JP2010286423A - Potential difference measuring method - Google Patents

Potential difference measuring method Download PDF

Info

Publication number
JP2010286423A
JP2010286423A JP2009141796A JP2009141796A JP2010286423A JP 2010286423 A JP2010286423 A JP 2010286423A JP 2009141796 A JP2009141796 A JP 2009141796A JP 2009141796 A JP2009141796 A JP 2009141796A JP 2010286423 A JP2010286423 A JP 2010286423A
Authority
JP
Japan
Prior art keywords
measurement
potential difference
dispensing
stirring
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141796A
Other languages
Japanese (ja)
Inventor
Hisashi Ishige
悠 石毛
Masao Kamahori
政男 釜堀
Tomonori Mimura
智憲 三村
Hiroaki Ishizawa
宏明 石澤
Yasuhisa Shibata
康久 柴田
Kotaro Yamashita
浩太郎 山下
Masafumi Miyake
雅文 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009141796A priority Critical patent/JP2010286423A/en
Publication of JP2010286423A publication Critical patent/JP2010286423A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biosample analyzer and a means capable of measuring at an optional point of time, relative to solution in which a chemical reaction is generated. <P>SOLUTION: Measurement is performed synchronously with reaction start (namely, adding/mixing of reagent solution to/with a dispensed specimen sample) by using a potential difference measuring method as a measuring method, and a concentration of a measuring object in the specimen sample is determined from the acquired potential difference. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,生体試料中,特に血液や尿中の分析対象成分を測定する電位差計測装置およびそれを用いた測定方法に関する。   The present invention relates to a potentiometric device for measuring an analysis target component in a biological sample, particularly blood or urine, and a measurement method using the same.

医療分野における血液,尿等の生体試料の定性・定量分析は,検体試料と試薬を反応させた反応液の吸光度変化を測定する比色法が主に用いられおり,この方式を自動化した生化学自動分析装置で行われている。生化学自動分析装置としては,フロータイプからディスクリートタイプまで様々な機種が開発されている。現在では,検体試料と試薬溶液の反応容器への分注,検体試料と試薬溶液の攪拌,反応溶液の吸光度変化測定等の全ての操作を自動化したディスクリートタイプが主流である(例えば,特許文献1,2)。これらの装置は,比色法を測定原理とするため,大型で高価な光学系が必要であった。比色法で用いられる試薬は,検体試料中の測定対象物と特異的に反応する酵素や化学物質が単独であるいは複数組み合わせて使用されている。例えば,血糖値の測定では,測定対象物質であるグルコースを基質とするヘキソキナーゼを用いて,ATP存在下でグルコースにリン酸を付加し,生成したグルコース−6−リン酸をNADP存在下でグルコース−6−リン酸デヒドロゲナーゼによる脱水素反応の際に生じるNADPHの吸収度の増加により目的のグルコース濃度を得ている。   For the qualitative and quantitative analysis of biological samples such as blood and urine in the medical field, a colorimetric method is mainly used to measure the change in absorbance of the reaction solution obtained by reacting the sample sample with the reagent. It is done with an automatic analyzer. Various types of biochemical automatic analyzers have been developed from flow type to discrete type. At present, the discrete type in which all operations such as dispensing of a sample sample and a reagent solution into a reaction container, stirring of the sample sample and the reagent solution, and measurement of change in absorbance of the reaction solution are automated is the mainstream (for example, Patent Document 1). , 2). Since these instruments use the colorimetric method as a measurement principle, they require a large and expensive optical system. As a reagent used in the colorimetric method, an enzyme or a chemical substance that specifically reacts with an object to be measured in a specimen sample is used alone or in combination. For example, in the measurement of blood glucose level, phosphoric acid is added to glucose in the presence of ATP using hexokinase with the measurement target substance glucose as a substrate, and the resulting glucose-6-phosphate is converted to glucose-- in the presence of NADP. The target glucose concentration is obtained by increasing the absorbability of NADPH generated during the dehydrogenation reaction with 6-phosphate dehydrogenase.

吸光光度法を用いた呈色法で測定対象物の濃度を求める方法としては,通常,エンドポイント法が用いられている。エンドポイント法は,反応開始前の測定値と反応終了後の測定値から測定対象物の濃度を求める方法である。反応開始前の測定値は,検体試料中の測定対象物と反応する試薬成分を除いた試薬(例えば緩衝液)と検体試料との混合溶液を測定した値であり,反応終了後の測定値は,その混合溶液に測定対象物との反応を生じさせる成分を含有する試薬を添加して反応終了後に測定した値である。   The end point method is usually used as a method for obtaining the concentration of the measurement object by the coloration method using the absorptiometry. The end point method is a method for obtaining the concentration of the measurement object from the measured value before the start of the reaction and the measured value after the end of the reaction. The measured value before the start of the reaction is a value obtained by measuring a mixed solution of the reagent sample (for example, a buffer solution) excluding the reagent component that reacts with the measurement target in the sample sample and the measured value after the reaction is completed. , And a value measured after completion of the reaction by adding a reagent containing a component that causes a reaction with the measurement object to the mixed solution.

一方,光学系を必要としない測定法としては,検体試料の濃度を電気化学的に測定する方法がある。本方式は測定原理が電気化学的測定法であり,大型で複雑な装置が不要であり,装置システムが小型になる利点を有している。電気化学的測定法には,酸化還元反応に伴い作用電極に流れる電流値を測定する電流計測法と,化学反応に伴い変化する測定電極の界面電位を測定する電位差計測法がある。   On the other hand, as a measurement method that does not require an optical system, there is a method of electrochemically measuring the concentration of a specimen sample. This method has the advantage that the measurement principle is an electrochemical measurement method, a large and complicated device is unnecessary, and the device system is small. Electrochemical measurement methods include a current measurement method for measuring the current value flowing through the working electrode in accordance with the oxidation-reduction reaction, and a potential difference measurement method for measuring the interface potential of the measurement electrode that changes with the chemical reaction.

電気化学的測定で用いられる試薬は,比色法で用いられる試薬と同様に測定対象物と特異的に反応する酵素や化学物質が単独であるいは複数組み合わせて使用されている。例えば,電流方式を用いた血糖値の測定では,測定対象物質であるグルコースを基質とするグルコースオキシダーゼで酸素あるいはメディエータ存在下でグルコースを酸化することにより,グルコノラクトンと過酸化水素水が生成する。生成した過酸化水素水を電極に流れる電流として測定することにより,測定対象物質であるグルコース濃度を測定する(非特許文献1)。本方式では,酵素を含む反応試薬が予め測定電極上に保持されており,サンプル注入口から導入された検体試料は流路を通り,測定電極表面に達成して,所定の酵素反応が開始する構成になっている。   As reagents used in electrochemical measurement, enzymes and chemical substances that react specifically with a measurement object are used alone or in combination, as are reagents used in colorimetric methods. For example, in the measurement of blood glucose level using the current method, gluconolactone and hydrogen peroxide water are generated by oxidizing glucose in the presence of oxygen or mediator with glucose oxidase using glucose as a substrate as a measurement target substance. . By measuring the generated hydrogen peroxide solution as a current flowing through the electrode, the concentration of glucose as a measurement target substance is measured (Non-Patent Document 1). In this method, a reaction reagent containing an enzyme is held on the measurement electrode in advance, and the specimen sample introduced from the sample inlet passes through the flow path and reaches the measurement electrode surface to start a predetermined enzyme reaction. It is configured.

電位差計測方式では,グルコースオキダーゼによる酸化反応を酸化還元反応のメディエータであるフェリシアン化カリウムとフェロシアン化カリウムの酸化還元電位の変化として測定して,測定対象物質であるグルコース濃度を測定する(特許文献4,5)。電位差計測方式でも,通常,酵素を含む反応試薬が予め測定電極上に保持されており,導入された検体試料が測定電極表面に達成して,所定の酵素反応が開始する構成になっている(特許文献4)。また,測定容器を用いる場合には,酵素等の試薬を含む反応溶液が予め保持された測定容器中に検体試料を注入後の一定時間後の電位差,または検体試料を注入前もしくは注入直後の電位差と一定時間後の電位差との変化量を用いて測定対象物の濃度を求めていた(特許文献5)。
In the potentiometric method, the oxidation reaction by glucose oxidase is measured as a change in the redox potential of potassium ferricyanide and potassium ferrocyanide, which are mediators of the redox reaction, and the concentration of glucose as a measurement target substance is measured (Patent Document 4, Patent Document 4). 5). Even in the potentiometric method, a reaction reagent containing an enzyme is usually held on the measurement electrode in advance, and the introduced specimen sample is achieved on the surface of the measurement electrode, so that a predetermined enzyme reaction is started ( Patent Document 4). When a measurement container is used, a potential difference after a certain time after injecting the specimen sample into the measurement container in which a reaction solution containing a reagent such as an enzyme is previously held, or a potential difference before or just after the specimen sample is injected. The concentration of the measurement object was obtained using the amount of change between the voltage difference and the potential difference after a certain time (Patent Document 5).

特許第2525063号Patent No. 2525063 WO2002/05962WO2002 / 05962 特開2005-345173号公報JP 2005-345173 A 特許第3387926号Patent No. 3387926 特開2008-128803号広報JP 2008-128803 PR

Pure & Appl. Chem., Vol.68, (1996) pp.1837-1841Pure & Appl. Chem., Vol.68, (1996) pp.1837-1841

しかしながら,従来の生化学自動分析装置では,任意の時点で測定を行うことが現実的ではなかった。例えば,吸光度法を用いた装置では,単一の吸光度計測部と複数の測定容器が装置に含まれているため,時間分割して複数容器の吸光度測定を行っていた。そのため,任意の時点で測定を行うこと,複数の測定容器を同時に計測することはできなかった。さらに,通常,吸光度法を用いた装置では,検体と試薬の混合・攪拌を行った後に吸光度の測定を行っていた。混合・攪拌と吸光度計測は通常別の場所で行われていたため,混合・攪拌を行っている最中は吸光度の測定は行えなかった。また,仮に,混合・攪拌と吸光度の測定を同時に行ったとしても,攪拌棒などの攪拌素子や攪拌により生じた気泡が光路をさえぎってしまう恐れがあり,安定な測定を阻害する恐れがあった。   However, with conventional biochemical automatic analyzers, it is not practical to perform measurements at arbitrary points in time. For example, in an apparatus using the absorbance method, a single absorbance measurement unit and a plurality of measurement containers are included in the apparatus, and thus the absorbance measurement of a plurality of containers is performed in time division. For this reason, it was not possible to measure at any point in time and to measure multiple measuring containers at the same time. Furthermore, in an apparatus using the absorbance method, the absorbance is usually measured after mixing and stirring the sample and the reagent. Since mixing / stirring and absorbance measurement were usually performed at different locations, absorbance could not be measured during mixing / stirring. In addition, even if mixing / stirring and absorbance measurement are performed at the same time, a stirrer such as a stirrer or bubbles generated by the stirrer may block the optical path, which may hinder stable measurement. .

