JP2010277094A - Method for producing absorption type multi-layer film nd filter - Google Patents

Method for producing absorption type multi-layer film nd filter Download PDF

Info

Publication number
JP2010277094A
JP2010277094A JP2010153069A JP2010153069A JP2010277094A JP 2010277094 A JP2010277094 A JP 2010277094A JP 2010153069 A JP2010153069 A JP 2010153069A JP 2010153069 A JP2010153069 A JP 2010153069A JP 2010277094 A JP2010277094 A JP 2010277094A
Authority
JP
Japan
Prior art keywords
film
multilayer
substrate
absorption
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010153069A
Other languages
Japanese (ja)
Other versions
JP4984101B2 (en
Inventor
Hideharu Ogami
秀晴 大上
Takayuki Abe
能之 阿部
Noriyuki Nakayama
徳行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010153069A priority Critical patent/JP4984101B2/en
Publication of JP2010277094A publication Critical patent/JP2010277094A/en
Application granted granted Critical
Publication of JP4984101B2 publication Critical patent/JP4984101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an absorption type multi-layer film ND filter whose substrate hardly warps and which can promise superior mass productivity and moreover can achieve transmittance attenuation that is flat for wavelengths. <P>SOLUTION: The absorption type multi-layer film ND filter comprises a film substrate 12 and absorption type multi-layer films 13, 16 constituted by alternately laminating dielectric layers 14, 17 formed of SiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>or the like and metal film layers 15, 18 formed of an Ni-based alloy on the film substrate. In the method for producing the absorption type multi-layer film ND filter, the absorption type multi-layer films are respectively formed so as to have a film structure symmetrical to each other interposing the substrate, warpage of the substrate is controlled at a curvature of radius of 500 mm or more and further the metal film layers are formed by a magnetron sputtering method using a nickel-based material target formed by adding to Ni one element selected from Al, V, W, Ta and Si in a prescribed range. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、可視域の透過光を減衰させる吸収型多層膜NDフィルターの製造方法に係り、特に、樹脂フィルム、樹脂板若しくはガラス薄板等の薄い基板が適用された吸収型多層膜NDフィルターの製造方法に関するものである。   The present invention relates to a method for manufacturing an absorptive multilayer ND filter that attenuates transmitted light in the visible range, and in particular, an absorptive multilayer ND filter to which a thin substrate such as a resin film, a resin plate, or a glass thin plate is applied. It is about the method.

この種のND(Neutral Density Filter)フィルターには、入射光を反射して減衰させる反射型NDフィルターと、入射光を吸収して減衰させる吸収型NDフィルターが知られている。そして、反射光が問題となるレンズ光学系にNDフィルターを組み込む場合には一般的に吸収型NDフィルターが用いられ、この吸収型NDフィルターには、基板自体に吸収物質を混ぜたり(色ガラスNDフィルター)塗布するタイプと、基板自体に吸収はなくその表面に形成された薄膜に吸収があるタイプとが存在する。また、後者の場合は、薄膜表面の反射を防ぐため上記薄膜を多層膜で構成し、透過光を減衰させる機能と共に反射防止の効果を持たせている。   As this type of ND (Neutral Density Filter) filter, a reflection type ND filter that reflects and attenuates incident light and an absorption type ND filter that absorbs and attenuates incident light are known. When an ND filter is incorporated in a lens optical system in which reflected light is a problem, an absorption ND filter is generally used. In this absorption ND filter, an absorbing substance is mixed into the substrate itself (color glass ND). There are two types: a filter) type to be applied and a type in which a thin film formed on the surface of the substrate has no absorption and absorption. In the latter case, the thin film is formed of a multilayer film to prevent reflection on the surface of the thin film, and has an antireflection effect as well as a function of attenuating transmitted light.

そして、上記薄膜が多層膜で構成された吸収型多層膜NDフィルターとして、特許文献1には誘電体層とチタン酸化膜層とを組合せた多層膜が、また、特許文献2には誘電体膜とニオブ膜層とを組合せた多層膜がそれぞれ開示されている。   As an absorptive multilayer ND filter in which the thin film is a multilayer film, Patent Document 1 discloses a multilayer film in which a dielectric layer and a titanium oxide film layer are combined, and Patent Document 2 discloses a dielectric film. A multilayer film in which a niobium film layer is combined is disclosed.

更に、特許文献3には、機械的接触によるキズが発生しないようにするため、少なくとも一方の最表面に誘電体の硬質膜層を形成する手法が開示されている。   Further, Patent Document 3 discloses a technique of forming a dielectric hard film layer on at least one outermost surface in order to prevent scratches due to mechanical contact.

ところで、小型薄型デジタルカメラに用いられる吸収型多層膜NDフィルターは、組込みスペースが狭いため基板自体を薄くする必要があり、非常に薄いガラス薄板や樹脂板、樹脂フィルムが基板として適用されている。   By the way, since the absorption multilayer ND filter used for a small thin digital camera has a small installation space, it is necessary to thin the substrate itself, and a very thin glass plate, resin plate, or resin film is applied as the substrate.

しかし、基板として非常に薄いガラス薄板や樹脂板、樹脂フィルムを適用した場合、以下に示すような特有の問題が発生する。   However, when a very thin glass plate, resin plate, or resin film is applied as the substrate, the following specific problems occur.

すなわち、非常に薄いガラス薄板や樹脂板、樹脂フィルムの片面ごとに構造の異なる多層膜を形成すると、形成されたそれぞれの多層膜の膜応力により一方側に基板が反ってしまうことがある。この場合、それぞれ片側の多層膜ごとに総合的な膜応力がキャンセルされる理想的な成膜条件、すなわち片面だけ成膜した時でも基板が反らないような条件で成膜を行えば、両面に多層膜を形成しても基板は反ることはない。そして、総合的な膜応力がキャンセルされるような上記方法として、各層ごとに膜応力を無くす方法と、引張り応力と圧縮応力の膜を交互に積層することで膜応力を打ち消す方法が存在するが、多層膜の膜応力をゼロにすることは現実的には困難である。   That is, if a multilayer film having a different structure is formed on each side of a very thin glass sheet, resin plate, or resin film, the substrate may be warped on one side due to the film stress of each formed multilayer film. In this case, if film formation is performed under ideal film formation conditions in which the total film stress is canceled for each multilayer film on each side, that is, when the film is formed on only one side, the substrate does not warp. Even if a multilayer film is formed on the substrate, the substrate does not warp. As a method for canceling the overall film stress, there are a method for eliminating the film stress for each layer and a method for canceling the film stress by alternately laminating films of tensile stress and compressive stress. In reality, it is difficult to make the film stress of the multilayer film zero.

例えば、図1に示すように基板3の一方の面に吸収型多層膜1が形成され、他方の面に反射防止膜2が形成されている一般的な吸収型多層膜NDフィルターの場合、吸収型多層膜1と反射防止膜2の膜応力のバランスが悪いと、基板3が非常に薄いガラス薄板や樹脂板、樹脂フィルムで構成されている場合に基板が反ってしまう。そして、金属膜が薄く、ほとんどがSiOで構成される図1に示す上記吸収型多層膜1の場合、上述した引張り応力と圧縮応力の膜を交互に積層することで膜応力を打ち消す方法は、金属膜が薄いことから用いることはできず、SiO膜の膜応力をゼロに調整する必要がある。しかしながらSiO膜の膜応力をゼロにする成膜条件は現実的に設定困難である。 For example, in the case of a general absorptive multilayer ND filter in which the absorption multilayer film 1 is formed on one surface of the substrate 3 and the antireflection film 2 is formed on the other surface as shown in FIG. If the balance between the film stresses of the mold multilayer film 1 and the antireflection film 2 is poor, the substrate warps when the substrate 3 is made of a very thin glass plate, resin plate, or resin film. The thin metal film, a method most cases the absorption type multi-layer film 1 shown in composed Figure 1 with SiO 2, to cancel the film stress by alternately laminating a film of the above-mentioned tensile stress and compressive stress Since the metal film is thin, it cannot be used, and it is necessary to adjust the film stress of the SiO 2 film to zero. However, it is actually difficult to set the film forming conditions for making the film stress of the SiO 2 film zero.

そして、基板が反ってしまうと、このNDフィルターを接着あるいは溶着する際に取扱いが難しくなる問題があり、かつ、撮像素子の近傍に用いた場合には画像が歪んでしまう弊害も懸念される。   If the substrate is warped, there is a problem that handling becomes difficult when the ND filter is bonded or welded, and there is a concern that the image may be distorted when used in the vicinity of the image sensor.

特許第3359114号公報Japanese Patent No. 3359114 特開2002−350610号公報JP 2002-350610 A 特開平10−133253号公報JP-A-10-133253

本発明はこのような問題点に着目してなされたもので、その課題とするところは、樹脂フィルム、樹脂板若しくはガラス薄板等の薄膜の基板が適用された場合でも基板の反りが起こり難く、かつ、量産性に優れ、しかも、波長に対して平坦な透過率減衰が得られる吸収型多層膜NDフィルターの製造方法を提供することにある。   The present invention was made paying attention to such problems, and the problem is that even when a thin film substrate such as a resin film, a resin plate or a glass thin plate is applied, the substrate is hardly warped. Another object of the present invention is to provide a method for manufacturing an absorption-type multilayer ND filter that is excellent in mass productivity and that provides a flat transmittance attenuation with respect to the wavelength.

そこで、上記課題を解決するため本発明者等が鋭意研究を行った結果、樹脂フィルムや樹脂板、ガラス薄板等薄い基板の両面にこの基板を中心にして互いに対称となる膜構造の吸収型多層膜を形成し両面の膜応力をキャンセルさせることにより基板の反りが容易に減少されること、また、上記吸収型多層膜をSiO、Al若しくはこれ等混合物から成る誘電体層とNi単体若しくはNi系合金から成る金属膜層との多層膜で構成することにより波長に対して平坦な透過率減衰が得られること等を見出し、本発明を完成するに至った。 Therefore, as a result of intensive studies by the present inventors in order to solve the above-described problems, an absorption-type multilayer having a film structure that is symmetrical with respect to both sides of a thin substrate such as a resin film, a resin plate, a glass thin plate, etc. warpage of the substrate is easily reduced by canceling the both surfaces of the film stress to form a film, also a dielectric layer composed of the above absorption type multi-layer film of SiO 2, Al 2 O 3, or which such mixtures and Ni It has been found that a flat transmittance attenuation with respect to the wavelength can be obtained by constituting a multilayer film with a single layer or a metal film layer made of a Ni-based alloy, and the present invention has been completed.

