JP2010287837A - Member for mounting optical semiconductor element, and optical semiconductor device - Google Patents

Member for mounting optical semiconductor element, and optical semiconductor device Download PDF

Info

Publication number
JP2010287837A
JP2010287837A JP2009142273A JP2009142273A JP2010287837A JP 2010287837 A JP2010287837 A JP 2010287837A JP 2009142273 A JP2009142273 A JP 2009142273A JP 2009142273 A JP2009142273 A JP 2009142273A JP 2010287837 A JP2010287837 A JP 2010287837A
Authority
JP
Japan
Prior art keywords
optical semiconductor
light
semiconductor element
resin composition
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009142273A
Other languages
Japanese (ja)
Other versions
JP5665285B2 (en
Inventor
Isato Kotani
勇人 小谷
Naoyuki Urasaki
直之 浦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009142273A priority Critical patent/JP5665285B2/en
Publication of JP2010287837A publication Critical patent/JP2010287837A/en
Application granted granted Critical
Publication of JP5665285B2 publication Critical patent/JP5665285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for mounting an optical semiconductor element for sufficiently reducing light leakage and to provide an optical semiconductor device using the member. <P>SOLUTION: The member for mounting the optical semiconductor element has a recess for mounting a component and at least a part of the recess is composed of a molded article of a light reflecting thermosetting resin composition. In the member for mounting the optical semiconductor element, light reflectance in 460 nm wavelength of a test piece with 0.1 mm thickness which is obtained by pressure molding and post-curing the light reflecting thermosetting resin composition is 90% and more. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は光半導体素子搭載用部材及び光半導体装置に関する。   The present invention relates to an optical semiconductor element mounting member and an optical semiconductor device.

LED(Light Emitting Diode:発光ダイオード)等の光半導体素子と蛍光体とを組み合わせた光半導体装置は、エネルギー効率が高く、寿命が長いことから、屋外用ディスプレイ、携帯液晶バックライト、車載用途に使用され、その需要が拡大しつつある。これに伴いLEDデバイスの高輝度化が進んでおり、素子の発熱量増大によるジャンクション温度の上昇や、直接的な光エネルギーの増大による光半導体装置の劣化を防ぐことが求められている。   An optical semiconductor device combining an optical semiconductor element such as an LED (Light Emitting Diode) and a phosphor is high in energy efficiency and has a long life, so it is used for outdoor displays, portable liquid crystal backlights, and in-vehicle applications. The demand is expanding. As a result, the brightness of LED devices is increasing, and it is required to prevent an increase in junction temperature due to an increase in the amount of heat generated by the element and deterioration of the optical semiconductor device due to a direct increase in light energy.

特許文献1には、可視光から近紫外光領域において高い反射率を有する光反射用熱硬化性樹脂組成物を用いた光半導体素子搭載用部材が開示されている。また、特許文献2には、酸化チタンを充填し白色度を長く維持できる成形用樹脂組成物が開示されている。   Patent Document 1 discloses a member for mounting an optical semiconductor element using a light-reflective thermosetting resin composition having a high reflectance in the visible light to near ultraviolet light region. Patent Document 2 discloses a molding resin composition that can be filled with titanium oxide and can maintain whiteness for a long time.

特開2006−140207号公報JP 2006-140207 A 特開2008−255338号公報JP 2008-255338 A

従来の光反射用熱硬化性樹脂組成物を用いた光半導体素子搭載用部材は、これを小型化する場合、光半導体素子の外周を取り囲むように備えられた光反射用熱硬化性樹脂組成物の硬化物からなる壁面、又は同樹脂組成物の硬化物によって電極間が充填された基板底部を薄厚化し対応している。しかしながら、小型の光半導体装置により高出力の素子を搭載することが可能となり、その結果、壁面や底部の薄厚化に伴い光半導体素子からの発光が一部透過する漏れ光が発生し易くなる。そして、光漏れが発生すると光半導体装置の上面へ放射されるべき光が損失して、光半導体装置としての光取出し効率を低下させてしまう。   When a conventional optical semiconductor element mounting member using a thermosetting resin composition for light reflection is downsized, the thermosetting resin composition for light reflection is provided so as to surround the outer periphery of the optical semiconductor element. The wall surface made of the cured product or the bottom of the substrate filled with the cured product of the resin composition is made thinner. However, it is possible to mount a high-power element by a small optical semiconductor device, and as a result, leakage light that partially transmits light emitted from the optical semiconductor element is easily generated as the wall surface and the bottom are made thinner. When light leakage occurs, light to be emitted to the upper surface of the optical semiconductor device is lost, and the light extraction efficiency as the optical semiconductor device is reduced.

本発明は、上記事情に鑑みてなされたものであり、光漏れを十分に低減した光半導体素子搭載用部材及びこれを用いた光半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a member for mounting an optical semiconductor element in which light leakage is sufficiently reduced and an optical semiconductor device using the same.

上記課題を解決するため、本発明は、部品を搭載するための凹部を有し、凹部の少なくとも一部が、光反射用熱硬化性樹脂組成物の成形体からなる光半導体素子搭載用部材であって、光反射用熱硬化性樹脂組成物を加圧成形しポストキュアして得られる厚み0.1mmのテストピースの波長460nmにおける光反射率が90%以上である光半導体素子搭載用部材を提供する。   In order to solve the above-described problems, the present invention provides an optical semiconductor element mounting member having a recess for mounting a component, and at least a part of the recess is made of a molded product of a thermosetting resin composition for light reflection. An optical semiconductor element mounting member having a light reflectance of 90% or more at a wavelength of 460 nm of a test piece having a thickness of 0.1 mm obtained by pressure-molding and post-curing a thermosetting resin composition for light reflection. provide.

本発明はまた、基板と、当該基板上に設けられた第1の接続端子及び第2の接続端子とを備え、第1の接続端子と第2の接続端子との間に、光反射用熱硬化性樹脂組成物の硬化物からなる層を有し、上記硬化物は、加圧成形しポストキュアして得られる厚み0.1mmのテストピースの波長460nmにおける光反射率が90%以上である光反射用熱硬化性樹脂組成物を用いてなるものである光半導体素子搭載用部材を提供する。   The present invention also includes a substrate and a first connection terminal and a second connection terminal provided on the substrate, and the light reflecting heat is provided between the first connection terminal and the second connection terminal. It has a layer made of a cured product of a curable resin composition, and the cured product has a light reflectance of 90% or more at a wavelength of 460 nm of a test piece having a thickness of 0.1 mm obtained by pressure molding and post-curing. Provided is a member for mounting an optical semiconductor element, which is formed using a thermosetting resin composition for light reflection.

このような光半導体素子搭載用部材によれば、光漏れを十分に低減できるため、遮光性に優れる光半導体装置を作製することができる。   According to such a member for mounting an optical semiconductor element, light leakage can be sufficiently reduced, so that an optical semiconductor device having excellent light shielding properties can be manufactured.

本発明は、上記光半導体素子搭載用部材と、当該光半導体素子搭載用部材に搭載された光半導体素子とを有する光半導体装置を提供する。   The present invention provides an optical semiconductor device having the optical semiconductor element mounting member and an optical semiconductor element mounted on the optical semiconductor element mounting member.

本発明によれば、光漏れを十分に低減した光半導体素子搭載用部材及びこれを用いた光半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical semiconductor element mounting member which reduced light leakage sufficiently, and an optical semiconductor device using the same can be provided.

本発明の光半導体素子搭載用部材の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the member for optical semiconductor element mounting of this invention. 本発明の光半導体素子搭載用部材を製造する工程の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the process of manufacturing the member for optical semiconductor element mounting of this invention. 本発明の光半導体素子搭載用部材に光半導体素子を搭載した状態の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the state which mounted the optical semiconductor element in the member for optical semiconductor element mounting of this invention. 本発明の光半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of an optical semiconductor device of the present invention. 本発明の光半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of an optical semiconductor device of the present invention. 本発明の光半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of an optical semiconductor device of the present invention. 本発明の光半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of an optical semiconductor device of the present invention. 本発明の光半導体装置の一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing an embodiment of an optical semiconductor device of the present invention. 本発明に係る銅張積層板の好適な一実施形態を示す模式断面図である。1 is a schematic cross-sectional view showing a preferred embodiment of a copper-clad laminate according to the present invention. 本発明に係る銅張積層板を用いて作製された光半導体装置の一例を示す模式断面図である。It is a schematic cross section which shows an example of the optical semiconductor device produced using the copper clad laminated board which concerns on this invention. 本発明に係る光半導体装置の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the optical semiconductor device which concerns on this invention.

以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。また、本明細書における「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. In addition, “(meth) acrylate” in the present specification means “acrylate” and “methacrylate” corresponding thereto.

[光半導体素子搭載用部材]
本発明の光半導体素子搭載用部材は、部品を搭載するための凹部を有し、凹部の少なくとも一部が、光反射用熱硬化性樹脂組成物の成形体からなり、光反射用熱硬化性樹脂組成物を加圧成形しポストキュアして得られる厚み0.1mmのテストピースの波長460nmにおける光反射率が90%以上である。ここで、光反射率は、光反射用熱硬化性樹脂組成物中の成分の選定や配合量の最適化により、調整することができる。凹部に搭載される部品としては、LED等の光半導体素子が挙げられる。上記光半導体素子搭載用部材において、凹部が底面及び壁面から構成され、凹部の底面が光半導体素子搭載部(光半導体素子搭載領域)であり、凹部の壁面、すなわち凹部の内周側面の少なくとも一部が光反射用熱硬化性樹脂組成物の成形体からなることが好ましい。図1は、本発明の光半導体素子搭載用部材の一実施形態を示す斜視図である。光半導体素子搭載用部材110は、Ni/Agめっき104が形成された金属配線105(第1の接続端子および第2の接続端子)と、金属配線105(第1の接続端子および第2の接続端子)間に設けられた絶縁性樹脂成形体103’と、リフレクター103とを備え、Ni/Agめっき104が形成された金属配線105及び樹脂成形体103’とリフレクター103とから形成された凹部200を有している。この凹部200の底面は、Ni/Agめっき104が形成された金属配線105及び絶縁性樹脂成形体103’から構成され、凹部200の壁面はリフレクター103から構成されるものである。そして、リフレクター103及び絶縁性樹脂成形体103’が、上記光反射用熱硬化性樹脂組成物を用いてなる。
[Optical semiconductor element mounting member]
The member for mounting an optical semiconductor element of the present invention has a recess for mounting a component, and at least a part of the recess is made of a molded body of a thermosetting resin composition for light reflection, and is thermosetting for light reflection. The light reflectance at a wavelength of 460 nm of a test piece having a thickness of 0.1 mm obtained by pressure-molding and post-curing the resin composition is 90% or more. Here, the light reflectance can be adjusted by selecting the components in the thermosetting resin composition for light reflection and optimizing the blending amount. Examples of the component mounted in the recess include an optical semiconductor element such as an LED. In the optical semiconductor element mounting member, the concave portion is constituted by a bottom surface and a wall surface, and the bottom surface of the concave portion is an optical semiconductor element mounting portion (optical semiconductor element mounting region), and at least one of the wall surface of the concave portion, that is, the inner peripheral side surface of the concave portion. It is preferable that the part is made of a molded body of a thermosetting resin composition for light reflection. FIG. 1 is a perspective view showing an embodiment of a member for mounting an optical semiconductor element of the present invention. The optical semiconductor element mounting member 110 includes a metal wiring 105 (first connection terminal and second connection terminal) on which Ni / Ag plating 104 is formed, and a metal wiring 105 (first connection terminal and second connection terminal). Insulating resin molded body 103 ′ provided between the terminals) and the reflector 103, the metal wiring 105 on which the Ni / Ag plating 104 is formed, and the recess 200 formed from the resin molded body 103 ′ and the reflector 103. have. The bottom surface of the recess 200 is composed of the metal wiring 105 on which the Ni / Ag plating 104 is formed and the insulating resin molded body 103 ′, and the wall surface of the recess 200 is composed of the reflector 103. And reflector 103 and insulating resin molding 103 'use the said thermosetting resin composition for light reflections.