電気化学的計測法を用いることで,測定容器ごとに計測部を設けることが容易となる。なぜなら,吸光度計測が光学系を必要とするため吸光度計測装置が大型になるのに比べて,電気化学的計測法は光学系を必要としない電気的測定法であるため計測部を小型にすることができるからである。しかし,電気化学的計測法の一つである電流計測法では電極の表面積に信号強度が依存するため,複数の計測部を設けた際に,計測部間での電極面積のわずかな違いに起因する信号強度の違いを補正する,いわゆるキャリブレーションを行う必要がある。さらに,測定を行うことで電極表面に汚れが付着するなどして電極の実効的な表面積が変化した場合,キャリブレーションをしなおす必要があり,手間がかかってしまう。本発明は,化学反応が生じている溶液に対して,任意の時点で計測を行うことができる生体試料分析装置,手段を提供する。
By using the electrochemical measurement method, it is easy to provide a measurement unit for each measurement container. This is because the absorbance measurement device requires an optical system, and the absorbance measurement device becomes larger, whereas the electrochemical measurement method is an electrical measurement method that does not require an optical system. Because you can. However, in the current measurement method, which is one of the electrochemical measurement methods, the signal intensity depends on the surface area of the electrode. Therefore, when multiple measurement units are installed, it is caused by slight differences in the electrode area between the measurement units. It is necessary to perform so-called calibration to correct the difference in signal strength. Furthermore, if the effective surface area of the electrode changes due to contamination on the electrode surface due to the measurement, it is necessary to recalibrate, which is troublesome. The present invention provides a biological sample analyzer and means capable of measuring a solution in which a chemical reaction occurs at an arbitrary time.

上記課題を解決するために,電位差計測法を用いて,混合・攪拌を行いながら測定を行った。測定容器中に測定に用いる電極を配置し,測定容器内に溶液を分注し,溶液の分注と同期して攪拌と計測を開始した。例えば,測定容器中に予め血清・血漿・全血などの検体試料を分注しておき,さらに測定容器中に第1の反応溶液を分注し,第1の反応溶液の分注と同期して攪拌と電位計測を開始した。第2の反応溶液を用いる場合は,さらに測定容器中に第2の反応溶液を分注し,第2の反応溶液の分注と同期して電位計測を行った。また別の手順として,測定容器中に予め第1の反応溶液を分注しておき,電極を第1の反応溶液に接触させておき,さらに測定容器中に検体試料を分注し,検体試料の分注と同期して攪拌と電位計測を開始した。これらの計測手順においては,攪拌を開始してから測定終了まで攪拌を継続することが望ましいが,攪拌を途中で停止しても測定を行うことはでき,上記課題を解決することはできる。   In order to solve the above problems, the potential difference measurement method was used for measurement while mixing and stirring. An electrode used for measurement was placed in a measurement container, a solution was dispensed into the measurement container, and stirring and measurement were started in synchronization with the dispensing of the solution. For example, a specimen sample such as serum, plasma or whole blood is dispensed in advance in a measurement container, and a first reaction solution is further dispensed in the measurement container, and is synchronized with the dispensing of the first reaction solution. Stirring and potential measurement were started. In the case of using the second reaction solution, the second reaction solution was further dispensed into the measurement container, and the potential was measured in synchronization with the dispensing of the second reaction solution. As another procedure, the first reaction solution is dispensed in advance into the measurement container, the electrode is brought into contact with the first reaction solution, and the specimen sample is further dispensed into the measurement container. In synchronism with dispensing, the stirring and potential measurement were started. In these measurement procedures, it is desirable to continue stirring from the start of stirring until the end of measurement, but the measurement can be performed even if stirring is stopped halfway, and the above-described problems can be solved.

得られた測定値から混合に要する時間や測定値のゆらぎを求め,データベースと比較をし,攪拌が正常に行われたか判定する。必要に応じて得られた測定値に対し逆畳み込み演算を施し,化学反応が一瞬で終わったと仮定した場合の測定値,すなわち伝達関数を求める。求めた伝達関数から混合に要する時間や測定値のゆらぎを求め,攪拌が正常に行われたか判定する。混合に要する時間は,例えば,溶液の分注から最終的な測定値の9割となるまでの時間とする。ゆらぎの大きさは,例えば,溶液の分注後の測定値から極大値と極小値を求め,それらの差分とする。   The time required for mixing and the fluctuation of the measured value are obtained from the measured values, and compared with the database to determine whether the stirring has been performed normally. A deconvolution operation is performed on the measured values obtained as necessary, and a measured value, that is, a transfer function, obtained when the chemical reaction is assumed to be instantaneous, is obtained. From the obtained transfer function, obtain the time required for mixing and the fluctuation of the measured value, and determine whether the agitation was performed normally. The time required for mixing is, for example, the time from dispensing the solution to 90% of the final measured value. For the magnitude of fluctuation, for example, the maximum value and the minimum value are obtained from the measured values after dispensing of the solution, and the difference between them is obtained.

すなわち、本発明は以下を包含する。
(1)測定対象物を含有する試料溶液を測定容器に分注する第1の分注工程と,測定対象物と反応する第1の試薬を含む第1の反応溶液を前記測定容器に分注する第2の分注工程と,前記測定容器中に分注された前記第1の反応溶液を撹拌する撹拌工程と,前記測定容器中に配置された測定電極の界面電位を測定する複数の測定工程とを有し,前記測定工程のうち少なくとも1つは前記第2の分注に同期して開始され,前記攪拌工程は前記第2の分注に同期して開始することを特徴とする電位差測定方法。
(2)前記撹拌工程は,前記測定容器中に分注された前記試料溶液と前記第1の反応溶液との混合溶液を撹拌する工程であることを特徴とする(1)に記載の方法。
(3)前記測定工程のうち少なくとも1つは前記撹拌工程を伴わないことを特徴とする(2)に記載の方法。
(4)前記撹拌工程を続けながら,前記第2の分注工程後に,前記測定対象物と反応する第2の試薬を含む第2の反応溶液を前記測定容器に分注する第3の分注工程を有し,前記測定工程のうち少なくとも1つは前記第3の分注に同期して開始されることを特徴とする(1)に記載の方法。
(5)前記第2の分注工程後に,前記測定対象物と反応する第2の試薬を含む第2の反応溶液を前記測定容器に分注する第3の分注工程と,前記測定容器中に分注された前記第2の反応溶液を撹拌する第2の撹拌工程とを有し,前記測定工程のうち少なくとも1つは前記第3の分注に同期して開始され,前記測定工程のうち少なくとも1つは前記撹拌工程も前記第2の攪拌工程も伴わず,前記第2の攪拌工程は前記第3の分注に同期して開始することを特徴とする(1)に記載の方法。
(6)前記第2の分注工程後に前記第1の分注工程を有し,前記測定工程のうち少なくとも1つは前記第1の分注に同期して開始されることを特徴とする(1)に記載の方法。
(7)前記測定容器中に分注された試料溶液を撹拌する第2の撹拌工程を有し,前記測定工程のうち少なくとも1つは前記撹拌工程も前記第2の攪拌工程も伴わず,前記第2の撹拌工程を前記第1の分注工程に同期して開始することを特徴とする(6)に記載の方法。
(8)前記攪拌工程は前記第2の分注ではなく前記第1の分注に同期して開始することを特徴とする(6)に記載の方法。
(9)前記測定工程のうち少なくとも1つは前記撹拌工程を伴わないことを特徴とする(6)に記載の方法。
(10)前記第1の反応溶液もしくは第2の反応溶液によって生じる反応は,酵素反応または酸化還元反応であることを特徴とする(1)乃至(9)いずれかに記載の方法。
(11)前記測定工程により得られた電位差の時系列データにおいて,前記データの立ち上がりにおける一定時間のデータを標準データと比較し,比較結果を出力する工程を有することを特徴とする(1)乃至(10)いずれかに記載の方法。
(12)前記測定工程により得られた電位差の時系列データにおいて,前記データの極大値と極小値との差異を,標準データと比較し,比較結果を出力する工程を有することを特徴とする(1)乃至(10)いずれかに記載の方法。
(13),前記測定工程により得られた電位差の時系列データにおいて,前記時系列データから伝達関数を導き,前記伝達関数の逆関数を導き,前記逆関数と前記時系列データとの演算により入力関数を求める工程を有することを特徴とする(1)乃至(10)いずれかに記載の方法。
(14)前記入力関数において,前記入力関数の立ち上がりにおける一定時間のデータを標準データと比較し,比較結果を出力する工程を有することを特徴とする(13)に記載の方法。
(15)前記入力関数において,前記入力関数の極大値と極小値との差異を,標準データと比較し,比較結果を出力する工程を有することを特徴とする(13)に記載の方法。
That is, the present invention includes the following.
(1) A first dispensing step of dispensing a sample solution containing a measurement object into a measurement container, and a first reaction solution containing a first reagent that reacts with the measurement object is dispensed into the measurement container. A second dispensing step, a stirring step for stirring the first reaction solution dispensed in the measurement container, and a plurality of measurements for measuring an interface potential of the measurement electrode disposed in the measurement container A potential difference characterized in that at least one of the measurement steps is started in synchronization with the second dispensing, and the stirring step is started in synchronization with the second dispensing. Measuring method.
(2) The method according to (1), wherein the stirring step is a step of stirring a mixed solution of the sample solution and the first reaction solution dispensed in the measurement container.
(3) The method according to (2), wherein at least one of the measurement steps does not involve the stirring step.
(4) Third dispensing for dispensing a second reaction solution containing a second reagent that reacts with the measurement object into the measurement container after the second dispensing step while continuing the stirring step. The method according to (1), wherein at least one of the measurement steps is started in synchronization with the third dispensing.
(5) a third dispensing step of dispensing a second reaction solution containing a second reagent that reacts with the measurement object into the measurement container after the second dispensing step; and in the measurement container A second agitation step of agitating the second reaction solution dispensed into the at least one of the measurement steps, the at least one of the measurement steps being started in synchronization with the third dispensing, At least one of them is not accompanied by the stirring step or the second stirring step, and the second stirring step is started in synchronization with the third dispensing. .
(6) The first dispensing step is included after the second dispensing step, and at least one of the measurement steps is started in synchronization with the first dispensing ( The method according to 1).
(7) having a second stirring step of stirring the sample solution dispensed in the measurement container, wherein at least one of the measurement steps is not accompanied by the stirring step or the second stirring step; The method according to (6), wherein the second stirring step is started in synchronization with the first dispensing step.
(8) The method according to (6), wherein the stirring step is started not in the second dispensing but in synchronization with the first dispensing.
(9) The method according to (6), wherein at least one of the measurement steps does not involve the stirring step.
(10) The method according to any one of (1) to (9), wherein the reaction generated by the first reaction solution or the second reaction solution is an enzyme reaction or an oxidation-reduction reaction.
(11) In the time-series data of the potential difference obtained by the measurement step, the method includes a step of comparing data for a predetermined time at the rising edge of the data with standard data and outputting a comparison result. (10) The method according to any one of the above.
(12) In the time-series data of the potential difference obtained by the measurement step, the difference between the maximum value and the minimum value of the data is compared with standard data, and a comparison result is output ( The method according to any one of 1) to (10).
(13) In the time series data of the potential difference obtained by the measurement step, a transfer function is derived from the time series data, an inverse function of the transfer function is derived, and input by calculation of the inverse function and the time series data The method according to any one of (1) to (10), further including a step of obtaining a function.
(14) The method according to (13), further comprising a step of comparing data for a predetermined time at the rising edge of the input function with standard data in the input function and outputting a comparison result.
(15) The method according to (13), further comprising a step of comparing a difference between the maximum value and the minimum value of the input function with standard data in the input function and outputting a comparison result.