すなわち、請求項1に係る発明は、
透過光を減衰させる吸収型多層膜が樹脂フィルム、樹脂板若しくはガラス薄板から成る基板に設けられ、上記吸収型多層膜が、SiO、Al若しくはこれ等混合物から成る誘電体層とTi、Al、V、W、Ta、Siから選択された1種類以上の元素が添加されたNi系合金から成る金属膜層とを交互に積層させた多層膜により構成される吸収型多層膜NDフィルターの製造方法を前提とし、
基板の両面に基板を中心にして互いに対称な膜構造となるように上記吸収型多層膜をそれぞれ形成して、基板の反りの曲率半径が500mm以上になるように調整すると共に、Ti元素の添加割合が5〜15重量%、Al元素の添加割合が3〜8重量%、V元素の添加割合が3〜9重量%、W元素の添加割合が18〜32重量%、Ta元素の添加割合が5〜12重量%、Si元素の添加割合が2〜6重量%の範囲にそれぞれ設定されたNi系材料ターゲットを用いて、マグネトロンスパッタリング法により上記金属膜層を形成することを特徴とする。
That is, the invention according to claim 1
An absorptive multilayer film for attenuating transmitted light is provided on a substrate made of a resin film, a resin plate or a glass thin plate, and the absorptive multilayer film comprises a dielectric layer made of SiO 2 , Al 2 O 3 or a mixture thereof and Ti Absorption multilayer ND filter composed of a multilayer film in which metal film layers made of an Ni-based alloy to which one or more elements selected from Al, V, W, Ta, and Si are added are alternately laminated Assuming the manufacturing method of
Each of the absorption multilayer films is formed on both sides of the substrate so as to have a symmetrical film structure around the substrate, and the curvature radius of the warp of the substrate is adjusted to 500 mm or more, and addition of Ti element The proportion is 5 to 15% by weight, the addition rate of Al element is 3 to 8% by weight, the addition rate of V element is 3 to 9% by weight, the addition rate of W element is 18 to 32% by weight, and the addition rate of Ta element is The metal film layer is formed by a magnetron sputtering method using Ni-based material targets set in a range of 5 to 12% by weight and a Si element addition ratio of 2 to 6% by weight, respectively.

また、請求項2係る発明は、
請求項1記載の発明に係る吸収型多層膜NDフィルターの製造方法を前提とし、
上記SiO、Al若しくはこれ等混合物から成る基板片側の誘電体層の合計膜厚が100nm以上、かつ、Ni系合金から成る基板片側の金属膜層の合計膜厚が30nm以下に設定されていることを特徴とし、
請求項3に係る発明は、
請求項1記載の発明に係る吸収型多層膜NDフィルターの製造方法を前提とし、
上記SiO、Al若しくはこれ等混合物から成る各誘電体層の膜厚が全て同一膜厚に設定され、かつ、Ni系合金から成る各金属膜層の膜厚も全て同一膜厚に設定されていることを特徴とする。
The invention according to claim 2
Based on the manufacturing method of the absorption multilayer ND filter according to the invention of claim 1,
The total film thickness of the dielectric layer on one side of the substrate made of SiO 2 , Al 2 O 3 or a mixture thereof is set to 100 nm or more, and the total film thickness of the metal film layer on the side of the substrate made of Ni-based alloy is set to 30 nm or less. It is characterized by being,
The invention according to claim 3
Based on the manufacturing method of the absorption multilayer ND filter according to the invention of claim 1,
The thickness of each dielectric layer composed of the SiO 2, Al 2 O 3, or which such mixtures are all set to the same thickness, and all the film thickness of each metal film layer made of Ni-based alloy in the same film thickness It is characterized by being set.

本発明に係る吸収型多層膜NDフィルターの製造方法によれば、樹脂フィルム、樹脂板若しくはガラス薄板から成る基板の両面にこの基板を中心にして互いに対称となる膜構造の吸収型多層膜を形成して両面の膜応力を相互にキャンセルさせているため、薄い基板でもその曲率半径が500mm以上に調整された平坦性に優れた吸収型多層膜NDフィルターを製造できる効果を有している。   According to the method for manufacturing an absorptive multilayer ND filter according to the present invention, an absorptive multilayer film having a film structure symmetric with respect to the substrate is formed on both surfaces of a substrate made of a resin film, a resin plate or a glass thin plate. Since the film stresses on both sides are canceled each other, it is possible to produce an absorption type multilayer ND filter having excellent flatness with a curvature radius adjusted to 500 mm or more even with a thin substrate.

また、Ti元素の添加割合が5〜15重量%、Al元素の添加割合が3〜8重量%、V元素の添加割合が3〜9重量%、W元素の添加割合が18〜32重量%、Ta元素の添加割合が5〜12重量%、Si元素の添加割合が2〜6重量%の範囲にそれぞれ設定されたNi系材料ターゲットを用いて、マグネトロンスパッタリング法により可視域における分光透過率の波長依存性が小さいNi系合金にて吸収型多層膜の金属膜層を形成しているため、波長に対して平坦な透過率減衰が得られる吸収型多層膜NDフィルターを安定して量産できる効果を有している。   Further, the addition ratio of Ti element is 5 to 15 wt%, the addition ratio of Al element is 3 to 8 wt%, the addition ratio of V element is 3 to 9 wt%, the addition ratio of W element is 18 to 32 wt%, Spectral transmittance wavelength in the visible region by a magnetron sputtering method using Ni-based material targets in which the addition ratio of Ta element is 5 to 12% by weight and the addition ratio of Si element is 2 to 6% by weight. Since the metal film layer of the absorption multilayer film is formed of a Ni-based alloy having a small dependence, the effect of stably mass-producing the absorption multilayer film ND filter that can obtain a flat transmittance attenuation with respect to the wavelength is obtained. Have.

更に、基板の両面にこの基板を中心にして互いに対称となる膜構造の吸収型多層膜が形成されているため、吸収型多層膜NDフィルターの生産性に優れ、かつ、裏表の区別が無くなるため管理もし易くなる効果を有している。   Furthermore, since the absorption multilayer film having a film structure that is symmetric with respect to the substrate is formed on both sides of the substrate, the productivity of the absorption multilayer film ND filter is excellent and the distinction between the front and back sides is eliminated. It has the effect of facilitating management.

従来例に係る吸収型多層膜NDフィルターの構成断面図。FIG. 7 is a structural cross-sectional view of an absorption multilayer ND filter according to a conventional example. 従来例(比較例)に係る吸収型多層膜NDフィルターの構成断面図。FIG. 5 is a cross-sectional view of a configuration of an absorption multilayer ND filter according to a conventional example (comparative example). 従来例に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光透過特性を示すグラフ図。The graph which shows the theoretical spectral transmission characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on a prior art example. 従来例に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光反射特性を示すグラフ図。The graph which shows the theoretical spectral reflection characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on a prior art example. 従来例に係る吸収型多層膜NDフィルターの多層反射防止膜における理論分光反射特性を示すグラフ図。The graph which shows the theoretical spectral reflection characteristic in the multilayer anti-reflective film of the absorption type multilayer ND filter which concerns on a prior art example. 金属膜層がNi単体で構成される参考例に係る吸収型多層膜NDフィルターと金属膜層がNi系合金で構成される本発明に係る吸収型多層膜NDフィルターの構成断面図。FIG. 3 is a cross-sectional view of an absorption multilayer ND filter according to a reference example in which a metal film layer is composed of Ni alone and an absorption multilayer ND filter according to the present invention in which the metal film layer is composed of a Ni-based alloy. 表2に示す参考例に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光透過特性を示すグラフ図。The graph which shows the theoretical spectral transmission characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on the reference example shown in Table 2. FIG. 表2に示す参考例に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光反射特性を示すグラフ図。The graph which shows the theoretical spectral reflection characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on the reference example shown in Table 2. FIG. 参考例1に係る吸収型多層膜NDフィルターの分光透過特性を示すグラフ図。The graph which shows the spectral transmission characteristic of the absorption type multilayer ND filter which concerns on the reference example 1. FIG. 比較例に係る吸収型多層膜NDフィルターの分光透過特性を示すグラフ図。The graph which shows the spectral transmission characteristic of the absorption type multilayer ND filter which concerns on a comparative example. Ni薄膜、Cr薄膜、Nb薄膜およびTa薄膜における透過率と波長との関係を示すグラフ図。The graph which shows the relationship between the transmittance | permeability and wavelength in Ni thin film, Cr thin film, Nb thin film, and Ta thin film. 表3に示す本発明に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光透過特性を示すグラフ図。The graph which shows the theoretical spectral transmission characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on this invention shown in Table 3. FIG. 表3に示す本発明に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光反射特性を示すグラフ図。The graph which shows the theoretical spectral reflection characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on this invention shown in Table 3. FIG. 実施例3に係る吸収型多層膜NDフィルターの分光透過特性を示すグラフ図。FIG. 9 is a graph showing the spectral transmission characteristics of the absorption multilayer ND filter according to Example 3. 表4に示す本発明に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光透過特性を示すグラフ図。The graph which shows the theoretical spectral transmission characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on this invention shown in Table 4. FIG. 表4に示す本発明に係る吸収型多層膜NDフィルターの吸収型多層膜における理論分光反射特性を示すグラフ図。The graph which shows the theoretical spectral reflection characteristic in the absorption type multilayer film of the absorption type multilayer film ND filter which concerns on this invention shown in Table 4. FIG. 実施例4に係る吸収型多層膜NDフィルターの分光透過特性を示すグラフ図。FIG. 9 is a graph showing the spectral transmission characteristics of the absorption multilayer ND filter according to Example 4.

以下、本発明に係る吸収型多層膜NDフィルターの製造方法について図面を用いて詳細に説明する。   Hereinafter, the manufacturing method of the absorption type multilayer ND filter according to the present invention will be described in detail with reference to the drawings.

