量の位相偏移(ejθ1、ejθ2、ejθ3)を表す。第1変換結果信号806’は、第1部分830’、第2部分832’、および第3部分834’を含む。
ブロック848’は、第1変換結果信号806’の第1部分830’がOFDMトーンシンボル(840、842、844、846)を使用してアンテナ1 810によって送信されることを示している。ブロック850’は、第1変換結果信号806’の第2部分832’がOFDMトーンシンボル(840、842、844、846)を使用してアンテナ2 812によって送信されることを示している。ブロック852’は、第1変換結果信号806’の第3部分834’がOFDMトーンシンボル(840、842、844、846)を使用してアンテナ3 814によって送信されることを示している。
図9は、様々な実施形態による、マルチプルアンテナを利用した例示的な信号変換およびシグナリングを示す図900である。図9は、第3信号902、第2変換904、第2変換結果信号906、エアリンク資源グラフ908、第1アンテナ810、第2アンテナ812、および第3アンテナ814を含む。第3信号902は、4つの要素(S3,1 916、S3,2 918、S3,3 920、S3,4 922)を含む。第2変換904は、3つの要素(H2,1 924、H2,2 926、H2,3 928)を含む。第3信号902と第2変換904の乗算の結果である第2変換結果信号906は、4成分の3セット(930、932、934)にグループ化された12の成分を含む。エアリンク資源グラフ908は、横軸836に時間を表示し、縦軸838に周波数を表示する。本実施例では、エアリンク資源の基本単位は、1つのOFDMシンボル送信時間間隔の持続期間に関して1つのトーンを表すトーンシンボルである。4つのトーンシンボル(TS2,1 940、TS2,2 942、TS2,3 944、TS2,4 946)の同じエアリンク資源は、第2変換結果信号の複数の部分を送信するためにアンテナ(アンテナ1 810、アンテナ2 812、アンテナ3 814)によって使用される。
ブロック948は、第2変換結果信号906の第1部分930がOFDMトーンシンボル(940、942、944、946)を使用してアンテナ1 810によって送信されることを示している。ブロック950は、第2変換結果信号906の第2部分932がOFDMトーンシンボル(940、942、944、946)を使用してアンテナ2 812によって送信されることを示している。ブロック952は、第2変換結果信号906の第3部分934がOFDMトーンシンボル(940、942、944、946)を使用してアンテナ3 814によって送信されることを示している。
次に、より詳細な例を記載する。第3信号は情報を伝達するために位置符号化を使用する信号であるとする。例えば、第1信号の第1要素のうちの1つは非ゼロであり、他の3要素はゼロであり、該非ゼロ要素の位置が情報を伝達する。ブロック902’は、このような例示的な第3信号を表す。例示的な第2変換904’は3つの要素を含み、それぞれが異なる量の位相偏移(ejθ4、ejθ5、ejθ6)を表す。第2変換結果信号906’は、第1部分930’、第2部分932’、および第3部分934’を含む。
ブロック948’は、第1変換結果信号906’の第1部分930’がOFDMトーンシンボル(940、942、944、946)を使用してアンテナ1 810によって送信されることを示している。ブロック950’は、第2変換結果信号906’の第2部分932’がOFDMトーンシンボル(940、942、944、946)を使用してアンテナ2 812によって送信されることを示している。ブロック952’は、第2変換結果信号906’の第3部分934’がOFDMトーンシンボル(940、942、944、946)を使用してアンテナ3 814によって送信されることを示している。
図10は、マルチプルアンテナを利用した例示的な重ね合わせシグナリングを示す。図10は、図9および図8に表された送信された複数の信号および複数のエアリンク資源の複合を示す。図10は、第1変換結果信号に重ね合わせられる例示的な第2信号の追加を含む。例示的な第2信号は、複数の成分(S2,1、S2,2、S2,3、S2,4、S2,5、S2,6、S2,7、S2,8、S2,9、S2,10、S2,11、S2,12)を含む。図10は、第2変換結果信号に重ね合わせられる例示的な第4信号の追加も含む。例示的な第4信号は、複数の成分(S4,1、S4,2、S4,3、S4,4、S4,5、S4,6、S4,7、S4,8、S4,9、S4,10、S4,11、S4,12)を含む。
第1変換結果信号は高電力信号であり、第2信号は低電力信号である。第2変換結果信号は高電力信号であり、第4信号は低電力信号である。
エアリンク資源グラフ1002は、横軸836に時間を表示し、縦軸838に周波数を表示する。8つのトーンシンボル(TS1,1 840、TS1,2 842、TS1,3 844、TS1,4 846、TS2,1 940、TS2,2 942、TS2,3 944、TS2,4 946)の同じエアリンク資源は、信号を送信するためにアンテナ(アンテナ1 810、アンテナ2 812、アンテナ3 814)によって使用される。行(row)1004は、第2信号の成分(S2,1、S2,2、S2,3、S2,4)との、第1変換結果信号(0、0、ejθ1S1、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(840、842、844、846)を用いて、4つの連続するOFDMシンボル送信時間間隔中にインデックス=1のトーンを使用して、アンテナ1 810によって送信される信号を示す。行1006は、第4信号の成分(S4,1、S4,2、S4,3、S4,4)との、第2変換結果信号(0、ejθ4S3、0、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(940、942、944、946)を用いて、4つの連続するOFDMシンボル送信時間間隔中にインデックス=2のトーンを使用して、アンテナ1 810によって送信される信号を示す。
行1008は、第2信号の成分(S2,5、S2,6、S2,7、S2,8)との、第1変換結果信号(0、0、ejθ2S1、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(840、842、844、846)を用いて、4つの連続するOFDMシンボル送信時間間隔中にインデックス=1のトーンを使用してアンテナ2 812によって送信される信号を示す。行1010は、第4信号の成分(S4,5、S4,6、S4,7、S4,8)との、第2変換結果信号(0、ejθ5S3、0、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(940、942、944、946)を用いて、4つの連続するOFDMシンボル送信時間間隔中にインデックス=2のトーンを使用してアンテナ2 812によって送信される信号を示す。
行1012は、第2信号の成分(S2,9、S2,10、S2,11、S2,12)との、第1変換結果信号(0、0、ejθ3S1、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(840、842、844、846)を用いて、4つの連続するOFDMシンボル送信時間間隔中にインデックス=1のトーンを使用してアンテナ3 814によって送信される信号を示す。行1014は、第4信号の成分(S4,9、S4,10、S4,11、S4,12)との、第2変換結果信号(0、ejθ6S3、0、0)の一部分の重ね合わせをそれぞれ表すトーンシンボル(940、942、944、946)を用いて、4つの連続するOFDMシンボル送信時間間隔中にインデックス=2のトーンを使用してアンテナ3 814によって送信される信号を示す。
3つのアンテナを使用した例示の実施形態について図8、9、および10に示したが、様々な他の実施形態は、2つのアンテナまたは3つより多くのアンテナを含む。さらに、別の実施形態では、資源の量、例えば第1変換結果信号を伝送するために使用されるトーンシンボルの数は4以外の所定の数であり、例えば2、8、16である。
図11は、様々な実施形態による、例えば基地局のようなアクセスノード等の装置を動作させる例示的な方法のフローチャート1100である。動作はステップ1102で開始し、ここで該装置に電源が投入され(powered on)、初期化され、ステップ1104に進む。ステップ1104で、該装置は、所定の選択方法に従って第1所定変換を選択する。該選択された第1所定変換は、例えば複数の異なる変換のセット(a plurality of a set of different transforms)のうちの1つの変換である。様々な実施形態では、該選択された第1所定変換は線形であり、異なる複数の変換の該セットの少なくともいくつかは線形に独立している。次いでステップ1106では、該装置は、第1変換結果信号を生成するために第1信号に該第1所定変換を適用する。様々な実施形態では、該第1信号は、位置変調を使用して情報を通信する。様々な実施形態では、該選択された第1所定変換の選択は、該第1信号で通信される位置情報から独立している。ステップ1106はサブステップ1108を含み、このサブステップ1108において、該装置は複数の異なるアンテナに対応する複数の定数を前記第1信号に乗じ、ここで、複数の異なるアンテナに対応する前記複数の定数のうちの少なくとも2つは異なっている。動作はステップ1106からステップ1110に進む。