電位差計測では攪拌による測定への影響が小さいため,電位差計測法を用いることで攪拌を行いながら測定を行うことが可能となる。溶液の分注と同期して攪拌と計測を行うことで,これまでは行うことのできなかった試薬や検体を混合した直後から溶液の反応過程を測定でき,精度良い測定ができる。
In the potential difference measurement, the influence on the measurement by the stirring is small, so that the measurement can be performed while stirring by using the potential difference measuring method. By stirring and measuring in synchronization with the dispensing of the solution, the reaction process of the solution can be measured immediately after mixing reagents and specimens that could not be performed so far, and accurate measurement can be performed.

電位差計測装置の一例を示すブロック図。The block diagram which shows an example of an electrical potential difference measuring apparatus. 電位差計測装置の一例を示すブロック図。The block diagram which shows an example of an electrical potential difference measuring apparatus. 電位差計測装置を用いた測定動作の一例を示す図。The figure which shows an example of the measurement operation | movement using an electric potential difference measuring apparatus. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 測定動作の一例を示すフローチャート。The flowchart which shows an example of measurement operation. 異常検出の一例を示す図。The figure which shows an example of abnormality detection. 異常検出の一例を示す図。The figure which shows an example of abnormality detection. 逆演算の一例を示す図。The figure which shows an example of an inverse calculation. 電位差計測装置に使用する測定電極の構造例を示す図。The figure which shows the structural example of the measurement electrode used for an electrical potential difference measuring apparatus. 電位差計測装置のほかの実施例を示すブロック図。The block diagram which shows the other Example of an electrical potential difference measuring apparatus. FETセンサを用いた電位差計測装置に使用する分析素子の構造の一例を示す図。The figure which shows an example of the structure of the analysis element used for the electric potential difference measuring apparatus using a FET sensor. 測定結果の一例を示す図。The figure which shows an example of a measurement result. 測定結果の一例を示す図。The figure which shows an example of a measurement result. 測定結果の一例を示す図。The figure which shows an example of a measurement result. 測定結果の一例を示す図。The figure which shows an example of a measurement result.

以下,図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は,本発明による電位差計測装置の一例を示すブロック図である。本実施例の測定装置は,電位差測定用電極101,参照電極102,攪拌装置103,測定容器104,制御装置105,データ処理装置106,データ表示装置107,検体試料分注装置108,試薬溶液分注装置109,洗浄装置110から構成される。電位差測定用電極101は,金等の貴金属やカーボンからなる電極を用いることができる。また,生体成分測定時の夾雑物の影響を低減のために,電極表面に酸化還元物質を固定化して使用しても良い。酸化還元物質としては,フェロセン,ピリジン,ピリミジン等を使用すれば良い。参照電極102は,測定容器104中の溶液に接触した電位差測定用電極101の表面で起こる平衡反応あるいは化学反応に基づく電位変化を安定に測定するために,基準となる電位を与える。通常は参照電極102としては,飽和塩化カリウムを内部溶液に使用している銀・塩化銀電極,あるいは甘こう(カロメル)電極が用いられるが,測定する試料溶液の組成が一定であったりして必要な測定精度が確保できる場合には,疑似電極として内部溶液を含まない銀・塩化銀電極を使用することもできる。攪拌装置103は測定容器内に分注された溶液の攪拌を行う。攪拌装置103は,回転軸の先端に取り付けられたヘラを溶液内で攪拌するものであっても,測定容器外部の磁石を回転させ溶液内に配置した磁石を回転させるいわゆるマグネチックスターラーであってもよい。円筒形の測定容器を回転させ溶液を攪拌しても良い。電位差測定用電極101と参照電極102を一体化させた一体化電極とし,さらには,一体化電極を回転させて溶液を攪拌しても良い。測定容器104は角セルのような角を有する容器では分注された検体試料,試薬溶液と測定容器104内の溶液との攪拌混合がやり難いので,曲線を有する容器,例えば円筒形の容器が望ましい。制御装置105は,電位差測定用電極と参照電極間の電位測定と,電位差測定用電極,参照電極,攪拌装置,検体試料分注装置,試薬溶液分注装置,洗浄装置の移動および動作の制御を行う。電位差測定用電極101と参照電極102間の電位測定を行う電位測定装置111には,入力インピーダンスが1GΩ以上の電圧計・OPアンプ・FET(Field Effect Transistor)を用いることが望ましい。電位差測定装置111は電位差測定用電極101と一体化してもよい。データ処理装置106は演算装置112,一時記憶装置113,不揮発性記憶装置114を有し,電位差測定装置111で取得した信号を演算し検体試料中の測定対象物濃度を求めたり,異常判定を行ったり,フィッティングを行ったり,逆畳み込み演算を行ったりする。データ表示装置107はデータ処理装置106に接続されていて,各種データの表示を行う。検体試料用分注装置108は,別途準備する検体試料を分取し測定容器104内に分注するのに用いる。試薬溶液分注装置109は,別途準備する試薬溶液を分取し測定容器104内に分注するのに用いる。洗浄装置110は,測定容器104内の測定溶液を排出したり,別途準備する洗浄液を用いて測定容器104を洗浄したりするのに用いる。検体試料用分注装置108,試薬溶液分注装置109,洗浄装置110で液体を分取・分注する機構にはシリンジポンプやペリスタポンプ(チューブポンプ)を使用することができる。   FIG. 1 is a block diagram showing an example of a potential difference measuring apparatus according to the present invention. The measuring apparatus of the present embodiment includes a potential difference measuring electrode 101, a reference electrode 102, a stirring device 103, a measuring container 104, a control device 105, a data processing device 106, a data display device 107, a specimen sample dispensing device 108, a reagent solution fraction. It comprises an injection device 109 and a cleaning device 110. As the potential difference measuring electrode 101, an electrode made of a noble metal such as gold or carbon can be used. In addition, in order to reduce the influence of contaminants when measuring biological components, a redox substance may be immobilized on the electrode surface. Ferrocene, pyridine, pyrimidine or the like may be used as the redox substance. The reference electrode 102 provides a reference potential in order to stably measure a potential change based on an equilibrium reaction or a chemical reaction occurring on the surface of the potential difference measuring electrode 101 in contact with the solution in the measurement container 104. Normally, the reference electrode 102 is a silver / silver chloride electrode or a calomel electrode using saturated potassium chloride as the internal solution, but the composition of the sample solution to be measured is constant. If the required measurement accuracy can be ensured, a silver / silver chloride electrode containing no internal solution can be used as a pseudo electrode. The stirring device 103 stirs the solution dispensed in the measurement container. The stirring device 103 is a so-called magnetic stirrer that rotates a magnet placed outside the measuring container and rotates a magnet placed in the solution even if the spatula attached to the tip of the rotating shaft is stirred in the solution. Also good. The solution may be stirred by rotating a cylindrical measurement container. An integrated electrode in which the potential difference measuring electrode 101 and the reference electrode 102 are integrated may be used, and the solution may be stirred by rotating the integrated electrode. The measurement container 104 is a container having a corner such as a square cell, and it is difficult to stir and mix the sample sample, the reagent solution, and the solution in the measurement container 104. Therefore, a container having a curve, for example, a cylindrical container is used. desirable. The control device 105 measures the potential between the potential difference measuring electrode and the reference electrode, and controls the movement and operation of the potential difference measuring electrode, the reference electrode, the stirring device, the specimen sample dispensing device, the reagent solution dispensing device, and the cleaning device. Do. It is desirable to use a voltmeter, OP amplifier, and FET (Field Effect Transistor) having an input impedance of 1 GΩ or more for the potential measuring device 111 that measures the potential between the potential difference measuring electrode 101 and the reference electrode 102. The potential difference measuring device 111 may be integrated with the potential difference measuring electrode 101. The data processing device 106 includes a calculation device 112, a temporary storage device 113, and a non-volatile storage device 114. The signal processing device 106 calculates a signal obtained by the potential difference measurement device 111 to determine the concentration of the measurement object in the sample sample, and performs abnormality determination. Or fitting or performing a deconvolution operation. The data display device 107 is connected to the data processing device 106 and displays various data. The sample sample dispensing device 108 is used to collect a sample sample separately prepared and dispense it into the measurement container 104. The reagent solution dispensing device 109 is used to dispense a separately prepared reagent solution and dispense it into the measurement container 104. The cleaning device 110 is used to discharge the measurement solution in the measurement container 104 or to clean the measurement container 104 using a separately prepared cleaning liquid. A syringe pump or a peristaltic pump (tube pump) can be used as a mechanism for dispensing and dispensing the liquid with the specimen sample dispensing device 108, the reagent solution dispensing device 109, and the cleaning device 110.

図2は,本発明による電位差計測装置の別の一例を示すブロック図である。基本的な構成とそれらの役割は図1と同様であるが,電位差測定用電極,参照電極,攪拌装置,測定容器の組を複数有していて,異なる検体試料や異なる測定対象物質を同時に測定することができる。電位差測定装置は各組に対応する数だけ用いても良いし,必要な精度が確保できる場合にはマルチプレクサなどを用いて単一の電位差測定装置でそれぞれの電位差を測定しても良い。吸光度計測などの光学系を必要とする計測方法と異なり,電気的計測では電極を小型にすることが容易であるため,装置が巨大化し設置面積や装置体積当たりのスループットが大幅に低下することは生じない。さらに,電位差計測は理論的に電極面積に信号強度が依存しないため電極を小型化することができ,電極を複数設けたことによる装置の大型化を抑制することができる。複数の電極間での出力信号強度の違いは,標準溶液を測定し,補正をする。いわゆる,キャリブレーションを行う。電位差計測では電極表面が汚れるなどして実効的な表面積が変化したとしても,電極表面の抵抗値に比べて大きな入力インピーダンスを有する電圧計を用いれば,出力信号強度は変化せず,再度キャリブレーションを行う必要は無い。   FIG. 2 is a block diagram showing another example of the potential difference measuring apparatus according to the present invention. Although the basic configuration and their roles are the same as in Fig. 1, it has multiple sets of potentiometric electrodes, reference electrodes, agitators, and measurement vessels to measure different specimen samples and different substances to be measured simultaneously. can do. The number of potential difference measuring devices may be the same as the number corresponding to each set, and if the required accuracy can be ensured, each potential difference may be measured with a single potential difference measuring device using a multiplexer or the like. Unlike measurement methods that require optical systems such as absorbance measurement, it is easy to reduce the size of the electrodes in electrical measurement, so that the device becomes huge and the throughput per unit area and volume of the device is greatly reduced. Does not occur. Further, since the potential difference measurement theoretically does not depend on the electrode area for the signal intensity, the electrode can be reduced in size, and the increase in size of the apparatus due to the provision of a plurality of electrodes can be suppressed. The difference in the output signal intensity between the multiple electrodes is corrected by measuring the standard solution. So-called calibration is performed. In potentiometric measurement, even if the effective surface area changes due to contamination of the electrode surface, the output signal strength does not change if a voltmeter with a larger input impedance than the resistance value of the electrode surface is used, and calibration is performed again. There is no need to do.