尚、使用波長帯域に吸収がない薄い基板を用いた場合、基板両面に同じ膜構成の反射防止機能を有する吸収型多層膜を形成して所望の透過率とするには、各吸収型多層膜によるそれぞれの吸収を考慮して設定する必要がある。すなわち、透過率25%のNDフィルターを製作するためには、それぞれ透過率50%(=√25%)の吸収型多層膜を両面に形成する必要があり、また、透過率12.5%のNDフィルターを製作するためには、それぞれ透過率35%(=√12.5%)の吸収型多層膜を両面に形成する必要がある。   In addition, when a thin substrate having no absorption in the used wavelength band is used, in order to form an absorption multilayer film having an antireflection function with the same film configuration on both surfaces of the substrate to obtain a desired transmittance, each absorption multilayer film It is necessary to set in consideration of the absorption by each. That is, in order to manufacture an ND filter with a transmittance of 25%, it is necessary to form an absorption multilayer film with a transmittance of 50% (= √25%) on both sides, and a transmittance of 12.5%. In order to manufacture an ND filter, it is necessary to form an absorption multilayer film having a transmittance of 35% (= √12.5%) on both sides.

まず、図2に透過率12.5%の従来例に係る吸収型多層膜NDフィルターを示す。   First, FIG. 2 shows an absorption multilayer ND filter according to a conventional example having a transmittance of 12.5%.

すなわち、この従来例に係る吸収型多層膜NDフィルターは、フィルム(PC:ポリカーボネート)基板5と、この基板5の表面に形成された反射防止機能を有する吸収型多層膜(具体的には「Ni単体から成る金属膜層9/SiOから成る誘電体層8/上記金属膜層9/上記誘電体層8/上記金属膜層9/上記誘電体層8」とで構成される)6と、基板5の裏面に形成された多層反射防止膜(具体的には「Taから成る金属膜層11/SiOから成る誘電体層10/上記金属膜層11/上記誘電体層10」とで構成される)7とでその主要部が構成されている。尚、以下の表1に、上記吸収型多層膜と多層反射防止膜の具体的膜構成、構成材料、各層の膜厚および屈折率をそれぞれ示す。また、従来例に係る吸収型多層膜NDフィルターの吸収型多層膜6における理論分光透過特性を図3に、吸収型多層膜6における理論分光反射特性を図4に、また、上記多層反射防止膜7における理論分光反射特性を図5にそれぞれ示す。 That is, the absorption multilayer ND filter according to this conventional example includes a film (PC: polycarbonate) substrate 5 and an absorption multilayer film (specifically “Ni” formed on the surface of the substrate 5 having an antireflection function). A single metal film layer 9 / dielectric layer 8 made of SiO 2 / the metal film layer 9 / the dielectric layer 8 / the metal film layer 9 / the dielectric layer 8 ”). formed on the back surface multilayer antireflection film of the substrate 5 (specifically, "Ta 2 O 5 made of a metal film layer 11 / SiO 2 composed of dielectric layer 10 / the metal layer 11 / the dielectric layer 10 ' The main part is composed of 7). Table 1 below shows specific film configurations, constituent materials, film thicknesses and refractive indices of the respective layers of the absorption multilayer film and multilayer antireflection film. Further, the theoretical spectral transmission characteristics of the absorption multilayer film 6 of the absorption multilayer film ND filter according to the conventional example are shown in FIG. 3, the theoretical spectral reflection characteristics of the absorption multilayer film 6 are shown in FIG. 7 shows the theoretical spectral reflection characteristics in FIG.

Figure 2010277094
Figure 2010277094

一方、本発明に係る製造方法により得られる吸収型多層膜NDフィルターは、透過光を減衰させる吸収型多層膜が樹脂フィルム、樹脂板若しくはガラス薄板から成る基板に設けられた吸収型多層膜NDフィルターであって、上記吸収型多層膜がSiO、Al若しくはこれ等混合物から成る誘電体層とNi系合金から成る金属膜層とを交互に積層させた多層膜により構成され、かつ、この吸収型多層膜が上記基板の両面にこの基板を中心にして互いに対称な膜構造となるようにそれぞれ形成されていると共に、基板の反りの曲率半径が500mm以上に調整されていることを特徴とする。 On the other hand, an absorptive multilayer ND filter obtained by the manufacturing method according to the present invention is an absorptive multilayer ND filter in which an absorptive multilayer film that attenuates transmitted light is provided on a substrate made of a resin film, a resin plate, or a glass thin plate. a is, the absorption type multi-layer film is constituted by a multilayer film obtained by alternately stacking the metal film layer made of a dielectric layer and the Ni-based alloy consisting of SiO 2, Al 2 O 3, or which such mixtures, and, The absorption multilayer film is formed on both surfaces of the substrate so as to have a symmetrical film structure with the substrate as a center, and the curvature radius of warpage of the substrate is adjusted to 500 mm or more. And

そして、上記基板は、樹脂フィルム、樹脂板若しくはガラス薄板で構成され、その材質は特に限定されないが、透明であるものが好ましく、量産性を考慮した場合、後述する乾式のロールコーティングが可能となる可撓性を有する基板であることが好ましい。可撓性のある基板は、従来のガラス基板等に比べて廉価・軽量・変形性に富むといった点においても優れている。特に、基板として、樹脂板若しくは樹脂フィルムが好ましい。   And the said board | substrate is comprised with a resin film, a resin board, or a glass thin plate, Although the material is not specifically limited, A transparent thing is preferable and when considering mass productivity, the dry-type roll coating mentioned later is attained. A substrate having flexibility is preferable. A flexible substrate is superior in that it is cheaper, lighter, and more deformable than a conventional glass substrate. In particular, a resin plate or a resin film is preferable as the substrate.

上記基板を構成する樹脂板若しくは樹脂フィルムの具体例として、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)およびノルボルネンの樹脂材料から選択された樹脂板若しくは樹脂フィルムの単体、あるいは、上記樹脂材料から選択された樹脂板若しくは樹脂フィルム単体とこの単体の片面または両面を覆うアクリル系有機膜との複合体が挙げられる。特に、ノルボルネン樹脂材料については、代表的なものとして、日本ゼオン社のゼオノア(商品名)やJSR社のアートン(商品名)などが挙げられる。   Specific examples of the resin plate or resin film constituting the substrate are selected from resin materials of polyethylene terephthalate (PET), polyether sulfone (PES), polyarylate (PAR), polycarbonate (PC), polyolefin (PO) and norbornene. Examples thereof include a single resin plate or resin film or a composite of a resin plate or resin film selected from the above resin materials and an acrylic organic film covering one or both surfaces of this single material. In particular, as for norbornene resin materials, representative examples include ZEONOR (trade name) manufactured by ZEON Corporation, and ARTON (trade name) manufactured by JSR Corporation.

また、上記金属膜層は上述したようにNi系合金、すなわち、Ti、Al、V、W、Ta、Siから選択された1種類以上の元素がNiに添加されたNi系合金材料で構成される。   Further, as described above, the metal film layer is made of a Ni-based alloy, that is, a Ni-based alloy material in which one or more elements selected from Ti, Al, V, W, Ta, and Si are added to Ni. The

この理由の詳細については後述するが、概略すると以下の通りである。すなわち、スパッタリング法を用いてNi膜を成膜する場合、Niターゲットの連続使用に伴いNiターゲットの厚みが減少してくると、Niターゲットの薄くなった部分においてプラズマ空間の漏洩磁界が強くなってくる。そして、プラズマ空間の漏洩磁界が強くなると、放電特性(放電電圧、放電電流等)が変化して成膜速度が変化する。つまり、生産時に、同一のNiターゲットを連続して長時間使用すると、Niターゲットの消耗に伴いNi膜の成膜速度が変化する問題が生じ、特性の揃った吸収型多層膜NDフィルターを安定して生産することが難しくなるからである。この問題を回避するには、上述したようにTi、Al、V、W、Ta、Siから選択された1種類以上の元素が添加されたNi系合金材料を用いて上記金属膜層を構成すればよい。   The details of this reason will be described later, but are summarized as follows. That is, when the Ni film is formed using the sputtering method, if the thickness of the Ni target decreases with the continuous use of the Ni target, the leakage magnetic field in the plasma space becomes stronger in the thinned portion of the Ni target. come. When the leakage magnetic field in the plasma space becomes stronger, the discharge characteristics (discharge voltage, discharge current, etc.) change and the film formation rate changes. In other words, if the same Ni target is used continuously for a long time during production, there is a problem that the deposition rate of the Ni film changes as the Ni target is consumed, and the absorption multilayer ND filter with uniform characteristics is stabilized. This makes it difficult to produce. In order to avoid this problem, as described above, the metal film layer is formed using a Ni-based alloy material to which one or more elements selected from Ti, Al, V, W, Ta, and Si are added. That's fine.

次に、フィルム(PC:ポリカーボネート)基板12と、この基板12の両面にそれぞれ形成された反射防止機能を有する吸収型多層膜13、16とでその主要部が構成される透過率12.5%の参考例に係る吸収型多層膜NDフィルターの一具体例を図6に示す。尚、以下の表2に、上記吸収型多層膜13、16の具体的膜構成、構成材料、各層の膜厚および屈折率をそれぞれ示し、金属膜層がNi単体で構成される参考例に係る吸収型多層膜NDフィルターの吸収型多層膜13、16における理論分光透過特性を図7に、その理論分光反射特性を図8にそれぞれ示す。   Next, a transmittance of 12.5%, the main part of which is composed of a film (PC: polycarbonate) substrate 12 and absorption multilayer films 13 and 16 each having an antireflection function formed on both surfaces of the substrate 12, respectively. A specific example of the absorption multilayer ND filter according to the reference example is shown in FIG. Table 2 below shows specific film configurations, constituent materials, film thicknesses and refractive indexes of the absorption multilayer films 13 and 16, respectively, and relates to a reference example in which the metal film layer is composed of Ni alone. The theoretical spectral transmission characteristics of the absorption multilayer films 13 and 16 of the absorption multilayer film ND filter are shown in FIG. 7, and the theoretical spectral reflection characteristics thereof are shown in FIG.