ステップ1110で、該装置は、複数の重ね合わせられた信号を送信する。ステップ1110は、サブステップ1112および1114を含む。サブステップ1112で、該装置は、複数の時間周波数送信資源の第1セットと複数のアンテナの所定の組み合わせを使用して、該第1変換結果信号を送信する。様々な実施形態では、該第1所定変換は、複数のアンテナの前記所定の組み合わせに含まれる少なくとも2つのアンテナのための異なる複数の出力を生成する。サブステップ1114で、該装置は、複数のアンテナの前記所定の組み合わせと前記複数の時間周波数送信資源の第1セットを使用して第2信号を送信し、前記第2信号は、該第1変換結果信号を送信するために使用される少なくとも1つのアンテナで前記第1変換結果信号より低い電力で送信される。様々な実施形態では、該第1信号で送信された非ヌルのシンボルと第2信号で送信されたシンボルとの送信電力差は、少なくとも3dBである。動作はステップ1110からステップ1116に進む。
ステップ1116で、該装置は、所定の選択方法に従い第2所定変換を選択する。いくつかの実施形態では、第1と第2所定変換は線形に独立である。次いでステップ1118で、装置は、第2変換結果信号を生成するために第3信号に第2所定変換信号を適用する。ステップ1118はサブステップ1120を含む。サブステップ1120において、装置は、複数の異なるアンテナに対応する複数の定数を第3信号に乗じ、ここで、複数の異なるアンテナに対応する前記複数の定数のうちの少なくとも2つは異なっている。動作はステップ1118からステップ1112に進む。
ステップ1122で、装置は、複数の重ね合わせられた信号を送信する。ステップ1122は、サブステップ1124および1126を含む。サブステップ1124で、該装置は、複数の時間周波数送信資源の第2セットと複数のアンテナの前記所定の組み合わせを使用して前記第2変換結果信号を送信し、複数の時間周波数送信資源の前記第2セットは複数の時間周波数送信資源の前記第1セットとは異なる。いくつかの実施形態では、時間周波数送信資源の第1と第2セットは非重複(non-overlapping)である。サブステップ1126で、該装置は、複数のアンテナの前記所定の組み合わせと複数の時間周波数送信資源の前記第2セットを使用して第4信号を送信し、前記第4信号は、第2変換結果信号を送信するために使用される少なくとも1つのアンテナで前記第2変換結果信号より低い電力で送信される。
いくつかの実施形態では、第1信号と第3信号によって通信された情報は第1ユーザに向けられ、第2信号と第4信号によって通信された情報は第2ユーザに向けられる。このようないくつかの実施形態では、第2ユーザは第1ユーザよりも、例えば高いSNR等の、良好なチャネル状態を有するユーザである。様々な実施形態では、該装置は、第1と第2ユーザをSNRの関数として選択する。
いくつかの実施形態では、第1信号と第3信号によって通信された情報は第1セットのユーザに向けられ、第2信号と第4信号によって通信された情報は第1セットのユーザのサブセットである第2セットのユーザに向けられる。このようないくつかの実施形態では、第2セットのユーザは、第2セットのメンバーでない第1セットのメンバーよりも、例えば、高いSNRの等の、良好なチャネル状態を有するユーザである。
いくつかの実施形態では、第1及び第2変換は、それぞれ第1及び第2シンボル送信期間に送信される、例えば、第1及び第2変換結果信号等の、信号を生成するために使用され、前記第2シンボル送信期間は前記第1シンボル送信期間の直ぐ後に続く。いくつかの実施形態では、前記第1と第2時間周波数資源は、OFDM通信システムの時間および周波数資源のセット、例えばOFDMトーンシンボルのセットである。
図12は、様々な実施形態による、無線端末を動作させる例示的な方法のフローチャート1200である。動作はステップ1202で開始し、ここで無線端末に電源が投入されて初期化され、動作はステップ1204に進む。ステップ1204で、無線端末は、時間および周波数資源の同じセットで第1と第2信号を受信する。このようないくつかの実施形態では、第1と第2信号は直交周波数分割多重(OFDM)信号である。様々な実施形態では、第1信号は位置変調を使用して情報を伝達する。いくつかのOFDMの実施形態では、時間および周波数資源のセットはOFDMトーンシンボルのセットである。このようないくつかの実施形態では、OFDMトーンシンボルのセットは、同じOFDMシンボル送信時間間隔内にある。位置変調は、時間および周波数資源のセットにおけるエネルギーの配置(placement)を使用して情報を通信することを含む。例えば、第1信号はヌルと1つまたは複数の非ヌルのQPSK変調シンボルの混合(mixture)を含み、時間および周波数資源の該セット、例えばOFDMトーンシンボルのセット等における1つまたは複数の非ヌルのQPSK変調信号の配置が情報を伝達する。
次いでステップ1206で、無線端末は第1信号を復号する。いくつかの実施形態では、第1信号の復号は、第1信号を送信するために使用されるアンテナ組み合わせセットのアプリオリ(a priori)知識を使用することを含む。このようないくつかの実施形態では、第1信号の復号は、第1信号を生成する際に使用された、アンテナ組み合わせに対応する変換のアプリオリ知識を使用することを含む。
動作はステップ1206からステップ1208に進む。ステップ1208で、無線端末は、チャネル推定を生成するために第1信号を使用する、チャネル推定動作を実行する。いくつかの実施形態では、ステップ1206での第1信号の復号は、第1チャネル推定を使用して実行され、ステップ1208からの該生成されたチャネル推定は第2チャネル推定である。このようないくつかの実施形態では、第2チャネル推定は、第1チャネル推定が対応する改善された推定である。様々な実施形態では、無線端末は複数の受信機を含み、当該複数の受信機のそれぞれは別の受信アンテナに対応しており、方法は、当該複数の受信機のそれぞれに関して複数の異なるチャネル推定を生成することをさらに備える。
動作はステップ1208からステップ1210に進み、そこで無線端末は、第2信号に関して復号動作を実行するために該生成されたチャネル推定を使用する。動作はステップ1210からステップ1212に進む。ステップ1212で、無線端末は、時間および周波数資源の追加セットで追加の第1信号を受信する。様々な実施形態では、追加の第1信号は、第1信号を生成するために使用される変換とは異なる変換を用いて基地局によって生成されている。いくつかの実施形態では、ステップ1212で、無線端末はまた、時間および周波数資源の追加セットで追加の第2信号を受信する。動作は、ステップ1212からステップ1214に進む。
ステップ1214では、無線端末は追加の第1信号を復号し、次いでステップ1216では、無線端末は、チャネル推定を生成するために前記追加の第1信号を使用して別のチャネル推定動作を実行する。このようないくつかの実施形態では、無線端末は別のチャネル推定を生成する際に第1の復号された信号と追加の復号された信号とから導き出された(derived)両方の情報を使用する。
いくつかの実施形態では、動作はステップ1216からステップ1218に進む。ステップ1218で、無線端末は、該追加の第2信号に関して復号動作を実行するために、該生成された別のチャネル推定を使用する。
様々な実施形態では、ステップ1206で第1信号を復号するために、無線端末は、複数の格納された逆変換から第1逆変換を選択し、当該選択された第1逆変換を使用し、またステップ1214で追加の第1信号を復号するために、無線端末は、複数の格納された逆変換から第2逆変換を選択し、該選択された第2逆変換を使用し、ここにおいて、該第1逆変換と該第2逆変換とは異なる。例えば、第1逆変換は、該第1信号を生成するために基地局により使用される変換に対応し、第2逆変換は該追加の第1信号を生成するために基地局により使用される変換に対応する。該基地局と該無線端末は、時間および周波数資源の特定のセットのためにどの変換が該基地局により使用されるべきかを認識しており、したがって、該無線端末は該情報を回復するために適切な逆変換を適用することができる。
無線OFDMシステム用の標準ベースバンドモデルは、
Figure 2010529744
である。ここで、ω1,・・・,ωkはkの搬送波周波数であり、h(ωi )は、搬送波iに関する複素チャネル利得であり、x(ωi )は、搬送波iで送信された複素信号であり、n(ωi )は、搬送波iに関する付加雑音(additive noise)である。上記のそれぞれは時間の関数でもある。固定時間のあいだの該送信された信号は、上記のように、OFDMシンボルと称される。