図3は,本発明による電位差計測装置を用いた測定動作の一例を示す図である。測定手順は以下の通りである。最初,図3(a)に示すように,測定容器301に検体試料用分注装置302を用いて検体試料303を分注する。次に,図3(b)に示すように,電位差測定用電極304,参照電極305および攪拌素子306を測定容器301に設置する。この状態では,分注された検体試料303と参照電極305および攪拌素子306は接していない。次に,測定容器301中に試薬溶液分注装置307を用いて試薬溶液を分注する。試薬溶液の分注と同期して攪拌素子306による攪拌混合と電位差測定用電極304の電位測定を開始する(図3(c))。さらに,測定容器301内に試薬溶液分注装置307を用いて別の試薬溶液を分注する。このとき,攪拌素子306による攪拌は継続して行い,電位差測定用電極304の電位測定も継続して行う。測定終了後,電位差測定用電極304,参照電極305および攪拌素子306を測定容器301外に移動し,測定容器301内の溶液を洗浄装置308を用いて吸出し,洗浄装置308から洗浄液を吐出・吸引することで測定容器301を洗浄する。   FIG. 3 is a diagram showing an example of a measurement operation using the potential difference measuring apparatus according to the present invention. The measurement procedure is as follows. First, as shown in FIG. 3A, the specimen sample 303 is dispensed into the measurement container 301 using the specimen specimen dispensing device 302. Next, as shown in FIG. 3B, the potential difference measuring electrode 304, the reference electrode 305, and the stirring element 306 are installed in the measurement container 301. In this state, the dispensed specimen sample 303 is not in contact with the reference electrode 305 and the stirring element 306. Next, the reagent solution is dispensed into the measurement container 301 using the reagent solution dispensing device 307. In synchronization with the dispensing of the reagent solution, stirring and mixing by the stirring element 306 and potential measurement of the potential difference measuring electrode 304 are started (FIG. 3C). Furthermore, another reagent solution is dispensed into the measurement container 301 using the reagent solution dispensing device 307. At this time, the stirring by the stirring element 306 is continuously performed, and the potential measurement of the potential difference measuring electrode 304 is also continuously performed. After the measurement is completed, the potential difference measuring electrode 304, the reference electrode 305, and the stirring element 306 are moved out of the measuring container 301, the solution in the measuring container 301 is sucked out using the cleaning device 308, and the cleaning liquid is discharged / sucked from the cleaning device 308. By doing so, the measurement container 301 is washed.

図4は,本発明による図1もしくは図2の電位差計測装置を用いた測定動作の一例を示すフローチャートである。縦軸は時間を表し,上から下に向かって時間が経過していく。まず,検体試料用分注装置108などの分注手段により検体試料を測定容器104に分注する(401)。次に,試薬溶液分注装置109などの分注手段により試薬溶液を分注する(402)。この試薬分注に同期して攪拌素子103などの攪拌手段により検体試料と試薬溶液がよく混合されるように攪拌し(403),おなじく同期して電位差測定用電極101と参照電極102の間の電位差を電位測定装置111を用いて測定する(404)。攪拌による電位への影響を一定に保つため,攪拌は測定の間一定の割合で継続して行うことが望ましいが,その影響が求める測定精度よりも小さい場合,検体試料と試薬溶液を十分に混合した後に攪拌を止めても良い。その場合,フローチャートは図5のようになる。その後,計測を続け(405),測定開始から一定時間経過したり,測定したデータを分析し検体溶液中の測定対象物濃度がある誤差範囲内で求まったり,もしくは液体の分注や反応に異常が検出されたりして,測定を終了する条件となった場合,攪拌をやめ,測定を終了する。測定容器104内の溶液を洗浄装置110などの液体排出手段により排出し(406),洗浄液で洗浄し(407),次の測定に備える。測定容器104を使い捨てにした場合,液体の排出および洗浄液での洗浄を省くことができる。図2のような電位差測定用電極,参照電極,攪拌装置,測定容器の組を複数有している場合,図4に示したフローを同期して行っても良いし,非同期で行ってもよい。非同期で行った場合,何らかの理由である組での測定が他の組での測定よりも早期に終了した場合,他の組での測定の終了を待たずに測定を行うことができる。   FIG. 4 is a flowchart showing an example of a measurement operation using the potential difference measuring apparatus of FIG. 1 or 2 according to the present invention. The vertical axis represents time, and time passes from top to bottom. First, a specimen sample is dispensed into the measurement container 104 by a dispensing means such as the specimen sample dispensing device 108 (401). Next, the reagent solution is dispensed by a dispensing means such as the reagent solution dispensing device 109 (402). In synchronism with the reagent dispensing, the sample sample and the reagent solution are agitated by the agitating means such as the agitating element 103 so that the sample sample and the reagent solution are well mixed (403). The potential difference is measured using the potential measuring device 111 (404). In order to keep the effect of stirring on the potential constant, stirring should be continued at a constant rate during measurement. However, if the effect is less than the required measurement accuracy, the sample sample and reagent solution should be mixed thoroughly. After that, stirring may be stopped. In that case, the flowchart is as shown in FIG. After that, measurement is continued (405), a certain period of time has elapsed from the start of measurement, the measured data is analyzed and the concentration of the analyte in the sample solution is determined within a certain error range, or there is an abnormality in the dispensing or reaction of the liquid If the condition for terminating the measurement is detected, the stirring is stopped and the measurement is terminated. The solution in the measurement container 104 is discharged by a liquid discharging means such as the cleaning device 110 (406), washed with a cleaning liquid (407), and prepared for the next measurement. When the measurement container 104 is made disposable, it is possible to omit the discharge of the liquid and the cleaning with the cleaning liquid. When there are a plurality of sets of potential difference measuring electrodes, reference electrodes, stirring devices, and measuring containers as shown in FIG. 2, the flow shown in FIG. 4 may be performed synchronously or asynchronously. . When the measurement is performed asynchronously, if the measurement in the group for some reason is completed earlier than the measurement in the other group, the measurement can be performed without waiting for the measurement in the other group to end.

図6は,本発明による図1もしくは図2の電位差計測装置を用いた測定動作の別の一例を示すフローチャートである。2種類の試薬を順番に加えて測定を行う点が図4のフローチャートと異なる。まず,検体試料用分注装置108などの分注手段により検体試料を測定容器104に分注する(601)。次に,試薬溶液分注装置109などの分注手段により試薬1溶液を分注する(602)。この試薬分注に同期して攪拌素子103などの攪拌手段により検体試料と試薬1溶液がよく混合されるように攪拌し(603),おなじく同期して電位差測定用電極101と参照電極102の間の電位差を電位測定装置111で測定する(604)。その後,計測を続け(605),試薬1溶液の分注から一定時間が経過したり,測定したデータを分析し検体試料と試薬1溶液の反応が終了したと判定されたりした場合,試薬溶液分注装置109などの分注手段により試薬2溶液を測定容器内に分注する(606)。試薬2溶液の分注に同期して電位差測定用電極101と参照電極102の間の電位差を電位測定装置111で測定する(607)。試薬2分注中も攪拌を行う。試薬2溶液の分注から一定時間経過したり,測定したデータを分析し検体溶液中の測定対象物濃度がある誤差範囲内で求まったりした場合,攪拌と電位計測を止め,測定を終了する。また,測定中であっても,液体の分注や反応に異常が検出されたりした場合,測定を終了する。測定容器104内の溶液を洗浄装置110などの液体排出手段により排出し(609),洗浄液で洗浄し(610),次の測定に備える。測定容器104を使い捨てにした場合,液体の排出および洗浄液での洗浄を省くことができる。攪拌による電位への影響を一定に保つため,攪拌は測定の間一定の割合で継続して行うことが望ましいが,その影響が求める測定精度よりも小さい場合,検体試料と試薬溶液を十分に混合した後に攪拌を止めても良い(図7)。その場合,試薬2溶液の分注に同期して攪拌素子103などの攪拌手段により測定容器104内の溶液と試薬2溶液がよく混合されるように攪拌を開始し,おなじく同期して電位差測定用電極101と参照電極102の間の電位差を電位測定装置111で測定する。   FIG. 6 is a flowchart showing another example of the measurement operation using the potential difference measuring apparatus of FIG. 1 or 2 according to the present invention. The point which measures by adding two types of reagents in order differs from the flowchart of FIG. First, a specimen sample is dispensed into the measurement container 104 by a dispensing means such as the specimen sample dispensing device 108 (601). Next, the reagent 1 solution is dispensed by a dispensing means such as the reagent solution dispensing device 109 (602). In synchronism with the reagent dispensing, the sample sample and the reagent 1 solution are agitated by the agitating means such as the agitating element 103 (603) and synchronized between the potential difference measuring electrode 101 and the reference electrode 102. Is measured by the potential measuring device 111 (604). Thereafter, the measurement is continued (605), and when a certain time has elapsed from the dispensing of the reagent 1 solution, or when it is determined that the reaction between the sample sample and the reagent 1 solution is completed by analyzing the measured data, The reagent 2 solution is dispensed into the measurement container by a dispensing means such as the injection device 109 (606). In synchronism with the dispensing of the reagent 2 solution, the potential difference between the potential difference measuring electrode 101 and the reference electrode 102 is measured by the potential measuring device 111 (607). Stir during the dispensing of 2 reagents. When a certain time has elapsed since the dispensing of the reagent 2 solution, or when the measured data is analyzed and the concentration of the measurement target in the sample solution is determined within a certain error range, the stirring and potential measurement are stopped and the measurement is terminated. Even if measurement is in progress, measurement is terminated if an abnormality is detected in the dispensing or reaction of the liquid. The solution in the measurement container 104 is discharged by a liquid discharging means such as the cleaning device 110 (609), washed with a cleaning liquid (610), and prepared for the next measurement. When the measurement container 104 is made disposable, it is possible to omit the discharge of the liquid and the cleaning with the cleaning liquid. In order to keep the effect of stirring on the potential constant, stirring should be continued at a constant rate during measurement. However, if the effect is less than the required measurement accuracy, the sample sample and reagent solution should be mixed thoroughly. After that, stirring may be stopped (FIG. 7). In that case, stirring is started so that the solution in the measuring vessel 104 and the reagent 2 solution are well mixed by stirring means such as the stirring element 103 in synchronization with the dispensing of the reagent 2 solution, and for potential difference measurement in synchronization with the same. A potential difference between the electrode 101 and the reference electrode 102 is measured by the potential measuring device 111.