Figure 2010277094
Figure 2010277094

そして、表2に示されているように上記吸収型多層膜13、16は、基板12側からそれぞれ順にNi単体から成る金属膜層15、18とSiOから成る誘電体層14、17とが交互に積層されて構成されている。尚、これ等の層数は任意であるが、図6においては、金属膜層15、18、誘電体層14、17が共に2層の合計4層から成る吸収型多層膜13、16を示している。また、表2において、金属膜層15、18および誘電体層14、17がそれぞれ同一の膜厚に設定されているが、上記吸収型多層膜13、16が基板12を中心にして互いに対称な膜構造となるようにそれぞれ形成されることを条件に各膜厚は任意に調整可能である。 As shown in Table 2, the absorption multilayer films 13 and 16 include metal film layers 15 and 18 made of Ni alone and dielectric layers 14 and 17 made of SiO 2 in order from the substrate 12 side. It is configured by alternately stacking. Although the number of these layers is arbitrary, FIG. 6 shows the absorption type multilayer films 13 and 16 in which the metal film layers 15 and 18 and the dielectric layers 14 and 17 are composed of a total of four layers. ing. In Table 2, the metal film layers 15 and 18 and the dielectric layers 14 and 17 are set to the same film thickness, but the absorption multilayer films 13 and 16 are symmetrical with respect to the substrate 12. Each film thickness can be arbitrarily adjusted on condition that each film is formed so as to have a film structure.

ここで、上記金属膜層15、18を構成するNi薄膜における透過率の波長依存性は、Cr薄膜、Ta薄膜およびNb薄膜と比べて小さいことが確認されている。すなわち、波長0.400〜0.800μmにおけるCr薄膜、Ta薄膜およびNb薄膜の透過率の変動幅は、それぞれ図11のグラフ図に示すように、14.7%、13.5%および11.8%であるが、Ni薄膜における透過率の変動幅は1.5%と低い。   Here, it has been confirmed that the wavelength dependence of the transmittance of the Ni thin film constituting the metal film layers 15 and 18 is smaller than that of the Cr thin film, the Ta thin film, and the Nb thin film. That is, the variation width of the transmittance of the Cr thin film, the Ta thin film, and the Nb thin film at wavelengths of 0.400 to 0.800 μm is 14.7%, 13.5%, and 11.1 respectively, as shown in the graph of FIG. Although it is 8%, the fluctuation range of the transmittance in the Ni thin film is as low as 1.5%.

しかし、吸収型NDフィルター表面の反射は迷光となり、デジタルカメラ等の画質に悪影響を及ぼす。このため、吸収型NDフィルター表面にも反射を防ぐ効果を持たせるため上記吸収型多層膜13、16は多層膜で構成されている。   However, the reflection on the surface of the absorption ND filter becomes stray light, which adversely affects the image quality of a digital camera or the like. For this reason, in order to give the absorption type ND filter surface the effect of preventing reflection, the absorption type multilayer films 13 and 16 are composed of multilayer films.

そして、金属膜層がNi単体で構成される参考例に係る吸収型多層膜NDフィルター、および、金属膜層がNi系合金で構成される本発明に係る吸収型多層膜NDフィルターにおいては、上記金属膜層の膜厚が良好に制御され、しかも、Ni単体若しくはNi系合金から成るNi系薄膜の可視域における透過率の波長依存性が小さいことから、金属膜層と誘電体層とで構成される吸収型多層膜は、層数を多く重ねることなく、可視域における分光透過率の波長依存性が小さく、波長に対して平坦な透過率減衰を得ることができる。   In the absorption multilayer ND filter according to the reference example in which the metal film layer is composed of Ni alone, and in the absorption multilayer ND filter according to the present invention in which the metal film layer is composed of a Ni-based alloy, Since the thickness of the metal film layer is well controlled and the wavelength dependence of the transmittance in the visible range of a Ni-based thin film made of Ni alone or a Ni-based alloy is small, it is composed of a metal film layer and a dielectric layer. The absorption multilayer film thus obtained has a small wavelength dependency of the spectral transmittance in the visible region without increasing the number of layers, and can obtain a flat transmittance attenuation with respect to the wavelength.

尚、上記誘電体層(但し、表2に示すもの)14、17はSiOから成る薄膜で、Ni単体から成る金属膜層15、18に対しできるだけ低い屈折率を有する材料(上記SiOに加えてAl若しくはSiOとAlの混合物)で構成されることが好ましい。また、吸収型多層膜の反射防止効果を持たせるためには誘電体層14、17の膜厚を制御することが好ましい。 Incidentally, the dielectric layer (except those shown in Table 2) 14 and 17 is a thin film made of SiO 2, the material (the SiO 2 having a lowest possible refractive index with respect to the metal film layer 15 and 18 made of Ni alone In addition, it is preferably composed of Al 2 O 3 or a mixture of SiO 2 and Al 2 O 3 . Further, it is preferable to control the film thickness of the dielectric layers 14 and 17 in order to provide the antireflection effect of the absorption multilayer film.

そして、Ni単体から成る金属膜層15、18とSiOから成る誘電体層14、17の各厚みは、上記吸収型多層膜13、16が所定の透過率と反射率とを可視域(例えば0.400μm〜0.800μm程度)で一定に保つように予め設定されており、上記金属膜層15、18の各厚みは2〜15nmであることが特に好ましい。この吸収型多層膜NDフィルターにおいては、上記吸収型多層膜13、16が、Ni単体から成る金属膜層15、18を含んで形成されているので、例えば4層と少ない層数であっても充分に平坦な透過率分光特性を有している。 The thicknesses of the metal film layers 15 and 18 made of Ni alone and the dielectric layers 14 and 17 made of SiO 2 are such that the absorptive multilayer films 13 and 16 have a predetermined transmittance and reflectance in the visible region (for example, The thickness of each of the metal film layers 15 and 18 is particularly preferably 2 to 15 nm. In this absorption multilayer ND filter, the absorption multilayer films 13 and 16 are formed including the metal film layers 15 and 18 made of Ni alone, so that even if the number of layers is as small as four layers, for example. It has a sufficiently flat transmittance spectral characteristic.

次に、本発明に係る上記吸収型多層膜はスパッタリング法にて形成することができる。   Next, the absorptive multilayer film according to the present invention can be formed by a sputtering method.

スパッタリング法は、蒸気圧の低い材料を用いて基板上に膜を形成する場合や、精密な膜厚制御が必要とされる際に有効な薄膜形成手法であり、操作が非常に簡便であることから広範に利用されている。一般には、約10Pa以下のアルゴンガス圧のもとで、基板を陽極とし、膜原料となるターゲットを陰極とし、これらの間にグロー放電を起こさせてアルゴンプラズマを発生させ、かつ、プラズマ中のアルゴン陽イオンを陰極のターゲットに衝突させてターゲット成分の粒子をはじき飛ばし、この粒子を基板上に堆積させて成膜する手法である。   The sputtering method is an effective thin film formation method when a film is formed on a substrate using a material having a low vapor pressure or when precise film thickness control is required, and the operation is very simple. Widely used. In general, under an argon gas pressure of about 10 Pa or less, the substrate is used as an anode, the film source target is used as a cathode, glow discharge is caused between them to generate argon plasma, and This is a technique in which an argon cation collides with a cathode target to repel target component particles, and deposits the particles on a substrate to form a film.

上記スパッタリング法はアルゴンプラズマの発生方法で分類され、高周波(RF)プラズマを用いるものは高周波スパッタリング法、直流プラズマを用いるものは直流スパッタリング法という。また、ターゲットの裏側にマグネットを配置して、アルゴンプラズマをターゲット直上に集中させ、低ガス圧でもアルゴンイオンの衝突効率を上げて成膜する方法をマグネトロンスパッタリング法という。   The above sputtering methods are classified according to the method of generating argon plasma, and those using radio frequency (RF) plasma are called high frequency sputtering methods and those using DC plasma are called DC sputtering methods. A method of forming a film by arranging a magnet on the back side of the target and concentrating argon plasma directly on the target and increasing the collision efficiency of argon ions even at a low gas pressure is called a magnetron sputtering method.

そして、参考例に係る吸収型多層膜中および本発明に係る吸収型多層膜中の各金属膜層は、例えばAr雰囲気中においてNi系金属(Ni単体若しくはNi系合金)のターゲットを用いた直流マグネトロンスパッタリング法により形成される。また、誘電体層は、例えばArおよびO雰囲気中でSi若しくはAlターゲットを用いた高周波マグネトロンスパッタリング法により形成される。上記誘電体層を高周波スパッタリング法で行うことで、反応性スパッタリングにおいて生じる異常放電が防止でき、安定な成膜が可能となる。 Each of the metal film layers in the absorption multilayer film according to the reference example and the absorption multilayer film according to the present invention is, for example, a direct current using a target of a Ni-based metal (Ni simple substance or Ni-based alloy) in an Ar atmosphere. It is formed by magnetron sputtering. The dielectric layer is formed, for example, by a high frequency magnetron sputtering method using a Si or Al target in an Ar and O 2 atmosphere. By performing the dielectric layer by a high frequency sputtering method, abnormal discharge generated in reactive sputtering can be prevented, and stable film formation can be achieved.

ところで、純Ni材料は強磁性体であるため、上記金属膜層を直流マグネトロンスパッタリング法で成膜する場合、ターゲットと基板間のプラズマに作用させるためのターゲット裏側に配置したマグネットからの磁力が、Niターゲット材料で遮蔽されて表面に漏洩する磁界が弱くなり、プラズマを集中させて効率よく成膜することが難しくなる。これを回避するには、ターゲット裏側に配置するマグネットの磁力を強く(400ガウス以上)したカソード(強磁場カソード)を用い、Niターゲットを通過する磁界を強めてスパッタリング成膜を行うことが好ましい。   By the way, since pure Ni material is a ferromagnetic material, when the metal film layer is formed by DC magnetron sputtering, the magnetic force from the magnet arranged on the back side of the target for acting on the plasma between the target and the substrate is The magnetic field that is shielded by the Ni target material and leaks to the surface becomes weak, and it becomes difficult to concentrate the plasma and efficiently form a film. In order to avoid this, it is preferable to perform sputtering film formation by using a cathode (strong magnetic field cathode) in which the magnetic force of a magnet disposed on the back side of the target is increased (400 Gauss or more) and by increasing the magnetic field passing through the Ni target.