すなわち、光半導体素子搭載用部材110は、底面及び壁面から構成される凹部200を有し、凹部200の底面が光半導体素子の搭載部であり、凹部200の壁面の少なくとも一部が、光反射用熱硬化性樹脂組成物の成形体103からなる光半導体素子搭載用部材であって、ここで、成形体103の少なくとも一部の厚みが0.1mm以下であり、成形体の厚み0.1mmでの波長460nmにおける光反射率が90%以上であることが好ましい。   That is, the optical semiconductor element mounting member 110 has a concave portion 200 composed of a bottom surface and a wall surface, the bottom surface of the concave portion 200 is an optical semiconductor element mounting portion, and at least a part of the wall surface of the concave portion 200 is light reflective. An optical semiconductor element mounting member comprising a molded body 103 of a thermosetting resin composition for use, wherein at least a part of the molded body 103 has a thickness of 0.1 mm or less, and a molded body thickness of 0.1 mm The light reflectance at a wavelength of 460 nm is preferably 90% or more.

本発明の光半導体素子搭載用部材の製造方法は特に限定されないが、例えば、本発明に係る光反射用熱硬化性樹脂組成物を用いたトランスファー成形により製造することができる。図2は、本発明の光半導体素子搭載用部材を製造する工程の一実施形態を示す概略図である。光半導体素子搭載用部材は、例えば、金属箔から打ち抜きやエッチング等の公知の方法により金属配線105を形成し、電気めっきによりNi/Agめっき104を施す工程(図2(a))、次いで、該金属配線105を所定形状の金型151に配置し、金型151の樹脂注入口150から本発明に係る光反射用熱硬化性樹脂組成物を注入し、所定の条件でトランスファー成形する工程(図2(b))、そして、金型151を外す工程(図2(c))を経て製造することができる。このようにして、光半導体素子搭載用部材には、光反射用熱硬化性樹脂組成物の硬化物からなるリフレクター103に周囲を囲まれてなる光半導体素子搭載領域(凹部)200が形成される。また、凹部の底面は、第1の接続端子となる金属配線105及び第2の接続端子となる金属配線105と、これらの間に設けられ光反射用熱硬化性樹脂組成物の硬化物からなる絶縁性樹脂成形体103’とから構成される。なお、上記トランスファー成形の条件としては、金型温度170〜200℃、成形圧力0.5〜20MPaで60〜120秒間、アフターキュア温度120〜180℃で1〜3時間が好ましい。   Although the manufacturing method of the optical semiconductor element mounting member of this invention is not specifically limited, For example, it can manufacture by transfer molding using the thermosetting resin composition for light reflections concerning this invention. FIG. 2 is a schematic view showing an embodiment of a process for producing a member for mounting an optical semiconductor element of the present invention. The optical semiconductor element mounting member is formed by, for example, forming a metal wiring 105 from a metal foil by a known method such as punching or etching, and performing Ni / Ag plating 104 by electroplating (FIG. 2A), A step of placing the metal wiring 105 in a mold 151 having a predetermined shape, injecting the thermosetting resin composition for light reflection according to the present invention from the resin injection port 150 of the mold 151, and performing transfer molding under a predetermined condition ( 2 (b)) and a step of removing the mold 151 (FIG. 2 (c)) can be produced. Thus, an optical semiconductor element mounting region (concave portion) 200 is formed on the optical semiconductor element mounting member. The optical semiconductor element mounting region (concave portion) 200 is surrounded by the reflector 103 made of a cured product of the light-reflective thermosetting resin composition. . The bottom surface of the recess is made of a metal wiring 105 serving as a first connection terminal and a metal wiring 105 serving as a second connection terminal, and a cured product of a light-reflective thermosetting resin composition provided therebetween. Insulating resin molded body 103 ′. The transfer molding is preferably performed at a mold temperature of 170 to 200 ° C., a molding pressure of 0.5 to 20 MPa for 60 to 120 seconds, and an after cure temperature of 120 to 180 ° C. for 1 to 3 hours.

(配線基板)
金属配線105を有する配線基板としては、特に限定されないが、リードフレーム、プリント配線板、フレキシブル配線板及びメタルベース配線板から選ばれる少なくとも1種を使用することができる。
(Wiring board)
Although it does not specifically limit as a wiring board which has the metal wiring 105, At least 1 sort (s) chosen from a lead frame, a printed wiring board, a flexible wiring board, and a metal base wiring board can be used.

リードフレームとしては、銅や42アロイ等からなる基板を用い、公知の手法に従い配線回路を形成したものと用いることができる。基板の表面は、光半導体素子からの光を効率よく反射できるように、例えば、Ni/Au、Ni/Ag、Ni/Pb/フラッシュAu及びNi/Pd等の材料によるめっき処理を施しておくことが好ましい。   As the lead frame, a substrate made of copper, 42 alloy, or the like and a wiring circuit formed according to a known method can be used. The surface of the substrate should be plated with a material such as Ni / Au, Ni / Ag, Ni / Pb / flash Au and Ni / Pd so that light from the optical semiconductor element can be efficiently reflected. Is preferred.

プリント配線板としては、配線回路形成用の銅箔を備えたガラス強化樹脂基板を用い、公知の手法に従って配線回路を形成し、次いでその配線回路上に絶縁用の樹脂を設けたものを使用することができる。ガラス強化樹脂基板に用いられる樹脂及び絶縁用の樹脂には、それぞれ光半導体素子からの光を効率よく反射できるように白色の絶縁樹脂により反射層が形成されていることが好ましい。   As a printed wiring board, a glass reinforced resin substrate provided with a copper foil for forming a wiring circuit is used, a wiring circuit is formed according to a known technique, and then an insulating resin is provided on the wiring circuit. be able to. The resin used for the glass-reinforced resin substrate and the insulating resin preferably have a reflective layer formed of a white insulating resin so that light from the optical semiconductor element can be efficiently reflected.

フレキシブル配線板としては、配線回路形成用の銅箔を備えたポリイミド基板を用い、公知の手法に従って配線回路を形成した後、その配線回路の上に絶縁用の樹脂を設けものを用いることができる。絶縁用の樹脂には、LED素子からの光を効率よく反射できるように白色の絶縁樹脂により反射層が形成されていることが好ましい。   As a flexible wiring board, a polyimide substrate provided with a copper foil for forming a wiring circuit is used, and after a wiring circuit is formed according to a known technique, an insulating resin is provided on the wiring circuit. . The insulating resin preferably has a reflective layer formed of a white insulating resin so that light from the LED element can be efficiently reflected.

メタルベース配線板は、銅やアルミニウムからなる金属基板に絶縁層を形成した後に、公知の手法に従って回路を形成し、さらにその回路上に絶縁用の樹脂を設けたものを用いることができる。絶縁層及び絶縁用の樹脂には、光半導体素子からの光を効率よく反射できるように白色の絶縁樹脂により反射層が形成されていることが好ましい。   As the metal base wiring board, an insulating layer is formed on a metal substrate made of copper or aluminum, a circuit is formed according to a known method, and an insulating resin is further provided on the circuit. The insulating layer and the insulating resin are preferably formed with a reflective layer of a white insulating resin so that light from the optical semiconductor element can be efficiently reflected.

(光反射用熱硬化性樹脂組成物)
本発明に係る光反射用熱硬化性樹脂組成物は、エポキシ樹脂を含む熱硬化性樹脂と、屈折率1.6〜3.0の無機酸化物とを含有し、無機酸化物の配合量が、熱硬化性樹脂100質量部に対して70〜400質量部であることが好ましい。このような組成物は、成形体の光反射率と成形性や耐熱性などその他の特性とのバランスを調整しやすい。
(Thermosetting resin composition for light reflection)
The thermosetting resin composition for light reflection according to the present invention contains a thermosetting resin containing an epoxy resin and an inorganic oxide having a refractive index of 1.6 to 3.0, and the compounding amount of the inorganic oxide is It is preferable that it is 70-400 mass parts with respect to 100 mass parts of thermosetting resins. Such a composition is easy to adjust the balance between the light reflectance of the molded product and other characteristics such as moldability and heat resistance.

<屈折率1.6〜3.0の無機酸化物>
上記無機酸化物の屈折率は、1.6〜3.0であり、1.8〜3.0であることが好ましく、2.0〜3.0であることがより好ましい。屈折率が1.6〜3.0の範囲にある無機酸化物としては、屈折率2.5〜2.7の酸化チタン、屈折率1.9〜2.0の酸化亜鉛、屈折率1.6〜1.8の酸化アルミニウム、屈折率1.7の酸化マグネシウム、屈折率2.4の酸化ジルコニウム、屈折率1.6の水酸化アルミニウム、屈折率1.6の水酸化マグネシウムが挙げられる。これらの中でも、無機酸化物として屈折率のより高い酸化チタンを含むことが好ましい。無機酸化物は、光反射用熱硬化性樹脂組成物中に含有される熱硬化性樹脂の屈折率よりも大きい屈折率を有するものを用いることで、樹脂組成物の硬化物の光反射率を高くすることができ、用いられる熱硬化性樹脂を構成する成分との組合せで適宜選択することができる。ここで、本明細書における屈折率は、波長540nmの光で測定した値である。
<Inorganic oxide having a refractive index of 1.6 to 3.0>
The refractive index of the inorganic oxide is 1.6 to 3.0, preferably 1.8 to 3.0, and more preferably 2.0 to 3.0. Examples of the inorganic oxide having a refractive index in the range of 1.6 to 3.0 include titanium oxide having a refractive index of 2.5 to 2.7, zinc oxide having a refractive index of 1.9 to 2.0, and a refractive index of 1. Examples thereof include aluminum oxide having 6 to 1.8, magnesium oxide having a refractive index of 1.7, zirconium oxide having a refractive index of 2.4, aluminum hydroxide having a refractive index of 1.6, and magnesium hydroxide having a refractive index of 1.6. Among these, it is preferable to include titanium oxide having a higher refractive index as an inorganic oxide. By using an inorganic oxide having a refractive index larger than the refractive index of the thermosetting resin contained in the thermosetting resin composition for light reflection, the light reflectance of the cured product of the resin composition can be increased. It can be made high and can be appropriately selected in combination with a component constituting the thermosetting resin used. Here, the refractive index in this specification is a value measured with light having a wavelength of 540 nm.

上記酸化チタンは、酸化チタン(TiO)としての含有量が80〜97重量%に調整された微小粒子系の酸化チタンをベースに、特定の表面処理剤で表面処理されたものである。酸化チタンの表面処理剤としては、例えば、シリカ、アルミナ、ジルコニア等の金属酸化物;シランカップリング剤、チタンカップリング剤、有機酸、ポリオール、シリコーン等の有機物が挙げられる。シリカ、アルミナ及びジルコニアから選ばれた少なくとも一種、又はシリカ、アルミナ、ジルコニア及び有機物から選ばれた少なくとも一種で表面処理された酸化チタンが好ましい。熱硬化性樹脂との密着性を向上させる観点から、エポキシシラン等のシランカップリング剤を用いてさらに表面を有機処理してもよい。酸化チタンの結晶型としては、屈折率2.7のルチル型、屈折率2.5のアナターゼ型及び屈折率2.6のブルッカイト型がある。酸化チタンの結晶型は特に限定されないが、屈折率及び光吸収特性の観点からルチル型が好ましい。 The titanium oxide is surface-treated with a specific surface treatment agent based on fine particle titanium oxide whose content as titanium oxide (TiO 2 ) is adjusted to 80 to 97% by weight. Examples of the surface treatment agent for titanium oxide include metal oxides such as silica, alumina, and zirconia; and organic substances such as silane coupling agents, titanium coupling agents, organic acids, polyols, and silicones. Titanium oxide surface-treated with at least one selected from silica, alumina and zirconia, or at least one selected from silica, alumina, zirconia and organic substances is preferred. From the viewpoint of improving the adhesion with the thermosetting resin, the surface may be further organically treated using a silane coupling agent such as epoxysilane. As a crystal type of titanium oxide, there are a rutile type having a refractive index of 2.7, an anatase type having a refractive index of 2.5, and a brookite type having a refractive index of 2.6. The crystal type of titanium oxide is not particularly limited, but the rutile type is preferable from the viewpoint of refractive index and light absorption characteristics.