図8は,本発明による図1もしくは図2の電位差計測装置を用いた測定動作の別の一例を示すフローチャートである。検体試料と試薬溶液の分注の順番が図4のフローチャートと異なる。まず,試薬溶液分注装置109などの分注手段により試薬溶液を分注する(801)。次に,この試薬分注に続いて攪拌素子などの攪拌手段による攪拌を開始し(802),それと同じくして電位差測定用電極101と参照電極102の間の電位差の測定を開始する(803)。その後,計測を続け(804),試薬1溶液の分注から一定時間が経過したり,測定したデータを分析し電位差測定用電極101と参照電極102の間の電位差が安定したと判定されたりした場合,試薬溶液分注装置109などの分注手段により検体試料を測定容器104に分注する(805)。検体試料の分注に同期して電位差測定用電極101と参照電極102の間の電位差を電位測定装置111で測定する(806)。試薬分注中も攪拌を行う。検体試料分注から一定時間経過したり,測定したデータを分析し検体溶液中の測定対象物濃度がある誤差範囲内で求まったり,もしくは液体の分注や反応に異常が検出されたりして,測定を終了する条件となった場合,攪拌をやめ,測定を終了する。測定容器内の溶液を洗浄装置110などの液体排出手段により排出し(808),洗浄液で洗浄し(809),次の測定に備える。測定容器を使い捨てにした場合,液体の排出および洗浄液での洗浄を省くことができる。検体分注の後に試薬分注を行う方式では,少量の検体試料に対して多量の試薬溶液を分注することで、検体試料と試薬溶液が混合しやすい。一方、本発明では,攪拌と測定を同時に行うことができるため、攪拌に費やす時間を従来よりも多くでき,多量の試薬溶液分注後に少量の検体試料を分注しても十分に混合されるようにできる。図4のフローに対する図8のフローの利点は,測定電極の表面電位の安定にある程度の時間がかかる場合でも検体分注(805)の時点では測定電極の表面電位は安定していて,測定対象物質の反応を検体試料と試薬溶液の混合直後から追跡することができるようになる点である。その他の攪拌のフローとして,図9のように試薬分注と検体分注に同期して攪拌を開始し,十分に攪拌を行ってから攪拌を停止する場合,図10のように検体分注に同期して攪拌を開始し,測定終了時まで攪拌を行う場合,図11のように検体分注に同期して攪拌を開始し,十分に攪拌を行ってから攪拌を停止する場合もある。図8,図9のフローにおいて,試薬分注後に攪拌を行う利点は,電位差測定用電極101および参照電極102の表面の状態と測定容器104内の電極表面以外の溶液の状態を攪拌を行わない場合よりも短時間で均一化できることにある。   FIG. 8 is a flowchart showing another example of the measuring operation using the potential difference measuring apparatus of FIG. 1 or 2 according to the present invention. The order of dispensing the specimen sample and the reagent solution is different from the flowchart of FIG. First, a reagent solution is dispensed by dispensing means such as the reagent solution dispensing device 109 (801). Next, following the reagent dispensing, stirring by a stirring means such as a stirring element is started (802), and similarly, measurement of a potential difference between the potential difference measuring electrode 101 and the reference electrode 102 is started (803). . Thereafter, the measurement was continued (804), and a fixed time passed from the dispensing of the reagent 1 solution, or the measured data was analyzed and it was determined that the potential difference between the potential difference measuring electrode 101 and the reference electrode 102 was stable. In this case, the specimen sample is dispensed into the measurement container 104 by a dispensing means such as the reagent solution dispensing device 109 (805). In synchronism with the dispensing of the sample, the potential difference between the potential difference measuring electrode 101 and the reference electrode 102 is measured by the potential measuring device 111 (806). Stir during reagent dispensing. A certain amount of time has elapsed since the sample sample was dispensed, the measured data was analyzed and the concentration of the analyte in the sample solution was determined within a certain error range, or an abnormality was detected in the liquid dispensing or reaction, If the conditions for terminating the measurement are met, stop stirring and terminate the measurement. The solution in the measurement container is discharged by a liquid discharging means such as a cleaning device 110 (808), washed with a cleaning liquid (809), and prepared for the next measurement. When the measurement container is made disposable, it is possible to dispense with liquid discharge and cleaning with a cleaning solution. In the method in which reagent dispensing is performed after sample dispensing, the sample sample and the reagent solution are easily mixed by dispensing a large amount of reagent solution to a small amount of sample sample. On the other hand, in the present invention, since stirring and measurement can be performed at the same time, the time spent for stirring can be increased as compared with the prior art, and even if a small amount of specimen sample is dispensed, sufficient mixing is achieved. You can The advantage of the flow of FIG. 8 over the flow of FIG. 4 is that the surface potential of the measurement electrode is stable at the time of sample dispensing (805) even if it takes a certain amount of time to stabilize the surface potential of the measurement electrode. The reaction of the substance can be traced immediately after mixing the specimen sample and the reagent solution. As another stirring flow, when stirring is started in synchronization with reagent dispensing and sample dispensing as shown in FIG. 9 and stirring is stopped after sufficient stirring, sample dispensing is performed as shown in FIG. When stirring is started in synchronization and stirring is performed until the end of measurement, stirring is started in synchronization with sample dispensing as shown in FIG. 11, and stirring may be stopped after sufficient stirring. 8 and 9, the advantage of stirring after dispensing the reagent is that stirring is not performed between the surface state of the potential difference measuring electrode 101 and the reference electrode 102 and the state of the solution other than the electrode surface in the measurement container 104. It is to be able to make uniform in a shorter time than the case.

図4〜11のフローチャートは、図1,2の電位差測定装置を用いた場合だけでなく、同様の動作を発揮できる電位差計測装置を用いた場合にも適用され得る。   The flowcharts of FIGS. 4 to 11 can be applied not only when the potential difference measuring device of FIGS. 1 and 2 is used, but also when a potential difference measuring device capable of performing the same operation is used.

図12は、本発明の異常検出の一例を示す図である。図12に示されたフローチャートにより,検体試料と試薬溶液との混合,もしくは試薬2溶液の分注によって生じる信号の変化が妥当な時間で起きているかを検証し,混合・攪拌が正しく行われたかを判定する。まず,測定値のデータ配列に対し,必要に応じて,ノイズ低減を目的としてローパスフィルタの処理を施す。次に,測定で得られた最終的な値のある割合,例えば90%に達する時刻を求め,分注の時刻と最初に最大値を取る時刻の差を立ち上がり時間とする。検体試料,試薬溶液の量比・粘性を元に混合標準時間データベースから混合標準時間を取得・演算し,測定値から求めた立ち上がり時間と比較する。測定値から求めた立ち上がり時間が妥当であれば検体試料と試薬溶液の混合・攪拌が正常に行われたと判断し,妥当な範囲を逸脱していた場合,検体試料と試薬溶液の混合・攪拌が正常に行われなかったと判断し,該当の検体試料について再測定を行う。測定値から求めた立ち上がり時間が妥当であるか判定する方法の一例としては,混合標準時間データベースの値の1.2倍とするなど係数を掛け算し閾値とする方法がある。   FIG. 12 is a diagram illustrating an example of abnormality detection according to the present invention. Based on the flowchart shown in FIG. 12, it was verified whether the signal change caused by the mixing of the sample sample and the reagent solution or the dispensing of the reagent 2 solution occurred in a reasonable time, and the mixing and stirring were performed correctly. Determine. First, low-pass filter processing is performed on the data array of measured values as necessary for the purpose of noise reduction. Next, the time at which a certain percentage of the final value obtained by measurement, for example 90%, is obtained, and the difference between the dispensing time and the time at which the maximum value is first obtained is taken as the rise time. Obtain and calculate the mixing standard time from the mixing standard time database based on the volume ratio and viscosity of the specimen sample and reagent solution, and compare them with the rise time obtained from the measured values. If the rise time obtained from the measured values is reasonable, it is judged that mixing and stirring of the sample sample and the reagent solution were performed normally. If the rise time was outside the appropriate range, mixing and stirring of the sample sample and the reagent solution were not performed. Judge that it was not performed normally, and re-measure the corresponding specimen. As an example of a method for determining whether the rise time obtained from the measured value is appropriate, there is a method of multiplying a coefficient and setting it as a threshold value such as 1.2 times the value of the mixed standard time database.

図13は、異常検出の別の一例を示す図である。図に示されたフローチャートにより,検体試料と試薬溶液との混合,もしくは試薬2溶液の分注によって生じる信号の変化に攪拌の異常によって生じるゆらぎが発生していないかを検証し,混合・攪拌が正しく行われたかを判定する。まず,測定値のデータ配列に対し,ノイズ低減を目的としてローパスフィルタの処理を施す。次に,図12のフローチャートにより検出した立ち上がり時間以降の測定値から極大値・極小値を検出し,時刻と併せて極大値・極小値データ配列として記録する。検体試料,試薬溶液の量比・粘性を元にゆらぎデータベースから許容できる差分・傾きを取得し,極大値・極小値データ配列について一つずつ許容値以内であるかを判定していく。配列の最後まで許容値以内であると判定されれば混合・攪拌が正しく行われたと判定し,解析を終了する。一つでも許容値上回るデータが見つかった場合,混合・攪拌が正しく行われていなかったと判断し,該当の検体試料について再測定を行う。   FIG. 13 is a diagram illustrating another example of abnormality detection. The flow chart shown in the figure verifies whether fluctuations caused by abnormal stirring have occurred in the change in the signal generated by mixing the sample sample and reagent solution or by dispensing the reagent 2 solution. Determine if it was done correctly. First, low-pass filter processing is performed on the data array of measured values for the purpose of noise reduction. Next, the maximum value and the minimum value are detected from the measured values after the rise time detected by the flowchart of FIG. 12, and recorded together with the time as the maximum value / minimum value data array. The allowable difference / slope is acquired from the fluctuation database based on the quantity ratio / viscosity of the specimen sample and reagent solution, and it is determined whether the maximum value / minimum value data array is within the allowable value one by one. If it is determined that the value is within the allowable value until the end of the array, it is determined that mixing and stirring are correctly performed, and the analysis is terminated. If even one of the data exceeding the allowable value is found, it is judged that mixing / stirring was not performed correctly, and the corresponding specimen sample is measured again.

図14は、逆演算の一例を示す図である。測定に用いている化学反応の反応速度が混合時間に比べて十分速ければ,測定された生データを用いて図12,13で示したような異常検出を行うことができる。しかし,化学反応の反応速度が混合時間と同程度かそれ以下である場合,混合・攪拌の不良による立ち上がり時間の遅延やゆらぎはなまってしまい生データからは異常検出を行うことが困難となってしまう。そこで,生データは溶液の混合の関数と反応の関数の畳み込み演算から求まる関数であると考え,生データから混合の関数を求める逆演算を行う。その方法を図14に従い説明する。まず,理想的な混合の関数と反応の関数の畳み込み演算により求まる理想反応関数の各パラメータを,生データへのフィッティングにより求める。フィッティングについては、例えば最小二乗などのフィッティングを用いることができる。決定されたパラメータから求まる反応の関数を伝達関数G(s)とする。伝達関数G(s)から逆伝達関数G-1(s)を求める。求め方の一例として,逆行列を用いる方法がある。求まった逆伝達関数G-1(s)を生データに対して畳み込み演算を施すことで,混合の関数が求まる。求まった混合の関数についてなら,図12,13で示したような異常判定を行うことができる。   FIG. 14 is a diagram illustrating an example of the inverse operation. If the reaction rate of the chemical reaction used for the measurement is sufficiently faster than the mixing time, the abnormality detection as shown in FIGS. 12 and 13 can be performed using the measured raw data. However, if the reaction rate of the chemical reaction is about the same or less than the mixing time, the rise time delay and fluctuations due to mixing / stirring failure will be lost, making it difficult to detect abnormalities from raw data. End up. Therefore, the raw data is considered to be a function obtained from the convolution operation of the solution mixing function and the reaction function, and the inverse operation for obtaining the mixing function from the raw data is performed. The method will be described with reference to FIG. First, each parameter of the ideal reaction function obtained by convolution of the ideal mixture function and reaction function is obtained by fitting to the raw data. For fitting, for example, fitting such as least squares can be used. A transfer function G (s) is a reaction function obtained from the determined parameters. The inverse transfer function G-1 (s) is obtained from the transfer function G (s). As an example of how to obtain, there is a method using an inverse matrix. A mixed function is obtained by performing a convolution operation on the obtained inverse transfer function G-1 (s) on the raw data. For the obtained mixing function, the abnormality determination as shown in FIGS.