但し、このような方法を採った場合でも、生産時には以下に述べるような別の問題が生ずることがある。すなわち、Niターゲットの連続使用に伴ってターゲットの厚みが減少していくと、上述したようにターゲットの厚みが薄くなった部分ではプラズマ空間の漏洩磁界が強くなっていく。そして、プラズマ空間の漏洩磁界が強くなると、放電特性(放電電圧、放電電流等)が変化して成膜速度が変化する。つまり、生産時に、同一のNiターゲットを連続して長時間使用すると、Niターゲットの消耗に伴いNi膜の成膜速度が変化する問題が生じ、特性の揃った吸収型多層膜NDフィルターを安定して生産することが難しくなる。この問題を回避するには、上述したようにTi、Al、V、W、Ta、Siから選択された1種類以上の元素が添加されたNi系合金材料を用いて金属膜層を構成すればよい。   However, even when such a method is adopted, another problem as described below may occur during production. That is, when the thickness of the target decreases with continuous use of the Ni target, the leakage magnetic field in the plasma space becomes stronger in the portion where the thickness of the target is reduced as described above. When the leakage magnetic field in the plasma space becomes stronger, the discharge characteristics (discharge voltage, discharge current, etc.) change and the film formation rate changes. In other words, if the same Ni target is used continuously for a long time during production, there is a problem that the deposition rate of the Ni film changes as the Ni target is consumed, and the absorption multilayer ND filter with uniform characteristics is stabilized. Making it difficult to produce. In order to avoid this problem, as described above, the metal film layer is formed using a Ni-based alloy material to which one or more elements selected from Ti, Al, V, W, Ta, and Si are added. Good.

そして、本発明においては、Ti元素を5〜15重量%の範囲で含むNi系合金材料を用いることを要する。Ti量の下限を5重量%とした理由は、5重量%以上含ませることによって強磁性特性を極端に弱めることができ、磁力の低い通常のマグネットを配置したカソードでも直流マグネトロンスパッタリング成膜を行うことができるからである。また、ターゲットによる磁界の遮蔽能力が低いため、ターゲット消耗に依存するプラズマ空間の漏洩磁界の変化も小さく、一定の成膜速度を維持でき、安定して成膜することができるからである。また、Ti量の上限を15.0重量%とした理由は、15.0重量%を超えてTiが含有されると多量の金属間化合物を形成し、透過率における波長依存性が小さい材料ではなくなってしまう恐れがあるからである。また、Al元素、V元素、W元素、Ta元素、Si元素の添加量も同様な理由により決定され、これ等Al元素、V元素、W元素、Ta元素、Si元素を添加する場合は、Al元素の添加割合が3〜8重量%、V元素の添加割合が3〜9重量%、W元素の添加割合が18〜32重量%、Ta元素の添加割合が5〜12重量%、Si元素の添加割合が2〜6重量%の範囲で添加したNi系合金材料とすることが必要である。   And in this invention, it is required to use the Ni type alloy material which contains Ti element in the range of 5 to 15 weight%. The reason why the lower limit of the amount of Ti is 5% by weight is that the ferromagnetic characteristics can be extremely weakened by including 5% by weight or more, and direct current magnetron sputtering film formation is performed even on a cathode on which a normal magnet having a low magnetic force is arranged. Because it can. Further, since the magnetic field shielding ability of the target is low, the change in the leakage magnetic field in the plasma space depending on the target consumption is small, and a constant film formation rate can be maintained, so that film formation can be performed stably. In addition, the reason why the upper limit of Ti amount is 15.0% by weight is that a material having a large amount of intermetallic compound when Ti is contained exceeding 15.0% by weight and the wavelength dependency in transmittance is small. It is because there is a risk of disappearing. Further, the addition amount of Al element, V element, W element, Ta element, Si element is also determined for the same reason, and when adding such Al element, V element, W element, Ta element, Si element, Al is added. The addition ratio of the element is 3 to 8 wt%, the addition ratio of the V element is 3 to 9 wt%, the addition ratio of the W element is 18 to 32 wt%, the addition ratio of the Ta element is 5 to 12 wt%, It is necessary to make the Ni-based alloy material added in an addition ratio of 2 to 6% by weight.

但し、Niに添加する元素が2種類以上の場合、各元素の添加量上限値より低く調整して多量の金属間化合物を形成しないようにすることが好ましい。例えば、TiとSiの2種類の元素をNiに添加する場合、7.5重量%のTi添加量に対しSi元素の添加量が5重量%を超えると、これ等添加量の数値が上述した組成範囲(Ti元素が5〜15重量%、Si元素が2〜6重量%)であっても、金属間化合物の形成が著しくなることがある。   However, when there are two or more elements to be added to Ni, it is preferable to adjust the amount to be lower than the upper limit of the amount of each element so as not to form a large amount of intermetallic compounds. For example, when two elements of Ti and Si are added to Ni, if the amount of Si element added exceeds 5% by weight with respect to the amount of Ti added of 7.5% by weight, the numerical values of these added amounts are as described above. Even in the composition range (Ti element is 5 to 15% by weight, Si element is 2 to 6% by weight), the formation of intermetallic compounds may be remarkable.

尚、上記金属膜層とSiO、Al若しくはこれ等混合物の誘電体層は、フィルム状の基板の上に乾式ロールコーティング法を用いて形成することも可能である。 The metal film layer and the dielectric layer of SiO 2 , Al 2 O 3 or a mixture thereof can be formed on a film-like substrate by using a dry roll coating method.

そして、吸収型多層膜について上述したような構成を採用することにより、0.400μm〜0.800μmの可視域全域において反射率が5%以下、かつ、透過率の変動幅が10%以内である吸収型多層膜NDフィルターを提供することが可能となる。   By adopting the above-described configuration for the absorption multilayer film, the reflectance is 5% or less and the transmittance fluctuation range is within 10% in the entire visible range of 0.400 μm to 0.800 μm. An absorption multilayer ND filter can be provided.

また、表1と表2に記載された数値から確認されるように、金属膜層がNi単体で構成される参考例に係る吸収型多層膜NDフィルターは、従来例に係るNDフィルターに比べて基板両面の各合計膜厚(従来例に係るNDフィルターではその吸収型多層膜が270nm、多層反射防止膜が256nmであるのに対し、参考例に係る吸収型多層膜NDフィルターでは基板片側の各吸収型多層膜が154nm)が約半分程度まで薄くなり、更に、膜材料を2種類しか用いないため生産性にも優れている。   In addition, as confirmed from the numerical values described in Tables 1 and 2, the absorption multilayer ND filter according to the reference example in which the metal film layer is composed of Ni alone is compared with the ND filter according to the conventional example. Total film thickness on both sides of the substrate (in the conventional ND filter, the absorption multilayer film is 270 nm and the multilayer antireflection film is 256 nm, whereas in the absorption multilayer film ND filter according to the reference example, The absorption multi-layer film (154 nm) is thinned to about half, and furthermore, since only two kinds of film materials are used, the productivity is excellent.

また、金属膜層がNi単体で構成される参考例に係る吸収型多層膜NDフィルターにおいては、成膜条件を単純化して生産性を上げるため、表2に示すようにSiOから成る誘電体層を両面共にすべて同じ膜厚(70nm)に膜設計し、Ni単体から成る金属膜層も両面共にすべて同じ膜厚(7nm)に膜設計を行ってもよい。そして、基板両面に吸収型多層膜を形成するには、薄い基板が膜応力により反らないように枠に固定して片面ごとに成膜してもよいが、両面同時に成膜する方が理想的である。 Further, in the absorption type multi-layer film ND filter metal film layer according to the reference example composed of Ni alone, to increase the simplified and productivity deposition conditions, a dielectric made of SiO 2 as shown in Table 2 The layers may be designed to have the same film thickness (70 nm) on both surfaces, and the metal film layer made of Ni alone may be designed to have the same film thickness (7 nm) on both surfaces. In order to form an absorption multilayer film on both sides of the substrate, the thin substrate may be fixed to the frame so that it does not warp due to film stress, but it may be formed on each side. Is.

このような構成とすることによって、基板の反りの曲率半径を500mm以上とすることが達成できる。基板の反りの曲率半径が500mm未満であると、吸収型多層膜NDフィルターを切断、接着、溶着するような加工工程において機器によるハンドリングが困難になり、更には吸収型多層膜NDフィルターを透過したことに起因して画像が歪んでしまうことも考えられ好ましくない。   By setting it as such a structure, it can achieve that the curvature radius of the curvature of a board | substrate shall be 500 mm or more. When the curvature radius of the substrate warp is less than 500 mm, it becomes difficult to handle by an apparatus in a process of cutting, adhering or welding the absorption multilayer ND filter, and further, the absorption multilayer ND filter is transmitted. This is not preferable because the image may be distorted.

そして、図6に示された参考例に係る吸収型多層膜NDフィルターを定盤(図1の符号4参照)に置いたとき、基板の反りはほとんど無く、中心部の隙間は0.2mm以下で正確には測定できないほどであった。   When the absorption multilayer ND filter according to the reference example shown in FIG. 6 is placed on a surface plate (see reference numeral 4 in FIG. 1), there is almost no warping of the substrate, and the gap at the center is 0.2 mm or less. It was so difficult to measure accurately.

一方、図2に示された従来例に係る吸収型多層膜NDフィルターを定盤に置いたとき(但し、吸収型多層膜NDフィルターの吸収型多層膜6が上側、多層反射防止膜7が下側とする)、基板には反りがあり、中心部には約2mmの隙間が観察された。そして、基板サイズがφ60mmのとき、中心部に0.9mmの隙間が発生すると反りの曲率半径は500mmである。   On the other hand, when the absorption type multilayer ND filter according to the conventional example shown in FIG. 2 is placed on a surface plate (however, the absorption type multilayer film 6 of the absorption type multilayer ND filter is on the upper side and the multilayer antireflection film 7 is on the lower side). The substrate was warped, and a gap of about 2 mm was observed in the center. When the substrate size is 60 mm and a gap of 0.9 mm is generated at the center, the curvature radius of warping is 500 mm.