OFDMは、広域ネットワークのようなマルチユーザ無線システムに関して使用される。この場合、1つの信号は、時間の1つのセグメントにわたって複数の搬送波のサブセットで、特定ユーザに関連付けられた、受信機に送られることができる。このようなシステムにおける干渉を緩和するためにホッピングがしばしば使用される。ホップされたシステムでは、信号を特定の受信機に伝送するために使用される搬送波のセットは、時間にわたって変化する。典型的に、特定ユーザへの送信のセグメントでは、使用される搬送波の数は該セグメント中に変化しない。ブロックホップされたシステムでは、1つの与えられたOFDMシンボルに関して1つの与えられたセグメントにおいて使用される複数の搬送波は、連続する(contiguous)複数のサブセットに分割される(partitioned)。さらに各サブセットは、1より多くのOFDMシンボルに関する信号により占有され、時間周波数平面において複数のシンボルのブロックまたは矩形(rectangle)を形成する。
ブロックホップされたOFDM方式では、優れた受信機に追加の擬似パイロット(pseudo-pilots)を提供するために、位置シグナリング(position signaling)による重ね合わせを使用することができる。優れた受信機がMIMOモードで送信されている場合、該擬似パイロットはチャネル行列(channel matrix)をサンプリングすべきである。
一例を考える。2×2MIMOシステムである。1つのブロックを、8×8とする。4×1の各サブブロックで、劣った受信機に向けられた、1つの比較的高電力のQPSKシンボルを送信する。Xは、当該ブロックによる(over)信号を表すとする。第1アンテナは、
Figure 2010529744
を送信する。ここで、
Figure 2010529744
は、点に関する(point-wise)複素乗算を表す。第2アンテナは、
Figure 2010529744
を送信する。関数
Figure 2010529744
は、送信機と受信機の両方で認識されることになる。便宜的、実際的な選択は、
Figure 2010529744
に関してQPSKシンボル{1,1,j,−j}を使用するものになる。これにより、送信機でのHによる乗算と、受信機でのHの局所的反転(local inversion)とが簡約化される。高電力QPSKシンボルが、位置i,jで送信され、チャネル関数がha,b である場合、受信機b1と受信機b2は、それぞれ、
Figure 2010529744
を見る。
ここで、Xが、優れた受信機により成功裏に復号されたと仮定し、
Figure 2010529744
とする。該優れた受信機は、h(i,j)H(i,j)の推定(estimate)を有することは明らかである。通常、h(i,j)は、該チャネルの局所的コヒーレンスにより、iおよびjにおいて円滑(smooth)となる。関数Hは円滑である必要はない。これを使用することにより、hに関する複数の局所的推定(local estimates)を形成することができる。
例えば、i’,j’はi,jに近いとすると、h(i,j)=h(i’,j’)と仮定することができる。これにより、
h(i,j)[H(i,j)H(i’,j’)]
が得られる。該行列[H(i,j)H(i’,j’)]が逆転可能(invertible)であり、設計によってそのように行われるものである場合、右辺でこの逆元(inverse)を乗じて、h(i,j)=h(i’,j’)を回復する(recover)ことができる。実際には、受信機の雑音および他の複数の歪みの存在において該複数の値h(i,j)H(i,j)が観察される。これらの値は、hの推定を形成するために使用される。該推定hを形成するために多くの異なる技術を使用することができる。2つの例は、円滑を仮定として、パラメトリックモデルフィッティング(parametric model fitting)(例えば、hはi,jにおいてアフィン(affine)であると仮定する)、および最小2乗(squares)フィッティングである。
ブロック全体にわたるhの推定は、優れた受信機に関しては利用可能となり、劣ったユーザの信号が0に設定された複数のシンボルを復調するために使用することができる。優れた受信機の信号は、該2つのアンテナとは異なることができる。この場合、MIMO容量は優れた受信機に利用可能となる。
基本概念は、2より多くの送信アンテナに一般化されることができる。
位置ブロックにおいて一定であるようにHを選択することが都合がよい。このようにすると、局所的反転は固定され、予め計算されることができる。これにはまた、ある与えられた位置ブロックにおける劣ったユーザにより見られるチャネルは一定であり、それにより位置情報の該検出を改善する、という利点もある。高電力で劣った受信機の複数のシンボルの小断片(small fraction)は、アプリオリに認識される。これにより、hの初期推定が可能になる。すべてのhが推定される必要があるという点で、劣ったユーザは小規模なヒットを得る。
次に、劣った受信機に関連する問題を説明する。劣った受信機について、低SNRでは、両方のアンテナにより同じデータを送信すれる。2×2チャネル行列がhである場合、アンテナ1で受信された信号(雑音を除く)は、
Figure 2010529744
である。該受信機は、
Figure 2010529744
の知識を使用して、
Figure 2010529744
と表された、hの推定を形成してこれらを結合し、該結合されたチャネル推定
Figure 2010529744
を形成する。
Figure 2010529744
を計算することにより回転解除(derotation)が実行される。
次に、代替パイロットの場合を説明する。通信システムは、通常の非MIMO送信に関しては専用パイロットを有することができる。この場合、複数の受信機は、ある固定Vに関するhVの推定を独立的に有する。一例は、パイロットが両方の送信アンテナから等しく送信されることを意味するV=[1,1]である。両方の受信機がMIMOを使用していなければ、この場合は
Figure 2010529744
を定める必要がある。劣った受信機の信号は、チャネル推定を改善するために依然として使用されることができる。
優れた信号がMIMOの場合、特に埋め込まれたパイロットに関して、Vに直交する成分をより良好に測定するために
Figure 2010529744
を選択することが好ましいことがある。あるいは、主として(例えば、大部分の場所(locations)で)
Figure 2010529744
を選択することができ、該劣った信号の復号は追加パイロットなしで始まることができる。直交空間内の信号は、依然として位置情報を含むことができるが、位相情報は弱くなる。それは単に消去されることができ、あるいはアプリオリに認識されることができる。
次に、優れた受信機に関する問題を説明する。優れた受信機は、劣った受信機よりもチャネル設定が良好であると想定する。したがって、優れた受信機は、劣った受信機の信号を高い信頼性により復号することができる。Xが一度知られると、優れた受信機は、それを使用してhの推定を形成する。
Figure 2010529744
が線形に独立しているとき、該受信機は、チャネル行列全体の推定hを形成することができる。優れたユーザの信号がMIMO符号化されていない場合、
Figure 2010529744
は線形に独立していることができる。しかしながら、それらを独立したままにしておくと、hの複数の要素の種々の組み合わせが使用されるので、ダイバーシティ利得が依然として提供される場合がある。直交チャネル成分を推定する必要があるため、その代償は、該劣ったユーザには、容量の損失となる。
様々な実施形態では、2またはそれより多くの受信機への1つの送信は、2またはそれより多くのアンテナを使用する。
様々な実施形態では、劣ったユーザへの情報は両方のアンテナで同じであるが、しかし送信機と受信機の両方に知られる回転を受ける。
いくつかのブロックOFDM方式では、該劣った受信機への複数のシンボルは、高電力を有する。このようないくつかの実施形態では、それらの信号の位置で情報が伝達される。
様々な実施形態では、残っているシンボルは優れたユーザへの送信に使用される。異なる情報は該2つのアンテナから送信されることができ、または時々送信される。
以上、OFDMシステムに関連して説明してきたが、様々な実施形態の複数の方法および複数の装置は、多くの非OFDMおよび/または非セルラシステムを含む広範囲の通信システムに適用可能である。
様々な実施形態において、本明細書に記載されたノードは、1つまたはそれより多くの方法に対応する複数のステップ、例えば位置符号化変調を使用する信号の生成、使用する変換の選択、選択された変換の実施、複数の信号の重ね合わせ、ユーザチャネル状態の関数としてのスケジューリングなど、を実行するために1つまたはそれより多くのモジュールを使用して実施された。いくつかの実施形態では、様々な特徴がモジュールを使用して実施される。そのようなモジュールは、ソフトウェア、ハードウェア、またはソフトウェアとハードウェアとの組み合わせを使用して実施することができる。上記方法または方法ステップの多くは、例えば1つまたはそれより多くのノードで、上記方法のすべてまたは部分を実施するために、例えば追加のハードウェアを備えた、あるいは追加のハードウェアを備えていない汎用コンピュータ等の、機械を制御するために、例えば、フロッピー(登録商標)ディスク、RAM等の、メモリデバイス等の、機械可読媒体に含まれるソフトウェアのような複数の機械実行可能な命令を使用して実施することができる。したがって、とりわけ、様々な実施形態は、機械、例えばプロセッサおよび関連付けられたハードウェアに、上記の(複数の)方法の1つまたはそれより多くのステップのうちの1つまたはそれより多くを実行させる複数の機械実行可能な命令を含む機械可読媒体に向けられている。
上記方法および装置に関する多数の追加の変形形態は、上記説明を読むことにより当業者には明らかになろう。このような変形形態は、本願発明の技術的範囲に含まれるものである。様々な実施形態の方法および装置は、様々な実施形態では、CDMA、直交周波数分割多重(OFDM)、および/またはアクセスノードとモバイルノードとの間の無線通信リンクを提供するために使用されることができる様々な他のタイプの通信技術により使用される。いくつかの実施形態では、アクセスノードは、OFDMおよび/またはCDMAを使用してモバイルノードとの通信リンクを確立する(establish)基地局として実施される。様々な実施形態では、モバイルノードは、様々な実施形態の方法を実施するために、ノートブック・コンピュータ、携帯用情報端末(PDAs)、または受信機/送信機回路およびロジックおよび/または複数のルーチンを含む他の複数の携帯(portable)デバイスとして実施される。

Claims (104)

  1. 下記を備える方法:
    第1変換結果信号を生成するために、第1所定変換を第1信号に適用すること、
    前記第1変換結果信号を、複数の時間および周波数送信資源の第1セットと複数のアンテナの所定の組み合わせを使用して送信すること、および
    第2信号を、複数のアンテナの前記所定の組み合わせと複数の時間および周波数送信資源の前記第1セットを使用して送信すること、前記第2信号は、該第1変換結果信号を送信する際に使用された少なくとも1つのアンテナで前記第1変換結果信号より低い電力で送信される。
  2. 前記第1所定変換は、複数のアンテナの前記所定の組み合わせに含まれる少なくとも2つの異なるアンテナのための異なる出力を生成する、請求項1に記載の方法。
  3. 前記第1変換結果信号は、複数の異なるアンテナに対応する複数の異なる部分を含む、請求項1に記載の方法。
  4. 前記所定変換は、複数の異なる変換のセットの多数のうちの1つであり、前記方法は:
    第1所定変換を前記適用することの前に、
    所定の選択方法にしたがって前記第1所定変換を選択すること
    をさらに備える、請求項1に記載の方法。
  5. 前記第1所定変換を適用することは、複数の異なるアンテナに対応する複数の定数を前記第1信号に乗じることを含み、ここにおいて前記複数の異なるアンテナに対応する複数の定数のうちの少なくとも2つは異なる、請求項2に記載の方法。
  6. 前記第1信号は位置変調を使用して情報を通信する、請求項1に記載の方法。
  7. 第2変換結果信号を生成するために、第2所定変換を第3信号に適用すること、および
    前記第2変換結果信号を、複数の時間および周波数送信資源の第2セットと複数のアンテナの前記所定の組み合わせを使用して送信すること、複数の時間および周波数送信資源の前記第2セットは、複数の時間および周波数送信資源の前記第1セットと異なる、をさらに備える、請求項1に記載の方法。
  8. 前記第2変換結果信号は、異なるアンテナ素子に対応する複数の異なる部分を含む、請求項7に記載の方法。
  9. 前記第1および第2所定変換は線形に独立している、請求項7に記載の方法。
  10. 複数の時間および周波数送信資源の前記第2セット上で第4信号を送信すること、
    をさらに備える、請求項9に記載の方法。
  11. 前記第1および第3信号によって通信される情報は、第1ユーザに向けられ、
    前記第2および第4信号によって通信される情報は、第2ユーザに向けられる、請求項10に記載の方法。
  12. 前記第1および第3信号は、複数のユーザの第1セットに向けられ、
    前記第2および第4信号は、複数のユーザの該第1セットのサブセットである複数のユーザの第2セットに向けられる、請求項10に記載の方法。
  13. 複数のユーザの前記第2セットは、前記第2セットのメンバーではない前記第1セット中の該複数のユーザよりも良好なチャネル状態を有する、請求項12に記載の方法。
  14. 前記第2信号中の複数の送信信号と前記第1変換結果信号中の複数の非ヌルの送信シンボルとの間の送信電力差は、少なくとも3dBである、請求項1に記載の方法。
  15. 前記位置変調は、複数の時間および周波数送信資源の該第1セットで利用可能なシンボル送信単位の多くて半分で電力を送信することによって情報を通信する、請求項6に記載の方法。
  16. 前記第1所定変換は、複数の所定の定数の複素乗数値を使用した固定行列乗算である、請求項1に記載の方法。
  17. 複数の時間および周波数資源の前記第1および第2セットは非重複である、請求項7に記載の方法。
  18. 前記第1および第2変換は、それぞれ第1および第2シンボル送信時間期間に送信される第1および第2変換結果信号を生成するために使用され、前記第2シンボル送信時間期間は前記第1シンボル送信時間期間の直ぐ後に続く、請求項7に記載の方法。
  19. 複数の時間および周波数送信資源の前記第1及び第2セットのうちの該セットは、OFDM通信システムにおける複数の時間および周波数資源の複数のセットである、請求項18に記載の方法。
  20. 下記を備える、複数のアンテナ素子を含むアクセスポイントで使用するための装置:
    結合信号を生成するために使用される第1変換結果信号を生成するために、第1信号に第1所定変換を適用するための変換モジュール、
    結合信号を生成するために前記第1変換結果信号を第2信号と結合するための重ね合わせモジュール、前記第2信号は前記第1信号より低い電力レベルである、および
    複数の時間および周波数送信資源の1つのセットで異なるアンテナ素子を使用して前記結合信号の複数の異なる部分の送信を制御するための送信制御モジュール。
  21. 前記低い電力レベルは、複数の非ヌルの信号部分に関する1つの送信単位電力レベルである、請求項20に記載の装置。
  22. 前記変換モジュールは、前記複数のアンテナ素子に含まれる少なくとも2つの異なるアンテナ素子のための異なる出力を生成する、請求項20に記載の装置。
  23. 前記第1送信結果信号は、異なるアンテナ素子に対応する複数の異なる部分を含む、請求項20に記載の装置。
  24. 前記第1所定変換は、複数の異なる変換のセットの多数のうちの1つであり、前記基地局は:
    複数の異なる変換を指定する格納された情報、および
    前記複数の異なる変換から前記第1変換を選択するための選択モジュール、
    をさらに含む、請求項20に記載の装置。
  25. 前記変換モジュールは、異なるアンテナ素子に対応する定数を前記第1信号に乗じ、
    前記異なるアンテナ素子に対応する複数の定数のうちの少なくとも2つは異なる、請求項22に記載の装置。
  26. 下記を更に具備する、請求項20に記載の装置、
    高電力信号生成モジュール、ここにおいて前記高電力信号生成モジュールは下記を含む、
    前記高電力信号を生成する際に使用される位置符号化モジュール、前記高電力信号は位置変調を使用して情報を通信する。
  27. 前記高電力信号生成モジュールは、
    非ヌルの高電力QPSK信号を生成するためのQPSKモジュールをさらに含む、請求項26に記載の装置。
  28. 前記高電力信号生成モジュールは前記第1信号を生成する、請求項26に記載の装置。
  29. 前記変換モジュールは、
    第2変換結果信号を生成するために、第2所定変換を第3信号に適用する、
    ここにおいて、前記送信制御モジュールは、複数の時間および周波数送信資源の第2セットで異なるアンテナ素子を使用して前記第2変換結果の複数の異なる部分の送信を制御し、複数の時間および周波数資源の前記第2セットは複数の時間および周波数資源の前記セットとは異なる、請求項20に記載の装置。
  30. 前記第2変換結果信号は、異なるアンテナ素子に対応する複数の異なる部分を含む、請求項29に記載の装置。
  31. 前記第1および第2所定変換は線形に独立である、請求項29に記載の装置。
  32. 前記変換制御モジュールはまた、複数の時間および周波数資源の前記第2セットを使用して第4信号の送信を制御する、請求項31に記載の装置。
  33. 前記第1および第3信号によって通信された情報は第1ユーザに向けられる、ここにおいて、前記第2および第4信号によって通信された情報は第2ユーザに向けられる、請求項32に記載の装置。
  34. 前記第1および第3信号は複数のユーザの第1セットに向けられる、ここにおいて、前記第2および第4信号は複数のユーザの該第1セットの1つのサブセットである複数のユーザの第2セットに向けられる、請求項32に記載の装置。
  35. 複数のユーザの前記第2セットは、前記第2セットのメンバーでない前記第1セットの前記複数のユーザよりも良好なチャネル状態を有する、請求項34に記載の装置。
  36. 複数の時間および周波数資源の前記セットと複数の時間および周波数資源の第2セットとは非重複である、請求項29に記載の装置。
  37. 前記第1および第2変換は、それぞれ第1および第2シンボル送信時間期間に送信される第1および第2変換結果信号を生成するために使用され、前記第2シンボル送信時間期間は前記第1シンボル送信時間期間の直ぐ後に続く、請求項29に記載の装置。
  38. 複数の時間および周波数送信資源の第1および第2セットのうちの前記セットは、直交周波数分割多重化(OFDM)の複数の時間および周波数資源の複数のセットであり、該基地局は、
    前記送信制御モジュールに応答するOFDM送信機をさらに含む、請求項37に記載の装置。
  39. OFDMの複数の時間および周波数資源の複数のセットは、複数のOFDMトーン シンボルの複数のセットである、請求項38に記載の装置。
  40. 下記を備える、電磁波を放射するための複数の手段を含むアクセスポイントで使用するための装置:
    結合信号を生成するために使用される第1変換結果信号を生成するために第1所定変換を第1信号に適用するための、変換を実施するための手段、
    結合信号を生成するために前記第1変換結果信号を第2信号と結合するための、複数の信号を重ね合わせるための手段、前記第2信号は前記第1信号より低い電力レベルを有する、および
    複数の時間および周波数送信資源のセットで電磁波を放射するための異なる手段を使用して前記結合信号の複数の異なる部分の送信を制御するための、送信を制御するための手段。
  41. 前記低い電力レベルは、複数の非ヌルの信号部分に関する1つの送信単位当たりの電力レベルである、請求項40に記載の装置。
  42. 変換を実施するための前記手段は、電磁波を放射するための前記複数の手段に含まれる電磁波を放射するための少なくとも2つの異なる手段のための複数の異なる出力を生成する、請求項40に記載の装置。
  43. 前記第1変換結果信号は、電磁波を放射するための異なる手段に対応する複数の異なる部分を含む、請求項40に記載の装置。
  44. 前記第1所定変換は、複数の異なる変換のセットの多数のうちの1つであり、前記基地局は:
    複数の異なる変換を指定する格納された情報、および
    前記複数の異なる変換から前記第1変換を選択するための変換を選択するための手段、
    をさらに含む、請求項40に記載の装置。
  45. 変換を実施するための前記手段は、電磁波を放射するための異なる手段に対応する複数の定数を前記第1信号に乗じる、ここにおいて、電磁波を放射するための異なる手段に対応する前記複数の定数のうちの少なくとも2つは異なる、請求項42に記載の装置。
  46. 下記をさらに備える、請求項40に記載の装置、
    高電力信号を生成するための手段、ここにおいて、高電力信号を生成するための前記手段は、下記を含む、
    前記高電力信号を生成する際に使用される位置符号化変調を実行するための手段、前記高電力信号は位置変調を使用して情報を通信する。
  47. 高電力信号を生成するための前記手段は、
    非ヌルの高電力QPSK信号を生成するためにQPSK変調シンボルを生成するための手段
    をさらに備える、請求項46に記載の装置。
  48. 下記を備える方法を実施するように装置を制御するための機械実行可能な命令を含むコンピュータ可読媒体:
    第1変換結果信号を生成するために第1所定変換を第1信号に適用すること、
    複数の時間および周波数送信資源の第1セットと複数のアンテナの所定の組み合わせを使用して前記第1変換結果信号を送信すること、および
    複数のアンテナの前記所定の組み合わせと複数の時間および周波数送信資源の前記第1セットを使用して第2信号を送信すること、前記第2信号は、前記第1変換結果信号を送信する際に使用された少なくとも1つのアンテナ上で前記第1変換結果信号より低い電力で送信される。
  49. 前記第1所定変換は、複数のアンテナの前記所定の組み合わせに含まれる少なくとも2つの異なるアンテナのための複数の異なる出力を生成する、請求項48に記載のコンピュータ可読媒体。
  50. 前記第1変換結果信号は、複数の異なるアンテナに対応する複数の異なる部分を含む、請求項48に記載のコンピュータ可読媒体。
  51. 前記所定変換は、複数の異なる変換のセットの多数のうちの1つであり、前記コンピュータ可読媒体は、下記を行うための複数の機械実行可能な命令をさらに含む、請求項48に記載のコンピュータ可読媒体、
    第1所定変換を適用する前記工程の前に、所定の選択方法にしたがって前記第1所定変換を選択すること。
  52. 下記を行うための複数の機械実行可能な命令をさらに含む、請求項49に記載のコンピュータ可読媒体、
    第1所定変換を適用する前記ステップの一部として複数の異なるアンテナに対応する複数の定数を前記第1信号に乗じること、ここにおいて前記複数の異なるアンテナに対応する前記複数の定数のうちの少なくとも2つは異なる。
  53. 前記第1信号は位置変調を使用して情報を通信する、請求項48に記載のコンピュータ可読媒体。
  54. 下記を備える装置、
    下記を行うように構成されたプロセッサ、
    第1変換結果信号を生成するために第1所定変換を第1信号に適用すること、
    複数の時間および周波数送信資源の第1セットと複数のアンテナの所定の組み合わせを使用して前記第1変換結果信号を送信すること、及び
    複数のアンテナの前記所定の組み合わせと複数の時間および周波数送信資源の前記第1セットを使用して第2信号を送信すること、前記第2信号は前記第1変換結果信号を送信する際に使用された少なくとも1つのアンテナで前記第1変換結果信号より低い電力で送信される。
  55. 前記第1所定変換は、複数のアンテナの前記所定の組み合わせに含まれる少なくとも2つの異なるアンテナのための複数の異なる出力を生成する、請求項54に記載の装置。
  56. 前記第1変換結果信号は、複数の異なるアンテナに対応する複数の異なる部分を含む、請求項54に記載の装置。
  57. 前記所定変換は複数の異なる変換のセットの多数のうちの1つである、ここにおいて前記プロセッサは下記を行うようにさらに構成される、請求項54に記載の装置、
    第1所定変換を適用する前記ステップの前に、所定の選択方法にしたがって前記第1所定変換を選択すること。
  58. 前記プロセッサは下記を行うようにさらに構成される、請求項55に記載の装置、
    第1所定変換を適用する前記ステップの一部として複数の異なるアンテナに対応する複数の定数を前記第1信号に乗じること、ここにおいて前記複数の異なるアンテナに対応する前記複数の定数のうちの少なくとも2つは異なる。
  59. 前記第1信号は位置変調を使用して情報を通信する、請求項54に記載の装置。
  60. 下記を備える、無線端末を動作させる方法:
    複数の時間および周波数資源の同じセットで第1および第2信号を受信すること、
    前記第1信号を復号すること、
    チャネル推定を生成するために前記第1信号を使用してチャネル推定動作を実行すること、および
    前記第2信号に関して復号動作を実行するために前記生成されたチャネル推定を使用すること。
  61. 前記第1信号は位置変調を使用して情報を伝達する、請求項60に記載の方法。
  62. 下記をさらに備える、請求項61に記載の方法、
    複数の時間および周波数資源の追加のセット上で追加の第1信号を受信すること、及び
    ここにおいて、チャネル推定動作を実行することは、前記チャネル推定を生成するために前記第1信号に加えて、前記追加の第1信号を使用することをさらに含む。
  63. 前記追加の第1信号は、前記第1信号を生成するために使用される変換とは異なる変換を使用して生成される、請求項62に記載の方法。
  64. 前記第1信号の前記復号することは第1チャネル推定を使用して実行される、ここにおいて、前記生成されたチャネル推定は第2チャネル推定である、請求項61に記載の方法。
  65. 前記第2チャネル推定は、前記第1チャネル推定が対応する同じチャネルの改善された推定である、請求項64に記載の方法。
  66. 前記第1信号を復号することは、前記第1信号を送信するために使用されたアンテナ組み合わせセットのアプリオリ知識を使用することを含む、請求項61に記載の方法。
  67. 前記第1信号を復号することは、前記第1信号を生成する際に使用された前記アンテナ組み合わせに対応する変換のアプリオリ知識を使用することをさらに含む、請求項66に記載の方法。
  68. 前記無線端末は複数の受信機を含み、
    前記複数の受信機のそれぞれに関して複数の異なるチャネル推定を生成すること
    をさらに備える、請求項66に記載の方法。
  69. 前記第1および第2信号は直交周波数分割多重化(OFDM)信号である、請求項61に記載の方法。
  70. 前記位置変調は、複数の時間および周波数資源の前記セットにおけるエネルギーの配置を使用して情報を通信することを含む、請求項61に記載の方法。
  71. 下記を備える無線端末、
    複数の時間および周波数資源の同じセットで第1および第2信号を受信するための受信機、
    前記第1信号を復号するための第1信号回復モジュール、
    前記第1信号を使用してチャネル推定を生成するためのチャネル推定生成モジュール、および
    前記第2信号に関して復号動作を実行するために前記生成されたチャネル推定を使用して前記第2信号に関して復号動作を実行するための第2信号回復モジュール。
  72. 前記第1信号回復モジュールは、複数の時間および周波数資源の前記セットにおける前記第1信号の高電力変調シンボルの位置を識別するための、および前記識別された高電力変調シンボルの位置により伝達された情報を回復するための位置復号モジュールを含む、請求項71に記載の無線端末。
  73. 前記受信機モジュールは、時間および周波数資源の追加のセットで追加の第1信号を受信し、
    ここにおいて、前記チャネル推定モジュールは前記チャネル推定を生成するために前記第1信号に加えて前記追加の第1信号を使用する、請求項72に記載の無線端末。
  74. 前記第1回復モジュールは、前記第1受信信号を処理するために第1逆変換を使用し、前記第1追加受信信号を処理するために第2逆変換を使用し、前記第1および第2逆変換は異なる、請求項73に記載の無線端末。
  75. 前記第1信号の前記復号することは第1チャネル推定を使用して実行され、ここにおいて、前記生成されたチャネル推定は第2チャネル推定である、請求項72に記載の無線端末。
  76. 前記第2チャネル推定は、前記第1チャネル推定が対応する同じチャネルの改善された推定である、請求項75に記載の無線端末。
  77. 下記をさらに具備する、請求項72に記載の無線端末、
    前記無線端末に情報を送信するために使用される複数の異なるアンテナ組み合わせに関する情報を提供する格納されたアンテナ組み合わせ情報、および
    ここにおいて、前記第1信号を復号することは前記第1信号を復号するために前記格納されたアンテナ組み合わせ情報を使用することを含む。
  78. 下記をさらに具備する、請求項77に記載の無線端末、
    複数の異なる送信機アンテナ組み合わせのために使用される複数の異なる変換を示す格納された変換情報。
  79. 前記無線端末は複数の受信機を含み、前記受信機は前記複数の受信機のうちの1つである、
    ここにおいて、前記チャネル推定モジュールは前記複数の受信機のそれぞれに関して複数の異なるチャネル推定を生成する
    請求項77に記載の無線端末。
  80. 前記第1および第2信号は直交周波数分割多重化(OFDM)信号である、
    ここにおいて、前記受信機はOFDM受信機である
    請求項72に記載の無線端末。
  81. 下記を備える無線端末、
    複数の時間および周波数資源の同じセットで第1および第2信号を受信するための受信機手段、
    前記第1信号を復号するための第1タイプの信号を回復するための手段、
    前記第1信号を使用してチャネル推定を生成するためのチャネル推定手段、および
    前記第2信号に関して復号動作を実行するために前記生成されたチャネル推定を使用して前記第2信号に関して復号動作を実行するための第2タイプの信号を回復するための手段。
  82. 第1タイプの信号を回復するための前記手段は、複数の時間および周波数資源の前記セットにおける前記第1信号の高電力変調シンボルの位置を識別するための、および前記識別された高電力変調シンボルの位置によって伝達された情報を回復するための位置復号を実行するための手段を含む、請求項81に記載の無線端末。
  83. 前記受信機手段は、複数の時間および周波数資源の追加のセット上で追加の第1信号を受信する、
    ここにおいて、前記チャネル推定手段は、前記チャネル推定を生成するために前記第1信号に加えて前記追加の第1信号を使用する、請求項82に記載の無線端末。
  84. 第1タイプの信号を回復するための前記手段は前記受信された第1信号を処理するために第1逆変換を使用し、前記受信された追加の第1信号を処理するために第2逆変換を使用し、前記第1および第2逆変換は異なる、請求項83に記載の無線端末。
  85. 前記第1信号の前記復号することは第1チャネル推定を使用して実行される、ここにおいて、前記生成されたチャネル推定は第2チャネル推定である、請求項82に記載の無線端末。
  86. 前記第2チャネル推定は、前記第1チャネル推定が対応する同じチャネルの改善された推定である、請求項85に記載の無線端末。
  87. 下記をさらに備える、請求項82に記載の無線端末、
    前記無線端末に情報を送信するために使用される複数の異なるアンテナ組み合わせに関する情報を提供するアンテナ組み合わせ情報を格納するための格納手段、
    ここにおいて、前記第1信号を復号することは、前記第1信号を復号するために前記格納されたアンテナ組み合わせ情報を使用することを含む。
  88. 前記格納手段は下記をさらに含む、請求項87に記載の無線端末、
    複数の異なる送信機アンテナ組み合わせのために使用される複数の異なる変換を示す格納された変換情報。
  89. 下記を備える方法を実施するように無線端末を制御するための機械実行可能な命令を含むコンピュータ可読媒体:
    複数の時間および周波数資源の同じセットで第1および第2信号を受信すること、
    前記第1信号を復号すること、
    チャネル推定を生成するために前記第1信号を使用してチャネル推定動作を実行すること、および
    前記第2信号に関して復号動作を実行するために前記生成されたチャネル推定を使用すること。
  90. 前記第1信号は位置変調を使用して情報を伝達する、請求項89に記載のコンピュータ可読媒体。
  91. 下記を行うための複数の機械実行可能な命令をさらに含む、請求項90に記載のコンピュータ可読媒体、
    複数の時間および周波数資源の追加のセットで追加の第1信号を受信すること、及び
    チャネル推定動作を実行する前記ステップの一部として前記チャネル推定を生成するために前記第1信号に加えて、前記追加の第1信号を使用すること。
  92. 前記追加の第1信号は、前記第1信号を生成するために使用される変換とは異なる変換を使用して生成される、請求項91に記載のコンピュータ可読媒体。
  93. 下記を行うための複数の機械実行可能な命令をさらに含む、請求項90に記載のコンピュータ可読媒体、
    第1チャネル推定を使用して前記第1信号の前記復号することを実行すること、ここにおいて、前記生成されたチャネル推定は第2チャネル推定である。
  94. 前記第2チャネル推定は、前記第1チャネル推定が対応する同じチャネルの改善された推定である、請求項93に記載のコンピュータ可読媒体。
  95. 下記を行うための複数の機械実行可能な命令をさらに含む、請求項90に記載のコンピュータ可読媒体、
    前記第1信号の前記復号することの一部として前記第1信号を送信するために使用されたアンテナ組み合わせセットのアプリオリ知識を使用すること。
  96. 下記を行うための複数の機械実行可能な命令をさらに含む、請求項95に記載のコンピュータ可読媒体、
    前記第1信号を復号する前記ステップの一部として、前記第1信号を生成する際に使用された前記アンテナ組み合わせに対応する変換のアプリオリ知識を使用すること。
  97. 下記を備える装置、
    下記を行うように構成されたプロセッサ、
    複数の時間および周波数資源の同じセットで第1および第2信号を受信すること、
    前記第1信号を復号すること、
    チャネル推定を生成するために前記第1信号を使用してチャネル推定動作を実行すること、及び
    前記第2信号に関して復号動作を実行するために前記生成されたチャネル推定を使用すること。
  98. 前記第1信号は位置変調を使用して情報を伝達する、請求項97に記載の装置。
  99. 前記プロセッサは下記を行うようにさらに構成される、請求項98に記載の装置、
    複数の時間および周波数資源の追加のセットで追加の第1信号を受信すること、及び
    チャネル推定動作を実行する前記ステップの一部として前記チャネル推定を生成するために前記第1信号に加えて、前記追加の第1信号を使用すること。
  100. 前記追加の第1信号は、前記第1信号を生成するために使用される変換とは異なる変換を使用して生成される、請求項99に記載の装置。
  101. 前記プロセッサは下記を行うようにさらに構成される、請求項98に記載の装置、
    第1チャネル推定を使用して前記第1信号の前記復号することを実行すること、ここにおいて前記生成されたチャネル推定は第2チャネル推定である。
  102. 前記第2チャネル推定は、前記第1チャネル推定が対応する同じチャネルの改善された推定である、請求項101に記載の装置。
  103. 前記プロセッサは下記を行うようにさらに構成される、請求項98に記載の装置、
    前記第1信号の前記復号することの一部として前記第1信号を送信するために使用されたアンテナ組み合わせセットのアプリオリ知識を使用すること。
  104. 前記プロセッサは下記を行うようにさらに構成される、請求項103に記載の装置、
    前記第1信号を復号するステップの一部として、前記第1信号を生成する際に使用された前記アンテナ組み合わせに対応する変換のアプリオリ知識を使用すること。
JP2010510453A 2007-05-29 2008-05-27 無線通信システム内のエアリンク資源の改善された利用のための方法および装置 Active JP5474771B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US94066007P 2007-05-29 2007-05-29
US60/940,660 2007-05-29
US11/945,720 2007-11-27
US11/945,720 US8213538B2 (en) 2007-05-29 2007-11-27 Methods and apparatus for improved utilization of air link resources in a wireless communications system
PCT/US2008/064889 WO2008150772A1 (en) 2007-05-29 2008-05-27 Methods and apparatus for improved utilization of air link resources in a wireless communications system

Publications (2)

Publication Number Publication Date
JP2010529744A true JP2010529744A (ja) 2010-08-26
JP5474771B2 JP5474771B2 (ja) 2014-04-16

Family

ID=40088171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010510453A Active JP5474771B2 (ja) 2007-05-29 2008-05-27 無線通信システム内のエアリンク資源の改善された利用のための方法および装置

Country Status (13)

Country Link
US (1) US8213538B2 (ja)
EP (1) EP2149217B1 (ja)
JP (1) JP5474771B2 (ja)
KR (1) KR101148404B1 (ja)
CN (2) CN103220118B (ja)
AU (1) AU2008260226B2 (ja)
BR (1) BRPI0811982A2 (ja)
CA (1) CA2681618A1 (ja)
IL (1) IL201100A0 (ja)
MX (1) MX2009011795A (ja)
RU (1) RU2009148784A (ja)
TW (1) TW200910800A (ja)
WO (1) WO2008150772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736959B1 (ko) 2013-05-03 2017-05-17 퀄컴 인코포레이티드 조밀한 무선 환경들에서 주파수 멀티플렉싱된 통신의 채널 세트 할당

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2485446A1 (en) 2009-09-29 2012-08-08 Fujitsu Limited Method and device for adding pilot
CN102014475B (zh) 2010-01-08 2012-01-04 华为技术有限公司 资源映射、码分复用方法及装置
US9084075B2 (en) * 2011-09-15 2015-07-14 Qualcomm Incorporated Tracking management systems and methods
CN102891821B (zh) * 2012-09-13 2015-07-29 北京大学 一种正交频分复用系统及信号处理方法
KR102148651B1 (ko) 2012-09-21 2020-08-27 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 송수신하는 방법 및 이를 위한 장치
KR102330742B1 (ko) * 2013-02-22 2021-11-23 오시아 인크. 집중형 데이터 통신을 위한 방법 및 장치
EP3584968B1 (en) 2013-03-04 2023-09-13 Mitsubishi Electric Corporation Transmission apparatus
US9917716B2 (en) * 2013-03-13 2018-03-13 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, and communication system to insert symbols and cyclic prefix into a block signal
CN104065593A (zh) * 2013-03-18 2014-09-24 中兴通讯股份有限公司 一种物理帧的发送方法及系统
CN105262559A (zh) * 2014-07-15 2016-01-20 中国移动通信集团公司 一种数据发送方法、数据接收方法和相关装置
CN110431890B (zh) * 2017-04-25 2022-03-29 南通朗恒通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN112970233B (zh) * 2018-12-17 2024-06-18 瑞士优北罗股份有限公司 估计通信信道的一个或更多个特征
US20210096217A1 (en) * 2019-09-26 2021-04-01 Apple Inc. Virtual Array MIMO with Elongated Switching

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086086A (ja) * 1999-09-17 2001-03-30 Matsushita Electric Ind Co Ltd 無線送受信装置及び無線通信方法
JP2001128238A (ja) * 1999-10-22 2001-05-11 Ntt Docomo Inc Cdma移動通信システムにおける下りリンクのパイロットチャネルの送信方法およびcdma移動通信システム
JP2004297144A (ja) * 2003-03-25 2004-10-21 Seiko Epson Corp 無線通信システム
WO2006076439A1 (en) * 2005-01-11 2006-07-20 Qualcomm Incorporated Method and apparatus for decoding data in a layered modulation system
JP2006520558A (ja) * 2003-02-19 2006-09-07 フラリオン テクノロジーズ,インコーポレーテッド マルチユーザ通信システムにおける制御重畳コーディング
WO2006096678A1 (en) * 2005-03-08 2006-09-14 Qualcomm Flarion Technologies, Inc. Transmission methods and apparatus combining pulse modulation and hierarchical modulation
WO2007049760A1 (ja) * 2005-10-28 2007-05-03 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置、送信方法、受信方法及び無線通信システム
JP2007180666A (ja) * 2005-12-27 2007-07-12 Sharp Corp 無線送信機、無線受信機、無線通信システム、無線送信方法及び無線受信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513176A (en) 1990-12-07 1996-04-30 Qualcomm Incorporated Dual distributed antenna system
US8593932B2 (en) 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US20070004465A1 (en) * 2005-06-29 2007-01-04 Aris Papasakellariou Pilot Channel Design for Communication Systems
US8139672B2 (en) * 2005-09-23 2012-03-20 Qualcomm Incorporated Method and apparatus for pilot communication in a multi-antenna wireless communication system
US8072943B2 (en) * 2005-12-09 2011-12-06 Samsung Electronics Co., Ltd. Wireless communication system and methodology for communicating via multiple information streams
US8169977B2 (en) * 2006-07-14 2012-05-01 Qualcomm Incorporated Methods and apparatus for characterizing noise in a wireless communications system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086086A (ja) * 1999-09-17 2001-03-30 Matsushita Electric Ind Co Ltd 無線送受信装置及び無線通信方法
JP2001128238A (ja) * 1999-10-22 2001-05-11 Ntt Docomo Inc Cdma移動通信システムにおける下りリンクのパイロットチャネルの送信方法およびcdma移動通信システム
JP2006520558A (ja) * 2003-02-19 2006-09-07 フラリオン テクノロジーズ,インコーポレーテッド マルチユーザ通信システムにおける制御重畳コーディング
JP2004297144A (ja) * 2003-03-25 2004-10-21 Seiko Epson Corp 無線通信システム
WO2006076439A1 (en) * 2005-01-11 2006-07-20 Qualcomm Incorporated Method and apparatus for decoding data in a layered modulation system
WO2006096678A1 (en) * 2005-03-08 2006-09-14 Qualcomm Flarion Technologies, Inc. Transmission methods and apparatus combining pulse modulation and hierarchical modulation
WO2007049760A1 (ja) * 2005-10-28 2007-05-03 Matsushita Electric Industrial Co., Ltd. 送信装置、受信装置、送信方法、受信方法及び無線通信システム
JP2007180666A (ja) * 2005-12-27 2007-07-12 Sharp Corp 無線送信機、無線受信機、無線通信システム、無線送信方法及び無線受信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011046811; Hyung-Tae Kim, et al.: ''Optimal Beamforming for Multicasting Data in CMHP'' Advanced Communication Technology, The 9th International Conference on , 20070212, pp. 2096-2100 *
JPN6011046812; Hui Jin, et al.: ''Superposition by Position'' Information Theory Workshop, 2006. ITW '06 Punta del Este. IEEE , 20060313, pp. 222-226 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101736959B1 (ko) 2013-05-03 2017-05-17 퀄컴 인코포레이티드 조밀한 무선 환경들에서 주파수 멀티플렉싱된 통신의 채널 세트 할당

Also Published As

Publication number Publication date
EP2149217A1 (en) 2010-02-03
US8213538B2 (en) 2012-07-03
CN101682496B (zh) 2013-08-21
JP5474771B2 (ja) 2014-04-16
KR101148404B1 (ko) 2012-05-22
EP2149217B1 (en) 2013-01-09
TW200910800A (en) 2009-03-01
CN103220118A (zh) 2013-07-24
CA2681618A1 (en) 2008-12-11
MX2009011795A (es) 2009-11-18
KR20100023921A (ko) 2010-03-04
AU2008260226A1 (en) 2008-12-11
BRPI0811982A2 (pt) 2014-11-18
CN101682496A (zh) 2010-03-24
RU2009148784A (ru) 2011-07-10
WO2008150772A1 (en) 2008-12-11
CN103220118B (zh) 2016-05-18
IL201100A0 (en) 2010-05-17
AU2008260226B2 (en) 2011-04-28
US20080298494A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP2149217B1 (en) Methods and apparatus for improved utilization of air link resources in a wireless communications system
US10356805B2 (en) Methods and systems for scheduling in a virtual MIMO communication environment
CN101310454B (zh) 用于在多天线无线通信系统中导频通信的方法和设备
JP4869778B2 (ja) 送信装置、受信装置および通信方法
KR101109827B1 (ko) 멀티-안테나 기지국에서의 무선 링크 자원들의 활용
US8548079B2 (en) Transmitter, transmission method, receiver, and reception method
US20060205356A1 (en) Methods and apparatus for antenna control in a wireless terminal
KR20070122587A (ko) 송신 방법 및 수신 방법과 그들을 이용한 무선 장치
US20090190681A1 (en) Space-time/space-frequency coding for multi-site and multi-beam transmission
US20080075185A1 (en) Signal transmission/reception apparatus and method to minimize inter-cell interference in a communication system
JP2004120730A (ja) 通信方法およびそれを用いた送信装置と受信装置
KR20070077008A (ko) 셀룰러 통신 시스템에서 낮은 변조 및 코드율 레벨 사용시전용 파일롯의 전송 방법 및 장치
US8165537B2 (en) Wireless transmitter and wireless transmission method
Haci Non-orthogonal multiple access (NOMA) with asynchronous interference cancellation
JP2012120064A (ja) 無線信号処理方法および無線通信装置
JP2010206284A (ja) 無線通信システム、無線通信方法、通信装置および端末装置
Curtis et al. An efficient algorithm for channel estimation and resource allocation in OFDMA downlink networks
Park et al. Cooperative Communication Newtork with Parallel Spreading Method for MC-CDMA Systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130902

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5474771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250