図15は,本発明の電位差計測装置に使用する測定電極の構造例を示す図である。本実施例では,電極材料として金を使用して,酸化物質としてフェロセン誘導体を金電極表面に固定してある。フェロセン誘導体1502は,末端にチオール基を有するアルカンチオール1503を介して,金とチオールの結合により金電極1501に固定化した。金電極表面へのフェロセン誘導体の固定化は,以下の手順で行った。最初,固定化に使用する金電極を1N硝酸,純水,エタノールの順番で洗浄し,金電極表面を窒素パージした。次に,フェロセン誘導体溶液(11−フェロセニル―1−ウンデカンチオール,濃度:0.5mM,溶媒:エタノール)に1時間浸漬した。固定化終了後,エタノール及び純水で洗浄し,使用するまで支持塩を含む水溶液もしくはバッファー溶液中で保存した。   FIG. 15 is a diagram showing a structural example of a measurement electrode used in the potential difference measuring apparatus of the present invention. In this embodiment, gold is used as an electrode material, and a ferrocene derivative is fixed to the gold electrode surface as an oxidizing substance. The ferrocene derivative 1502 was immobilized on the gold electrode 1501 by bonding of gold and thiol through an alkanethiol 1503 having a thiol group at the terminal. The ferrocene derivative was immobilized on the gold electrode surface by the following procedure. First, the gold electrode used for immobilization was washed with 1N nitric acid, pure water, and ethanol in this order, and the gold electrode surface was purged with nitrogen. Next, it was immersed in a ferrocene derivative solution (11-ferrocenyl-1-undecanethiol, concentration: 0.5 mM, solvent: ethanol) for 1 hour. After immobilization, the cells were washed with ethanol and pure water and stored in an aqueous solution or buffer solution containing a supporting salt until use.

図16は,電位差計測装置の他の実施例を示すブロック図である。本実施例の測定装置は,電位差測定用電極1601,参照電極1602,測定容器1603,制御装置1604,データ処理装置1605,データ表示装置1606,検体試料を測定容器1603に分注する検体試料用分注器1607,試薬溶液を測定容器1603に分注する試薬溶液分注器1608,分注された検体試料と試薬溶液を攪拌する攪拌素子1609から構成される。制御装置1604は,電位差測定装置1610を用いた電位差測定用電極1601と参照電極1602の間の電位測定と,電位差測定用電極1601,参照電極1602,検体試料用分注器1607,試薬溶液分注器1608,攪拌素子1609の移動および動作制御を行う。データ処理装置1605は演算装置1611,一時記憶装置1612,不揮発性記憶装置1613を有し,電位差測定装置1610で取得した信号を演算し検体試料中の測定対象物濃度を求めたり,異常判定を行ったり,フィッティングを行ったり,逆畳み込み演算を行ったりする。電位差測定用電極1601は,測定容器1603の底に接して設置してある。また,電位差測定用電極1601は,材料として金を使用して,金表面にはアルカンチオールを介してフェロセン誘導体1614が固定してある。本実施例では,酸化還元物質としては,フェロセン誘導体を使用したが,ピリジン,ピリミジン等を使用しても良い。参照電極1602は,測定容器1603中の溶液に接触した電位差測定用電極1601の表面で起こる平衡反応あるいは化学反応に基づく電位変化を安定に測定するために,基準となる電位を与える。通常は参照電極としては,飽和塩化カリウムを内部溶液に使用している銀・塩化銀電極,あるいは甘こう(カロメル)電極が用いられるが,測定する試料溶液の組成が一定の場合には,疑似電極として銀・塩化銀電極のみを使用しても問題はない。測定容器1603は,角セルのような角を有する容器では分注された検体試料と試薬溶液の攪拌混合がやり難いので,曲線を有する容器,例えば円筒形の容器が望ましい。検体試料用分注器1607,および試薬溶液分注器1608は,シリンジポンプまたはペリスタポンプ(チューブポンプ)を使用することができる。ここでは、攪拌素子1609は先端のへらが回転するものを用いた。   FIG. 16 is a block diagram showing another embodiment of the potential difference measuring apparatus. The measurement apparatus of the present embodiment includes a potential difference measurement electrode 1601, a reference electrode 1602, a measurement container 1603, a control device 1604, a data processing device 1605, a data display device 1606, and a sample sample dispenser for dispensing a sample sample into the measurement container 1603. An injector 1607, a reagent solution dispenser 1608 that dispenses the reagent solution into the measurement container 1603, and a stirring element 1609 that stirs the dispensed specimen sample and the reagent solution. The control device 1604 measures the potential between the potential difference measuring electrode 1601 and the reference electrode 1602 using the potential difference measuring device 1610, the potential difference measuring electrode 1601, the reference electrode 1602, the specimen sample dispenser 1607, and the reagent solution dispensing. The movement and operation control of the vessel 1608 and the stirring element 1609 are performed. The data processing device 1605 includes a calculation device 1611, a temporary storage device 1612, and a nonvolatile storage device 1613. The signal processing device 1605 calculates a signal obtained by the potential difference measurement device 1610 to determine the concentration of the measurement object in the specimen sample and performs abnormality determination. Or fitting or performing a deconvolution operation. The potential difference measuring electrode 1601 is placed in contact with the bottom of the measurement container 1603. The potential difference measuring electrode 1601 uses gold as a material, and a ferrocene derivative 1614 is fixed to the gold surface via an alkanethiol. In this embodiment, a ferrocene derivative is used as the redox substance, but pyridine, pyrimidine, or the like may be used. The reference electrode 1602 provides a reference potential in order to stably measure a potential change based on an equilibrium reaction or a chemical reaction occurring on the surface of the potential difference measurement electrode 1601 in contact with the solution in the measurement container 1603. Usually, the reference electrode is a silver / silver chloride electrode or calomel electrode using saturated potassium chloride as the internal solution. However, if the composition of the sample solution to be measured is constant, There is no problem even if only a silver / silver chloride electrode is used as an electrode. The measurement container 1603 is preferably a container having a curve, for example, a cylindrical container, because it is difficult to stir and mix the sample sample and reagent solution dispensed in a container having a corner such as a square cell. The sample sample dispenser 1607 and the reagent solution dispenser 1608 can use a syringe pump or a peristaltic pump (tube pump). Here, a stirring element 1609 having a rotating tip spatula was used.

図17は,FETセンサを用いた電位差計測装置に使用する分析素子の構造の一例を示す図である。図17(a),(b)は,各々断面構造及び平面構造を表わしている。絶縁ゲート電界効果トランジスタ1701は,シリコン基板の表面にソース1702,ドレイン1703,及びゲート絶縁物1704を形成し,金電極1705を設けてある。金電極1705と絶縁ゲート電界効果トランジスタのゲート1706を導電性配線1707で接続してある。好ましくは,絶縁ゲート電界効果トランジスタは,シリコン酸化物を絶縁膜として用いる金属酸化物半導体(Metal-oxide semiconductor)電界効果トランジスタ(FET)であるが,薄膜トランジスタ(TFT)を用いても問題はない。本構造を採用することにより,金電極1705上にアルカンチオオールを介して容易に酸化還元物質を固定化することができる。ここで使用する絶縁ゲート電界効果トランジスタは,SiO2(厚さ;17.5nm)を用いた絶縁層を有するデプレション型FETであり,金電極を400μm×400μmの大きさで作製してある。通常の測定は,水溶液を使用するため,本素子は溶液中で動作しなければならない。溶液中で測定する場合には,電気化学反応を起こし難い−0.5〜0.5Vの電極電位範囲で動作することが必要である。そのため,本実施例ではデプレション型nチャネルFETの作製条件,すなわち閾値電圧(Vt)調整用イオン打ち込み条件を調整し,FETの閾値電圧を−0.5V付近に設定してある。なお,金電極に代えて,銀等の他の貴金属からなる電極を用いてもよい。FETセンサを測定電極として使用する場合には,参照電極に電圧を印加する必要があるが,金電極表面への外部変動による影響を低減するために,好ましくは交流成分を印加することが望ましい。その際,直流成分に1KHz以上の交流電圧を重畳することで,金電極の表面電位の安定化が期待できる。また,FETセンサは光に応答するため,測定容器は不透明の材質のものを用いるか,あるいは測定容器そのものを遮光すると良い。   FIG. 17 is a diagram showing an example of the structure of an analysis element used in a potential difference measuring device using an FET sensor. FIGS. 17A and 17B show a cross-sectional structure and a planar structure, respectively. An insulated gate field effect transistor 1701 has a source 1702, a drain 1703, a gate insulator 1704 formed on the surface of a silicon substrate, and a gold electrode 1705. A gold electrode 1705 and a gate 1706 of an insulated gate field effect transistor are connected by a conductive wiring 1707. Preferably, the insulated gate field effect transistor is a metal-oxide semiconductor field effect transistor (FET) using silicon oxide as an insulating film, but there is no problem even if a thin film transistor (TFT) is used. By adopting this structure, the redox substance can be easily immobilized on the gold electrode 1705 via the alkanethiool. The insulated gate field effect transistor used here is a depletion type FET having an insulating layer using SiO2 (thickness: 17.5 nm), and a gold electrode is fabricated in a size of 400 μm × 400 μm. Since normal measurement uses an aqueous solution, the device must operate in solution. When measuring in a solution, it is necessary to operate in an electrode potential range of −0.5 to 0.5 V, which hardly causes an electrochemical reaction. Therefore, in this embodiment, the fabrication condition of the depletion type n-channel FET, that is, the ion implantation condition for adjusting the threshold voltage (Vt) is adjusted, and the threshold voltage of the FET is set around −0.5V. In place of the gold electrode, an electrode made of other noble metal such as silver may be used. When an FET sensor is used as a measurement electrode, it is necessary to apply a voltage to the reference electrode. However, in order to reduce the influence of external fluctuations on the gold electrode surface, it is preferable to apply an AC component. At that time, the surface potential of the gold electrode can be stabilized by superimposing an AC voltage of 1 KHz or more on the DC component. Further, since the FET sensor responds to light, it is preferable to use an opaque material for the measurement container or to shield the measurement container itself.

図18,19,20は本発明による測定手法を用いて行った測定結果の一例を示す図である。図16で示した装置を用いて,図4で示すフローに従い,ウマ血清中のグルコース濃度の測定を行った。まず,測定容器中に検体試料30μLを注入した。次に,測定容器中に試薬溶液300μLを注入した。試薬溶液の組成は,(表1)のようにした。   18, 19, and 20 are diagrams showing examples of measurement results obtained using the measurement method according to the present invention. Using the apparatus shown in FIG. 16, the glucose concentration in horse serum was measured according to the flow shown in FIG. First, 30 μL of the specimen sample was injected into the measurement container. Next, 300 μL of the reagent solution was injected into the measurement container. The composition of the reagent solution was as shown in (Table 1).

Figure 2010286423
Figure 2010286423


試薬溶液の分注と同期して,攪拌棒による攪拌と電圧計による電位差計測を開始した。電位差計測は1秒間隔で,300秒間行った。その結果,図18(a)に示す電位差の時間変化を得た。次に,データ処理装置を用いて,電位差から測定用液中のフェロシアン濃度を求めた。具体的には,ネルンストの式

In synchronization with the dispensing of the reagent solution, stirring with a stirring bar and measurement of potential difference with a voltmeter were started. The potential difference measurement was performed every 300 seconds for 1 second. As a result, the time change of the potential difference shown in FIG. Next, using a data processor, the ferrocyan concentration in the measurement solution was determined from the potential difference. Specifically, the Nernst equation

Figure 2010286423
Figure 2010286423


を解いた。その結果,図18(b)に示すフェロシアン濃度の時間変化を得た。フェロシアンは,

Solved. As a result, the time change of the ferrocyan concentration shown in FIG. 18 (b) was obtained. Ferrocyan,

Figure 2010286423
Figure 2010286423


(ここで,NAD:ニコチンアミドアデニンジヌクレオチド(酸化型),NADH: ニコチンアミドアデニンジヌクレオチド(還元型))
の反応により生成されるため,反応効率が100%の場合はグルコース1モルからフェロシアン2モルが生成される。この反応系において反応効率を別途求めたところ90%であった。グルコースの分子量180,希釈倍率11倍をもとに,生成フェロシアン濃度[mM]を検体中グルコース濃度[mg/dL]に変換し,反応効率を掛け,図18(c)を得た。以上の過程を経て,検体中グルコース濃度は112mg/dLであると測定された。続いて,図14のフローに従い,入力関数を求めた。まず,伝達関数 以下のように定義した。

(Where NAD: nicotinamide adenine dinucleotide (oxidized form), NADH: nicotinamide adenine dinucleotide (reduced form))
Thus, when the reaction efficiency is 100%, 2 mol of ferrocyan is produced from 1 mol of glucose. In this reaction system, the reaction efficiency was determined separately and found to be 90%. Based on the glucose molecular weight of 180 and the dilution factor of 11 times, the produced ferrocyan concentration [mM] was converted to the glucose concentration in the sample [mg / dL] and multiplied by the reaction efficiency to obtain FIG. 18 (c). Through the above process, the glucose concentration in the sample was measured to be 112 mg / dL. Subsequently, an input function was obtained according to the flow of FIG. First, the transfer function is defined as follows.

Figure 2010286423
Figure 2010286423


図18(c)の反応曲線について,G(t)を用いてフィッティングを行い,

The reaction curve of FIG. 18 (c) was fitted using G (t),

Figure 2010286423
Figure 2010286423


を得た。その結果を図19(a)に示す。G(t)の逆関数G-1(t)を数値解析的に求め,図18(c)の反応曲線に演算を施したところ,図19(b)を得た。これは,実際はG(t)のように進行した酵素反応が一瞬で終了したと仮定したときの反応曲線であり,すなわち,酵素反応以外の溶液の混合の様子を表していて,ここでは入力関数と呼ぶ。図19(b)について,図12のフローに従い,立ち上がり時間を求めたところ,最大値121mg/dLに対して,反応開始4秒目にして112mg/dLとその90%を超える値となっていることから,立ち上がり時間が4秒と求まった。同様の実験を,攪拌を比較的穏やかに行ったところ,図20に示す別の実験結果を得た。図20(a)を見ても反応曲線の立ち上がりが若干遅れていることが見て取れる。これを,図14のフローに従い解析を行い,図20(b)に示す入力関数を得た。同様に立ち上がり時間を求めたところ17秒と求まり,攪拌を穏やかに行ったことによる立ち上がりの遅れを定量的に求めることができた。この例では1秒間隔でデータの取得を行ったため1秒単位で解析を行うことができたが,反応溶液と電極は常に接触しているため測定間隔をより短くすることも可能であり,その場合より高い時間分解能で攪拌の程度を解析することができる。また,図19(b)と図20(b)を比較すると,図20(b)には比較的大きなオーバーシュートが観測される。これは,溶液が均一に混合されるまでの過程で生じたゆらぎであると考えられ,図13のフローに従って解析を行う。図19(b)と図20(b)は攪拌の状態が異なるために,ゆらぎの程度に差が生じたが,これが同一の条件で行っているのに生じる場合は混合・攪拌に何らかの異常が生じていることが疑われる。図13のフローに従ってこれを検出することで,異常を検出することができる。

Got. The result is shown in FIG. An inverse function G-1 (t) of G (t) was obtained numerically, and the reaction curve of FIG. 18 (c) was calculated to obtain FIG. 19 (b). This is a reaction curve when it is assumed that the enzyme reaction that has proceeded in a moment like G (t) is actually finished, that is, the state of mixing of the solution other than the enzyme reaction. Here, the input function Call it. In Fig. 19 (b), when the rise time was determined according to the flow of Fig. 12, the maximum value was 121mg / dL, and it was 112mg / dL, which exceeded 90% of the value at 4 seconds after the start of the reaction. Therefore, the rise time was 4 seconds. When the same experiment was conducted relatively gently, another experimental result shown in FIG. 20 was obtained. It can be seen from FIG. 20 (a) that the rise of the reaction curve is slightly delayed. This was analyzed according to the flow of FIG. 14 to obtain an input function shown in FIG. Similarly, the rise time was found to be 17 seconds, and the rise delay due to gentle stirring was quantitatively obtained. In this example, data was acquired at 1-second intervals, so analysis was possible in 1-second units. However, since the reaction solution and the electrode are always in contact, the measurement interval can be shortened. The degree of agitation can be analyzed with higher time resolution than the case. Further, when FIG. 19B is compared with FIG. 20B, a relatively large overshoot is observed in FIG. 20B. This is considered to be fluctuations that occur in the process until the solution is uniformly mixed, and analysis is performed according to the flow of FIG. FIG. 19 (b) and FIG. 20 (b) differ in the degree of fluctuation due to the state of stirring, but if this occurs under the same conditions, there is some abnormality in mixing / stirring. Suspected to have occurred. An abnormality can be detected by detecting this in accordance with the flow of FIG.

図21は本発明による測定手法を用いて行った測定結果の一例を示す図である。図16で示した装置を用いて,図6で示すフローに従い,ウマ血清中のグルコース濃度の測定を行った。まず,測定容器中に検体試料30μLを注入した。次に,測定容器中に試薬1溶液270μLを注入した。その300秒後に測定容器中に試薬2溶液60μLを注入した。それぞれの組成は,(表2)のようにした。   FIG. 21 is a diagram showing an example of measurement results obtained using the measurement method according to the present invention. Using the apparatus shown in FIG. 16, the glucose concentration in horse serum was measured according to the flow shown in FIG. First, 30 μL of the specimen sample was injected into the measurement container. Next, 270 μL of the reagent 1 solution was injected into the measurement container. After 300 seconds, 60 μL of the reagent 2 solution was injected into the measurement container. Each composition was as shown in (Table 2).

Figure 2010286423
Figure 2010286423


試薬1溶液の分注と同期して,攪拌棒による攪拌と電圧計による電位差計測を開始した。電位差計測は1秒間隔で,587秒間行った。その結果,図21(a)に示す電位差の時間変化を得た。次に,データ処理装置を用いて,試薬2溶液を注入した300秒後の電位差測定値について,図18(b),図19(b)を求めた場合と同様に,ネルンストの式を用いて電位差から測定用液中のフェロシアン濃度を求めた。別途求めた反応効率90%,グルコースの分子量180,希釈倍率12倍をもとに,生成フェロシアン濃度[mM]を検体中グルコース濃度[mg/dL]に変換し,図21(b)を得た。図21(b)は試薬2溶液注入の時点を0秒として表示した。図19(b),図20(b)から図19(c),図20(c)を得たときと同様にして,図21(b)について,反応曲線のフィッティングと逆演算を行い,酵素反応が一瞬で終了したと仮定したときの反応曲線(図21(c))を得た。このときの立ち上がり時間は1秒以下であった。このように,試薬を2つ用いる場合にも,試薬2溶液注入の時点を反応開始の時点として解析を行うことで,溶液の混合に要する時間を求めることができる。検体を後から注入する場合も,検体の注入により反応が開始するならば,溶液の混合に要する時間を求めることができる。

In synchronization with the dispensing of the reagent 1 solution, stirring with a stirring bar and measurement of a potential difference with a voltmeter were started. The potential difference measurement was performed every 5 seconds for 1 second. As a result, the time change of the potential difference shown in FIG. Next, with respect to the potential difference measured 300 seconds after the reagent 2 solution was injected using the data processing apparatus, the Nernst equation was used in the same manner as in the case of obtaining FIGS. 18 (b) and 19 (b). The ferrocyan concentration in the measurement solution was determined from the potential difference. Based on the separately determined reaction efficiency of 90%, glucose molecular weight of 180, and dilution factor of 12 times, the produced ferrocyan concentration [mM] is converted into the glucose concentration in the sample [mg / dL], and FIG. 21 (b) is obtained. It was. FIG. 21 (b) displays the time of reagent 2 solution injection as 0 second. In the same manner as when obtaining FIG. 19 (c) and FIG. 20 (c) from FIG. 19 (b) and FIG. 20 (b), reaction curve fitting and reverse calculation were performed for FIG. A reaction curve (FIG. 21 (c)) was obtained when it was assumed that the reaction was completed in an instant. The rise time at this time was 1 second or less. As described above, even when two reagents are used, the time required for mixing the solutions can be obtained by performing the analysis using the time of the reagent 2 solution injection as the time of starting the reaction. Even when the specimen is injected later, the time required for mixing the solution can be obtained if the reaction is started by the injection of the specimen.

101 電位差測定用電極
102 参照電極
103 攪拌装置
104 測定容器
105 制御装置
106 データ処理装置
107 データ表示装置
108 検体試料分注装置
109 試薬溶液分注装置
110 洗浄装置
111 電位測定装置
112 演算装置
113 一時記憶装置
114 不揮発性記憶装置
301 測定容器
302 検体試料用分注装置
303 検体試料
304 電位差測定用電極
305 参照電極
306 攪拌素子
307 試薬溶液分注装置
308 洗浄装置
401〜407 フローチャートでの動作
601〜610 フローチャートでの動作
801〜809 フローチャートでの動作
1501 金電極
1502 フェロセン誘導体
1503 アルカンチオール
1601 電位差測定用電極
1602 参照電極
1603 測定容器
1604 制御装置
1605 データ処理装置
1606 データ表示装置
1607 検体試料用分注器
1608 試薬溶液分注器
1609 攪拌素子
1610 電位差測定装置
1611 演算装置
1612 一時記憶装置
1613 不揮発性記憶装置
1614 フェロセン誘導体
1701 電界効果トランジスタ
1702 ソース
1703 ドレイン
1704 ゲート絶縁物
1706 ゲート
1707 導電性配線
DESCRIPTION OF SYMBOLS 101 Potential difference measurement electrode 102 Reference electrode 103 Stirring device 104 Measuring container 105 Control device 106 Data processing device 107 Data display device 108 Specimen sample dispensing device 109 Reagent solution dispensing device 110 Cleaning device 111 Potential measuring device 112 Computing device 113 Temporary storage Device 114 Non-volatile memory device 301 Measuring container 302 Specimen sample dispensing device 303 Specimen sample 304 Potential difference measuring electrode 305 Reference electrode 306 Stirring element 307 Reagent solution dispensing device 308 Cleaning device 401 to 407 Operation in flowchart 601 to 610 Operation 801 to 809 Operation in the flow chart 1501 Gold electrode 1502 Ferrocene derivative 1503 Alkanethiol 1601 Potential difference measurement electrode 1602 Reference electrode 1603 Measurement container 1604 Control device 1605 Data processing Device 1606 Data display device 1607 Specimen sample dispenser 1608 Reagent solution dispenser 1609 Stirring element 1610 Potential difference measurement device 1611 Arithmetic device 1612 Temporary storage device 1613 Non-volatile storage device 1614 Ferrocene derivative 1701 Field effect transistor 1702 Source 1703 Drain 1704 Gate Insulator 1706 Gate 1707 Conductive wiring

Claims (15)

測定対象物を含有する試料溶液を測定容器に分注する第1の分注工程と,
測定対象物と反応する第1の試薬を含む第1の反応溶液を前記測定容器に分注する第2の分注工程と,
前記測定容器中に分注された前記第1の反応溶液を撹拌する撹拌工程と,
前記測定容器中に配置された測定電極の界面電位を測定する複数の測定工程とを有し,
前記測定工程のうち少なくとも1つは前記第2の分注に同期して開始され,
前記攪拌工程は前記第2の分注に同期して開始することを特徴とする電位差測定方法。
A first dispensing step of dispensing a sample solution containing a measurement object into a measurement container;
A second dispensing step of dispensing a first reaction solution containing a first reagent that reacts with a measurement object into the measurement container;
An agitation step of agitating the first reaction solution dispensed into the measurement container;
A plurality of measurement steps for measuring an interface potential of a measurement electrode disposed in the measurement container,
At least one of the measuring steps is started in synchronization with the second dispensing,
The potential difference measuring method, wherein the stirring step starts in synchronization with the second dispensing.
前記撹拌工程は,前記測定容器中に分注された前記試料溶液と前記第1の反応溶液との混合溶液を撹拌する工程であることを特徴とする請求項1に記載の電位差測定方法。   The potential difference measuring method according to claim 1, wherein the stirring step is a step of stirring a mixed solution of the sample solution and the first reaction solution dispensed in the measurement container. 前記測定工程のうち少なくとも1つは前記撹拌工程を伴わないことを特徴とする請求項2に記載の電位差測定方法。   The potential difference measurement method according to claim 2, wherein at least one of the measurement steps does not involve the stirring step. 前記撹拌工程を続けながら,前記第2の分注工程後に,前記測定対象物と反応する第2の試薬を含む第2の反応溶液を前記測定容器に分注する第3の分注工程を有し,
前記測定工程のうち少なくとも1つは前記第3の分注に同期して開始されることを特徴とする請求項1に記載の電位差測定方法。
While continuing the stirring step, after the second dispensing step, there is a third dispensing step for dispensing a second reaction solution containing a second reagent that reacts with the measurement object into the measurement container. And
The potential difference measuring method according to claim 1, wherein at least one of the measuring steps is started in synchronization with the third dispensing.
前記第2の分注工程後に,前記測定対象物と反応する第2の試薬を含む第2の反応溶液を前記測定容器に分注する第3の分注工程と,
前記測定容器中に分注された前記第2の反応溶液を撹拌する第2の撹拌工程とを有し,
前記測定工程のうち少なくとも1つは前記第3の分注に同期して開始され,
前記測定工程のうち少なくとも1つは前記撹拌工程も前記第2の攪拌工程も伴わず,
前記第2の攪拌工程は前記第3の分注に同期して開始することを特徴とする請求項1に記載の電位差測定方法。
A third dispensing step of dispensing a second reaction solution containing a second reagent that reacts with the measurement object into the measurement container after the second dispensing step;
A second stirring step of stirring the second reaction solution dispensed into the measurement container,
At least one of the measuring steps is started in synchronization with the third dispensing,
At least one of the measurement steps is not accompanied by the stirring step or the second stirring step,
The potential difference measuring method according to claim 1, wherein the second stirring step starts in synchronization with the third dispensing.
前記第2の分注工程後に前記第1の分注工程を有し,
前記測定工程のうち少なくとも1つは前記第1の分注に同期して開始されることを特徴とする請求項1に記載の電位差測定方法。
Having the first dispensing step after the second dispensing step;
The potential difference measuring method according to claim 1, wherein at least one of the measuring steps is started in synchronization with the first dispensing.
前記測定容器中に分注された試料溶液を撹拌する第2の撹拌工程を有し,
前記測定工程のうち少なくとも1つは前記撹拌工程も前記第2の攪拌工程も伴わず,
前記第2の撹拌工程を前記第1の分注工程に同期して開始することを特徴とする請求項6に記載の電位差測定方法。
A second stirring step of stirring the sample solution dispensed into the measurement container;
At least one of the measurement steps is not accompanied by the stirring step or the second stirring step,
The potential difference measuring method according to claim 6, wherein the second stirring step is started in synchronization with the first dispensing step.
前記攪拌工程は前記第2の分注ではなく前記第1の分注に同期して開始することを特徴とする請求項6に記載の電位差測定方法。   The potential difference measuring method according to claim 6, wherein the stirring step is started not in the second dispensing but in synchronization with the first dispensing. 前記測定工程のうち少なくとも1つは前記撹拌工程を伴わないことを特徴とする請求項6に記載の電位差測定方法。   The potential difference measuring method according to claim 6, wherein at least one of the measuring steps does not involve the stirring step. 前記第1の反応溶液もしくは第2の反応溶液によって生じる反応は,酵素反応または酸化還元反応であることを特徴とする請求項1乃至9いずれかに記載の電位差測定方法。   10. The potential difference measuring method according to claim 1, wherein the reaction generated by the first reaction solution or the second reaction solution is an enzyme reaction or an oxidation-reduction reaction. 請求項1乃至10いずれかに記載の電位差測定方法であって,前記測定工程により得られた電位差の時系列データにおいて,前記データの立ち上がりにおける一定時間のデータを標準データと比較し,比較結果を出力する工程を有することを特徴とする電位差測定方法。   The potential difference measuring method according to any one of claims 1 to 10, wherein in the time series data of the potential difference obtained by the measuring step, the data for a predetermined time at the rising edge of the data is compared with the standard data, and the comparison result is obtained. A potential difference measuring method comprising a step of outputting. 請求項1乃至10いずれかに記載の電位差測定方法であって,前記測定工程により得られた電位差の時系列データにおいて,前記データの極大値と極小値との差異を,標準データと比較し,比較結果を出力する工程を有することを特徴とする電位差測定方法。   The potential difference measuring method according to any one of claims 1 to 10, wherein in the time series data of the potential difference obtained by the measuring step, the difference between the maximum value and the minimum value of the data is compared with standard data, A potential difference measuring method comprising a step of outputting a comparison result. 請求項1乃至10いずれかに記載の電位差測定方法であって,前記測定工程により得られた電位差の時系列データにおいて,前記時系列データから伝達関数を導き,前記伝達関数の逆関数を導き,前記逆関数と前記時系列データとの演算により入力関数を求める工程を有することを特徴とする電位差測定方法。   The potential difference measuring method according to any one of claims 1 to 10, wherein in the time series data of the potential difference obtained by the measuring step, a transfer function is derived from the time series data, and an inverse function of the transfer function is derived, A potential difference measuring method comprising a step of obtaining an input function by computing the inverse function and the time series data. 請求項13に記載の電位差測定方法であって,前記入力関数において,前記入力関数の立ち上がりにおける一定時間のデータを標準データと比較し,比較結果を出力する工程を有することを特徴とする電位差測定方法。   14. The potential difference measuring method according to claim 13, further comprising a step of comparing data of a predetermined time at the rising edge of the input function with standard data in the input function and outputting a comparison result. Method. 請求項13に記載の電位差測定方法であって,前記入力関数において,前記入力関数の極大値と極小値との差異を,標準データと比較し,比較結果を出力する工程を有することを特徴とする電位差測定方法。   14. The potential difference measuring method according to claim 13, further comprising a step of comparing a difference between a maximum value and a minimum value of the input function with standard data and outputting a comparison result in the input function. Potential difference measurement method.
JP2009141796A 2009-06-15 2009-06-15 Potential difference measuring method Pending JP2010286423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141796A JP2010286423A (en) 2009-06-15 2009-06-15 Potential difference measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141796A JP2010286423A (en) 2009-06-15 2009-06-15 Potential difference measuring method

Publications (1)

Publication Number Publication Date
JP2010286423A true JP2010286423A (en) 2010-12-24

Family

ID=43542216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141796A Pending JP2010286423A (en) 2009-06-15 2009-06-15 Potential difference measuring method

Country Status (1)

Country Link
JP (1) JP2010286423A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242277A (en) * 2012-05-23 2013-12-05 Nihon Medi Physics Co Ltd Ph measurement technology
JP2014013232A (en) * 2012-06-06 2014-01-23 Panasonic Corp Method for accurately determining quantity of chemical substance contained in sample solution with extremely low concentration of 1×10-8m or less
US9372169B2 (en) 2012-07-20 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Method for accurately quantifying a chemical substance contained in a sample solution at a significantly low concentration of not more than 1×10−8M
JP2016197109A (en) * 2012-06-08 2016-11-24 メドトロニック・ミニメッド・インコーポレーテッド Application of electrochemical impedance spectroscopy in sensor systems, devices and related methods

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242277A (en) * 2012-05-23 2013-12-05 Nihon Medi Physics Co Ltd Ph measurement technology
JP2014013232A (en) * 2012-06-06 2014-01-23 Panasonic Corp Method for accurately determining quantity of chemical substance contained in sample solution with extremely low concentration of 1×10-8m or less
US8961777B2 (en) 2012-06-06 2015-02-24 Panasonic Intellectual Property Management Co., Ltd. Method for accurately quantifying a chemical substance contained in a sample solution at a significantly low concentration of not more than 1×10-8M
US9989490B2 (en) 2012-06-08 2018-06-05 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10172544B2 (en) 2012-06-08 2019-01-08 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US9801576B2 (en) 2012-06-08 2017-10-31 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US9808191B2 (en) 2012-06-08 2017-11-07 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US9861746B2 (en) 2012-06-08 2018-01-09 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US9863911B2 (en) 2012-06-08 2018-01-09 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US9989491B2 (en) 2012-06-08 2018-06-05 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US11213231B2 (en) 2012-06-08 2022-01-04 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10156543B2 (en) 2012-06-08 2018-12-18 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
JP2016197109A (en) * 2012-06-08 2016-11-24 メドトロニック・ミニメッド・インコーポレーテッド Application of electrochemical impedance spectroscopy in sensor systems, devices and related methods
US10321865B2 (en) 2012-06-08 2019-06-18 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10335076B2 (en) 2012-06-08 2019-07-02 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10335077B2 (en) 2012-06-08 2019-07-02 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10342468B2 (en) 2012-06-08 2019-07-09 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10660555B2 (en) 2012-06-08 2020-05-26 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10905365B2 (en) 2012-06-08 2021-02-02 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US11160477B2 (en) 2012-06-08 2021-11-02 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US9372169B2 (en) 2012-07-20 2016-06-21 Panasonic Intellectual Property Management Co., Ltd. Method for accurately quantifying a chemical substance contained in a sample solution at a significantly low concentration of not more than 1×10−8M

Similar Documents

Publication Publication Date Title
JP6150262B2 (en) Analyte biosensor system
RU2426107C2 (en) Voltammetric method of determining concentration of analyte in sample and device for determining concentration of analyte
JP4964552B2 (en) Method and apparatus for rapid electrochemical analysis
JP5372744B2 (en) Underfilling detection system for biosensors
TWI468679B (en) Method for determining concentration of analyte in sample, and handheld measurement device and biosensor system using said method
RU2238548C2 (en) Method for measuring concentration of analyzed substance (variants), measuring device for doing the same
AU2007201378B2 (en) Methods and apparatus for analyzing a sample in the presence of interferents
JP4876031B2 (en) Analysis equipment
KR20120099452A (en) Underfill recognition system for a biosensor
JP2010286423A (en) Potential difference measuring method
JP4660652B2 (en) Method and apparatus for measuring concentration of specific component in blood sample
US20070105232A1 (en) Voltammetric detection of metabolites in physiological fluids
KR20190112731A (en) Determination of Analyte Concentrations in Physiological Fluids with Interferences
JP2010117183A (en) Potential difference measuring device
WO2023145300A1 (en) Sample measuring device, sample measuring method, and sample measuring program