尚、金属膜層がNi系合金で構成される本発明に係る吸収型多層膜NDフィルターの誘電体層および金属膜層の膜厚については、SiO、Al若しくはこれ等混合物から成る基板片側の誘電体層の合計膜厚が100nm以上、Ni系合金から成る基板片側の金属膜層の合計膜厚が30nm以下に設定されていることが好ましい。基板片側の誘電体層の合計膜厚を100nm未満にすると吸収型多層膜に反射防止機能を持たせることが難しくなる場合があり、かつ、基板片側の金属膜層の合計膜厚が30nmを超えて厚くなると、誘電体層に比較して柔らかい金属膜層を厚くすれば膜応力が緩和することが予測されるが、分光透過率が極端に低下してしまう場合があるからである。 They note that the film thickness of the dielectric layer and the metal layer of the absorption type multi-layer film ND filter metal film layer according to the present invention consists of Ni-based alloy is comprised of SiO 2, Al 2 O 3, or which such mixture It is preferable that the total film thickness of the dielectric layers on one side of the substrate is set to 100 nm or more, and the total film thickness of the metal film layers on the one side of the substrate made of Ni-based alloy is set to 30 nm or less. If the total film thickness of the dielectric layer on one side of the substrate is less than 100 nm, it may be difficult to give the absorption multilayer film an antireflection function, and the total film thickness of the metal film layer on the one side of the substrate exceeds 30 nm. If the thickness is too thick, it is expected that the film stress will be reduced if the soft metal film layer is made thicker than the dielectric layer, but the spectral transmittance may be extremely lowered.

ここで、本発明に係る吸収型多層膜NDフィルターにおいて、基板両面に基板を中心にして互いに対称な膜構造を有する吸収型多層膜を形成する場合、完全な対称条件を必ずしも満たす必要はなく、膜応力をキャンセルし合うことができる程度の略対称な条件を満たせばよい。例えば、基板の表面側に吸収型多層膜を成膜後、その光学特性を評価した結果、表面の透過率が予定値より高かった場合は裏面側の透過率を低くし、反対に表面の透過率が予定値より低かった場合は裏面側の透過率を高くする等裏面の吸収型多層膜の膜構成を微調整して透過率を補正することができる。   Here, in the absorptive multilayer ND filter according to the present invention, when forming absorptive multilayer films having mutually symmetrical film structures around the substrate on both sides of the substrate, it is not always necessary to satisfy the complete symmetry condition. It is only necessary to satisfy a substantially symmetrical condition that can cancel the film stress. For example, after forming an absorptive multilayer film on the front side of the substrate and evaluating its optical characteristics, if the transmittance on the surface is higher than the expected value, the transmittance on the back side is lowered, and conversely the transmission on the surface If the rate is lower than the expected value, the transmittance can be corrected by finely adjusting the film configuration of the backside absorption multilayer film, such as increasing the transmittance on the back side.

次に,本発明の実施例について具体的に説明する。参考例1、実施例3および4に係る吸収型多層膜NDフィルターと比較例に係る吸収型多層膜NDフィルターを比較評価した。   Next, specific examples of the present invention will be described. The absorption multilayer ND filter according to Reference Example 1 and Examples 3 and 4 and the absorption multilayer ND filter according to the comparative example were compared and evaluated.

[参考例1]
基板にはφ60mmに切断した厚さ100μmのPC(ポリカーボネート)フィルムを用いた。このフィルムをその端縁から約5mmの部位を押さえる金属枠で固定し、片面ごと成膜を行った。成膜にはRFマグネトロンスパッタリング装置(アルバック社製)を用い、誘電体層:SiOの成膜速度は0.2nm/秒、金属膜層:Niの成膜速度は0.1nm/秒で行った。また、この吸収型多層膜NDフィルターは、両面とも同じ膜構成なので、片面ずつ同じ工程の成膜をそれぞれ行った。
[Reference Example 1]
As the substrate, a PC (polycarbonate) film having a thickness of 100 μm cut to 60 mm was used. This film was fixed with a metal frame that pressed a portion about 5 mm from the edge, and film formation was performed on one side. An RF magnetron sputtering apparatus (manufactured by ULVAC, Inc.) is used for film formation, and the film formation rate of the dielectric layer: SiO 2 is 0.2 nm / second, and the film formation speed of the metal film layer: Ni is 0.1 nm / second. It was. Moreover, since this absorption type multilayer ND filter has the same film configuration on both sides, the film was formed in the same process on each side.

上記フィルム両面に形成した吸収型多層膜の膜構造は、図6に示した吸収型多層膜NDフィルターと同一とし、誘電体層:SiOの膜厚は70nm、金属膜層:Niの膜厚は7nmであった。 The film structure of the absorptive multilayer film formed on both surfaces of the film is the same as that of the absorptive multilayer film ND filter shown in FIG. 6, the dielectric layer: SiO 2 has a film thickness of 70 nm, and the metal film layer: Ni has a film thickness. Was 7 nm.

そして、この参考例1に係る吸収型多層膜NDフィルターを定盤に置いたとき、基板である上記フィルムの反りはほとんど無く、中心部の隙間は0.2mm以下で正確には測定できないほどであった。   And when the absorption type multilayer ND filter according to Reference Example 1 is placed on a surface plate, there is almost no warping of the film as a substrate, and the gap at the center is 0.2 mm or less and cannot be measured accurately. there were.

[実施例2]
参考例1において用いたNiターゲットに代えて、7.5重量%のTiを含むNi系合金ターゲット[住友金属鉱山(株)社製]を用いた以外は参考例1と同様に行い、誘電体層:SiOの膜厚が70nm、金属膜層:Ni系合金の膜厚が7nmである図6に示す吸収型多層膜NDフィルターと同一の実施例2に係る吸収型多層膜NDフィルターを製造した。
[Example 2]
In place of the Ni target used in Reference Example 1, a Ni-based alloy target containing 7.5% by weight of Ti (manufactured by Sumitomo Metal Mining Co., Ltd.) was used. An absorption multilayer ND filter according to Example 2 which is the same as the absorption multilayer ND filter shown in FIG. 6 having a layer: SiO 2 film thickness of 70 nm and a metal film layer: Ni-based alloy film thickness of 7 nm is manufactured. did.

そして、この実施例2に係る吸収型多層膜NDフィルターを定盤に置いたとき、この吸収型多層膜NDフィルターにおいても基板である上記フィルムの反りはほとんど無く、中心部の隙間は0.2mm以下で正確には測定できないほどであった。   When the absorption multilayer ND filter according to Example 2 was placed on a surface plate, there was almost no warping of the film as the substrate in this absorption multilayer ND filter, and the gap at the center was 0.2 mm. It was so difficult to measure accurately below.

[実施例3]
参考例1において用いたNiターゲットに代えて7.5重量%のTiを含むNi系合金ターゲット[住友金属鉱山(株)社製]を用いた点と、以下の表3に示すようにSiOの誘電体層に代えてAlを適用した以外は参考例1と同様に行い、誘電体層:Alの膜厚が60nm、金属膜層:Ni系合金(Ni−Ti)の膜厚が7.7nmである図6の吸収型多層膜NDフィルターと同一構造の実施例3に係る吸収型多層膜NDフィルターを製造した。
[Example 3]
Instead of the Ni target used in Reference Example 1, a Ni-based alloy target containing 7.5% by weight of Ti (manufactured by Sumitomo Metal Mining Co., Ltd.) was used, and SiO 2 as shown in Table 3 below. The same procedure as in Reference Example 1 was applied except that Al 2 O 3 was applied in place of the dielectric layer, and the dielectric layer: Al 2 O 3 had a thickness of 60 nm, and the metal film layer: Ni-based alloy (Ni—Ti) An absorptive multilayer ND filter according to Example 3 having the same structure as that of the absorptive multilayer ND filter of FIG.

Figure 2010277094
Figure 2010277094

すなわち、基板にはφ60mmに切断した厚さ100μmのPC(ポリカーボネート)フィルムを用い、このフィルムをその端縁から約5mmの部位を押さえる金属枠で固定し、片面ごと成膜を行った。尚、成膜にはRFマグネトロンスパッタリング装置(アルバック社製)を用い、誘電体層:Alの成膜速度は0.2nm/秒、金属膜層:上記Ni系合金ターゲット[住友金属鉱山(株)社製]の成膜速度は0.1nm/秒で行った。また、表3に示すように両面とも同じ膜構成なので片面ずつ同じ工程の成膜をそれぞれ行った。そして、吸収型多層膜を片面に成膜したときの理論分光透過率を図12に、理論分光反射率を図13に示し、また、実際に成膜した実施例3に係る吸収型多層膜NDフィルターの分光透過率を図14に示す。 That is, a PC (polycarbonate) film with a thickness of 100 μm cut to φ60 mm was used as the substrate, and this film was fixed with a metal frame that pressed a portion about 5 mm from the edge, and film formation was performed on one side. An RF magnetron sputtering apparatus (manufactured by ULVAC, Inc.) was used for the film formation, the film formation rate of the dielectric layer: Al 2 O 3 was 0.2 nm / second, the metal film layer: the Ni-based alloy target [Sumitomo Metal Mining Co., Ltd.] The film formation rate of “made by Co., Ltd.” was 0.1 nm / second. Further, as shown in Table 3, since both surfaces have the same film configuration, film formation in the same process was performed on each side. FIG. 12 shows the theoretical spectral transmittance when the absorption multilayer film is formed on one side, FIG. 13 shows the theoretical spectral reflectance, and the absorption multilayer film ND according to Example 3 actually formed. The spectral transmittance of the filter is shown in FIG.

そして、この実施例3に係る吸収型多層膜NDフィルターを定盤に置いたとき、基板である上記フィルムの反りはほとんど無く、中心部の隙間は0.2mm以下で正確には測定できないほどであった。   When the absorption type multilayer ND filter according to Example 3 was placed on a surface plate, there was almost no warping of the film as the substrate, and the gap at the center was 0.2 mm or less, so that it could not be measured accurately. there were.