酸化チタンは、市販品を入手して使用することができる。ルチル型酸化チタンとして、例えば、堺化学工業社製の商品名:D−918、FTR−700、石原産業社製の商品名:タイペークCR−50、CR−50−2、CR−60、CR−60−2、CR−63、CR−80、CR−90、CR−90−2、CR−93、CR−95、CR−97、テイカ社製の商品名:JR−403、JR−805、JR−806、JR−701、JR−800、冨士チタン工業社製の商品名:TR−600、TR−700、TR−750、TR−840、TR−900が挙げられる。ここで、酸化チタンは、原料となる天然物を、公知の硫酸法又は塩酸法で製造して得られる。硫酸法又は塩酸法のそれぞれから得られる酸化チタンは、屈折率が同等であるにもかかわらず、製造時に処理液から混入する元素の違いにより、酸化チタンの色、すなわち反射スペクトル特性が異なるものが得られる。通常、塩酸法から得られる酸化チタンは波長460〜800nmの光反射率が高く、硫酸法から得られる酸化チタンは波長460〜800nmの光反射率が前者に劣る。特に本発明の光半導体装置に光反射用熱硬化性樹脂組成物を使用する際、光反射用熱硬化性樹脂組成物に含まれる酸化チタンは波長460〜800nmの光反射率が高い塩酸法で製造されるものを用いることが好ましい。   Titanium oxide can be used by obtaining a commercial product. Examples of the rutile titanium oxide include trade names manufactured by Sakai Chemical Industry Co., Ltd .: D-918, FTR-700, trade names manufactured by Ishihara Sangyo Co., Ltd .: Taipei CR-50, CR-50-2, CR-60, CR- 60-2, CR-63, CR-80, CR-90, CR-90-2, CR-93, CR-95, CR-97, trade names manufactured by Teica: JR-403, JR-805, JR -806, JR-701, JR-800, trade names manufactured by Fuji Titanium Industry Co., Ltd .: TR-600, TR-700, TR-750, TR-840, TR-900. Here, titanium oxide is obtained by producing a natural product as a raw material by a known sulfuric acid method or hydrochloric acid method. Titanium oxide obtained from each of the sulfuric acid method and hydrochloric acid method has different refractive index, but the color of titanium oxide, that is, the reflection spectrum characteristics, is different due to the difference in the elements mixed from the treatment liquid during production. can get. Usually, titanium oxide obtained from the hydrochloric acid method has a high light reflectance at a wavelength of 460 to 800 nm, and titanium oxide obtained from a sulfuric acid method has a light reflectance at a wavelength of 460 to 800 nm inferior to the former. In particular, when the light-reflective thermosetting resin composition is used in the optical semiconductor device of the present invention, titanium oxide contained in the light-reflective thermosetting resin composition is a hydrochloric acid method having a high light reflectance at a wavelength of 460 to 800 nm. It is preferable to use what is manufactured.

無機酸化物の中心粒径は、光反射用熱硬化性樹脂組成物中における分散性の観点から、0.1〜20μmであることが好ましく、0.1〜10μmであることがより好ましく、0.1〜5μmであることが更に好ましい。無機酸化物の中心粒子径を上記の範囲内とすることにより、表面反射率の高い成形品を与える光反射用熱硬化性樹脂組成物を得ることができる。   The central particle diameter of the inorganic oxide is preferably 0.1 to 20 μm, more preferably 0.1 to 10 μm, from the viewpoint of dispersibility in the light-reflective thermosetting resin composition. More preferably, it is 1-5 micrometers. By setting the center particle diameter of the inorganic oxide within the above range, it is possible to obtain a light-reflective thermosetting resin composition that gives a molded product having a high surface reflectance.

無機酸化物の配合量は、熱硬化性樹脂100質量部に対して70〜400質量部であることが好ましく、90質量部以上であることがより好ましく、130質量部以上であることが更に好ましく、130〜380質量部であることが特に好ましい。また、光反射用熱硬化性樹脂組成物をトランスファー成形用として使用する場合には、熱硬化性樹脂100質量部に対して、70〜400質量部であることが好ましく、基板コーティング用として使用する場合には、130〜400質量部であることが好ましい。無機酸化物の配合量を調整することで、樹脂組成物の硬化物の光反射率を調整することができる。無機酸化物の配合量が70質量部未満では、光反射用熱硬化性樹脂組成物から形成される硬化物の光漏れ特性が十分に得られ難い傾向があり、400質量部を超えると光反射用熱硬化性樹脂組成物の成型性が低下する傾向がある。   The blending amount of the inorganic oxide is preferably 70 to 400 parts by mass with respect to 100 parts by mass of the thermosetting resin, more preferably 90 parts by mass or more, and still more preferably 130 parts by mass or more. 130 to 380 parts by mass is particularly preferable. Moreover, when using the thermosetting resin composition for light reflections for transfer molding, it is preferable that it is 70-400 mass parts with respect to 100 mass parts of thermosetting resins, and it uses it for board | substrate coating. In the case, it is preferably 130 to 400 parts by mass. The light reflectance of the cured product of the resin composition can be adjusted by adjusting the blending amount of the inorganic oxide. If the blending amount of the inorganic oxide is less than 70 parts by mass, the light leakage property of the cured product formed from the thermosetting resin composition for light reflection tends to be insufficient, and if it exceeds 400 parts by mass, the light reflection is There exists a tendency for the moldability of the thermosetting resin composition for water to fall.

<熱硬化性樹脂>
(エポキシ樹脂)
エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができる。エポキシ樹脂として、例えば、フェノールノボラック型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂等のフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS及びアルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン及びイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、並びに脂環族エポキシ樹脂が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
<Thermosetting resin>
(Epoxy resin)
As an epoxy resin, what is generally used with the epoxy resin molding material for electronic component sealing can be used. Examples of epoxy resins include epoxidized phenol and aldehyde novolak resins such as phenol novolac type epoxy resin and orthocresol novolak type epoxy resin, diglycidyl such as bisphenol A, bisphenol F, bisphenol S and alkyl-substituted bisphenol. Glycidylamine type epoxy resin obtained by reaction of polyamine such as ether, diaminodiphenylmethane and isocyanuric acid with epichlorohydrin, linear aliphatic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, and alicyclic An epoxy resin is mentioned. These can be used alone or in combination of two or more.

これらのうち、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、及び、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸又は1,4−シクロヘキサンジカルボン酸から誘導されるジカルボン酸ジグリシジルエステルが、比較的着色が少ないことから好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸及びメチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステルも挙げられる。シラン化合物を有機溶媒、有機塩基及び水の存在下に加熱して、加水分解・縮合させることにより製造される、エポキシ基を有するポリオルガノシロキサンも挙げられる。   Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, diglycidyl isocyanurate, triglycidyl isocyanurate, and 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid or A dicarboxylic acid diglycidyl ester derived from 1,4-cyclohexanedicarboxylic acid is preferable because of relatively little coloring. For the same reason, diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable. Examples thereof include glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated. Polyorganosiloxane having an epoxy group produced by heating and hydrolyzing and condensing a silane compound in the presence of an organic solvent, an organic base and water is also included.

エポキシ樹脂は市販品を使用することもできる。例えば、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレートとして、セロキサイド2021、セロキサイド2021A、セロキサイド2021P(以上、ダイセル化学工業社製、商品名)、ERL4221、ERL4221D、ERL4221E(以上、ダウケミカル日本社製、商品名)を入手できる。また、ビス(3,4−エポキシシクロヘキシルメチル)アジペートとして、ERL4299(ダウケミカル日本社製、商品名)、EXA7015(大日本インキ化学工業社製、商品名)を入手できる。更に、1−エポキシエチル−3,4−エポキシシクロヘキサン又はリモネンジエポキシドとして、エピコートYX8000、エピコートYX8034、エピコートYL7170(以上、ジャパンエポキシレジン社製、商品名)、セロキサイド2081、セロキサイド3000、エポリードGT301、エポリードGT401、EHPE3150(以上、ダイセル化学工業社製)を、トリスグリシジルイソシアヌレートであるTEPIC(日産化学製、商品名)を入手可能である。   A commercially available epoxy resin can also be used. For example, as 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, Celoxide 2021, Celoxide 2021A, Celoxide 2021P (above, Daicel Chemical Industries, trade name), ERL 4221, ERL 4221D, ERL 4221E (above Available from Dow Chemical Japan Co., Ltd.). Further, as bis (3,4-epoxycyclohexylmethyl) adipate, ERL4299 (manufactured by Dow Chemical Japan, trade name) and EXA7015 (manufactured by Dainippon Ink & Chemicals, trade name) can be obtained. Further, as 1-epoxyethyl-3,4-epoxycyclohexane or limonene diepoxide, Epicoat YX8000, Epicoat YX8034, Epicoat YL7170 (above, trade name, manufactured by Japan Epoxy Resin Co., Ltd.), Celoxide 2081, Celoxide 3000, Epolide GT301, Epolide GTPIC, EHPE3150 (manufactured by Daicel Chemical Industries, Ltd.), and TEPIC (trade name, manufactured by Nissan Chemical Co., Ltd.) which is trisglycidyl isocyanurate are available.

(硬化剤)
上記光反射用熱硬化性樹脂組成物は、硬化剤を含むことが好ましい。硬化剤としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されている硬化剤を用いることができる。このような硬化剤としては、エポキシ樹脂と反応するものであれば、特に限定されないが、着色の少ないものが好ましく、無色又は淡黄色であることがより好ましい。
(Curing agent)
The light reflecting thermosetting resin composition preferably contains a curing agent. As a hardening | curing agent, the hardening | curing agent generally used with the epoxy resin molding material for electronic component sealing can be used. Such a curing agent is not particularly limited as long as it reacts with an epoxy resin, but is preferably less colored, and more preferably colorless or light yellow.

このような硬化剤として、例えば、酸無水物系硬化剤、イソシアヌル酸誘導体系硬化剤、フェノール系硬化剤が挙げられる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸が挙げられる。イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレートが挙げられる。これらの硬化剤の中では、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸又は1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。上記硬化剤は、1種を単独で又は2種以上を組み合わせてもよい。   Examples of such a curing agent include an acid anhydride curing agent, an isocyanuric acid derivative curing agent, and a phenol curing agent. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Examples include acid, dimethyl glutaric anhydride, diethyl glutaric anhydride, succinic anhydride, methyl hexahydrophthalic anhydride, and methyl tetrahydrophthalic anhydride. Isocyanuric acid derivatives include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) ) Isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate. Among these curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, anhydrous It is preferable to use diethyl glutaric acid or 1,3,5-tris (3-carboxypropyl) isocyanurate. The above curing agents may be used alone or in combination of two or more.

上述の硬化剤は、分子量が100〜400であることが好ましい。また、無水トリメリット酸、無水ピロメリット酸等の芳香環を有する酸無水物よりも、芳香環の不飽和結合のすべてを水素化した酸無水物が好ましい。酸無水物系硬化剤として、ポリイミド樹脂の原料として一般的に知られているような酸無水物を用いてもよい。   The above-mentioned curing agent preferably has a molecular weight of 100 to 400. In addition, acid anhydrides in which all unsaturated bonds of the aromatic ring are hydrogenated are preferable to acid anhydrides having an aromatic ring such as trimellitic anhydride and pyromellitic anhydride. As the acid anhydride curing agent, an acid anhydride generally known as a raw material for polyimide resin may be used.

本発明に係る光反射用熱硬化性樹脂組成物において、硬化剤の配合量は、エポキシ樹脂100質量部に対して、1〜150質量部であることが好ましく、50〜120質量部であることがより好ましい。   In the thermosetting resin composition for light reflection according to the present invention, the blending amount of the curing agent is preferably 1 to 150 parts by mass, and 50 to 120 parts by mass with respect to 100 parts by mass of the epoxy resin. Is more preferable.

また、硬化剤は、エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基との反応可能な硬化剤中の活性基(酸無水物基又は水酸基)が0.5〜0.9当量となるように配合することが好ましく、0.7〜0.8当量となることがより好ましい。上記活性基が0.5当量未満では、熱硬化性樹脂組成物の硬化速度が遅くなると共に、得られる硬化体のガラス転移温度が低くなり、充分な弾性率が得られ難くなる傾向がある。一方、上記活性基が0.9当量を超えると、硬化後の強度が低下する傾向がある。   The curing agent has 0.5 to 0.9 equivalent of an active group (an acid anhydride group or a hydroxyl group) in the curing agent capable of reacting with the epoxy group with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferable to mix | blend so that it may become 0.7-0.8 equivalent. If the said active group is less than 0.5 equivalent, while the cure rate of a thermosetting resin composition will become slow, the glass transition temperature of the hardened | cured material obtained will become low, and there exists a tendency for sufficient elasticity modulus to become difficult to be obtained. On the other hand, when the active group exceeds 0.9 equivalent, the strength after curing tends to decrease.

(硬化促進剤)
上記光反射用熱硬化性樹脂組成物は、硬化反応を促進するために、硬化促進剤を含むことが好ましい。硬化促進剤としては、例えば、アミン化合物、イミダゾール化合物、有機リン化合物、アルカリ金属化合物、アルカリ土類金属化合物、第4級アンモニウム塩が挙げられる。これらの硬化促進剤の中でも、アミン化合物、イミダゾール化合物又は有機リン化合物を用いることが好ましい。アミン化合物としては、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノールが挙げられる。また、イミダゾール化合物として、例えば、2−エチル−4−メチルイミダゾールが挙げられる。更に、有機リン化合物としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレートが挙げられる。これらの硬化促進剤は、1種を単独で又は2種以上を組み合わせて使用してもよい。
(Curing accelerator)
The thermoreflective resin composition for light reflection preferably contains a curing accelerator in order to accelerate the curing reaction. Examples of the curing accelerator include amine compounds, imidazole compounds, organic phosphorus compounds, alkali metal compounds, alkaline earth metal compounds, and quaternary ammonium salts. Among these curing accelerators, it is preferable to use an amine compound, an imidazole compound, or an organic phosphorus compound. Examples of the amine compound include 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, and tri-2,4,6-dimethylaminomethylphenol. Moreover, as an imidazole compound, 2-ethyl-4-methylimidazole is mentioned, for example. Furthermore, examples of the organic phosphorus compound include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra -N-butylphosphonium-tetraphenylborate. These curing accelerators may be used alone or in combination of two or more.

上記硬化促進剤の配合量は、エポキシ樹脂100質量部に対して、0.01〜8質量部であることが好ましく、0.1〜3質量部であることがより好ましい。硬化促進剤の配合量が、0.01質量部未満では、十分な硬化促進効果を得られない場合があり、8質量部を超えると、得られる硬化物に変色が見られる場合がある。   The blending amount of the curing accelerator is preferably 0.01 to 8 parts by mass and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the epoxy resin. When the blending amount of the curing accelerator is less than 0.01 parts by mass, a sufficient curing acceleration effect may not be obtained, and when it exceeds 8 parts by mass, discoloration may be seen in the obtained cured product.

エポキシ樹脂、並びに必要に応じて配合される硬化剤及び硬化促進剤を含む熱硬化性樹脂の屈折率は、通常1.3〜1.6であり、1.4〜1.5のものを用いることが好ましい。   The refractive index of the thermosetting resin containing an epoxy resin and a curing agent and a curing accelerator blended as necessary is usually 1.3 to 1.6, and a refractive index of 1.4 to 1.5 is used. It is preferable.

<空隙部の屈折率が1.0〜1.1である中空粒子>
本実施形態において、光反射用熱硬化性樹脂組成物は、屈折率1.6〜3.0の無機酸化物と共に、空隙部の屈折率が1.0〜1.1である中空粒子を含有することができる。中空粒子を含有することで、光反射率の調整が容易となり、これによって光漏れをより効果的に抑制できる光反射用熱硬化性樹脂組成物を得ることができる。
<Hollow particles having a refractive index of voids of 1.0 to 1.1>
In the present embodiment, the thermosetting resin composition for light reflection contains hollow particles having a refractive index of 1.0 to 1.1 in the void together with an inorganic oxide having a refractive index of 1.6 to 3.0. can do. By containing the hollow particles, the light reflectance can be easily adjusted, and thereby a light-reflective thermosetting resin composition that can more effectively suppress light leakage can be obtained.

中空粒子の空隙部は、真空であってもよく、屈折率1.0〜1.1の媒質で満たされていてもよい。中空粒子は、中空粒子外殻を透過した光が中空粒子内部で反射されるため、空隙部の屈折率は熱硬化性樹脂の屈折率よりも屈折率が低い媒質で満たされていることがより好ましい。このような媒質としては、通常、空気が好ましいが、窒素やアルゴン等の不活性ガスであってもよく、これらの混合気体であってもよい。   The voids of the hollow particles may be in a vacuum or may be filled with a medium having a refractive index of 1.0 to 1.1. In the hollow particles, since the light transmitted through the outer shell of the hollow particles is reflected inside the hollow particles, the refractive index of the void is more preferably filled with a medium having a lower refractive index than that of the thermosetting resin. preferable. As such a medium, air is usually preferable, but it may be an inert gas such as nitrogen or argon, or a mixed gas thereof.

中空粒子は、熱処理や樹脂組成物調製工程で中空粒子が破壊され、空隙部が無くなると光漏れ特性が低下するので、その外殻が耐熱性及び耐圧強度が高い材質から形成されることが好ましい。このような材質としては、無機化合物では、無機ガラス、シリカ、アルミナ等の金属酸化物、炭酸カルシウム、炭酸バリウム、珪酸カルシウム、炭酸ニッケル等の金属塩を好適に用いることができ、具体的には、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラスが挙げられる。有機化合物では、ポリスチレン系樹脂、ポリ(メタ)アクリレート系樹脂及びこれらの架橋体を好適に用いることができる。中空粒子の外殻は、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、架橋スチレン系樹脂、架橋アクリル系樹脂からなる群より選ばれる少なくとも1種の材質から構成されることが好ましい。   The hollow particles are preferably formed of a material having high heat resistance and pressure strength because the hollow particles are destroyed in the heat treatment and the resin composition preparation step, and the light leakage characteristics deteriorate when the voids disappear. . As such a material, as an inorganic compound, a metal oxide such as inorganic glass, silica, and alumina, and a metal salt such as calcium carbonate, barium carbonate, calcium silicate, and nickel carbonate can be suitably used. , Sodium silicate glass, aluminum silicate glass, and sodium borosilicate glass. As the organic compound, a polystyrene resin, a poly (meth) acrylate resin, and a crosslinked product thereof can be suitably used. The outer shell of the hollow particles is preferably composed of at least one material selected from the group consisting of sodium silicate glass, aluminum silicate glass, sodium borosilicate glass, crosslinked styrene resin, and crosslinked acrylic resin.

中空粒子の中心粒径は、0.1〜50μmであることが好ましく、0.1〜30μmであることがより好ましい。中空粒子の中心粒径が0.1μm未満では光反射用熱硬化性樹脂組成物を調製する際に中空粒子の分散が不均一になることがあり、50μmを超えると形成される硬化物の厚みが厚くなり、硬化物の反射率が低下する傾向がある。   The center particle diameter of the hollow particles is preferably 0.1 to 50 μm, and more preferably 0.1 to 30 μm. If the center particle diameter of the hollow particles is less than 0.1 μm, the dispersion of the hollow particles may be non-uniform when preparing the thermosetting resin composition for light reflection, and if it exceeds 50 μm, the thickness of the cured product formed Tends to be thick and the reflectivity of the cured product tends to decrease.

中空粒子の配合量は、熱硬化性樹脂100質量部に対して、20〜85質量部であることが好ましい。光反射用熱硬化性樹脂組成物をトランスファー成形用として使用する場合には、熱硬化性樹脂100質量部に対して、20〜85質量部であることがより好ましく、基板コーティング用として使用する場合には、20〜50質量部であることがより好ましい。   It is preferable that the compounding quantity of a hollow particle is 20-85 mass parts with respect to 100 mass parts of thermosetting resins. When the light-reflective thermosetting resin composition is used for transfer molding, it is more preferably 20 to 85 parts by mass with respect to 100 parts by mass of the thermosetting resin, and the substrate is used for substrate coating. Is more preferably 20 to 50 parts by mass.

(屈折率の測定方法)
本実施形態に係る屈折率は、温度25℃におけるd線(587.562nm、He)の光に対する値を示すものである。屈折率は、臨界角法、プリズムカップリング法、ベッケ法、vブロック法等の原理に従い、種々の屈折計を用いて測定することができる。測定装置としては、分光計、アッベ屈折計、プルリッヒ屈折計、エリプソメーターが挙げられる。屈折率の測定方法は、測定対象物の性状(固体、液体等)に合わせて選択することができる。また、測定対象物が固体である場合には、その形状が薄膜、バルク又は粉体により屈折率の測定方法を選択することができる。例えば、測定対象物が固体の場合、測定対象物を公知の方法で薄膜化してアッベ屈折計又はエリプソメーターを用いて測定することができる。無機酸化物等の白色顔料の屈折率は、白色顔料を構成する成分の形状(バルクや薄膜)における測定値を適用してもよい。白色顔料が粉体である場合には、ベッケ法が用いられる。本明細書において、熱硬化性樹脂の屈折率は、Vブロック法(測定装置:KPR、カルニュー光学製)により、白色顔料の屈折率は、ベッケ法(標準溶液と比較する方法)により測定したものである。なお、中空粒子については、空気や不活性ガスによって空隙部が満たされているため、空隙部の屈折率として、空気又は不活性ガスの屈折率に相当する「1.0〜1.1」の数値を適用することができる。
(Measurement method of refractive index)
The refractive index according to the present embodiment indicates a value for light of d-line (587.562 nm, He) at a temperature of 25 ° C. The refractive index can be measured using various refractometers according to principles such as a critical angle method, a prism coupling method, a Becke method, and a v-block method. Examples of the measuring apparatus include a spectrometer, an Abbe refractometer, a Pullrich refractometer, and an ellipsometer. The method of measuring the refractive index can be selected according to the properties (solid, liquid, etc.) of the measurement object. When the measurement object is a solid, the refractive index measurement method can be selected depending on the shape of the thin film, bulk, or powder. For example, when the measurement object is a solid, the measurement object can be thinned by a known method and measured using an Abbe refractometer or an ellipsometer. As the refractive index of a white pigment such as an inorganic oxide, a measured value in the shape (bulk or thin film) of a component constituting the white pigment may be applied. When the white pigment is powder, the Becke method is used. In the present specification, the refractive index of the thermosetting resin is measured by the V block method (measurement apparatus: KPR, manufactured by Kalnew Optical), and the refractive index of the white pigment is measured by the Becke method (method compared with the standard solution). It is. In addition, about the hollow particle, since the void portion is filled with air or inert gas, the refractive index of the void portion is “1.0 to 1.1” corresponding to the refractive index of air or inert gas. Numerical values can be applied.

<その他の成分>
本発明に係る光反射用熱硬化性樹脂組成物は、成形性を向上させる観点から、無機充填材を更に含んでいてもよい。また、これらを添加する際は、熱硬化性樹脂成分との密着性を向上させる観点から、カップリング剤を添加することができる。
<Other ingredients>
From the viewpoint of improving moldability, the light-reflective thermosetting resin composition according to the present invention may further include an inorganic filler. Moreover, when adding these, a coupling agent can be added from a viewpoint of improving adhesiveness with a thermosetting resin component.

(無機充填材)
無機充填材としては、例えば、シリカ、硫酸バリウム、炭酸マグネシウム、炭酸バリウムが挙げられる。成型性の点から、無機充填剤は、シリカが好ましい。また、無機充填材の中心粒径は、白色顔料とのパッキング性を向上させる観点から、1〜100μmであることが好ましい。
(Inorganic filler)
Examples of the inorganic filler include silica, barium sulfate, magnesium carbonate, and barium carbonate. From the viewpoint of moldability, the inorganic filler is preferably silica. Moreover, it is preferable that the center particle diameter of an inorganic filler is 1-100 micrometers from a viewpoint of improving packing property with a white pigment.

(カップリング剤)
カップリング剤としては、特に限定されないが、例えば、シランカップリング剤及びチタネート系カップリング剤が挙げられる。シランカップリング剤としては、一般にエポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系が挙げられ、任意の添加量で用いることができる。なお、カップリング剤の配合量は、熱硬化性樹脂組成物全体に対して5質量%以下であることが好ましい。
(Coupling agent)
Although it does not specifically limit as a coupling agent, For example, a silane coupling agent and a titanate coupling agent are mentioned. Examples of the silane coupling agent generally include epoxy silane, amino silane, cationic silane, vinyl silane, acryl silane, mercapto silane, and composites thereof, and can be used in any amount. In addition, it is preferable that the compounding quantity of a coupling agent is 5 mass% or less with respect to the whole thermosetting resin composition.

また、本発明に係る光反射用熱硬化性樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン捕捉剤等の添加剤を添加してもよい。   Moreover, you may add additives, such as antioxidant, a mold release agent, and an ion capture agent, to the thermosetting resin composition for light reflections concerning this invention as needed.

[光反射用熱硬化性樹脂組成物の作製方法]
本実施形態の光反射用熱硬化性樹脂組成物は、上述した各種成分を均一に分散混合することで得ることができ、その手段や条件等は特に限定されない。光反射用熱硬化性樹脂組成物を作製する一般的な方法として、各成分をニーダー、ロール、エクストルーダー、らいかい機、自転と公転を組み合わせた遊星式混合機等によって混練する方法を挙げることができる。各成分を混練する際には、分散性を向上する観点から、溶融状態で行うことが好ましい。
[Method for producing thermosetting resin composition for light reflection]
The light-reflective thermosetting resin composition of the present embodiment can be obtained by uniformly dispersing and mixing the various components described above, and means and conditions thereof are not particularly limited. As a general method for producing a thermosetting resin composition for light reflection, a method of kneading each component with a kneader, a roll, an extruder, a raking machine, a planetary mixer that combines rotation and revolution, etc. Can do. When kneading each component, it is preferable to carry out in a molten state from the viewpoint of improving dispersibility.

混練の条件は、各成分の種類や配合量により適宜決定すればよく、例えば、15〜100℃で5〜40分間混練することが好ましく、20〜100℃で10〜30分間混練することがより好ましい。混練温度が15℃未満であると、各成分を混練させ難くなり、分散性も低下する傾向にあり、100℃を超えると、熱硬化性樹脂の高分子量化が進行し、混練時に熱硬化性樹脂が硬化してしまう可能性がある。また、混練時間が5分未満であると、十分な分散効果が得られない可能性がある。混練時間が40分を超えると、熱硬化性樹脂の高分子量化が進行し、熱硬化性樹脂が硬化してしまう可能性がある。   The kneading conditions may be appropriately determined depending on the type and blending amount of each component. For example, kneading is preferably performed at 15 to 100 ° C. for 5 to 40 minutes, and kneading at 20 to 100 ° C. for 10 to 30 minutes is more preferable. preferable. When the kneading temperature is less than 15 ° C., it becomes difficult to knead each component and the dispersibility tends to decrease. When the kneading temperature exceeds 100 ° C., the high molecular weight of the thermosetting resin proceeds, and thermosetting during kneading. The resin may be cured. Further, if the kneading time is less than 5 minutes, a sufficient dispersion effect may not be obtained. If the kneading time exceeds 40 minutes, the thermosetting resin may increase in molecular weight, and the thermosetting resin may be cured.

本実施形態の光反射用熱硬化性樹脂組成物は、熱硬化後の、波長460〜800nmにおける光反射率が90%以上であることが好ましい。上記光反射率が90%未満では、光半導体装置の輝度向上に充分寄与できない傾向があり、より好ましい光反射率は95%以上である。   The light reflecting thermosetting resin composition of the present embodiment preferably has a light reflectance of 90% or more at a wavelength of 460 to 800 nm after thermosetting. If the light reflectance is less than 90%, there is a tendency that it cannot sufficiently contribute to the improvement of the luminance of the optical semiconductor device, and a more preferable light reflectance is 95% or more.

本実施形態の光反射用熱硬化性樹脂組成物は、高い光反射性及び耐熱性を必要とする光半導体素子実装用基板材料、電気絶縁材料、光半導体封止材料、接着材料、塗料材料並びにトランスファー成型用エポキシ樹脂成形材料など様々な用途において有用である。以下トランスファー成型用エポキシ樹脂成形材料として使用する際の例を述べる。   The light-reflective thermosetting resin composition of this embodiment includes a substrate material for mounting an optical semiconductor element that requires high light reflectivity and heat resistance, an electrical insulating material, an optical semiconductor sealing material, an adhesive material, a paint material, and It is useful in various applications such as an epoxy resin molding material for transfer molding. An example when used as an epoxy resin molding material for transfer molding will be described below.

本実施形態の光反射用熱硬化性樹脂組成物は、トランスファー成形時の成形温度が180℃で、90秒間の条件で成形したときに、成形直後30秒以内のショアD硬度、即ち、熱時硬度が80〜95であることが好ましい。熱時硬度が80未満であると、成形体の硬化が阻害されており、金型から成形物を離型する際に成形物がなき別れるなど破壊されてしまう可能性がある。このような成形体の破壊が発生すると光半導体素子搭載用部材を製造する歩留りが低下し、光半導体装置を作製できなくなる。   The thermosetting resin composition for light reflection according to the present embodiment has a Shore D hardness of 30 seconds or less immediately after molding, that is, when it is molded at a molding temperature of 180 ° C. and 90 seconds at the time of transfer molding. The hardness is preferably 80 to 95. When the hot hardness is less than 80, curing of the molded product is hindered, and when the molded product is released from the mold, the molded product may be broken or broken. When such a molded body breaks down, the yield of manufacturing the optical semiconductor element mounting member decreases, and the optical semiconductor device cannot be manufactured.

本実施形態の光反射用熱硬化性樹脂組成物は、成形温度180℃、成形圧力6.9MPa、成形時間60〜120秒の条件でトランスファー成形した時のバリの長さが5mm以下となることが好ましい。バリの長さが5mmを超えると、光半導体素子搭載用部材を作製する際、光半導体素子搭載領域となる開口部(凹部)に樹脂汚れが発生し、光半導体素子を搭載する際の障害となる可能性があり、また、光半導体素子と金属配線とを電気的に接続する際の障害になる可能性がある。半導体装置製造時の作業性の観点から、上記バリ長さは、3mm以下であることがより好ましく、1mm以下であることがさらに好ましい。   The light-reflective thermosetting resin composition of the present embodiment has a burr length of 5 mm or less when transfer molded under conditions of a molding temperature of 180 ° C., a molding pressure of 6.9 MPa, and a molding time of 60 to 120 seconds. Is preferred. If the length of the burr exceeds 5 mm, when manufacturing the optical semiconductor element mounting member, resin contamination occurs in the opening (concave portion) that becomes the optical semiconductor element mounting region, In addition, there is a possibility that it becomes an obstacle when electrically connecting the optical semiconductor element and the metal wiring. From the viewpoint of workability at the time of manufacturing a semiconductor device, the burr length is more preferably 3 mm or less, and further preferably 1 mm or less.

[光半導体装置]
本発明の光半導体装置は、上記光半導体素子搭載用部材と、光半導体素子搭載用部材の凹部内に設けられた光半導体素子と、凹部を充填して光半導体素子を封止する封止樹脂部とを備えるものである。
[Optical semiconductor device]
An optical semiconductor device of the present invention includes the above-described optical semiconductor element mounting member, an optical semiconductor element provided in a recess of the optical semiconductor element mounting member, and a sealing resin that fills the recess and seals the optical semiconductor element Part.

図3は、本発明の光半導体素子搭載用部材110に光半導体素子100を搭載した状態の一実施形態を示す斜視図である。図3に示すように、光半導体素子100は、光半導体素子搭載用部材110の光半導体素子搭載領域(凹部)200の所定位置に搭載され、金属配線105とボンディングワイヤ102により電気的に接続される。図4及び5は、本発明の光半導体装置の一実施形態を示す模式断面図である。図4及び5に示すように、光半導体装置は、光半導体素子搭載用部材110と、光半導体素子搭載用部材110の凹部200内の所定位置に設けられた光半導体素子100と、凹部200を充填して光半導体素子を封止する蛍光体106を含む透明封止樹脂101からなる封止樹脂部とを備えており、光半導体素子100とNi/Agめっき104が形成された金属配線105とがボンディングワイヤ102又ははんだバンプ107により電気的に接続されている。   FIG. 3 is a perspective view showing an embodiment in which the optical semiconductor element 100 is mounted on the optical semiconductor element mounting member 110 of the present invention. As shown in FIG. 3, the optical semiconductor element 100 is mounted at a predetermined position in the optical semiconductor element mounting region (recessed portion) 200 of the optical semiconductor element mounting member 110 and is electrically connected by the metal wiring 105 and the bonding wire 102. The 4 and 5 are schematic cross-sectional views showing an embodiment of the optical semiconductor device of the present invention. As shown in FIGS. 4 and 5, the optical semiconductor device includes an optical semiconductor element mounting member 110, an optical semiconductor element 100 provided at a predetermined position in the concave portion 200 of the optical semiconductor element mounting member 110, and the concave portion 200. A sealing resin portion made of a transparent sealing resin 101 including a phosphor 106 that fills and seals the optical semiconductor element, and the optical semiconductor element 100 and the metal wiring 105 on which the Ni / Ag plating 104 is formed; Are electrically connected by bonding wires 102 or solder bumps 107.

図6もまた、本発明の光半導体装置の一実施形態を示す模式断面図である。図6に示す光半導体装置では、リフレクター303が形成されたリード304上の所定位置にダイボンド材306を介してLED素子300が配置され、LED素子300とリード304とがボンディングワイヤ301により電気的に接続され、蛍光体305を含む透明封止樹脂302によりLED素子300が封止されている。リフレクター303の最薄部は0.1mm以下である。   FIG. 6 is also a schematic cross-sectional view showing an embodiment of the optical semiconductor device of the present invention. In the optical semiconductor device shown in FIG. 6, the LED element 300 is disposed via a die bonding material 306 at a predetermined position on the lead 304 on which the reflector 303 is formed, and the LED element 300 and the lead 304 are electrically connected by the bonding wire 301. The LED element 300 is sealed with a transparent sealing resin 302 that is connected and includes a phosphor 305. The thinnest part of the reflector 303 is 0.1 mm or less.

また、本発明に係る別の形態の光半導体素子搭載用部材では、リフレクター103を備えずに、基板と、当該基板上に設けられた第1の接続端子及び第2の接続端子とを備え、第1の接続端子と第2の接続端子との間に形成された光反射用熱硬化性樹脂組成物の硬化物103’からなる層を有する。   Moreover, in the optical semiconductor element mounting member according to another aspect of the present invention, without including the reflector 103, the substrate, and the first connection terminal and the second connection terminal provided on the substrate are provided. It has the layer which consists of hardened | cured material 103 'of the thermosetting resin composition for light reflections formed between the 1st connection terminal and the 2nd connection terminal.

図7は、本発明の光半導体装置の一実施形態を示す模式断面図である。図7(b)に示す光半導体装置は、図7(a)に示される光半導体素子搭載用部材120を用いて作製されたものである。光半導体素子搭載用部材120は、Ni/Agめっき104された金属配線105と、それからなる開口部に光反射用熱硬化性樹脂組成物からなる硬化物103’とを備えている。ここで、硬化物103’の厚みは0.1mm以下であることが好ましい。図7(b)に示すように、光半導体素子100は、光半導体素子搭載用部材120における金属配線105上の所定位置に搭載され、ボンディングワイヤ102により金属配線105と電気的に接続される。   FIG. 7 is a schematic cross-sectional view showing an embodiment of the optical semiconductor device of the present invention. The optical semiconductor device shown in FIG. 7B is manufactured using the optical semiconductor element mounting member 120 shown in FIG. The optical semiconductor element mounting member 120 includes a metal wiring 105 plated with Ni / Ag 104 and a cured product 103 ′ made of a thermosetting resin composition for light reflection in an opening formed therefrom. Here, the thickness of the cured product 103 ′ is preferably 0.1 mm or less. As shown in FIG. 7B, the optical semiconductor element 100 is mounted at a predetermined position on the metal wiring 105 in the optical semiconductor element mounting member 120 and is electrically connected to the metal wiring 105 by the bonding wire 102.

図8もまた、本発明の光半導体装置の一実施形態を示す模式断面図である。図8(b)に示す光半導体装置は、図8(a)に示される光半導体素子搭載用部材130を用いて作製されたものである。光半導体素子搭載用部材130は、第1の接続端子(金属配線105)と第2の接続端子(金属配線105)とが所定の距離で配置されている基板109上に、光反射用熱硬化性樹脂組成物からなる硬化物103’が積層され、第1の接続端子(金属配線105)と第2の接続端子(金属配線105)との間に硬化物103’を有している。ここで、硬化物103’の厚みは0.1mm以下であることが好ましい。図8(b)に示すように、光半導体素子100は、光半導体素子搭載用部材120の第1の接続端子(金属配線105)上の所定位置に搭載され、ボンディングワイヤ102により第2の接続端子(金属配線105)と電気的に接続される。   FIG. 8 is also a schematic cross-sectional view showing an embodiment of the optical semiconductor device of the present invention. The optical semiconductor device shown in FIG. 8B is manufactured using the optical semiconductor element mounting member 130 shown in FIG. The optical semiconductor element mounting member 130 is light-reflective thermosetting on a substrate 109 on which a first connection terminal (metal wiring 105) and a second connection terminal (metal wiring 105) are arranged at a predetermined distance. A cured product 103 ′ made of a conductive resin composition is laminated, and a cured product 103 ′ is provided between the first connection terminal (metal wiring 105) and the second connection terminal (metal wiring 105). Here, the thickness of the cured product 103 ′ is preferably 0.1 mm or less. As shown in FIG. 8B, the optical semiconductor element 100 is mounted at a predetermined position on the first connection terminal (metal wiring 105) of the optical semiconductor element mounting member 120, and the second connection is made by the bonding wire 102. It is electrically connected to the terminal (metal wiring 105).

図7(b)及び8(b)に示す半導体装置の場合、光半導体素子搭載用部材上に光半導体素子100を搭載し、ボンディングワイヤ102により電気的に接続した後、トランスファー成形又は圧縮成形により蛍光体106を含む透明封止樹脂101からなる封止樹脂部を一括で硬化成形して光半導体素子100の封止を行なった後、ダイシングにより個片化する工程を用いることができる。   In the case of the semiconductor device shown in FIGS. 7B and 8B, after the optical semiconductor element 100 is mounted on the optical semiconductor element mounting member and electrically connected by the bonding wire 102, transfer molding or compression molding is performed. A step of hardening and molding the sealing resin portion made of the transparent sealing resin 101 including the phosphor 106 and sealing the optical semiconductor element 100, and then separating into pieces by dicing can be used.

図7及び8に示す光半導体装置においても、光反射用熱硬化性樹脂組成物の硬化物103’が波長800〜460nmにおける光拡散反射率が90%以上である光反射用熱硬化性樹脂組成物を適用することで、当該装置を小型化した際にも光漏れを抑制することが可能となる。   Also in the optical semiconductor device shown in FIGS. 7 and 8, the cured product 103 ′ of the light reflecting thermosetting resin composition has a light diffuse reflectance of 90% or more at a wavelength of 800 to 460 nm. By applying an object, light leakage can be suppressed even when the device is downsized.

以上、本発明の好適な実施形態について説明したが、本発明はこれに制限されるものではない。例えば、本実施形態に係る光反射用熱硬化性樹脂組成物を光反射コート剤として用いることができる。この実施形態として、銅張積層板、光半導体素子搭載用部材及び光半導体素子について説明する。   As mentioned above, although preferred embodiment of this invention was described, this invention is not restrict | limited to this. For example, the thermosetting resin composition for light reflection according to the present embodiment can be used as a light reflection coating agent. As this embodiment, a copper clad laminate, an optical semiconductor element mounting member, and an optical semiconductor element will be described.

本発明に係る銅張積層板は、上述の光反射用熱硬化性樹脂組成物を用いて形成された光反射樹脂層と、該光反射樹脂層上に積層された銅箔と、を備えるものである。   A copper clad laminate according to the present invention comprises a light reflecting resin layer formed using the above-described thermosetting resin composition for light reflection, and a copper foil laminated on the light reflecting resin layer. It is.

図9は、本発明に係る銅張積層板の好適な一実施形態を示す模式断面図である。図9に示すように、銅張積層板400は、基材401と、該基材401上に積層された光反射樹脂層402と、該光反射樹脂層402上に積層された銅箔403と、を備えている。ここで、光反射樹脂層402は、上述の光反射用熱硬化性樹脂組成物を用いて形成されている。   FIG. 9 is a schematic cross-sectional view showing a preferred embodiment of a copper-clad laminate according to the present invention. As shown in FIG. 9, a copper clad laminate 400 includes a base material 401, a light reflecting resin layer 402 laminated on the base material 401, and a copper foil 403 laminated on the light reflecting resin layer 402. It is equipped with. Here, the light reflecting resin layer 402 is formed using the above-described thermosetting resin composition for light reflection.

基材401としては、銅張積層板に用いられる基材を特に制限なく用いることができるが、例えば、エポキシ樹脂積層板等の樹脂積層板、光半導体搭載用基板などが挙げられる。   As the base material 401, a base material used for a copper-clad laminate can be used without particular limitation, and examples thereof include a resin laminate such as an epoxy resin laminate and an optical semiconductor mounting substrate.

銅張積層板400は、例えば、光反射用熱硬化性樹脂組成物を基材401表面に塗布し、銅箔403を重ね、加熱加圧硬化して上記樹脂組成物からなる光反射層402を形成することにより作製することができる。   For example, the copper-clad laminate 400 is obtained by applying a light-reflective thermosetting resin composition to the surface of the base material 401, stacking a copper foil 403, and curing by heating and pressing to form a light-reflecting layer 402 made of the resin composition. It can be manufactured by forming.

上記樹脂組成物の基板401への塗布方法としては、例えば、印刷法、ダイコート法、カーテンコート法、スプレーコート法、ロールコート法等の塗布方法を用いることができる。このとき、光反射用熱硬化性樹脂組成物には、塗布が容易となるように溶媒を含有させることができる。なお、溶媒を用いる場合、上述した各成分の配合割合で樹脂組成物全量を基準としたものについては、溶媒を除いたものを全量として設定することが好ましい。   As a method for applying the resin composition to the substrate 401, for example, a coating method such as a printing method, a die coating method, a curtain coating method, a spray coating method, or a roll coating method can be used. At this time, the light-reflective thermosetting resin composition can contain a solvent so as to facilitate application. In addition, when using a solvent, about the thing based on the resin composition whole quantity by the mixture ratio of each component mentioned above, it is preferable to set what remove | excluded the solvent as a whole quantity.

加熱加圧の条件としては、特に限定されないが、例えば、130〜180℃、0.5〜4MPa、30〜600分間の条件で加熱加圧を行うことが好ましい。   The heating and pressing conditions are not particularly limited, but for example, it is preferable to perform heating and pressing under conditions of 130 to 180 ° C., 0.5 to 4 MPa, and 30 to 600 minutes.

上記本発明に係る銅張積層板を使用し、LED実装用等の光学部材用のプリント配線板を作製することができる。なお、図9に示した銅張積層板400は、基材401の片面に光反射樹脂層402及び銅箔403を積層したものであるが、本発明に係る銅張積層板は、基材401の両面に光反射層402及び銅箔403をそれぞれ積層したものであってもよい。また、図9に示した銅張積層板400は、基材401上に光反射層402及び銅箔403を積層したものであるが、本発明に係る銅張積層板は、基材401を用いることなく、光反射樹脂層402及び銅箔403のみで構成されていてもよい。この場合、光反射樹脂層402が基材としての役割をはたすこととなる。この場合、例えば、ガラスクロス等に本実施形態に係る光反射用熱硬化性樹脂組成物を含浸させ、硬化させたものを光反射樹脂層402とすることができる。   Using the copper-clad laminate according to the present invention, a printed wiring board for an optical member such as for LED mounting can be produced. Note that the copper clad laminate 400 shown in FIG. 9 is obtained by laminating the light reflecting resin layer 402 and the copper foil 403 on one surface of the base 401. However, the copper clad laminate according to the present invention is the base 401 The light reflection layer 402 and the copper foil 403 may be laminated on both sides. In addition, the copper clad laminate 400 shown in FIG. 9 is obtained by laminating the light reflecting layer 402 and the copper foil 403 on the base 401. The copper clad laminate according to the present invention uses the base 401. Instead, it may be composed only of the light reflecting resin layer 402 and the copper foil 403. In this case, the light reflecting resin layer 402 plays a role as a base material. In this case, for example, a light-reflecting resin layer 402 can be obtained by impregnating a glass cloth or the like with the thermosetting resin composition for light reflection according to the present embodiment and curing it.

図10は、本発明に係る銅張積層板を用いて作製された光半導体装置の一例を示す模式断面図である。図10に示すように、光半導体装置500は、光半導体素子410と、該光半導体素子410が封止されるように設けられた透明な封止樹脂404とを備える表面実装型の発光ダイオードである。光半導体装置500において、半導体素子410は、接着層408を介して銅箔403に接着されており、ワイヤー409により銅箔403と電気的に接続されている。   FIG. 10 is a schematic cross-sectional view showing an example of an optical semiconductor device manufactured using the copper-clad laminate according to the present invention. As shown in FIG. 10, the optical semiconductor device 500 is a surface-mount type light emitting diode including an optical semiconductor element 410 and a transparent sealing resin 404 provided so as to seal the optical semiconductor element 410. is there. In the optical semiconductor device 500, the semiconductor element 410 is bonded to the copper foil 403 through the adhesive layer 408, and is electrically connected to the copper foil 403 by a wire 409.

更に、本発明に係る光半導体素子搭載用部材の他の実施形態として、上述の光反射用熱硬化性樹脂組成物を用いて、基材上の複数の導体部材(接続端子)間に形成された光反射層を備える光半導体素子搭載用部材が挙げられる。また、本発明に係る光半導体装置の他の実施形態は、上記の光半導体素子搭載用部材に光半導体素子を搭載してなるものである。   Furthermore, as another embodiment of the member for mounting an optical semiconductor element according to the present invention, it is formed between a plurality of conductor members (connection terminals) on a substrate using the above-described thermosetting resin composition for light reflection. An optical semiconductor element mounting member having a light reflecting layer is also included. In another embodiment of the optical semiconductor device according to the present invention, the optical semiconductor element is mounted on the optical semiconductor element mounting member.

図11は、本発明に係る光半導体装置の好適な一実施形態を示す模式断面図である。図11に示すように、光半導体装置600は、基材601と、該該基材601の表面に形成された複数の導体部材602と、複数の導体部材(接続端子)602間に形成された、本実施形態に係る光反射用熱硬化性樹脂組成物からなる光反射層603と、を備える光半導体素子搭載用部材に、光半導体素子610が搭載され、該光半導体素子610が封止されるように透明な封止樹脂604が設けられた、表面実装型の発光ダイオードである。光半導体装置600において、光半導体素子610は、接着層608を介して導体部材602に接着されており、ワイヤー609により導体部材602と電気的に接続されている。   FIG. 11 is a schematic cross-sectional view showing a preferred embodiment of an optical semiconductor device according to the present invention. As shown in FIG. 11, the optical semiconductor device 600 is formed between a base material 601, a plurality of conductor members 602 formed on the surface of the base material 601, and a plurality of conductor members (connection terminals) 602. The optical semiconductor element 610 is mounted on the optical semiconductor element mounting member including the light reflecting layer 603 made of the thermosetting resin composition for light reflection according to the present embodiment, and the optical semiconductor element 610 is sealed. Thus, a surface-mount type light emitting diode provided with a transparent sealing resin 604 is provided. In the optical semiconductor device 600, the optical semiconductor element 610 is bonded to the conductor member 602 through the adhesive layer 608, and is electrically connected to the conductor member 602 through a wire 609.

基材601としては、光半導体素子搭載用部材に用いられる基材を特に制限なく用いることができるが、例えば、エポキシ樹脂積層板等の樹脂積層板などが挙げられる。   As the substrate 601, a substrate used for an optical semiconductor element mounting member can be used without particular limitation, and examples thereof include a resin laminate such as an epoxy resin laminate.

導体部材602は、接続端子として機能するものであり、例えば、銅箔をフォトエッチングする方法等、公知の方法により形成することができる。   The conductor member 602 functions as a connection terminal, and can be formed by a known method such as a method of photoetching a copper foil.

光半導体素子搭載用部材は、上記光反射用熱硬化性樹脂組成物を基材601上の複数の導体部材602間に塗布し、加熱硬化して光反射用熱硬化性樹脂組成物からなる光反射層603を形成することにより作製することができる。   The optical semiconductor element mounting member is a light composed of the light reflecting thermosetting resin composition by applying the light reflecting thermosetting resin composition between the plurality of conductor members 602 on the substrate 601 and heat curing. It can be manufactured by forming the reflective layer 603.

本実施形態に係る光反射用熱硬化性樹脂組成物の基板601への塗布方法としては、例えば、印刷法、ダイコート法、カーテンコート法、スプレーコート法、ロールコート法等の塗布方法を用いることができる。このとき、光反射用熱硬化性樹脂組成物には、塗布が容易となるように溶媒を含有させることができる。なお、溶媒を用いる場合、上述した各成分の配合割合で樹脂組成物全量を基準としたものについては、溶媒を除いたものを全量として設定することが好ましい。   As a method for applying the light-reflective thermosetting resin composition according to this embodiment to the substrate 601, for example, a printing method, a die coating method, a curtain coating method, a spray coating method, a roll coating method, or the like is used. Can do. At this time, the light-reflective thermosetting resin composition can contain a solvent so as to facilitate application. In addition, when using a solvent, about the thing based on the resin composition whole quantity by the mixture ratio of each component mentioned above, it is preferable to set what remove | excluded the solvent as a whole quantity.

光反射用熱硬化性樹脂組成物の塗膜を加熱硬化する際の加熱条件としては、特に限定されないが、例えば、130〜180℃、30〜600分間の条件で加熱を行うことが好ましい。   Although it does not specifically limit as heating conditions at the time of heat-hardening the coating film of the thermosetting resin composition for light reflections, For example, it is preferable to heat on 130-180 degreeC and the conditions for 30 to 600 minutes.

その後、導体部材602表面に余分に付着した樹脂成分は、バフ研磨等により除去し、導体部材602からなる回路を露出させ、光半導体素子搭載用部材とする。   Thereafter, the resin component adhering excessively to the surface of the conductor member 602 is removed by buffing or the like to expose the circuit formed of the conductor member 602, thereby forming an optical semiconductor element mounting member.

また、白色樹脂層603と導体部材602との密着性を確保するために、導体部材602に対して酸化還元処理やCZ処理(メック株式会社製)等の粗化処理を行なうことも好ましい。   In order to ensure the adhesion between the white resin layer 603 and the conductor member 602, it is also preferable to subject the conductor member 602 to a roughening treatment such as oxidation-reduction treatment or CZ treatment (manufactured by MEC Co., Ltd.).

以上、本発明の好適な実施形態について説明したが、本発明はこれに制限されるものではない。   As mentioned above, although preferred embodiment of this invention was described, this invention is not restrict | limited to this.

以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

<光反射用熱硬化性樹脂組成物の作製>
(実施例1〜11、比較例1〜6)
表1及び2に示した配合比(質量部)に従い、各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより40℃で15分溶融混練し、冷却、粉砕を行い、実施例及び比較例の光反射用熱硬化性樹脂組成物を作製した。
<Preparation of thermosetting resin composition for light reflection>
(Examples 1-11, Comparative Examples 1-6)
In accordance with the blending ratio (parts by mass) shown in Tables 1 and 2, each component was blended and sufficiently kneaded with a mixer, then melt-kneaded with a mixing roll at 40 ° C. for 15 minutes, cooled and pulverized. The thermosetting resin composition for light reflection of an example was produced.

<光反射用熱硬化性樹脂組成物の評価>
得られた光反射用熱硬化性樹脂組成物を180℃のホットプレート上で加圧成形し、150℃で2時間ポストキュアして、厚み0.1mm±0.05mmのテストピースを作製し、下記の評価を行った。評価結果を表1及び2に示す。
<Evaluation of thermosetting resin composition for light reflection>
The thermosetting resin composition for light reflection obtained was pressure-molded on a hot plate at 180 ° C., post-cured at 150 ° C. for 2 hours, and a test piece having a thickness of 0.1 mm ± 0.05 mm was produced. The following evaluation was performed. The evaluation results are shown in Tables 1 and 2.

(光反射率の測定)
積分球型分光光度計V−750型(日本分光株式会社製、商品名)を用いて、波長460nmにおける上記テストピースの初期光学反射率(光反射率)を測定した。
(Measurement of light reflectance)
The initial optical reflectivity (light reflectivity) of the test piece at a wavelength of 460 nm was measured using an integrating sphere spectrophotometer V-750 type (trade name, manufactured by JASCO Corporation).

(漏れ光測定)
波長460nmに波長ピークを有する発光素子を搭載し、これを取り囲むように反射枠が備えられた表面実装型光半導体装置を光源として用い、表面実装型光半導体装置に対向するようにCCDカメラを設置し、発光素子からの配光分布を撮影して輝度が最も高い領域を数値化した。この状態で、表面実装型光半導体装置に100mAの電流を流した際の輝度は、250000cd/mであり、これを光源の輝度とした。
(Leakage light measurement)
A light-emitting element having a wavelength peak at a wavelength of 460 nm is mounted, and a surface mount type optical semiconductor device provided with a reflection frame so as to surround it is used as a light source, and a CCD camera is installed so as to face the surface mount type optical semiconductor device Then, the distribution of light distribution from the light emitting elements was photographed and the region with the highest luminance was digitized. In this state, the luminance when a current of 100 mA was passed through the surface-mounted optical semiconductor device was 250,000 cd / m 2 , which was used as the luminance of the light source.

表面実装型光半導体装置とCCDカメラとを遮る位置に発光素子からの距離が1mmとなるように上記テストピースを設置し、100mAの電流を流した際の光源からの光がテストピースを透過してくる光の配光分布を撮影し輝度が最も高い領域を数値化し漏れ光の値とし、漏れ光低減率の対光源比を評価した。   The test piece is placed at a position where the surface mount type optical semiconductor device and the CCD camera are blocked so that the distance from the light emitting element is 1 mm, and light from the light source when a current of 100 mA is passed through the test piece. The distribution of the incoming light was photographed, and the area with the highest luminance was digitized to obtain the leakage light value, and the ratio of the leakage light reduction ratio to the light source was evaluated.

Figure 2010287837
Figure 2010287837

Figure 2010287837
Figure 2010287837

表1及び2中、*1〜11は以下の通りである。
*1:トリスグリシジルイソシアヌレート(エポキシ当量100、日産化学社製、商品名:TEPIC−S)
*2:メチルヘキサヒドロ無水フタル酸(日立化成工業社製)
*3:ヘキサヒドロ無水フタル酸(和光純薬工業社製)
*4:テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート(日本化学工業社製、商品名:PX−4ET)
*5:トリメトキシエポキシシラン(東レダウコーニング社製、商品名:A−187)
*6:溶融シリカ(電気化学工業社製、商品名:FB−950)
*7:溶融シリカ(電気化学工業社製、商品名:FB−301)
*8:溶融シリカ(アドマテックス社製、商品名:SO−25R)
*9:酸化チタン(堺化学工業社製、商品名:FTR−700)
*10:酸化亜鉛(堺化学工業社製、商品名:STR−100C−LP)
*11:中空粒子(住友3M社製、商品名:S60−HS)
In Tables 1 and 2, * 1 to 11 are as follows.
* 1: Trisglycidyl isocyanurate (epoxy equivalent 100, manufactured by Nissan Chemical Co., Ltd., trade name: TEPIC-S)
* 2: Methylhexahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd.)
* 3: Hexahydrophthalic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.)
* 4: Tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate (made by Nippon Chemical Industry Co., Ltd., trade name: PX-4ET)
* 5: Trimethoxyepoxysilane (manufactured by Toray Dow Corning, trade name: A-187)
* 6: Fused silica (manufactured by Denki Kagaku Kogyo, trade name: FB-950)
* 7: Fused silica (trade name: FB-301, manufactured by Denki Kagaku Kogyo Co., Ltd.)
* 8: Fused silica (manufactured by Admatechs, trade name: SO-25R)
* 9: Titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name: FTR-700)
* 10: Zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd., trade name: STR-100C-LP)
* 11: Hollow particles (manufactured by Sumitomo 3M, trade name: S60-HS)

表1及び表2に示したように、実施例1〜11で得られた光反射用熱硬化性樹脂組成物は、いずれも0.1mmの薄い厚みの場合であっても、光反射率が高く、光漏れが少ない。これに対して、比較例1〜5で得られた光反射用熱硬化性樹脂組成物は、光漏れが著しい。特に中空粒子だけを使用した比較例6では、十分な光漏れ抑制効果が得られないことが確認された。また、酸化チタンと中空粒子とを組み合わせた実施例3では、実施例5に比べ光漏れ抑制効果がより高いことが確認された。   As shown in Tables 1 and 2, the light-reflective thermosetting resin compositions obtained in Examples 1 to 11 had a light reflectance even when the thickness was 0.1 mm. High and less light leakage. In contrast, the light-reflective thermosetting resin compositions obtained in Comparative Examples 1 to 5 have significant light leakage. In particular, in Comparative Example 6 using only hollow particles, it was confirmed that a sufficient light leakage suppressing effect could not be obtained. Moreover, in Example 3 which combined the titanium oxide and the hollow particle, it was confirmed that the light leakage suppression effect is higher than Example 5.

本発明によれば、光漏れを十分に低減できる硬化物を形成可能な光反射用熱硬化性樹脂組成物を用いることで、光取り出し効率を向上させた光半導体素子搭載用部材及び光半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical semiconductor element mounting member and optical semiconductor device which improved the light extraction efficiency by using the light-reflective thermosetting resin composition which can form the hardened | cured material which can fully reduce light leakage Can be provided.

<光半導体装置の作製>
実施例3で得られた光反射用熱硬化性樹脂組成物を用いて図1に示す光半導体搭載用基板110を作製した。まず、光半導体素子搭載領域200となる金属配線105として表面をAgめっきした0.25mm厚みの銅製リードフレームを用い、陰極及び陽極はそれぞれ一対ずつのパターンとして設計した。次いで、トランスファー成形機としてMTEXマツムラ社製「ATOM−FX」を用い、トランスファー成形時に公知のモールドアレイパッケージ方式でリードフレーム基板上に一括成形を行った。一括成形で得られた光半導体搭載用基板110上に光半導体素子100を搭載し、光半導体素子100と金属配線105とをボンディングワイヤ102により電気的に接続し、透明封止樹脂101で封止する工程を経た後、ダイシングして個片化し図5に示す光半導体装置を得た。なお、トランスファー成形時の金型のキャビティの大きさについては、ダイシング工程で個片化した後の光半導体搭載用基板110の凹部側壁最薄部が0.1mm、光半導体装置の外形1.5mm×1.5mm、厚み0.6mmとなるように設計した。
<Fabrication of optical semiconductor device>
An optical semiconductor mounting substrate 110 shown in FIG. 1 was produced using the light-reflecting thermosetting resin composition obtained in Example 3. First, a 0.25 mm-thick copper lead frame whose surface was Ag-plated was used as the metal wiring 105 to be the optical semiconductor element mounting region 200, and the cathode and anode were designed as a pair of patterns. Next, “ATOM-FX” manufactured by MTEX Matsumura Co., Ltd. was used as a transfer molding machine, and batch molding was performed on a lead frame substrate by a known mold array package method at the time of transfer molding. The optical semiconductor element 100 is mounted on the optical semiconductor mounting substrate 110 obtained by batch molding, and the optical semiconductor element 100 and the metal wiring 105 are electrically connected by the bonding wire 102 and sealed with the transparent sealing resin 101. After passing through the process, the optical semiconductor device shown in FIG. 5 was obtained by dicing into individual pieces. In addition, regarding the size of the cavity of the mold at the time of transfer molding, the thinnest concave portion side wall portion of the optical semiconductor mounting substrate 110 after being separated into pieces in the dicing process is 0.1 mm, and the outer shape of the optical semiconductor device is 1.5 mm. It was designed to be × 1.5 mm and thickness 0.6 mm.

得られた光半導体装置は、電流を投入することにより良好に点灯し。側壁部の光漏れは目視で確認されず、光漏れが十分に抑制されていることが確認された。   The obtained optical semiconductor device is well lit by supplying current. It was confirmed that the light leakage of the side wall portion was not visually confirmed and the light leakage was sufficiently suppressed.

100…光半導体素子、101…透明封止樹脂、102…ボンディングワイヤ、103…光反射用熱硬化性樹脂組成物の硬化物(リフレクター)、103’…光反射用熱硬化性樹脂組成物の硬化物(絶縁性樹脂成形体)、104…Ni/Agめっき、105…金属配線、106…蛍光体、107…はんだバンプ、109…基板、110,120,130…光半導体素子搭載用部材、150…樹脂注入口、151…金型、200…光半導体素子搭載領域、300…LED素子、301…ワイヤボンド、302…透明封止樹脂、303…リフレクター、304…リード、305…蛍光体、306…ダイボンド材、400…銅張積層板、401…基材、402…光反射樹脂層、403…銅箔、404…封止樹脂、408…接着層、409…ワイヤー、410…光半導体素子、500,600…光半導体装置、601…基材、602…導体部材、603…光反射樹脂層、604…封止樹脂、608…接着層、609…ワイヤー、610…光半導体素子。
DESCRIPTION OF SYMBOLS 100 ... Optical semiconductor element, 101 ... Transparent sealing resin, 102 ... Bonding wire, 103 ... Hardened | cured material (reflector) of the thermosetting resin composition for light reflection, 103 '... Curing of the thermosetting resin composition for light reflection Material (insulating resin molding), 104 ... Ni / Ag plating, 105 ... metal wiring, 106 ... phosphor, 107 ... solder bump, 109 ... substrate, 110, 120, 130 ... optical semiconductor element mounting member, 150 ... Resin injection port, 151 ... mold, 200 ... optical semiconductor element mounting area, 300 ... LED element, 301 ... wire bond, 302 ... transparent sealing resin, 303 ... reflector, 304 ... lead, 305 ... phosphor, 306 ... die bond Material: 400 ... Copper-clad laminate, 401 ... Base material, 402 ... Light reflecting resin layer, 403 ... Copper foil, 404 ... Sealing resin, 408 ... Adhesive layer, 409 ... Wire, DESCRIPTION OF SYMBOLS 410 ... Optical semiconductor element, 500,600 ... Optical semiconductor device, 601 ... Base material, 602 ... Conductive member, 603 ... Light reflection resin layer, 604 ... Sealing resin, 608 ... Adhesion layer, 609 ... Wire, 610 ... Optical semiconductor element.

Claims (3)

部品を搭載するための凹部を有し、前記凹部の少なくとも一部が、光反射用熱硬化性樹脂組成物の成形体からなる光半導体素子搭載用部材であって、
前記光反射用熱硬化性樹脂組成物を加圧成形しポストキュアして得られる厚み0.1mmのテストピースの波長460nmにおける光反射率が90%以上である、光半導体素子搭載用部材。
A member for mounting a component, wherein at least part of the recess is a member for mounting an optical semiconductor element made of a molded body of a thermosetting resin composition for light reflection,
A member for mounting an optical semiconductor element, wherein a light reflectance at a wavelength of 460 nm of a test piece having a thickness of 0.1 mm obtained by pressure molding and post-curing the thermosetting resin composition for light reflection is 90% or more.
基板と、当該基板上に設けられた第1の接続端子及び第2の接続端子とを備え、
前記第1の接続端子と前記第2の接続端子との間に、光反射用熱硬化性樹脂組成物の硬化物からなる層を有し、
前記硬化物は、加圧成形しポストキュアして得られる厚み0.1mmのテストピースの波長460nmにおける光反射率が90%以上である光反射用熱硬化性樹脂組成物を用いてなるものである、光半導体素子搭載用部材。
A board, and a first connection terminal and a second connection terminal provided on the board,
Between the first connection terminal and the second connection terminal, has a layer made of a cured product of a light-reflective thermosetting resin composition,
The cured product is formed by using a thermosetting resin composition for light reflection in which a 0.1 mm thick test piece obtained by pressure molding and post-curing has a light reflectance of 90% or more at a wavelength of 460 nm. An optical semiconductor element mounting member.
請求項1又は2記載の光半導体素子搭載用部材と、当該光半導体素子搭載用部材に搭載された光半導体素子と、を有する、光半導体装置。
An optical semiconductor device comprising: the optical semiconductor element mounting member according to claim 1; and an optical semiconductor element mounted on the optical semiconductor element mounting member.
JP2009142273A 2009-06-15 2009-06-15 Optical semiconductor element mounting member and optical semiconductor device Active JP5665285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142273A JP5665285B2 (en) 2009-06-15 2009-06-15 Optical semiconductor element mounting member and optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142273A JP5665285B2 (en) 2009-06-15 2009-06-15 Optical semiconductor element mounting member and optical semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013116934A Division JP2013168684A (en) 2013-06-03 2013-06-03 Member for mounting optical semiconductor element, and optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2010287837A true JP2010287837A (en) 2010-12-24
JP5665285B2 JP5665285B2 (en) 2015-02-04

Family

ID=43543294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142273A Active JP5665285B2 (en) 2009-06-15 2009-06-15 Optical semiconductor element mounting member and optical semiconductor device

Country Status (1)

Country Link
JP (1) JP5665285B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086369A1 (en) 2010-12-24 2012-06-28 Necエナジーデバイス株式会社 Discharge controller
JP2012227294A (en) * 2011-04-18 2012-11-15 Ibiden Co Ltd Led substrate, light emitting module, manufacturing method of the led substrate, and manufacturing method of the light emitting module
JP2013045786A (en) * 2011-08-22 2013-03-04 Kyocera Corp Light-emitting device
WO2013121708A1 (en) * 2012-02-15 2013-08-22 パナソニック株式会社 Light emitting apparatus and method for manufacturing same
JP2014112604A (en) * 2012-12-05 2014-06-19 Nichia Chem Ind Ltd Light emitting unit
JP2016086059A (en) * 2014-10-24 2016-05-19 日亜化学工業株式会社 Light emitting device, package, and manufacturing methods of light emitting device and package
KR101845800B1 (en) * 2011-09-08 2018-04-05 해성디에스 주식회사 Method for manufacturing led reflector
KR20220055469A (en) 2019-08-28 2022-05-03 쇼와덴코머티리얼즈가부시끼가이샤 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
KR20220055470A (en) 2019-08-28 2022-05-03 쇼와덴코머티리얼즈가부시끼가이샤 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2500623A1 (en) 2011-03-18 2012-09-19 Koninklijke Philips Electronics N.V. Method for providing a reflective coating to a substrate for a light-emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106226A (en) * 2006-09-26 2008-05-08 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor element loading substrate using the same, its manufacturing method and optical semiconductor device
JP2008143981A (en) * 2006-12-07 2008-06-26 Three M Innovative Properties Co Optically reflective resin composition, light-emitting device and optical display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106226A (en) * 2006-09-26 2008-05-08 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor element loading substrate using the same, its manufacturing method and optical semiconductor device
JP2008143981A (en) * 2006-12-07 2008-06-26 Three M Innovative Properties Co Optically reflective resin composition, light-emitting device and optical display

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086369A1 (en) 2010-12-24 2012-06-28 Necエナジーデバイス株式会社 Discharge controller
JP2012227294A (en) * 2011-04-18 2012-11-15 Ibiden Co Ltd Led substrate, light emitting module, manufacturing method of the led substrate, and manufacturing method of the light emitting module
JP2013045786A (en) * 2011-08-22 2013-03-04 Kyocera Corp Light-emitting device
KR101845800B1 (en) * 2011-09-08 2018-04-05 해성디에스 주식회사 Method for manufacturing led reflector
WO2013121708A1 (en) * 2012-02-15 2013-08-22 パナソニック株式会社 Light emitting apparatus and method for manufacturing same
JPWO2013121708A1 (en) * 2012-02-15 2015-05-11 パナソニックIpマネジメント株式会社 Light emitting device and manufacturing method thereof
US9627583B2 (en) 2012-02-15 2017-04-18 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and method for manufacturing the same
JP2014112604A (en) * 2012-12-05 2014-06-19 Nichia Chem Ind Ltd Light emitting unit
JP2016086059A (en) * 2014-10-24 2016-05-19 日亜化学工業株式会社 Light emitting device, package, and manufacturing methods of light emitting device and package
KR20220055469A (en) 2019-08-28 2022-05-03 쇼와덴코머티리얼즈가부시끼가이샤 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
KR20220055470A (en) 2019-08-28 2022-05-03 쇼와덴코머티리얼즈가부시끼가이샤 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device

Also Published As

Publication number Publication date
JP5665285B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5665285B2 (en) Optical semiconductor element mounting member and optical semiconductor device
JP5544739B2 (en) Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate using the same, manufacturing method thereof, and optical semiconductor device
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP5298468B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2007297601A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2008306151A (en) Epoxy resin composition for optical semiconductor, and substrate for loading optical semiconductor element using the same, and optical semiconductor device
JP6133004B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2022075700A (en) Thermosetting resin composition for light reflection, optical semiconductor element mounting substrate and method for producing the same, and optical semiconductor device
JP6191705B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP5831424B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6337996B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2013168684A (en) Member for mounting optical semiconductor element, and optical semiconductor device
JP6209928B2 (en) Optical semiconductor device, substrate for mounting optical semiconductor element, and thermosetting resin composition for light reflection
JP6988234B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and its manufacturing method, and optical semiconductor device
WO2023281922A1 (en) Heat-curable resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
WO2021038771A1 (en) Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
WO2021038772A1 (en) Thermally curable resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
KR20240031218A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor elements, and optical semiconductor device
JP2022053019A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and optical semiconductor device
JP5735378B2 (en) White curable composition for optical semiconductor device, molded article for optical semiconductor device, method for producing molded article for optical semiconductor device, optical semiconductor device, and method for producing optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140212

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350