JP2010276639A - アレイ導波路格子 - Google Patents

アレイ導波路格子 Download PDF

Info

Publication number
JP2010276639A
JP2010276639A JP2009126096A JP2009126096A JP2010276639A JP 2010276639 A JP2010276639 A JP 2010276639A JP 2009126096 A JP2009126096 A JP 2009126096A JP 2009126096 A JP2009126096 A JP 2009126096A JP 2010276639 A JP2010276639 A JP 2010276639A
Authority
JP
Japan
Prior art keywords
waveguide
channel
phase
waveguides
awg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009126096A
Other languages
English (en)
Inventor
Kazutaka Nara
一孝 奈良
Noritaka Matsubara
礼高 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009126096A priority Critical patent/JP2010276639A/ja
Priority to US12/787,096 priority patent/US20100303410A1/en
Publication of JP2010276639A publication Critical patent/JP2010276639A/ja
Priority to US12/973,327 priority patent/US20110085761A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】設計値に近い透過スペクトルが得られると共に、量産性に優れたアレイ導波路格子を提供する。
【解決手段】アレイ導波路格子10のアレイ導波路の直線部20aには、位相修正部30が設けられている。位相修正部30は、チャネル導波路211〜21Mのうち、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与するために、M本のチャネル導波路の一部或いは全部において、基本導波路幅W1より大きい幅W2の幅広導波路37をそれぞれ含み、かつ、幅広導波路37の長さLをチャネル導波路毎に異ならせた構造を有する。
【選択図】図2

Description

本発明は、アレイ導波路格子に関する。
アレイ導波路格子(AWG: Arrayed Waveguide Grating)には、大きく分けて、2つの種類がある。一つは透過スペクトルがガウス関数形状を有するガウシアン型AWGであり、もう一つは透過スペクトルがフラット形状を有するフラット型AWGである。ここで、特にフラット型AWGでは、透過スペクトルの平坦性が高いこと、傾斜がないこと、波長分散が0に近いこと、隣接クロストークが低いこと等のさまざまな特性が求められる。
しかしながら、実際に作製するとさまざまな作製誤差により、特性が劣化してしまうという問題点があった。つまり、AWGでは複数本のチャネル導波路からなるアレイ導波路の各チャネル導波路の長さが一定のピッチ(光路長差ΔL)で増加することが基本であるが、実際には、作製後の各チャネル導波路間の光路長差ΔLは設計値からわずかにずれており、この設計値からのずれが位相誤差となる。アレイ導波路の各チャネル導波路に位相誤差が発生すると、チャネル間のクロストーク等、特性を劣化させる要因になる。
このような特性の劣化を調整する手段として、作製したAWGのアレイ導波路の各チャネル導波路の位相誤差を個別に実際に測定し、この測定結果に基づきその位相誤差を修正する金属マスクをその都度作製し、金属マスクを通して紫外線を照射することで、その位相誤差に応じてチャネル導波路の屈折率を上昇させ、補正をかける方法が提案されている(例えば、特許文献1および特許文献2参照)。
特開2001−249243号公報 特開2003−240984号公報
しかしながら、上記従来の方法は理想的な透過スペクトル形状が得られる一方で、作製したAWGチップ毎に前記金属マスクをその都度作製する必要があり、量産性に難がある。
本発明は、このような従来の問題点に鑑みて為されたもので、その目的は、設計値に近い透過スペクトルが得られると共に、量産性に優れたアレイ導波路格子を提供することにある。
上記課題を解決するために、本発明の第1の態様に係るアレイ導波路格子は、少なくとも1本以上の入力導波路と、該入力導波路に接続された入力スラブ導波路と、複数本の出力導波路と、該出力導波路が接続された出力スラブ導波路と、前記入力スラブ導波路と前記出力スラブ導波路との間にそれぞれ接続されたM本のチャネル導波路からなるアレイ導波路と、を備え、前記アレイ導波路には、前記M本のチャネル導波路の少なくとも一部のチャネル導波路の形状を変えることで、前記少なくとも一部のチャネル導波路に所定の位相を付与する位相修正部が設けられていることを特徴とする。
前記位相修正部は、前記M本のチャネル導波のうち、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与するのが好ましい。
前記位相修正部は、前記M本のチャネル導波路のうち、m番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与するのがこの好ましい。
前記位相修正部は、前記M本のチャネル導波路の一部或いは全部において、基本導波路幅W1より大きい幅W2の幅広導波路をそれぞれ含み、かつ、前記幅広導波路の長さを前記チャネル導波路毎に異ならせた構造を有するのが好ましい。
前記位相修正部は、前記M本のチャネル導波路の一部或いは全部において、各チャネル導波路の長さのみを変化させた構造を有するのが好ましい。
前記M本のチャネル導波路は直線導波路部をそれぞれ有し、前記位相修正部が前記直線導波路部に設けられているのが好ましい。
本発明によれば、設計値に近い透過スペクトルが得られると共に、量産性に優れたアレイ導波路格子を実現することができる。
本発明の第1実施形態に係るアレイ導波路格子を示す平面図である。 (a)は図1に示すアレイ導波路格子の位相修正部の構造およびこの位相修正部により付与される位相分布を示す模式図、(b)は図2(a)に示す位相修正部におけるアレイ導波の一つのチャネル導波路を示す説明図である。 第1実施形態に係るアレイ導波路格子の作製に用いるフォトマスクの一部を示す平面図である。 (a)は第2実施形態に係るアレイ導波路格子の位相修正部およびこの位相修正部により付与される位相分布を示す模式図、(b)は図4(a)に示す位相修正部におけるアレイ導波の一つのチャネル導波路を示す説明図である。 (a)は従来一般的なフォトマスクを用いて作製した50GHz−80chのフラット型AWG(3つのAWGチップA,BおよびC)の各透過スペクトルと設計値の透過スペクトルとを示すグラフ、(b)は図5(a)で示す透過スペクトルのスペクトルトップの部分を示すグラフである。 (a)は従来一般的なフォトマスクを用いて作製した50GHz−80chのフラット型AWG(3つのAWGチップA,BおよびC)の各透過スペクトルと設計値の透過スペクトルとを示すグラフ、(b)は図6(a)で示す透過スペクトルのスペクトルトップの部分を示すグラフである。 (a)はアレイ導波路のm番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相分布(ただし、a=―0.5π〜0.5π、b=c=0とした)を付与して11通りの透過スペクトルを計算した結果を示すグラフ、(b)は図7(a)のスペクトルトップの部分を示すグラフである。 (a)はアレイ導波路のm番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相分布(ただし、a=―0.5π〜0.5π、b=c=d=0とした)を付与して11通りの透過スペクトルを計算した結果を示すグラフである。 (a)は実施例1に係るアレイ導波路格子の透過スペクトルを示すグラフ、(b)は図9(a)で示す透過スペクトルのスペクトルトップの部分を示すグラフである。 (a)は実施例2に係るアレイ導波路格子の透過スペクトルを示すグラフ、(b)は図10(a)で示す透過スペクトルのスペクトルトップの部分を示すグラフである。
以下、本発明を具体化した実施の形態を図面に基づいて説明する。なお、各実施形態の説明において同様の部位には同一の符号を付して重複した説明を省略する。
本発明者は、作製したアレイ導波路格子の透過スペクトル特性をよく分析してみると、ほとんどの場合、アレイ導波路に発生した位相誤差を2次関数或いは3次関数的な位相分布で説明できることを見出し、その位相誤差がフォトマスクに起因していることがわかった。そこで、あらかじめフォトマスクに設けた位相修正子により、2次関数或いは3次関数的位相誤差に限定した位相修正部を、アレイ導波路格子のアレイ導波路に導入することで、実用上は全く問題ない特性が得られることを見出した。
本発明は、このような知見に基づいて為されたもので、2次関数或いは3次関数の位相分布を、あらかじめアレイ導波路の導波路パラメータとして入れてAWGを作製するのが本発明の趣旨である。
(第1実施形態)
アレイ導波路格子(以下、AWGという。)10は、図1に示すように、石英基板11上に、フォトリソグラフィ技術などの半導体微細加工技術を用いた石英系PLC作製技術により、コアとクラッドからなる光導波路が形成された平面光波回路(PLC)である。
AWG10は、3本の入力導波路121〜123と、入力導波路121〜123に接続された入力スラブ導波路13と、複数本(n本)の出力導波路141〜14nと、出力導波路141〜14nが接続された出力スラブ導波路15と、入力スラブ導波路13と出力スラブ導波路15との間に接続されたM本のチャネル導波路211〜21Mからなるアレイ導波路20と、を備えている。なお、AWG10の入力導波路は3本に限らず、少なくとも1本以上あれば良い。また、石英基板11に代えて、シリコン基板を用いても良い。
以下の説明で、アレイ導波路20のチャネル導波路の番号は、内側のチャネル導波路から順に1番目、2番目、・・・m番目、・・・M番目と数える。したがって、チャネル導波路211は1番目のチャネル導波路であり、チャネル導波路21MはM番目のチャネル導波路である。また、アレイ導波路20のチャネル導波路の本数Mは、本実施形態では一例として600本(M=600)とする。図1ではアレイ導波路20のチャネル導波路を簡略化のために少ない本数で示してある。
AWG10では、アレイ導波路20の各チャネル導波路211〜21Mの長さが一定のピッチ(光路長差ΔL)で増加するようになっている。
つまり、M本のチャネル導波路211〜21Mのうち、最も内側にあるチャネル導波路211の長さをL0とすると、m番目のチャネル導波路21mの長さは、
0+(m−1)ΔLとなる。
以上説明した構成を有する第1実施形態に係るAWG10は、アレイ導波路がM本のチャネル導波路からなり、各チャネル導波路が全て同じ幅で、かつ各チャネル導波路の長さが一定の光路長差ΔLで増加する従来のAWGと同じである。ただし、従来のAWGでは、アレイ導波路の各チャネル導波路は、全て同じ幅(以下、「基本導波路幅W1」という。)に形成されている。このような従来のAWGを、フォトリソグラフィ技術などを用いて作製する場合、フォトマスクとして、その導波路形成領域の一部であるアレイ導波路形成領域に、基本導波路幅W1の複数本のチャネル導波路を形成するための導波路パターンを有するものが使用される。このように、アレイ導波路の各チャネル導波路を全て同じ基本導波路幅W1に形成する導波路パターンを有するフォトマスクを、以下の説明では「従来のフォトマスク」と呼ぶ。
図1に示す第1実施形態に係るAWG10の特徴は、アレイ導波路20には、M本のチャネル導波路211〜21Mの少なくとも一部のチャネル導波路の形状を変えることで、少なくとも一部のチャネル導波路に所定の位相を付与する位相修正部30が設けられている点にある。
本実施形態では、位相修正部30は、M本のチャネル導波路211〜21Mのうち、m(1≦m≦M)番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与するように形成されている。ここで、a、b、cは、それぞれ−2π〜2π(ラジアン)の範囲内の値をとる定数である。
この位相修正部30は、図1および図2(a)に示すように、アレイ導波路20の直線導波路部20aに設けられている。なお、図2(a)は、図1で示す位相修正部30の構造を拡大して示すと共に、位相修正部30によりアレイ導波路20の各チャネル導波路211〜21Mに付与される位相分布を模式的に示している。この図2(a)においても、アレイ導波路20のチャネル導波路211〜21Mの本数を簡略化のために実際の本数Mより少ない本数で示してある。
位相修正部30は、チャネル導波路211〜21Mのうち、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与するために、M本のチャネル導波路の一部或いは全部において、基本導波路幅W1より大きい幅W2の幅広導波路をそれぞれ含み、かつ、幅広導波路の長さをチャネル導波路毎に異ならせた構造を有する。
具体的には、図2(a)に示すように、位相修正部30において、300番目(m=300)のチャネル導波路21300は、基本導波路幅W1の直線導波路31と、テーパ導波路32と、テーパ導波路33と、基本導波路幅W1の直線導波路34とが順に接続された構造を有する。つまり、このチャネル導波路21300には、基本導波路幅W1より大きい幅W2の幅広導波路が設けられていない。
また、位相修正部30において、M本のチャネル導波路211〜21Mのうち、チャネル導波路21300以外の各チャネル導波路21n(1≦n≦M)、n≠300)は、図2(a),(b)に示すように、基本導波路幅W1の直線導波路35と、テーパ導波路36と、幅W2の幅広導波路37と、テーパ導波路38と、基本導波路幅W1の直線導波路39とが順に接続された構造をそれぞれ有する。
また、位相修正部30において、各チャネル導波路21nの幅広導波路37の長さLをチャネル導波路毎に異ならせてある。本例では、その長さLは、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与するために、次のように設定されている。
1番目のチャネル導波路211の長さLとM(600)番目のチャネル導波路21Mの長さLが最も長く、1番目のチャネル導波路211からチャネル導波路21299へ向かって次第に短くなっていると共に、チャネル導波路21Mからチャネル導波路21301へ向かって次第に短くなっている。
また、位相修正部30において、各テーパ導波路32,33,36および37は全て同一の形状である。このように同一の形状である一対のテーパ導波路をM本のチャネル導波路211〜21Mの各々に設けているので、一対のテーパ導波路を設けたことにより各チャネル導波路211〜21M間に位相差が生じることはない。
位相修正部30によりアレイ導波路20の各チャネル導波路211〜21Mに付与される位相φは、次式で与えられる。
φ=(2π/λ)(ncorr−norg)・L
ここで、norgは各チャネル導波路の基本導波路幅W1の直線導波路の屈折率、ncorrは各チャネル導波路の幅広導波路の屈折率、Lは各チャネル導波路の幅広導波路の長さである。
上記位相修正部30では、アレイ導波路20の直線導波路部20a、つまり、各チャネル導波路211〜21M(チャネル導波路21300を除く)の直線導波路部に、幅W2の幅広導波路37を設けることで、各チャネル導波路の実効屈折率を大きくして、各チャネル導波路に、設計値の位相より大きな位相を付与するようになっている。そして、位相修正部30では、各チャネル導波路211〜21M(チャネル導波路21300を除く)の幅広導波路37の長さLを上述したように設定することで、各チャネル導波路211〜21M(チャネル導波路21300を除く)に付与する位相の大きさを異ならせるようになっている。
このような構造の位相修正部30をアレイ導波路20の直線導波路部に設けることにより、チャネル導波路211〜21Mのうち、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与することができる。
図2(a)において、符号16は、位相修正部30によりアレイ導波路20に付与される2次関数の位相分布を模式的に示している。この位相分布16は、図2(a)の上下方向が位相の大きさを表している。
また、本実施形態では、各チャネル導波路211〜21M(チャネル導波路21300を除く)の幅広導波路37の中心、および、チャネル導波路21300のテーパ導波路32とテーパ導波路33の接続位置を、それぞれアレイ導波路20の中心Cと一致させてある。このため、位相修正部30により、各チャネル導波路211〜21Mには、AWG10の中心、つまりアレイ導波路20の中心Cに関して左右対称に位相が付与されるようになっている。
このような位相修正部30をアレイ導波路20の直線導波路部に設けたAWG10を、フォトリソグラフィ技術を用いて作製する場合、上記「従来のフォトマスク」とは構造の異なる図3に示すようなフォトマスク40を用いる。図3は、フォトマスク40に形成されたAWG10の各導波路を形成する導波路パターンのうち、アレイ導波路20の各チャネル導波路を形成するアレイ導波路形成領域における前記位相修正部30を形成する位相修正子の部分のみを示している。
このフォトマスク40は、図3に示す位相修正子40aを有する。この位相修正子40aには、図2(a)に示す位相修正部30におけるM本のチャネル導波路211〜21Mをそれぞれ形成するための、図3に示すような導波路パターン411〜41Mが形成されている。このフォトマスク40を以下の説明では「本発明のフォトマスク」と呼ぶ。
このような構成を有する第1実施形態に係るAWG10では、波長の異なる複数の光が多重された光(λ1〜λn)が入力導波路121〜123の一つ、例えば入力導波路122に入射すると、この光(λ1〜λn)は、第1のスラブ導波路13で回折により広がり、アレイ導波路20に入射する。アレイ導波路20はM本のチャネル導波路211〜21Mによって構成されており、隣り合うチャネル導波路は一定の光路長差ΔLをもって配列されている。このため、アレイ導波路20の出力端では、それぞれのチャネル導波路211〜21Mを通過した光に位相差が付けられる。アレイ導波路20を通過した光は出力スラブ導波路15に伝搬され、回折により広がるが、それぞれのチャネル導波路211〜21Mを通過した光は互いに干渉し、結果として波面の揃う方向にのみ強めあい集光する。
この集光方向は波長によって異なるため、出力スラブ導波路15の出射部に、波長によって異なるそれぞれの集光位置に出力導波路141〜14nを配置することにより、各出力導波路141〜14nから異なる波長の光λ1〜λnを取り出すことができる。この場合、AWG10は分波器として機能する。AWG10を合波器として使用する場合には、異なる波長の光λ1〜λnを出力導波路141〜14nにそれぞれ入射させると、合波されて多重された光(λ1〜λn)が入力導波路121〜123の一つ、例えば入力導波路122から出射される。
(第2実施形態)
次に、本発明の第2実施形態に係るアレイ導波路格子(AWG)10Aを図4(a)および図4(b)に基づいて説明する。
第2実施形態に係るAWG10Aでは、位相修正部30Aが、M本のチャネル導波路211〜21Mのうち、m(1≦m≦M)番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与するように形成されている。ここで、a、b、cおよびdは、それぞれ−2π〜2π(ラジアン)の範囲内の値をとる定数である。AWG10Aの位相修正部30A以外の構成は、上述した第1実施形態に係るAWG10と同様である。
この位相修正部30Aは、図4(a)に示すように、上記第1実施形態における位相修正部30と同様にアレイ導波路20の直線導波路部20a(図1参照)に設けられている。なお、図4(a)は、図2(a)と同様に、位相修正部の構造を拡大して示すと共に、位相修正部30Aによりアレイ導波路20の各チャネル導波路211〜21Mに付与される位相分布を模式的に示している。また、この図4(a)においても、アレイ導波路20のチャネル導波路211〜21Mの本数を簡略化のために実際の本数M(M=600)より少ない本数で示してある。
位相修正部30Aは、チャネル導波路211〜21Mのうち、m番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与するために、M本のチャネル導波路の一部或いは全部において、基本導波路幅W1より大きい幅W2の幅広導波路をそれぞれ含み、かつ、幅広導波路の長さをチャネル導波路毎に異ならせた構造を有する。
具体的には、図4(a)に示すように、位相修正部30Aにおいて、600番目(M=600)のチャネル導波路21Mは、基本導波路幅W1の直線導波路31aと、テーパ導波路32aと、テーパ導波路33aと、基本導波路幅W1の直線導波路34aとが順に接続された構造を有する。つまり、このチャネル導波路21Mには、基本導波路幅W1より大きい幅W2の幅広導波路が設けられていない。
また、位相修正部30Aにおいて、M本のチャネル導波路211〜21Mのうち、チャネル導波路21M以外の各チャネル導波路21n(1≦n≦M−1)は、図4(b)に示すように、基本導波路幅W1の直線導波路35aと、テーパ導波路36aと、幅W2の幅広導波路37aと、テーパ導波路部38aと、基本導波路幅W1の直線導波路39aとが順に接続された構造をそれぞれ有する。
また、位相修正部30Aにおいて、各チャネル導波路21nの幅広導波路37aの長さLをチャネル導波路毎に異ならせてある。本例では、その長さLは、m番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与するために、次のように設定されている。
1番目のチャネル導波路211の長さLが最も長く、1番目のチャネル導波路211からチャネル導波路21M-1へ向かって次第に短くなっている。
また、位相修正部30Aにおいて、各テーパ導波路32a,33a,36aおよび37aは全て同一の形状である。
このような構造の位相修正部30Aをアレイ導波路20の直線導波路部20aに設けることにより、チャネル導波路211〜21Mのうち、m番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与することができる。
図4(a)において、符号17は、位相修正部30Aによりアレイ導波路20に付与される3次関数の位相分布を模式的に示している。
また、本実施形態では、チャネル導波路211〜21M-1の各幅広導波路37aの中心、およびチャネル導波路21Mのテーパ導波路32aとテーパ導波路33aの接続位置を、それぞれアレイ導波路20の中心Cと一致させてある。このため、位相修正部30Aにより、各チャネル導波路211〜21Mには、AWG10Aの中心、つまりアレイ導波路20の中心Cに関して左右対称に位相が付与されるようになっている。
このような位相修正部30Aをアレイ導波路20の直線導波路部20aに設けたAWG10Aを、フォトリソグラフィ技術などを用いて作製する場合、図3に示す本発明のフォトマスク40の位相修正子40aと同様の位相修正子を有する本発明のフォトマスク(図示省略)を用いる。このフォトマスクの位相修正子には、図4(a)に示す位相修正部30AにおけるM本のチャネル導波路211〜21Mをそれぞれ形成するための導波路パターンが形成されている。
<AWG10の作製方法>
次に、上記構成を有するAWG10或いはAWG10Aの作製方法を説明する。
(1)まず、上記「従来のフォトマスク」を用いて、フォトリソグラフィ技術などにより、上記「従来のAWG」を作製する。
つまり、幅が同じM本のチャネル導波路からなるアレイ導波路を有する従来のAWGを作製する。
ここでは、例えば50GHz−80chのフラット型AWGを作製する。
(2)次に、上記工程(1)で作製した従来のAWGの透過スペクトルを測定し、その実測値を求める。
50GHz−80chのフラット型AWGを作製した結果を図5(a)、(b)および図6(a)、(b)に示す。図5(a)において、曲線100はそのフラット型AWGにおける設計値の透過スペクトルを、曲線101、102および103は作製した従来のAWG(AWGチップ)A,BおよびCの透過スペクトルの実測値をそれぞれ示す。また、図6(a)において、曲線100はそのフラット型AWGにおける設計値の透過スペクトルを、曲線104,105および106は作製されたAWGチップA,BおよびCの透過スペクトルの実測値をそれぞれ示す。
図5(a)から、AWGチップA,BおよびCの透過スペクトル形状がほぼ一致していることが分かる。また、図6(a)から、AWGチップA,BおよびCの透過スペクトル形状がほぼ一致していることが分かる。これらのことから、透過スペクトル形状がほぼ一致したAWGチップA,BおよびCを作製できていることが分かる。
また、良く観察すると、図5(a)では、曲線101、102、および103で示すAWGチップA,BおよびCの透過スペクトルが設計値の透過スペクトルより広がり、かつスペクトルトップがそれぞれ丸まっていることが分かる(図5(b)参照)。一方、図6(a)では、曲線104,105および106で示すAWGチップA,BおよびCの透過スペクトルのスペクトルトップの部分に傾斜が発生していることが分かる(図6(b)参照)。
本発明者は、この後、様々なAWGを作製したが、作製したAWGは図5(a)若しくは図6(a)のいずれかに該当する場合が多いことが分かった。
図5(a)若しくは図6(a)で示すいずれの場合も、アレイ導波路の中に位相の変化が起こっていて、特性が劣化している。つまり、図5(a)の曲線101、102、および103で示すAWGチップA,BおよびCには、フォトマスク自体の製造誤差に起因して、アレイ導波路に位相誤差が発生しており、特性が劣化している。同様に、図6(a)の曲線104、105、および106で示すAWGチップA,BおよびCには、フォトマスク自体の製造誤差に起因して、アレイ導波路に位相誤差が発生しており、特性が劣化している。
(3)次に、上記工程(2)で求めた従来のAWGの透過スペクトル特性の劣化(図5(a)、図6(a)に示す特性の劣化)から、フォトマスク自体の製造誤差に起因して、アレイ導波路20に発生している位相誤差分布を計算により求める。
ここでは、例えば、2次関数或いは3次関数の位相誤差に限定して、測定値とのフィッティングを行って、アレイ導波路20に発生している位相誤差分布を求める。
つまり、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与して透過率の計算を行い、設計値の透過スペクトルにフィッティングする2次関数の位相誤差分布を求める。或いは、m番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与して透過率の計算を行い、設計値の透過スペクトルにフィッティングする2次関数の位相誤差分布を求める。なお、ここにいう「位相誤差分布」は、アレイ導波路を構成する各チャネル導波路に生じた位相誤差の分布である。
2次関数の位相分布をAWGに与えた場合、図7(a)、(b)に示すように、透過スペクトルが広がり,かつスペクトルトップの部分が丸まることがわかった。図7(a)は、b=c=0とし、かつaの値を−0.5π〜0.5πの範囲で、0.1πきざみで変化させた場合に得られる11通りの透過スペクトルの計算値を示している。
一方、3次関数の位相分布をAWGに与えた場合、図8(a)、(b)に示すように、スペクトルトップの部分に傾斜が発生することがわかった。図8(a)は、b=c=d=0とし、かつaの値を−0.5π〜0.5πの範囲で0.1πきざみで変化させた場合に得られる11通りの透過スペクトルの計算値を示している。
そこで、工程(3)では、図5(a)に示す透過スペクトル特性(実測値)が得られた場合には2次関数の位相誤差分布を、図6(a)に示す透過スペクトル特性(実測値)が得られた場合には3次関数の位相誤差分布を設計値にそれぞれ与えて透過スペクトルを計算する。そして、計算した透過スペクトルが、最小自乗法的に図5(a)或いは図6(a)の曲線100で示す設計値の透過スペクトルにフィッティングする位相誤差分布を抽出する。
このように、工程(3)では、インプット情報として2次関数或いは3次関数の位相誤差をアレイ導波路20に与える位相修正部を前提に計算を行い、もっとも実測値に近い形を見つける。
例えば、図5(a)、(b)に示すような特性の劣化がある場合、アレイ導波路20の中に位相の変化がそれぞれ起こっている。この場合、工程(3)では、図5(a)に示す特性が得られた上記従来のAWGの設計値に2次関数的な位相分布を入れて逆計算すると、ほぼ設計値に近い透過スペクトル特性が得られる。
このことを逆に言うと、実際に作った図5(a)に示すような特性の劣化がある従来のAWGでは、位相分布が発生しているということになるので、その位相分布を設計の段階から入れ込んであげれば、最終的に作製されるAWG10は、ほぼ設計値に近い透過スペクトル特性が得られる。
一方、図6(a)、(b)に示すような特性の劣化がある場合、アレイ導波路20の中に位相の変化がそれぞれ起こっている。この場合、工程(3)では、図6(a)に示す特性が得られた上記従来のAWGの設計値に3次関数的な位相分布を入れて逆計算すると、ほぼ設計値に近い透過スペクトル特性が得られる。
このことを逆に言うと、実際に作った図6(a)に示すようなAWGでは、位相分布が発生しているということになるので、その位相分布を設計の段階から入れ込んであげれば、最終的に作製されるAWG10Aは、ほぼ設計値に近い透過スペクトル特性が得られる。
(4)次に、上記工程(3)で計算した位相誤差分布を補償するような(無くすような)位相を、アレイ導波路の各チャネル導波路に付与する位相修正部(図2(a)の位相修正部30或いは図4(a)の位相修正部30A)の形状を決定する。
この工程では、例えば各チャネル導波路211〜21Mの幅広導波路37の幅W2とその長さLとを決める。
(5)次に、上記工程(4)で決定した形状の位相修正部が導入されたアレイ導波路を形成するためのアレイ導波路形成領域を有するフォトマスクを作製する。
上記第1実施形態では、図3に示すような本発明のフォトマスク40を作製する。一方、上記第2実施形態では、図示を省略した上記本発明のフォトマスクを作製する。
このように、フォトマスクで発生している位相誤差を補償する導波路パラメータを、あらかじめ本発明のフォトマスクに入れ込んでおく。
(6)次に、上記工程(5)で作製した本発明のフォトマスクを用いて上記第1実施形態のAWG(50GHz−80chのフラット型AWG)10或いは上記第2実施形態のAWG(50GHz−80chのフラット型AWG)10Aを作製する。
(実施例1)
通常の石英系PLC技術を用いて図2(a)に示すような位相修正部30を有する50GHz−80chのフラット型AWG10(図1参照)を作製した。この際、図3に示す本発明のフォトマスク40には、チャネル導波路211〜21Mのm番目のチャネル導波路に対し、0.7π(m−M/2)2となる位相を付与するように、幅W2の幅広導波路37を形成すると共に、各幅広導波路37の長さLが所定値になるように設定した。作製したAWG10の透過スペクトル特性を図9(a)、(b)に示す。図9(a)、(b)から、作製したAWG10では、ほぼ設計値通りの透過スペクルが得られており、本発明の方法が非常に有効であることが分かる。
(実施例2)
通常の石英系PLC技術を用いて図4(a)に示すような位相修正部30Aを有する50GHz−80chのフラット型AWG10Aを作製した。この際、上記本発明のフォトマスク中には、M本のチャネル導波路211〜21Mのうち、m(1≦m≦M)番目のチャネル導波路に対し、0.3π(m−M/2)3となる位相を付与するように、幅W2の幅広導波路37a(図4(b)参照)を形成すると共に、各幅広導波路37aの長さLが所定量になるように設定した。作製したAWG10Aの透過スペクトル特性を図10(a)、(b)に示す。図10(a)、(b)から、作製したAWG10Aでは、ほぼ設計値通りの透過スペクルが得られており、本発明の方法が非常に有効であることが分かる。
上記第1実施形態によれば、以下の作用効果を奏する。
(1)位相修正部30が、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与することで、アレイ導波路20の位相誤差を解消すべくアレイ導波路20の各チャネル導波路211〜21Mの位相を変化させ、設計値に近い透過スペクトルが得られる。つまり、上記従来のフォトマスクで発生している位相誤差を補償する形状をあらかじめ本発明のフォトマスク40に設けた位相修正子に入れ込んでおき、そのフォトマスク40を用いてAWGを作製することで、設計特性に近い透過スペクトル特性を得ることができると共に、量産性に優れたAWG10を実現することができる。
(2)図2(a)に示す位相修正部30が、アレイ導波路20の直線導波路部20aに設けられているので、位相修正部30を形成するための導波路パターンを有するフォトマスク40の設計およびAWG10自体の設計が容易になる。
(3)位相修正部30により、各チャネル導波路211〜21Mには、アレイ導波路20の中心Cに関して左右対称に位相が付与されるようになっているので、各チャネル導波路211〜21Mの位相を、中心Cに関して左右対称に等分に変化させることができ、設計値に近い透過スペクトルが得られる。
(4)位相修正部30は、アレイ導波路20の一部の狭い領域、つまり、直線導波路部20aにのみ設けてあるので、フォトマスク40自体の作製誤差が位相修正部30に及ぼす影響は無視でき、設計値に近い透過スペクトルが得られる。
上記第2実施形態によれば、以下の作用効果を奏する。
(1)位相修正部30Aが、m番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与することで、アレイ導波路20の位相誤差を解消すべくアレイ導波路20の各チャネル導波路211〜21Mの位相を変化させ、設計値に近い透過スペクトルが得られる。つまり、上記従来のフォトマスクで発生している位相誤差を補償する形状をあらかじめ本発明のフォトマスクに設けた位相修正子に入れ込んでおき、そのフォトマスクを用いてAWGを作製することで、設計特性に近い透過スペクトル特性を得ることができると共に、量産性に優れたAWG10Aを実現することができる。
(2)図4(a)に示す位相修正部30Aが、アレイ導波路20の直線導波路部20aに設けられているので、位相修正部30Aを形成するための導波路パターンを有するフォトマスクの設計およびAWG10A自体の設計が容易になる。
(3)位相修正部30Aにより、各チャネル導波路211〜21Mには、アレイ導波路20の中心Cに関して左右対称に位相が付与されるようになっているので、各チャネル導波路211〜21Mの位相を、中心Cに関して左右対称に等分に変化させることができ、設計値に近い透過スペクトルが得られる。
(4)位相修正部30Aは、アレイ導波路20の一部の狭い領域、つまり、直線導波路部20aにのみ設けてあるので、フォトマスク自体の作製誤差が位相修正部30に及ぼす影響は無視でき、設計値に近い透過スペクトルが得られる。
なお、この発明は以下のように変更して具体化することもできる。
上記各実施形態では、50GHz−80chのフラット型AWGを作製する場合について一例として説明したが、周波数間隔とチャネル数の異なるフラット型AWGにも本発明は適用される。例えば、100GHz−40chのフラット型AWGにも本発明は適用される。
また、本発明は、フラット型AWGに限らず、透過スペクトルがガウス関数形状を有するガウシアン型AWGにも適用可能である。この場合、上記第1実施形態と同様に、位相修正部は、M本のチャネル導波路211〜21Mのうち、m(1≦m≦M)番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与するように形成される。
また、上記各実施形態では、位相修正部は、M本のチャネル導波路の一部或いは全部において、基本導波路幅W1より大きい幅W2の幅広導波路をそれぞれ含み、かつ、幅広導波路の長さをチャネル導波路毎に異ならせ構造を有しているが、本発明はこれに限定されない。位相修正部が、M本のチャネル導波路の一部或いは全部において、各チャネル導波路の長さのみを変化させた構造を有するAWGにも本発明は適用される。
各チャネル導波路の長さのみを変化させる方法として、次の2つがある。
(1)m番目のチャネル導波路21mに対し、a(m−M/2)2+c(m−M/2)となる位相を付与するように、M本のチャネル導波路211〜21Mの長さのみを変化させる。この場合、m番目のチャネル導波路21mの長さは以下の式で表される。
0+(m−1)ΔL+[a(m−M/2)2+c(m−M/2)]
ここで、L0は、M本のチャネル導波路211〜21Mのうち、最も内側にあるチャネル導波路211の長さである。
(2)m番目のチャネル導波路21mに対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与するように、M本のチャネル導波路211〜21Mの長さのみを変化させる。この場合、m番目のチャネル導波路21mの長さは以下の式で表される。
0+(m−1)ΔL+[a(m−M/2)3+b(m−M/2)2+c(m−M/2)+d]
10,10A:アレイ導波路格子(AWG)
121〜123:入力導波路
13:入力スラブ導波路
141〜14n:出力導波路
15:出力スラブ導波路
20:アレイ導波路
20a:直線導波路部
211〜21M:チャネル導波路
21m:m番目のチャネル導波路
30,30A:位相修正部
37:幅広導波路

Claims (6)

  1. 少なくとも1本以上の入力導波路と、該入力導波路に接続された入力スラブ導波路と、複数本の出力導波路と、該出力導波路が接続された出力スラブ導波路と、前記入力スラブ導波路と前記出力スラブ導波路との間にそれぞれ接続されたM本のチャネル導波路からなるアレイ導波路と、を備え、
    前記アレイ導波路には、前記M本のチャネル導波路の少なくとも一部のチャネル導波路の形状を変えることで、前記少なくとも一部のチャネル導波路に所定の位相を付与する位相修正部が設けられていることを特徴とするアレイ導波路格子。
  2. 前記位相修正部は、前記M本のチャネル導波のうち、m番目のチャネル導波路に対し、a(m−M/2)2+b(m−M/2)+cとなる位相を付与することを特徴とする請求項1に記載のアレイ導波路格子。
  3. 前記位相修正部は、前記M本のチャネル導波路のうち、m番目のチャネル導波路に対し、a(m−M/2)3+b(m−M/2)2+c(m−M/2)+dとなる位相を付与することを特徴とする請求項1に記載のアレイ導波路。
  4. 前記位相修正部は、前記M本のチャネル導波路の一部或いは全部において、基本導波路幅W1より大きい幅W2の幅広導波路をそれぞれ含み、かつ、
    前記幅広導波路の長さを前記チャネル導波路毎に異ならせた構造を有することを特徴とする請求項1乃至3のいずれか一つに記載のアレイ導波路格子。
  5. 前記位相修正部は、前記M本のチャネル導波路の一部或いは全部において、各チャネル導波路の長さのみを変化させた構造を有することを特徴とする請求項1乃至3のいずれか一つに記載のアレイ導波路格子。
  6. 前記M本のチャネル導波路は直線導波路部をそれぞれ有し、前記位相修正部が前記直線導波路部に設けられていることを特徴とする請求項1乃至5のいずれか一つに記載のアレイ導波路格子。
JP2009126096A 2009-05-26 2009-05-26 アレイ導波路格子 Pending JP2010276639A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009126096A JP2010276639A (ja) 2009-05-26 2009-05-26 アレイ導波路格子
US12/787,096 US20100303410A1 (en) 2009-05-26 2010-05-25 Arrayed waveguide grating
US12/973,327 US20110085761A1 (en) 2009-05-26 2010-12-20 Arrayed waveguide grating and method of manufacturing arrayed waveguide grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126096A JP2010276639A (ja) 2009-05-26 2009-05-26 アレイ導波路格子

Publications (1)

Publication Number Publication Date
JP2010276639A true JP2010276639A (ja) 2010-12-09

Family

ID=43220319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126096A Pending JP2010276639A (ja) 2009-05-26 2009-05-26 アレイ導波路格子

Country Status (2)

Country Link
US (1) US20100303410A1 (ja)
JP (1) JP2010276639A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719870B (zh) * 2020-03-31 2021-02-21 國立高雄科技大學 用於大容量光傳輸的分波多工裝置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1136852A1 (en) * 1999-08-10 2001-09-26 The Furukawa Electric Co., Ltd. Array waveguide diffraction grating
JP3434489B2 (ja) * 1999-09-24 2003-08-11 古河電気工業株式会社 アレイ導波路型回折格子
JP4460031B2 (ja) * 2000-03-28 2010-05-12 古河電気工業株式会社 アレイ導波路型回折格子
JP2001281474A (ja) * 2000-03-29 2001-10-10 Furukawa Electric Co Ltd:The 分散補償器及びそれを用いた分散補償モジュール
JP3566940B2 (ja) * 2000-04-18 2004-09-15 古河電気工業株式会社 アレイ導波路回折格子型光合分波器
JP3448551B2 (ja) * 2000-06-14 2003-09-22 古河電気工業株式会社 アレイ導波路型回折格子
JP4494599B2 (ja) * 2000-07-14 2010-06-30 古河電気工業株式会社 アレイ導波路回折格子型光合分波器
JP2002202419A (ja) * 2000-12-28 2002-07-19 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器および光導波回路
JP3700930B2 (ja) * 2001-01-16 2005-09-28 古河電気工業株式会社 アレイ導波路型回折格子
JP2002323626A (ja) * 2001-02-20 2002-11-08 Furukawa Electric Co Ltd:The 光波長合分波器および光合分波システム
JP2003075666A (ja) * 2001-06-22 2003-03-12 Furukawa Electric Co Ltd:The アレイ導波路回折格子型光合分波器
US6735364B2 (en) * 2001-08-27 2004-05-11 The Furukawa Electric Co., Ltd. Arrayed waveguide grating optical multiplexer/demultiplexer and method for manufacturing the same
JP3884341B2 (ja) * 2002-01-21 2007-02-21 古河電気工業株式会社 可変分散補償器およびその可変分散補償器を用いた可変分散補償デバイス
JP2007065562A (ja) * 2005-09-02 2007-03-15 Furukawa Electric Co Ltd:The アレイ導波路回折格子
JP4748524B2 (ja) * 2006-08-31 2011-08-17 古河電気工業株式会社 アレイ導波路格子型合分波器
JP5100175B2 (ja) * 2007-03-28 2012-12-19 古河電気工業株式会社 アレイ導波路格子型の合分波装置

Also Published As

Publication number Publication date
US20100303410A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5399693B2 (ja) 光波長合分波回路
US20110085761A1 (en) Arrayed waveguide grating and method of manufacturing arrayed waveguide grating
US20060215960A1 (en) Optical demultiplexing device and optical monitoring device
WO2005114280A1 (ja) 光合分波器
WO2010013662A1 (ja) アレイ導波路格子
US10054738B2 (en) Optical waveguide and arrayed waveguide grating
JP2010276639A (ja) アレイ導波路格子
JP4885295B2 (ja) アレイ導波路格子およびその製造方法
JP5117417B2 (ja) 光波長合分波回路およびその透過波形調整方法
JP3700930B2 (ja) アレイ導波路型回折格子
JP2010250238A (ja) 光波長合分波回路およびその偏波依存性調整方法
JP4988163B2 (ja) アレイ導波路格子の波長特性を調整するための方法およびマスク
US7261982B2 (en) Planar circuit optimization
JPH11133253A (ja) アレイ導波路型波長合分波器
WO2012026524A1 (ja) マッハツェンダー干渉計-アレイ導波路格子及び平面光波回路チップ
JP3797483B2 (ja) アレイ型導波路格子
JP5086196B2 (ja) 光波長合分波回路
JP4375256B2 (ja) 導波路型温度無依存光合分波器
JP2014035474A (ja) アレイ導波路回折格子型光合分波器
Song et al. Echelle diffraction grating demultiplexers with a single diffraction passband
KR100296383B1 (ko) 누화비 개선을 위한 광파장분할기 제조방법 및 이에 따른 광파장분할기
JP6309793B2 (ja) アレイ導波路格子及びその製造方法
JP2005326468A (ja) 光波長合分波器
An et al. Flat-top silica-based arrayed waveguide grating with 40-channels
JP2001091765A (ja) アレイ導波路回折格子型光合分波器