[実施例4]
参考例1において用いたNiターゲットに代えて7.5重量%のTiを含むNi系合金ターゲット[住友金属鉱山(株)社製]を用いた点と、以下の表4に示すようにSiOの誘電体層に代えてSiOとAlの混合物(モル比1:1)を適用した以外は参考例1と同様に行い、誘電体層:SiOとAlの混合物における膜厚が67nm、金属膜層:Ni系合金(Ni−Ti)の膜厚が7.3nmである図6の吸収型多層膜NDフィルターと同一構造の実施例4に係る吸収型多層膜NDフィルターを製造した。
[Example 4]
In place of the Ni target used in Reference Example 1, a Ni-based alloy target containing 7.5 wt% Ti (manufactured by Sumitomo Metal Mining Co., Ltd.) was used, and SiO 2 as shown in Table 4 below. The same procedure as in Reference Example 1 was performed except that a mixture of SiO 2 and Al 2 O 3 (molar ratio 1: 1) was applied instead of the dielectric layer, and the dielectric layer: in the mixture of SiO 2 and Al 2 O 3 Absorptive multilayer ND filter according to Example 4 having the same structure as the absorptive multilayer ND filter of FIG. 6 having a thickness of 67 nm and a metal film layer: Ni-based alloy (Ni—Ti) having a thickness of 7.3 nm Manufactured.

Figure 2010277094
Figure 2010277094

すなわち、基板にはφ60mmに切断した厚さ100μmのPC(ポリカーボネート)フィルムを用い、このフィルムをその端縁から約5mmの部位を押さえる金属枠で固定し、片面ごと成膜を行った。尚、成膜にはRFマグネトロンスパッタリング装置(アルバック社製)を用い、誘電体層:SiOとAlの混合物の成膜速度は0.2nm/秒、金属膜層:上記Ni系合金ターゲット[住友金属鉱山(株)社製]の成膜速度は0.1nm/秒で行った。また、表4に示すように両面とも同じ膜構成なので片面ずつ同じ工程の成膜をそれぞれ行った。そして、吸収型多層膜を片面に成膜したときの理論分光透過率を図15に、理論分光反射率を図16に示し、また、実際に成膜した実施例4に係る吸収型多層膜NDフィルターの分光透過率を図17に示す。 That is, a PC (polycarbonate) film with a thickness of 100 μm cut to φ60 mm was used as the substrate, and this film was fixed with a metal frame that pressed a portion about 5 mm from the edge, and film formation was performed on one side. An RF magnetron sputtering apparatus (manufactured by ULVAC, Inc.) was used for film formation, the film formation rate of the dielectric layer: the mixture of SiO 2 and Al 2 O 3 was 0.2 nm / second, and the metal film layer: the above Ni-based alloy The film formation rate of the target [manufactured by Sumitomo Metal Mining Co., Ltd.] was 0.1 nm / second. In addition, as shown in Table 4, since both surfaces have the same film configuration, film formation in the same process was performed on each side. FIG. 15 shows the theoretical spectral transmittance when the absorption multilayer film is formed on one side, FIG. 16 shows the theoretical spectral reflectance, and the absorption multilayer film ND according to Example 4 actually formed. The spectral transmittance of the filter is shown in FIG.

そして、この実施例4に係る吸収型多層膜NDフィルターを定盤に置いたとき、基板である上記フィルムの反りはほとんど無く、中心部の隙間は0.2mm以下で正確には測定できないほどであった。   And when the absorption type multilayer ND filter according to Example 4 was placed on a surface plate, there was almost no warping of the film as a substrate, and the gap in the central part was 0.2 mm or less and could not be measured accurately. there were.

[比較例]
先に吸収型多層膜をPCフィルムに形成し、その後、多層反射防止膜を形成して比較例に係る吸収型多層膜NDフィルターを得た。
[Comparative example]
First, an absorption multilayer film was formed on a PC film, and then a multilayer antireflection film was formed to obtain an absorption multilayer film ND filter according to a comparative example.

成膜にはRFマグネトロンスパッタリング装置(アルバック社製)を用い、上記吸収型多層膜における誘電体層:SiOの成膜速度が0.2nm/秒、金属膜層:Niの成膜速度が0.1nm/秒で行った。また、上記多層反射防止膜における誘電体層:SiOの成膜速度が0.2nm/秒、金属膜層:Taの成膜速度も0.2nm/秒で行った。 An RF magnetron sputtering apparatus (manufactured by ULVAC, Inc.) was used for film formation, and the film formation rate of the dielectric layer: SiO 2 in the absorption multilayer film was 0.2 nm / second, and the film formation rate of the metal film layer: Ni was 0. .1 nm / sec. The film formation rate of the dielectric layer: SiO 2 in the multilayer antireflection film was 0.2 nm / second, and the film formation rate of the metal film layer: Ta 2 O 5 was also 0.2 nm / second.

PCフィルム片面に形成した吸収型多層膜の膜構造は、図2に示した吸収型多層膜NDフィルターと同一とし、誘電体層:SiOの膜厚は80nm、金属膜層:Niの膜厚は10nmであった。また、PCフィルムの他面に形成した多層反射防止膜の膜構造も図2に示した吸収型多層膜NDフィルターと同一とし、上記表1に示す膜厚であった。 The film structure of the absorptive multilayer film formed on one side of the PC film is the same as that of the absorptive multilayer film ND filter shown in FIG. 2, the dielectric layer: SiO 2 has a thickness of 80 nm, and the metal film layer: Ni has a thickness. Was 10 nm. Further, the film structure of the multilayer antireflection film formed on the other surface of the PC film was the same as that of the absorption multilayer film ND filter shown in FIG.

そして、比較例に係る吸収型多層膜NDフィルターを定盤に置いたとき(但し、この吸収型多層膜NDフィルターの吸収型多層膜が上側、多層反射防止膜が下側とする)、基板であるPCフィルムには反りがあり、中心部には約2mmの隙間が観察された。そして、基板サイズがφ60mmのとき、中心部に0.9mmの隙間が発生すると反りの曲率半径は500mmであり、結果はそれよりも曲率半径が小さいことを示していた。   When the absorption multilayer ND filter according to the comparative example is placed on a surface plate (however, the absorption multilayer film of the absorption multilayer ND filter is on the upper side and the multilayer antireflection film is on the lower side), A certain PC film was warped, and a gap of about 2 mm was observed at the center. When the substrate size is φ60 mm and a gap of 0.9 mm occurs in the center, the curvature radius of the warp is 500 mm, and the result shows that the curvature radius is smaller than that.

「評 価」
次に、参考例1、実施例3および4に係る吸収型多層膜NDフィルターと比較例に係る吸収型多層膜NDフィルターの分光透過特性を評価した。分光透過特性は日立製作所社製自記分光光度計で測定した。
"Evaluation"
Next, spectral transmission characteristics of the absorption multilayer ND filter according to Reference Example 1 and Examples 3 and 4 and the absorption multilayer ND filter according to the comparative example were evaluated. Spectral transmission characteristics were measured with a self-recording spectrophotometer manufactured by Hitachi, Ltd.

そして、参考例1、実施例3および4に係る吸収型多層膜NDフィルターの分光透過特性を図9、図14および図17に、比較例に係る吸収型多層膜NDフィルターの分光透過特性を図10に示す。   The spectral transmission characteristics of the absorption multilayer ND filter according to Reference Example 1, Examples 3 and 4 are shown in FIGS. 9, 14 and 17, and the spectral transmission characteristics of the absorption multilayer ND filter according to the comparative example are shown. 10 shows.

その結果、参考例1、実施例3および4に係る吸収型多層膜NDフィルターと比較例に係る吸収型多層膜NDフィルターとも、0.4〜0.7μmの使用波長帯域においてほぼ同等の透過特性であった。   As a result, both the absorption multilayer ND filter according to Reference Example 1 and Examples 3 and 4 and the absorption multilayer ND filter according to the comparative example have substantially the same transmission characteristics in the used wavelength band of 0.4 to 0.7 μm. Met.

このように各実施例に係る吸収型多層膜NDフィルターは、従来例(比較例)に係る吸収型多層膜NDフィルターと同じ光学特性を有し、かつ、基板の反りの無いNDフィルターを得ることができた。しかも、両面とも同じ膜構成であることに加えて、両面の各誘電体層の膜厚がすべて同じ膜厚で、かつ、各金属膜層の膜厚がすべて同じ膜厚で構成されているため、生産性にも優れている。   As described above, the absorption multilayer ND filter according to each embodiment has the same optical characteristics as the absorption multilayer ND filter according to the conventional example (comparative example), and obtains an ND filter without warping of the substrate. I was able to. Moreover, in addition to having the same film configuration on both sides, all the dielectric layers on both sides have the same thickness, and all the metal film layers have the same thickness. Also, productivity is excellent.

本発明に係る吸収型多層膜NDフィルターは、基板自体に吸収物質を混ぜた吸収型NDフィルターや厚いガラス基板が用いられた吸収型多層膜NDフィルターを組み込むためのスペースの小さい小型薄型デジタルカメラに利用される可能性を有している。   The absorptive multilayer ND filter according to the present invention is a small thin digital camera with a small space for incorporating an absorptive ND filter mixed with an absorptive substance in the substrate itself or an absorptive multilayer ND filter using a thick glass substrate. There is a possibility of being used.

1 吸収型多層膜
2 反射防止膜
3 基板
4 定盤
5 フィルム基板
6 吸収型多層膜
7 多層反射防止膜
8 SiOから成る誘電体層
9 Ni単体から成る金属膜層
10 SiOから成る誘電体層
11 Taから成る金属膜層
12 フィルム基板
13 吸収型多層膜
14 SiO、Al若しくはこれ等混合物から成る誘電体層
15 Ni単体若しくはNi系合金から成る金属膜層
16 吸収型多層膜
17 SiO、Al若しくはこれ等混合物から成る誘電体層
18 Ni単体若しくはNi系合金から成る金属膜層
DESCRIPTION OF SYMBOLS 1 Absorption type multilayer film 2 Antireflection film 3 Substrate 4 Surface plate 5 Film substrate 6 Absorption type multilayer film 7 Multilayer antireflection film 8 Dielectric layer made of SiO 2 9 Metal film layer made of Ni simple substance 10 Dielectric made of SiO 2 Layer 11 Metal film layer made of Ta 2 O 5 12 Film substrate 13 Absorbing multilayer film 14 Dielectric layer made of SiO 2 , Al 2 O 3 or a mixture thereof 15 Metal film layer made of Ni alone or Ni-based alloy 16 Absorption Type multilayer film 17 Dielectric layer made of SiO 2 , Al 2 O 3 or a mixture thereof 18 Metal film layer made of Ni alone or Ni-based alloy

Claims (3)

透過光を減衰させる吸収型多層膜が樹脂フィルム、樹脂板若しくはガラス薄板から成る基板に設けられ、上記吸収型多層膜が、SiO、Al若しくはこれ等混合物から成る誘電体層とTi、Al、V、W、Ta、Siから選択された1種類以上の元素が添加されたNi系合金から成る金属膜層とを交互に積層させた多層膜により構成される吸収型多層膜NDフィルターの製造方法において、
基板の両面に基板を中心にして互いに対称な膜構造となるように上記吸収型多層膜をそれぞれ形成して、基板の反りの曲率半径が500mm以上になるように調整すると共に、Ti元素の添加割合が5〜15重量%、Al元素の添加割合が3〜8重量%、V元素の添加割合が3〜9重量%、W元素の添加割合が18〜32重量%、Ta元素の添加割合が5〜12重量%、Si元素の添加割合が2〜6重量%の範囲にそれぞれ設定されたNi系材料ターゲットを用いて、マグネトロンスパッタリング法により上記金属膜層を形成することを特徴とする吸収型多層膜NDフィルターの製造方法。
Absorption type multi-layer film is a resin film to attenuate the transmitted light, provided on a substrate made of a resin plate or a glass sheet, the absorption type multilayer film, a dielectric layer made of SiO 2, Al 2 O 3, or which such mixture of Ti Absorption multilayer ND filter composed of a multilayer film in which metal film layers made of an Ni-based alloy to which one or more elements selected from Al, V, W, Ta, and Si are added are alternately laminated In the manufacturing method of
Each of the absorption multilayer films is formed on both sides of the substrate so as to have a symmetrical film structure around the substrate, and the curvature radius of the warp of the substrate is adjusted to 500 mm or more, and addition of Ti element The proportion is 5 to 15% by weight, the addition rate of Al element is 3 to 8% by weight, the addition rate of V element is 3 to 9% by weight, the addition rate of W element is 18 to 32% by weight, and the addition rate of Ta element is Absorption type characterized in that said metal film layer is formed by magnetron sputtering method using Ni-based material target set in the range of 5 to 12% by weight and Si element addition ratio in the range of 2 to 6% by weight, respectively. Manufacturing method of multilayer ND filter.
上記SiO、Al若しくはこれ等混合物から成る基板片側の誘電体層の合計膜厚が100nm以上、かつ、Ni系合金から成る基板片側の金属膜層の合計膜厚が30nm以下に設定されていることを特徴とする請求項1記載の吸収型多層膜NDフィルターの製造方法。 The total film thickness of the dielectric layer on one side of the substrate made of SiO 2 , Al 2 O 3 or a mixture thereof is set to 100 nm or more, and the total film thickness of the metal film layer on the side of the substrate made of Ni-based alloy is set to 30 nm or less. The method for producing an absorptive multilayer ND filter according to claim 1, wherein: 上記SiO、Al若しくはこれ等混合物から成る各誘電体層の膜厚が全て同一膜厚に設定され、かつ、Ni系合金から成る各金属膜層の膜厚も全て同一膜厚に設定されていることを特徴とする請求項1記載の吸収型多層膜NDフィルターの製造方法。 The thicknesses of the dielectric layers made of SiO 2 , Al 2 O 3 or a mixture thereof are all set to the same thickness, and the thicknesses of the metal film layers made of the Ni-based alloy are all set to the same thickness. 2. The method for producing an absorptive multilayer ND filter according to claim 1, wherein the method is set.
JP2010153069A 2004-11-24 2010-07-05 Method for manufacturing absorption multilayer ND filter Expired - Fee Related JP4984101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153069A JP4984101B2 (en) 2004-11-24 2010-07-05 Method for manufacturing absorption multilayer ND filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004338587 2004-11-24
JP2004338587 2004-11-24
JP2010153069A JP4984101B2 (en) 2004-11-24 2010-07-05 Method for manufacturing absorption multilayer ND filter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005180936A Division JP4613706B2 (en) 2004-11-24 2005-06-21 Absorption-type multilayer ND filter

Publications (2)

Publication Number Publication Date
JP2010277094A true JP2010277094A (en) 2010-12-09
JP4984101B2 JP4984101B2 (en) 2012-07-25

Family

ID=36769887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153069A Expired - Fee Related JP4984101B2 (en) 2004-11-24 2010-07-05 Method for manufacturing absorption multilayer ND filter

Country Status (2)

Country Link
JP (1) JP4984101B2 (en)
CN (1) CN100582822C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157719A1 (en) 2011-05-17 2012-11-22 キヤノン電子株式会社 Optical filter and optical device
CN103612430A (en) * 2013-11-14 2014-03-05 中山市创科科研技术服务有限公司 Preparation method of dielectric-metal interference type selective absorption film
US9513417B2 (en) 2012-11-16 2016-12-06 Canon Denshi Kabushiki Kaisha Optical filter and optical apparatus
CN113795131A (en) * 2021-08-13 2021-12-14 深圳市志凌伟业光电有限公司 Electromagnetic shielding member and display
US20220059328A1 (en) * 2020-08-18 2022-02-24 Innolux Corporation Coating device for curved substrate and coating method containing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080085842A (en) * 2006-01-20 2008-09-24 스미토모 긴조쿠 고잔 가부시키가이샤 Absorption-type multilayer film nd filter and process for producing the same
US9796619B2 (en) * 2010-09-03 2017-10-24 Guardian Glass, LLC Temperable three layer antirefrlective coating, coated article including temperable three layer antirefrlective coating, and/or method of making the same
US9581742B2 (en) * 2012-11-20 2017-02-28 Corning Incorporated Monolithic, linear glass polarizer and attenuator
CN103744138B (en) * 2013-12-13 2015-10-21 浙江大学 The preparation method of the insensitive color filter of a kind of incident angle
WO2015196326A1 (en) * 2014-06-23 2015-12-30 孙义昌 Neutral density filter having multiple film layers, manufacturing device thereof and manufacturing method therefor
CN104297833B (en) * 2014-11-06 2017-01-18 沈阳仪表科学研究院有限公司 Low-reflection and neutral-density filter
CN107502865B (en) * 2017-08-22 2019-04-23 苏州京浜光电科技股份有限公司 A kind of production method of wide-angle imaging mould group optical filter
CN113549888A (en) * 2021-07-29 2021-10-26 浙江水晶光电科技股份有限公司 Medium gray mirror and preparation method and preparation device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938701A (en) * 1982-08-30 1984-03-02 Asahi Optical Co Ltd Nd filter
JPH1031103A (en) * 1996-07-15 1998-02-03 Fuji Photo Optical Co Ltd Optical light attenuation filter
JPH11202126A (en) * 1998-01-12 1999-07-30 Japan Aviation Electron Ind Ltd Dielectric multilayer film filter
JP2004037545A (en) * 2002-06-28 2004-02-05 Nisca Corp Nd filter and diaphragm device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826728B2 (en) * 1970-05-20 1994-07-12 Boc Group Plc Transparent article having reduced solar radiation transmittance and method of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938701A (en) * 1982-08-30 1984-03-02 Asahi Optical Co Ltd Nd filter
JPH1031103A (en) * 1996-07-15 1998-02-03 Fuji Photo Optical Co Ltd Optical light attenuation filter
JPH11202126A (en) * 1998-01-12 1999-07-30 Japan Aviation Electron Ind Ltd Dielectric multilayer film filter
JP2004037545A (en) * 2002-06-28 2004-02-05 Nisca Corp Nd filter and diaphragm device using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157719A1 (en) 2011-05-17 2012-11-22 キヤノン電子株式会社 Optical filter and optical device
US9588266B2 (en) 2011-05-17 2017-03-07 Canon Denshi Kabushiki Kaisha Optical filter and optical apparatus
US9513417B2 (en) 2012-11-16 2016-12-06 Canon Denshi Kabushiki Kaisha Optical filter and optical apparatus
CN103612430A (en) * 2013-11-14 2014-03-05 中山市创科科研技术服务有限公司 Preparation method of dielectric-metal interference type selective absorption film
US20220059328A1 (en) * 2020-08-18 2022-02-24 Innolux Corporation Coating device for curved substrate and coating method containing the same
US11881386B2 (en) * 2020-08-18 2024-01-23 Innolux Corporation Coating device for curved substrate and coating method containing the same
CN113795131A (en) * 2021-08-13 2021-12-14 深圳市志凌伟业光电有限公司 Electromagnetic shielding member and display
CN113795131B (en) * 2021-08-13 2024-03-01 深圳市志凌伟业光电有限公司 Electromagnetic shielding member and display

Also Published As

Publication number Publication date
CN100582822C (en) 2010-01-20
CN1779493A (en) 2006-05-31
JP4984101B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4613706B2 (en) Absorption-type multilayer ND filter
JP4984101B2 (en) Method for manufacturing absorption multilayer ND filter
JP4595687B2 (en) Absorption-type multilayer ND filter
JP4692548B2 (en) Absorption-type multilayer ND filter and method for manufacturing the same
US7440204B2 (en) ND filter of optical film laminate type with carbon film coating
US10436964B2 (en) Inorganic polarizing plate, method of manufacturing the same, and optical instrument
JP2010128259A (en) Absorption type multilayer film nd filter and method of manufacturing the same
JPH0593811A (en) Light absorptive film
JP4963027B2 (en) ND filter, method for manufacturing the same, and light quantity reduction device using them
JP2010224350A (en) Absorption-type multilayer film nd filter and manufacturing method therefor
JP4466457B2 (en) Absorption-type multilayer ND filter and manufacturing method thereof
JP5239630B2 (en) Absorption-type multilayer ND filter
JP4984100B2 (en) Method for manufacturing absorption multilayer ND filter
JP5067149B2 (en) Absorption-type multilayer ND filter
JP4914954B2 (en) ND filter
JP2008180844A (en) Absorption type multilayer film one side nd filter
JP4811293B2 (en) Absorption-type multilayer ND filter and method for manufacturing the same
JP2010054882A (en) Absorbent multilayered nd filter
JP2014016568A (en) Absorption type multilayer film nd filter
JP5087797B2 (en) Manufacturing method of ND filter
JP2010128258A (en) Absorption type multilayer film nd filter and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees