JP2010273301A - 画像読取装置 - Google Patents

画像読取装置 Download PDF

Info

Publication number
JP2010273301A
JP2010273301A JP2009125757A JP2009125757A JP2010273301A JP 2010273301 A JP2010273301 A JP 2010273301A JP 2009125757 A JP2009125757 A JP 2009125757A JP 2009125757 A JP2009125757 A JP 2009125757A JP 2010273301 A JP2010273301 A JP 2010273301A
Authority
JP
Japan
Prior art keywords
color
light source
image
data
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009125757A
Other languages
English (en)
Inventor
Atsuyuki Maruyama
厚之 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PFU Ltd
Original Assignee
PFU Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PFU Ltd filed Critical PFU Ltd
Priority to JP2009125757A priority Critical patent/JP2010273301A/ja
Priority to US12/708,954 priority patent/US20100296141A1/en
Publication of JP2010273301A publication Critical patent/JP2010273301A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/48Picture signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/02865Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array using an array of light sources or a combination of such arrays, e.g. an LED bar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/191Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements
    • H04N1/192Simultaneously or substantially simultaneously scanning picture elements on one main scanning line
    • H04N1/193Simultaneously or substantially simultaneously scanning picture elements on one main scanning line using electrically scanned linear arrays, e.g. linear CCD arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0081Image reader

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

【課題】画像に含まれる蛍光領域を高い感度で判別できる画像読取装置を提供すること。
【解決手段】可視光を媒体Sに照射する照射手段10と、媒体から入射する光に基づいて媒体の画像のR色の画像データであるR色データを出力するR色撮像部21と、G色データを出力するG色撮像部22と、B色データを出力するB色撮像部23とを有する撮像手段20とを備え、R色データとG色データとB色データとに基づいてカラー画像データを生成する画像読取装置1−1であって、可視光のうちR色と異なる第一波長域Gの光を媒体に照射する所定光源12と、第一波長域と異なる可視領域の第二波長域Rの光に基づいて、第一波長域の光を受けて第二波長域の光を発生する蛍光領域を含む蛍光画像データを生成する蛍光画像データ生成手段とを備え、蛍光画像データ生成手段は、所定光源の点灯時の、第二波長域と対応する所定色データに基づいて、蛍光画像データを生成する。
【選択図】図1

Description

本発明は、画像読取装置に関し、特に、R色の画像データ、G色の画像データ、B色の画像データをそれぞれ出力する撮像部を有する撮像手段を備えた画像読取装置に関する。
従来、読取り対象の媒体に形成された画像に含まれる蛍光領域を判別する技術が知られている。例えば、特許文献1には、カラー原稿を読み取った複数色の色信号の内、r信号が第1の閾値以上またはg信号が第2の閾値以上であり、かつb信号が第3の閾値以下(ただし、第1、第2の閾値>第3の閾値)であるとき蛍光色と判定するカラー画像処理装置が開示されている。
特許第3344771号公報
ここで、特許文献1の判定方法では、蛍光色でない色の色信号の値と蛍光色の色信号の値との間に閾値を設定するものであるため、蛍光色の判別の感度を十分に高めることができない場合がある。また、下地の濃度等に応じて蛍光色の判別の感度が低下し、適切に蛍光色を判別できなくなってしまう可能性がある。
本発明の目的は、読取り対象の媒体に形成された画像に含まれる蛍光領域を高い感度で判別することができる画像読取装置を提供することである。
本発明の画像読取装置は、可視領域の光を読取り対象の媒体に照射する照射手段と、前記照射手段により光が照射された前記媒体から入射する光に基づいて前記媒体に形成された画像のR色の画像データであるR色データを出力するR色撮像部と、G色の画像データであるG色データを出力するG色撮像部と、B色の画像データであるB色データを出力するB色撮像部とを有する撮像手段とを備え、前記R色データと前記G色データと前記B色データとに基づいて前記画像のカラー画像データを生成する画像読取装置であって、可視領域の光のうちR色と異なる第一波長域の光を前記媒体に照射する所定光源と、前記第一波長域と異なる可視領域の第二波長域の光に基づいて、前記第一波長域の光を受けて前記第二波長域の光を発生する蛍光領域を含む前記画像の画像データである蛍光画像データを生成する蛍光画像データ生成手段とを備え、前記蛍光画像データ生成手段は、前記所定光源を点灯させたときの、前記色データのうち前記第二波長域と対応する所定色データに基づいて、前記蛍光画像データを生成することを特徴とする。
本発明の画像読取装置において、前記所定光源として、G色光を照射するG色光源、あるいはB色光を照射するB色光源の少なくともいずれか一方を備え、前記蛍光画像データ生成手段は、前記G色光源を点灯させたときの前記R色データ、あるいは、前記B色光源を点灯させたときの前記G色データに基づいて前記蛍光画像データを生成することを特徴とする。
本発明の画像読取装置において、前記照射手段は、白色光を前記媒体に照射する白色光源を有し、前記白色光が照射されたときの前記R色データと、前記G色データと、前記B色データとに基づいて前記カラー画像データを生成することを特徴とする。
本発明の画像読取装置において、前記白色光源と前記所定光源とは独立していることを特徴とする。
本発明の画像読取装置において、前記照射手段は、R色光を照射するR色光源と、前記所定光源としての前記G色光源および前記B色光源とを有し、前記カラー画像データを生成するときに、前記白色光源として前記R色光源と前記G色光源と前記B色光源を同時に点灯させることを特徴とする。
本発明の画像読取装置において、前記白色光源を点灯させての前記カラー画像データの生成と、前記所定光源を点灯させての前記蛍光画像データの生成とを独立して実行し、前記カラー画像データの生成における前記白色光源の点灯時の前記撮像手段の露光時間が、前記蛍光画像データの生成における前記所定光源の点灯時の前記撮像手段の露光時間と比較して長いことを特徴とする。
本発明の画像読取装置において、更に、前記撮像手段のアナログ出力を増幅する増幅手段を備え、前記増幅手段により増幅された前記色データに基づいて前記カラー画像データと前記蛍光画像データを生成し、前記白色光源を点灯させての前記カラー画像データの生成のときの前記アナログ出力に対する増幅率と比較して、前記所定光源を点灯させての前記蛍光画像データの生成のときの前記アナログ出力に対する増幅率が大きいことを特徴とする。
本発明の画像読取装置において、前記照射手段は、前記R色光を照射するR色光源、前記G色光源、および前記B色光源を有し、前記R色光源、前記G色光源、前記B色光源は、それぞれ単独で点灯され、前記R色光源を点灯させたときの前記R色データ、前記G色光源を点灯させたときの前記G色データ、および前記B色光源を点灯させたときの前記B色データに基づいて前記カラー画像データを生成することを特徴とする。
本発明の画像読取装置において、前記撮像手段の主走査方向に配置され、前記第一波長域の光を受けて前記第二波長域の光を発生する基準板を備え、前記所定光源により前記基準板に前記第一波長域の光を照射させたときの前記所定色データに基づいて、前記媒体に前記第一波長域の光を照射させたときの前記所定色データを補正することを特徴とする。
本発明にかかる画像読取装置は、読取り対象の媒体から入射する光に基づいて媒体に形成された画像のR色の画像データであるR色データを出力するR色撮像部と、G色の画像データであるG色データを出力するG色撮像部と、B色の画像データであるB色データを出力するB色撮像部とを有する撮像手段を備え、R色データとG色データとB色データとに基づいて画像のカラー画像データを生成する画像読取装置であって、可視領域の光のうちR色と異なる第一波長域の光を媒体に照射する所定光源と、第一波長域と異なる可視領域の第二波長域の光に基づいて、第一波長域の光を受けて第二波長域の光を発生する蛍光領域を含む上記画像の画像データである蛍光画像データを生成する蛍光画像データ生成手段とを備える。
蛍光画像データ生成手段は、所定光源を点灯させたときの、色データのうち第二波長域と対応する所定色データに基づいて、蛍光画像データを生成する。照射される第一波長域の光と異なる第二波長域の光に基づいて蛍光画像データが生成されることで、前記第一波長域の反射光等の光の影響を抑制し、高い感度で蛍光領域を判別することができる。
図1は、本発明に係る画像読取装置の第1実施形態の概略構成を示す図である。 図2は、本発明に係る画像読取装置の第1実施形態において青色光を照射するLEDが点灯されたときの水性蛍光ペンの相対分光特性を示す図である。 図3は、本発明に係る画像読取装置の第1実施形態において緑色光を照射するLEDが点灯されたときの水性蛍光ペンの相対分光特性を示す図である。 図4は、本発明に係る画像読取装置の第1実施形態において赤色光を照射するLEDが点灯されたときの水性蛍光ペンの相対分光特性を示す図である。 図5は、本発明に係る画像読取装置の第1実施形態におけるイメージセンサのフィルタ特性を示す図である。 図6は、本発明に係る画像読取装置の第1実施形態において青色LEDを照射したときの相対分光特性と、イメージセンサの各色のフィルタ特性とを各波長について乗じた結果を示す図である。 図7は、本発明に係る画像読取装置の第1実施形態図において青色LEDが照射されたときの各検出対象に対するフィルタ色ごとの出力を示す図である。 図8は、本発明に係る画像読取装置の第1実施形態において緑色LEDを照射したときにピンクの蛍光ペンの蛍光領域で赤色波長に蛍光した光が赤色センサに入射する様子を示す図である。 図9は、本発明に係る画像読取装置の第1実施形態の主要な構成を示すブロック図である。 図10は、本発明に係る画像読取装置の第1実施形態における赤色LEDを点灯させたときの画像処理方法を示す図である。 図11は、本発明に係る画像読取装置の第1実施形態における緑色LEDを点灯させたときの画像処理方法を示す図である。 図12は、本発明に係る画像読取装置の第1実施形態における青色LEDを点灯させたときの画像処理方法を示す図である。 図13は、本発明に係る画像読取装置の第1実施形態におけるイエローの蛍光ペンおよび下地白のスペクトルと緑色フィルタ特性とを各波長について乗じた結果を示す図である。 図14は、本発明に係る画像読取装置の第1実施形態のイエローの蛍光ペンおよび下地白からの入射光に対する緑色センサの出力を示す図である。 図15は、本発明に係る画像読取装置の第1実施形態の蛍光判別における各領域のスペクトル特性を示す図である。 図16は、本発明に係る画像読取装置の第1実施形態の蛍光判別による蛍光領域の判別結果の一例を示す図である。 図17は、本発明に係る画像読取装置の第2実施形態の通常画像を撮像する方法を示す図である。 図18は、本発明に係る画像読取装置の第2実施形態の緑色LEDを点灯させて蛍光領域を撮像する方法を示す図である。 図19は、本発明に係る画像読取装置の第2実施形態の青色LEDを点灯させて蛍光領域を撮像する方法を示す図である。 図20は、本発明に係る画像読取装置の第2実施形態の第1変形例に係る画像読取装置の概略構成を示す図である。 図21は、本発明に係る画像読取装置の第2実施形態の第2変形例においてジッタの発生について説明するための図である。 図22は、本発明に係る画像読取装置の第2実施形態の第2変形例で白色光源の露光時間が長くされることによるジッタの抑制について説明するための図である。 図23は、本発明に係る画像読取装置の第3実施形態において光源の切替えを線順次に代えて面順次で行った場合の効果をまとめた図である。 図24は、本発明に係る画像読取装置の第3実施形態において蛍光領域の読取りを高速化した画像読取りについて説明するための模式図である。 図25は、本発明に係る画像読取装置の第4実施形態に係る画像読取装置の主要な構成を示すブロック図である。 図26は、本発明に係る画像読取装置の第4実施形態の緑色LEDの発光量を増やす制御について説明するための図である。 図27は、本発明に係る画像読取装置の第4実施形態の画像入力部のアンプゲインを増やす制御について説明するための図である。 図28は、本発明に係る画像読取装置の第5実施形態における通常画像用の白基準の設定方法を示す図である。 図29は、本発明に係る画像読取装置の第5実施形態における緑色LEDの蛍光基準の設定方法を示す図である。 図30は、本発明に係る画像読取装置の第5実施形態における青色LEDの蛍光基準の設定方法を示す図である。 図31は、従来技術で正しく判別できない蛍光領域を含む画像の一例を示す図である。 図32は、従来技術で正しく判別できない蛍光領域を含む画像の各領域のスペクトル特性を示す図である。 図33は、従来技術による蛍光領域の判別結果の一例を示す図である。 図34は、従来の画像の読取りにおける偽色の発生について説明するための図である。 図35は、従来の白色光源と3ラインセンサで画像を読取る画像読取装置で生成される画像について説明するための図である。
以下に、本発明にかかる画像読取装置の一実施形態につき図面を参照しつつ詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。
(第1実施形態)
図1から図16を参照して、第1実施形態について説明する。本実施形態は、R色の画像データ、G色の画像データ、B色の画像データをそれぞれ出力する撮像部を有する撮像手段を備えた画像読取装置に関する。図1は、本発明に係る画像読取装置の第1実施形態の概略構成を示す模式図である。
図1において、符号1−1は、本実施形態に係る画像読取装置を示す。画像読取装置1−1は、画像読取ユニット1、基準板2、図示しない搬送装置を有している。画像読取ユニット1は、搬送されてくるシート状の原稿S上の画像を光学的に走査し、電気信号に変換して画像データとして読み取るものである。画像読取ユニット1は、光源10、3ラインセンサ20、およびレンズ30を含む。光源10は、読取り対象媒体である原稿Sに可視領域の光を照射する照射手段であり、赤色LED11、緑色LED12、青色LED13の3色のLEDを有する3色LEDアレイである。図8に示すように、光源10は、赤色LED11、緑色LED12、および青色LED13が主走査方向に一列に順に配置されている。赤色LED11、緑色LED12、および青色LED13は、それぞれ単独で点灯されて原稿Sに単色光を照射することができる。
レンズ30は、原稿Sからの反射光や原稿Sが発する光を結像させるものである。レンズ30は、光源10から照射され原稿Sにて反射した反射光や光源10から照射された光を受けて原稿Sが発生する光を3ラインセンサ20の受光面に集束、結像させるものである。
3ラインセンサ20は、例えばCCD(Charge Coupled Device)であり、レンズ30を通過して結像された(入射する)光を複数の画素が受光し、電気信号に変換することで画像を読み取るものである。光源10から照射され原稿Sで反射した光や、光源10から照射された光により原稿Sが発生する蛍光など、原稿Sからの光がレンズ30により3ラインセンサ20の受光面に収束、結像されると、3ラインセンサの各画素が受光量を電気信号に変換して出力する。図1に示すように、3ラインセンサ20は、互いに異なる色のフィルタを有した3色のラインセンサを備える。具体的には、3ラインセンサ20は、赤色のフィルタを備えた赤色センサ(R色撮像部)21、緑色のフィルタを備えた緑色センサ(G色撮像部)22、および青色のフィルタを備えた青色センサ(B色撮像部)23を有する。各色のセンサ21,22,23は、互いに平行に配置されており、かつ、主走査方向に配置されている。図1では図中奥行き方向が3ラインセンサ20の主走査方向であり、図中左右方向が3ラインセンサ20の副走査方向となる。
基準板2は、原稿Sの搬送路の近傍に3ラインセンサ20と対向して配置されている。基準板2は、画像データ補正用の白基準を設定するためのものである。白基準を設定する際には、原稿Sが画像読取対象位置にないときに、光源10から白色光(赤色LED11、緑色LED12、青色LED13の同時点灯)を基準板2に照射する。これにより、光源10から照射された白色光が基準板2で反射し、3ラインセンサ20に入射する。このときの赤色センサ21、緑色センサ22、青色センサ23の出力が各センサ21,22,23の白基準としてそれぞれ設定される。
搬送装置は、原稿Sを副走査方向である搬送方向に搬送するものである。搬送装置は、例えば、モータにより駆動される駆動ローラと、駆動ローラに向けて押し付けられる従動ローラとを有し、駆動ローラと従動ローラとの間に原稿Sを挟んで原稿Sを搬送する。
従来の画像読取装置では、3色の光源を備える場合にはイメージセンサは色フィルタを持たず、イメージセンサが3色のフィルタを備える場合には光源は白色とされていた。本実施形態の画像読取装置1−1は、3色のフィルタを有するイメージセンサである3ラインセンサ20と、3色の光を照射可能な3色光源10とを備えている。これにより、以下に説明するように光源の色とイメージセンサの色との組合せにより、原稿Sに形成された蛍光領域を高い感度で判別することができる。
本願発明者は、蛍光画像(蛍光染料)の分光特性に着目し、単色光を照射したときの蛍光領域の相対分光特性を研究した結果、以下に説明する知見を得た。図2から図4は、水性蛍光ペンにより画像(蛍光画像)が書き込まれた白色再生紙の原稿について測定された相対分光特性を示す図である。図2から図4には、5色(イエロー、グリーン、ピンク、ブルー、赤紫)の水性蛍光ペンのスペクトル、および、白色再生紙(下地白)のスペクトルが示されている。図2から図4において、横軸は波長(nm)、縦軸は分光特性値を示す。
図2、図3、図4においては、それぞれ照射される単色光の光源の色が異なっている。図2は、青色光(Blue)を照射する青色LED13が点灯されたときの水性蛍光ペンの相対分光特性を示す図、図3は、緑色光(Green)を照射する緑色LED12が点灯されたときの水性蛍光ペンの相対分光特性を示す図、図4は、赤色光(Red)を照射する赤色LED11が点灯されたときの水性蛍光ペンの相対分光特性を示す図である。
図2に示すように、青色LED13が照射されたときの下地白のスペクトル(符号101)は、465nm付近がピーク波長となっている。下地白は蛍光しないものであるから、この下地白のスペクトル101は、光源である青色LED13のスペクトルとほぼ同じとなる。
5色の蛍光ペンのうち、ピンク(符号104)、ブルー(符号105)、赤紫(符号106)の蛍光ペンの示すスペクトルのピーク波長は、下地白のスペクトル101と同様のピーク波長であり、他にピーク波長は特に見られない。一方、5色の蛍光ペンのうち、イエロー(符号102)とグリーン(符号103)の蛍光ペンのスペクトルは、下地白や他の色の蛍光ペン(ピンク、ブルー、赤紫)と同様のピーク波長の他に、異なる波長にピークを有している。これは、蛍光成分のピークを示している。つまり、青色光が照射されると、イエローの蛍光ペンやグリーンの蛍光ペンの蛍光領域は、青色光を反射すると共に、青色光の一部を吸収し、青色光よりも長い波長の蛍光を発生する。
イエローの蛍光ペンのスペクトル102とグリーンの蛍光ペンのスペクトル103では、465nm付近の反射光のピークが下がる一方、500nm付近に蛍光によるピークが見られる。この500nm付近をピークとする蛍光成分は、緑色の波長域と重なっている。イエローの蛍光ペンとグリーンの蛍光ペンの蛍光成分は、青色の反射光よりも長い波長域に分布しており、この波長域では、下地白と比較して蛍光成分の方が大きな値となっている。つまり、この波長域の光を選択的に検出すれば、蛍光領域(蛍光ペン)を高い感度で判別することができる。そこで、本実施形態では、青色光が照射されたときの緑色センサ22の出力に基づいて、イエローやグリーンの蛍光領域を判別する。
図3に示すように、緑色光を照射する緑色LED12が点灯された場合、下地白のスペクトル(符号111)は、530nm付近がピーク波長となっている。この下地白のスペクトル111は、光源である緑色LED12のスペクトルとほぼ同じとなる。5色の蛍光ペンのうち、イエロー(符号112)、グリーン(符号113)、ブルー(符号115)の蛍光ペンの示すスペクトルのピーク波長は、下地白のスペクトル111と同様のピーク波長であり、他にピーク波長は特に見られない。言い換えると、イエロー、グリーン、ブルーの蛍光ペンによる画像は、緑色光では、蛍光を発生していないと見られる。
一方、ピンク(符号114)と赤紫(符号116)の蛍光ペンのスペクトルは、下地白や他の色の蛍光ペン(イエロー、グリーン、ブルー)と同様のピーク波長の他に、異なる波長にピークを有している。つまり、緑色光が照射されると、ピンクの蛍光ペンと赤紫の蛍光ペンの蛍光領域は、緑色光を反射すると共に、緑色光を吸収し、緑色光よりも長い波長の蛍光を発生する。ピンクの蛍光ペンのスペクトル114と赤紫の蛍光ペンのスペクトル116では、530nm付近の反射光のピークが下がる一方、580〜600nm付近に蛍光によるピークが見られる。この580〜600nmをピークとする蛍光成分は、赤色の波長域と重なっている。この波長域では、下地白と比較して、蛍光成分の方が大きな値となっている。そこで、本実施形態では、緑色光が照射されたときの赤色センサ21の出力に基づいて、ピンクや赤紫の蛍光領域を判別する。
図4に示すように、赤色を照射する赤色LED11が点灯された場合、下地白のスペクトル(符号121)は、630nm付近がピーク波長となっている。符号122はイエロー、123はグリーン、124はピンク、125はブルー、126は赤紫の蛍光ペンが示すスペクトルを示している。赤色光では、いずれの蛍光ペンも特に蛍光しないことがわかる。
図5は、3ラインセンサ20のフィルタ特性を示す図である。本実施形態の画像読取装置1−1は、青色(B)、緑色(G)、赤色(R)のそれぞれ異なる色のフィルタを通過した光に基づいて撮像するセンサを有する3ラインセンサ20を備えている。図5において、符号B1は青色フィルタのフィルタ特性、符号G1は緑色フィルタのフィルタ特性、符号R1は赤色フィルタのフィルタ特性を示す。青色センサ23は、青色フィルタを有しており、青色(B色)の画像データであるB色データを出力する。緑色センサ22は、緑色フィルタを有しており、緑色(G色)の画像データであるG色データを出力する。赤色センサ21は、赤色フィルタを有しており、赤色(R色)の画像データである赤色データを出力する。
図6は、青色LEDを照射したときの相対分光特性のスペクトル(図2参照)と、図5に示すイメージセンサの各色のフィルタ特性とを各波長について乗じた結果を示す図である。つまり、図6は、青色LEDが照射されたときの各蛍光ペンおよび下地白から各色のセンサに入射する光のスペクトル示す図である。
図6において、符号201,202,203は、それぞれ青色LEDを照射したときの下地白のスペクトル101と青色フィルタ特性B1との積、イエローの蛍光ペンのスペクトル102と青色フィルタ特性B1との積、グリーンの蛍光ペンのスペクトル103と青色フィルタ特性B1との積を示す。また、符号211,212,213は、それぞれ青色LEDを照射したときの下地白のスペクトル101と緑色フィルタ特性G1との積、イエローの蛍光ペンのスペクトル102と緑色フィルタ特性G1との積、グリーンの蛍光ペンのスペクトル103と緑色フィルタ特性G1との積を示す。符号221,222,223は、それぞれ青色LEDを照射したときの下地白のスペクトル101と赤色フィルタ特性R1との積、イエローの蛍光ペンのスペクトル102と赤色フィルタ特性R1との積、グリーンの蛍光ペンのスペクトル103と赤色フィルタ特性R1との積を示す。
図7は、図6に示すスペクトルをそれぞれ積分した値を示す図であり、青色LED13が照射されたときの各検出対象に対する赤色センサ21、緑色センサ22、青色センサ23の出力を示す図である。
図7に示すように、赤色センサ21(Redフィルタ)については、下地白、イエローの蛍光ペン、グリーンの蛍光ペンのいずれにおいてもほとんど出力がない。これは、青色LED13が照射されたときの反射光(波長450〜480nm)や蛍光(波長500〜550nm)は赤色フィルタをほとんど通過しないためである。
緑色センサ22(Greenフィルタ)の出力では、下地白の出力と比較して、イエローの蛍光ペンの出力や、グリーンの蛍光ペンの出力の方が大きい。これに対して、蛍光しない通常のインクによる画像であれば、出力が下地白の出力を上回ることはなく、下地白の出力が最大となる。したがって、下地白よりも大きな出力がある領域は、蛍光領域であると判別することができる。また、この判別において、下地白の出力と、蛍光領域の出力との差が大きいほど、高い感度で蛍光領域を判別することができる。図7に示すように、イエローの蛍光ペンの出力は、下地白の出力と比較して6倍程度の出力があり、グリーンの蛍光ペンの出力でも、下地白の出力と比較して3倍程度の出力がある。したがって、高い感度でイエローやグリーンの蛍光ペンによる蛍光領域を判別することが可能である。
青色センサ23(Blueフィルタ)の出力では、下地白の出力が、イエローの蛍光ペンの出力やグリーンの蛍光ペンの出力と比較して大きい。イエローやグリーンの蛍光ペンでは、励起光である青色光を吸収して緑色の蛍光を発生しているため、青色光の相対出力は下がる。よって、蛍光しないインクの反射特性と同様に、下地白が一番明るくなる。このため、青色LEDを照射したときに、青色センサ23の出力では、蛍光しないインクによる画像の出力と蛍光領域の出力とを判別することができない。したがって、青色LED13を点灯するときに蛍光領域を画像として読み取るのに最も適している条件は、(青色LED照射−緑色フィルタ出力)の条件である。つまり、蛍光成分を選択的に抽出するためには、照射される励起光と異なる波長で、かつ、蛍光領域が発生する蛍光の波長域と対応する波長のフィルタのイメージセンサ出力を用いればよい。
本実施形態の画像読取装置では、青色LED13を照射したときの緑色センサ22の出力に基づいてイエローやグリーンの蛍光領域を判別する。言い換えると、B色光(第一波長域の光)を受けてB色光と異なる可視領域のG色光(第二波長域の光である蛍光)を発生するイエローやグリーンの蛍光領域について、青色LED13を所定光源として点灯させたときの緑色センサ22の出力(所定色データ)に基づいて蛍光画像データを生成する。これにより、読取り対象の画像に含まれるイエローやグリーン等の蛍光領域を高い感度で判別することができる。
また、図3を参照して説明したように、緑色LED12を照射したときのピンクと赤紫の蛍光ペンの蛍光成分は、赤色の波長域(赤色フィルタ特性R1)と重なる580〜600nmの波長域にピークを有する。一方で、緑色LED12を照射したときの下地白のスペクトル111は、赤色フィルタ特性R1との重なりの大きさがピンクや赤紫の蛍光ペンと比較して小さい。したがって、緑色LED12を照射したときの赤色センサ21の出力において、下地白の値と比較して、ピンクや赤紫の蛍光ペンの値は大きなものとなる。本実施形態では、緑色LED12を照射したときの赤色センサ21の出力に基づいて、ピンクや赤紫の蛍光領域を判別する。言い換えると、G色光(第一波長域の光)を受けてG色光と異なる可視領域のR色光(第二波長域の光である蛍光)を発生するピンクや赤紫の蛍光領域について、緑色LED12を所定光源として点灯させたときの赤色センサ21の出力(所定色データ)に基づいて蛍光画像データを生成する。これにより、読取り対象の画像に含まれるピンクや赤紫の蛍光領域を高い感度で判別することができる。
図8は、緑色LED12を照射したときにピンクの蛍光ペンの蛍光領域で赤色波長に蛍光した光が赤色フィルタを有する赤色センサ21に入射する様子を示す図である。
光源10は、後述するLED駆動部41により駆動されて各LEDを点灯する。光源10は、各色のLEDを順次切替えて点灯することが可能に構成されている。すなわち、光源10は、赤色LED11を点灯させ、かつ緑色LED12および青色LED13を点灯させない状態と、緑色LED12を点灯させ、かつ赤色LED11および青色LED13を点灯させない状態と、青色LED13を点灯させ、かつ赤色LED11および緑色LED12を点灯させない状態とを順次切替えて実現することができる。図8には、緑色LED12を点灯させ、かつ赤色LED11および青色LED13を点灯させない状態が示されている。
緑色LED12から照射され、原稿S上の読取り対象のラインである読取ラインで反射した光は、レンズ30で収束されて赤色センサ21に入射する。同様に、緑色LED12から照射された光により読取りラインの蛍光領域が発生する蛍光は、レンズ30で収束されて赤色センサ21に入射する。赤色センサ21の各画素の受光量が、下地白に相当する受光量よりも大きい場合には、原稿S上におけるその画素に対応する領域は、蛍光画像(蛍光領域)であると判別することができる。
次に、図9を参照して、画像読取装置1−1の主要な構成について説明する。図9は、画像読取装置1−1の主要な構成を示すブロック図である。画像読取装置1−1には、制御部40が設けられている。制御部40は、LED駆動部41、光源制御部42、画像入力部43、画像処理部44、および画像データ出力部45を有している。
光源制御部42は、光源10において点灯させるLEDの色、期間、光量、点灯順序等を制御するものである。光源制御部42は、光源10の点灯制御に関する指令値をLED駆動部41および画像処理部44に出力する。
LED駆動部41は、光源10のLEDを駆動して点灯させるものである。LED駆動部41は、光源制御部42からの指令に基づいて、点灯対象の色のLEDに電流を流して点灯させる。例えば、緑色LED12を点灯させる場合、LED駆動部41は、光源10に配置された全ての緑色LED12に通電して点灯させ、かつ、赤色LED11および青色LED13への通電を停止して消灯させる。
画像入力部43は、3ラインセンサ20から出力される電気信号(アナログ信号)を入力し、増幅し、A/D変換して画像処理部44に送るものである。つまり、画像入力部43は、増幅手段として機能する。画像入力部43は、赤色センサ21の出力を読取りライン上の画像に関する赤色成分データである赤色ラインデータ(R色データ)として、緑色センサ22の出力を緑色ラインデータ(G色データ)として、青色センサ23の出力を青色ラインデータ(B色データ)としてそれぞれ取り込む。取り込まれた各ラインデータは、増幅され、A/D変換されて画像入力部43から画像処理部44に送られる。
画像処理部44は、画像入力部43から送られる各ラインデータを通常画像データと蛍光画像データとに振り分けるものである。ここで、通常画像データとは、蛍光領域も含む全画像の画像データまたは蛍光領域の発生する蛍光成分の光を除いた全画像の画像データのことである。言い換えると、通常画像データとは、原稿S上の画像に関する画像データであって、少なくとも蛍光成分以外の反射光に基づく画像データを含む画像データのことである。本実施形態では通常画像データとして、蛍光成分を除いた画像データが得られる。
画像データ出力部45は、画像処理部44から出力されるラインデータを画像データとして出力するものである。画像データ出力部45は、通常画像データの各ラインデータおよび蛍光画像データの各ラインデータを一時的に記憶する記憶部を有しており、通常画像データの各ラインデータを合成してカラー画像データを生成し、蛍光画像データの各ラインデータから蛍光画像データを生成する。本実施形態では、画像データ出力部45が蛍光画像データ生成手段として機能する。なお、画像データ出力部45から、画像読取装置1−1に接続されたデータ処理装置(PC等)に各ラインデータを出力することで、データ処理装置において通常画像のカラー画像データや蛍光画像データ等を生成できるようにしてもよい。
図10から図12を参照して、点灯させるLEDの色毎の通常画像データと蛍光画像データの振り分け方法について説明する。図10は、赤色LED11を点灯させたときの画像処理方法、図11は、緑色LED12を点灯させたときの画像処理方法、図12は、青色LED13を点灯させたときの画像処理方法を示す図である。
赤色LED11を点灯させる場合(図10)、光源制御部42は、LED駆動部41に対して赤色LED11を点灯させる指令を出力する。これにより、LED駆動部41は、赤色LED11に通電して赤色LED11を点灯させ、原稿Sに対して赤色光を照射させる。赤色LED11が点灯している場合、図4を参照して説明したように、可視光内での蛍光は発生しない。したがって、3ラインセンサの赤色センサ21の出力は、蛍光成分を含んでおらず、通常画像データ(通常画像データの赤色成分)となる。画像処理部44は、赤色ラインデータを画像入力部43から取得し、画像データ出力部45に通常画像データとして出力する。赤色LED11の点灯時の青色ラインデータおよび緑色ラインデータは、画像データとしては使用されない。
緑色LED12を点灯させる場合(図11)、光源制御部42は、LED駆動部41に対して緑色LED12を点灯させる指令を出力する。これにより、LED駆動部41は、緑色LED12に通電して緑色LED12を点灯させ、原稿Sに対して緑色光を照射させる。緑色LED12が点灯している場合、ピンクや赤紫等の蛍光領域は、赤色領域の蛍光を発生する。画像処理部44は、画像入力部43から取得した赤色ラインデータに基づいて蛍光領域を判別する。画像処理部44は、赤色ラインデータの各画素の出力のうち、出力が予め定められた閾値を超えるものを蛍光画像を示すデータとする。この閾値は、緑色LED12を点灯したときの下地白の反射光に対応する赤色センサ21の出力の大きさに基づいて設定される。画像処理部44は、こうして得られる蛍光領域のラインデータを画像データ出力部45に出力する。また、画像処理部44は、画像入力部43から取得した緑色ラインデータを通常画像データ(通常画像データの緑色成分)として画像データ出力部45に出力する。
青色LED13を点灯させる場合(図12)、光源制御部42は、LED駆動部41に対して青色LED13を点灯させる指令を出力する。これにより、LED駆動部41は、青色LED13に通電して青色LED13を点灯させ、原稿Sに対して青色光を照射させる。青色LED13が点灯している場合、イエローやグリーンの蛍光領域は、緑色領域の蛍光を発生する。画像処理部44は、画像入力部43から取得した緑色ラインデータに基づいて蛍光領域を判別する。画像処理部44は、緑色ラインデータの各画素の出力のうち、出力が予め定められた閾値を超えるものを蛍光画像を示すデータとする。この閾値は、青色LED13を点灯したときの下地白の反射光に対応する緑色センサ22の出力の大きさに基づいて設定される。画像処理部44は、こうして得られる蛍光領域のラインデータを画像データ出力部45に出力する。また、画像処理部44は、画像入力部43から取得した青色ラインデータを通常画像データとして画像データ出力部45に出力する。
画像読取装置1−1は、搬送装置により副走査方向に搬送される原稿Sに対して、赤色LED11、緑色LED12、青色LED13を逐次点灯させ、それぞれにおいて得られるラインデータから一つのラインデータを生成する。具体的には、画像データ出力部45は、赤色LED11を点灯したときの赤色ラインデータ、緑色LED12を点灯したときの緑色ラインデータ、および青色LED13を点灯したときの青色ラインデータに基づいて、通常画像データとしてのRGBカラーラインデータ(カラー画像データ)を生成する。こうした主走査方向のRGBカラーラインデータの取得を副走査方向に沿って順次繰り返すことにより、原稿Sの通常画像をRGBカラー画像データとして生成することができる。
また、緑色LED12を点灯した時の赤色ラインデータや、青色LED13を点灯したときの緑色ラインデータは、それぞれ蛍光ラインデータとなる。こうした主走査方向の蛍光ラインデータの取得を副走査方向に沿って順次繰り返すことにより、画像データ出力部45により原稿Sに形成された画像についての蛍光画像データが生成される。得られる蛍光画像データは、蛍光領域を含む原稿Sの画像全体の画像データである。蛍光画像データにおいて、蛍光領域は明るく(光量が大きく)、蛍光領域を除く領域は暗く(光量が小さく、例えば光量0と)なっている。このように、蛍光画像データは、原稿Sの蛍光領域が発生する赤色や緑色の蛍光成分に基づいて、蛍光領域のみを分離したデータとして生成される。
分離された蛍光領域に基づいて、蛍光画像データで囲まれた読取領域をクロッピングしたり、蛍光画像データと重なる通常画像データの文字情報をOCR処理したりする画像読取システムを構築することが可能である。本実施形態では、蛍光領域の蛍光成分を選択的に抽出することができるため、蛍光画像の領域を高い感度で判別することができる。したがって、蛍光領域に基づいて画像処理を行う画像読取システムの精度を向上させることができる。
また、蛍光領域について通常画像から分離した独立した画像データとして取得できるため、蛍光成分と通常画像とを合成する多様な画像処理を行うことができる。例えば、蛍光ペンでマーキングされた領域を強調した画像を生成したり、蛍光色の再現性を高めた画像(肉眼で見える色調に最適化した画像)を生成したりすることが可能となる。
本実施形態の画像読取装置1−1によれば、蛍光を励起するための紫外線などの特殊な光源を必要とせずに蛍光判別を行うことができる。可視光の光源の組合せにより蛍光インクの蛍光による画像を分離することができ、特殊な光源を用いる場合と比較して低コスト化が可能である。
ここで、本実施形態の蛍光判別方法と従来の蛍光判別方法との感度の違いについて説明する。蛍光色の特徴とは、励起光は吸収され、励起光よりも長い波長の蛍光を発光することにある。従来の蛍光判別方法では、蛍光による出力だけでなく反射光による出力をも含むイメージセンサの出力に基づいて、蛍光を判別していた。このため、以下に説明するように、蛍光領域の判別の感度を高めることが困難であった。
図13は、イエローの蛍光ペンおよび下地白のスペクトルと緑色フィルタ特性とを各波長について乗じた結果を示す図である。図13には、光源10の点灯条件(点灯させるLEDの色)を異ならせたときのそれぞれの点灯条件でのスペクトルとフィルタ特性との積が示されている。符号301は、青色LED13を照射したときのイエロー蛍光ペンについての値、符号302は、緑色LED12を照射したときのイエロー蛍光ペンについての値、符号303は、緑色LED12および青色LED13を共に点灯したときの下地白についての値、符号304は、緑色LED12および青色LED13を共に点灯したときのイエロー蛍光ペンについての値、符号305は、青色LED13を点灯したときの下地白についての値をそれぞれ示している。
符号301は、励起光としての青色光を吸収して蛍光ペンが発生する緑色の蛍光のスペクトル、すなわち蛍光成分を示す。また、符号302は、緑色LED12から照射されて蛍光ペンで反射された緑色光のスペクトル、すなわち反射成分を示す。従来は、白色光等の青色光と緑色光を共に含む光を照射したときのイメージセンサの出力に基づいて蛍光判別を行っていた。つまり、符号304に示す、反射成分(302)と蛍光成分(301)を共に含むスペクトルの積分値に基づいて蛍光判別がなされていた。このスペクトル304と、緑色LED12および青色LED13を共に点灯したときの下地白のスペクトル303との差は小さいため、図14に示すように、イメージセンサの出力で比較したときの差は大きなものではない。図14は、イエローの蛍光ペンおよび下地白からの入射光に対する緑色センサ22の出力を示す図であり、図13に示す各スペクトルを1nm刻みで積分した値を示している。
図14において、従来技術の「下地の積分値」とは、図13の符号303のスペクトルの積分値であり、「蛍光ペンの積分値」とは、図13の符号304のスペクトルの積分値である。「下地の積分値」と「蛍光ペンの積分値」との差は、それほど大きなものではない。
これに対して、本実施形態では、青色LED13を照射したときのイエロー蛍光ペンのスペクトル301と、下地白のスペクトル305との間の大きな差を利用する。図14において、本実施形態の「蛍光ペンの積分値」とは、図13の青色LED13を照射したときのイエロー蛍光ペンのスペクトル301の積分値であり、「下地の積分値」とは、図13の青色LED13を照射したときの下地白のスペクトル305の積分値である。なお、「下地の積分値」に若干の出力が見えるのは、3ラインセンサ20のフィルタ特性(図5参照)において、青色フィルタ特性B1と緑色フィルタ特性G1とが重なる領域を持つためである。
「蛍光ペンの積分値」と「下地の積分値」との比である蛍光判別感度で比較した場合、本実施形態の判別方法は、従来技術の判別方法と比較して、約5倍の高い感度であることがわかる。このように、本実施形態の判別方法では、蛍光領域が発する蛍光を抽出してイメージセンサで受光することにより、反射光の影響を受けにくく、高い感度で蛍光領域を判別することが可能である。なお、本実施形態の「下地の積分値」は、蛍光領域がなくとも出てくる出力であるため、この値を黒の基準とすれば、蛍光判別の感度を更に高めることができる。
また、本実施形態の蛍光領域の判別方法では、蛍光領域の下地の濃度の影響を受けずに蛍光領域を判別することができる。従来の技術では、下地(下地のうち最も明るい部分)による反射光の受光量と、反射成分と蛍光成分とを含む蛍光領域に対する受光量との比較により蛍光領域が判別される。このため、以下に図31から図33を参照して説明するように、蛍光領域の下地の濃度が判別の感度に影響し、蛍光領域を正しく判別できない場合があった。
図31は、従来技術で正しく判別できない蛍光領域を含む画像の一例を示す図、図32は、従来技術で正しく判別できない蛍光領域を含む画像の各領域のスペクトル特性を示す図、図33は、従来技術による蛍光領域の判別結果の一例を示す図である。
図31において、符号P1は、原稿Sの下地白の領域、符号P2は、イエローの蛍光ペンによる蛍光画像の領域、符号P4は、下地白に対する反射率50%のグレーの下地領域、符号P3は、蛍光イエローとグレーの下地とが重なった領域(以下、単に「重なり領域P3」と記述する)を示す。
図32には、青色LED13と緑色LED12を点灯したときのP1からP4の各領域の示すスペクトルであって、緑色センサ22のフィルタ特性G1を乗じた値が示されている。すなわち、図32の各スペクトルを積分した値は、青色LED13と緑色LED12を点灯したときの緑色センサ22の出力となる。符号311は、下地白の領域P1が示すスペクトル、符号312は、蛍光イエローの領域P2が示すスペクトル、符号313は、重なり領域P3が示すスペクトル、符号314は、グレーの下地領域P4が示すスペクトルを示している。
図32からわかるように、緑色センサ22の出力は、蛍光イエローの領域P2に対する値が最も大きく、下地白の領域P1、重なり領域P3、グレーの下地領域P4の順で小さくなっている。つまり、下地白の領域P1と出力を比較することで、蛍光イエローの領域P2は蛍光領域と判別できるものの、重なり領域P3については、蛍光を発しない他の画像と同様の出力の大きさとなるため、蛍光領域と判別することができない。なお、重なり領域P3について、グレーの下地領域P4を基準として重なり領域P3の蛍光判別を行うことが考えられるが、この場合、グレーの下地領域P4の範囲が正確に把握されていなければ、誤検出してしまう虞がある。すなわち、重なり領域P3のうち、グレーの下地領域P4との境界部分について蛍光判別することはできるものの、グレーの下地領域P4から離れた部分については蛍光領域を誤検出してしまう可能性が高くなるため、判別対象から外されることが好ましい。
したがって、重なり領域P3では、判別された蛍光画像の領域に抜けが生じてしまうこととなる。図33において、符号P15は、下地白の領域P1との比較で蛍光判別された領域、符号P16は、グレーの下地領域P4との比較で蛍光判別された領域を示す。蛍光判別された2つの領域P15、P16の間に、蛍光領域であるにもかかわらず蛍光判別されない抜けの領域P17が生じてしまう。
これに対して、本実施形態の蛍光判別方法では、蛍光成分を抽出し、その抽出結果を比較して蛍光判別を行う。青色LED13を照射したときに、緑色センサ22のフィルタは反射光(青色光)をほとんど透過させないので、緑色センサ22の出力を蛍光成分として、反射光の影響を(実質的に)受けることなく蛍光判別を行うことが可能である。つまり、反射光の影響が非常に小さいため、蛍光領域と重なる下地の濃度にかかわらず、蛍光判別の感度を高く保つことができる。図15は、本実施形態の蛍光判別における各領域のスペクトル特性を示す図、図16は、本実施形態の蛍光判別による蛍光領域の判別結果の一例を示す図である。
図15には、青色LED13を点灯したとき(緑色LED12は消灯)のP1からP4の各領域の示すスペクトルであって、緑色センサ22のフィルタ特性G1を乗じた値が示されている。すなわち、図15の各スペクトルを積分した値は、青色LED13を点灯したときの緑色センサ22の出力となる。符号321は、下地白の領域P1が示すスペクトル、符号322は、蛍光イエローの領域P2が示すスペクトル、符号323は、重なり領域P3が示すスペクトル、符号324は、グレーの下地領域P4が示すスペクトルを示している。
図15からわかるように、下地白の領域P1が示すスペクトル321の相対出力は小さく、グレーの下地領域P4が示すスペクトル324は、さらに相対出力が小さい。言い換えると、反射成分である下地白やグレーの下地に対する出力はいずれも低いレベルである。これに対して、蛍光イエローの領域P2が示すスペクトル322や重なり領域P3が示すスペクトル323は、いずれも下地白の領域P1が示すスペクトル321と比較して大きな相対出力となっている。つまり、蛍光領域が、高い濃度の下地と重なっていたとしても、蛍光領域の相対出力は、下地白の領域P1が示すスペクトル321の相対出力を上回る。よって、本実施形態の蛍光判別方法によれば、下地の濃度の影響を受けることなく、高い感度で蛍光判別を行うことが可能である。図16において、符号P5は、本実施形態の蛍光判別方法で蛍光判別された領域を示す。このように、本実施形態の蛍光判別では、抜けや誤検出を生じることなく、正しく蛍光領域を検出することができる。
なお、読取り可能な蛍光領域は、蛍光ペンによる画像には限られず、オフセット印刷の蛍光インク等による蛍光領域も含まれる。言い換えると、可視領域の励起光を受けて励起光と異なる波長域の蛍光を発生する蛍光物質を有する蛍光領域であれば、本実施形態の画像読取装置1−1により判別可能である。したがって、赤色光を受けて、赤色光と異なる可視領域の光を発生する蛍光物質があれば、この蛍光物質による蛍光領域を判別することも可能である。
(第2実施形態)
図17から図19を参照して、第2実施形態について説明する。第2実施形態については、上記各実施形態と異なる点についてのみ説明する。第2実施形態の画像読取りにおいて、上記第1実施形態と異なる点は、通常画像の撮像方法である。上記第1実施形態では、通常画像のカラー画像データとして、蛍光成分を除いた画像が得られたが、本実施形態では、蛍光成分を含む画像が通常画像のカラー画像データとして得られる。従来の白色光源によるカラー画像と同様の蛍光成分を含む画像として通常画像のカラー画像データを無処理でそのまま出力することができるため、画像処理部44等の後段の回路が簡素化される。
一般的に、蛍光波長は光源の波長よりも長い波長となる。画像読取装置1−1では赤色光よりも長い波長の光を受光するセンサは設けられておらず、赤色LED11を点灯させて赤色光よりも長い波長の蛍光が発生したとしても、その蛍光を検出することができない。このため、可視光を照射して蛍光させるための光源としては、赤色LED11を除くことができる。したがって、緑色LED12や青色LED13の単色点灯では蛍光画像データを採取し、赤色LED11を点灯することに代えて、RGBを全点灯させて通常画像データを読取ることができる。これにより、蛍光成分も含めた画像が生成される従来の白色光源によるカラー画像と本実施形態で得られる通常画像のカラー画像データとに互換性を持たせることができる。また、従来の画像読取装置の回路に蛍光画像データの読取り部を増設する程度の変更で蛍光画像データの読取り機能を追加することができる。
本実施形態では、画像読取装置1−1は、通常画像データを撮像するときに、光源10において全色のLEDを同時に点灯させ、原稿Sに白色光を照射させる。光源10に白色光を照射させたときの3ラインセンサ20の各センサ21,22,23のラインデータに基づいて、通常画像のカラー画像データが生成される。このとき、読取りラインにイエローやグリーンの蛍光ペンなど緑色の蛍光を発生する蛍光領域があれば、緑色センサ22には反射成分に加えて蛍光成分が入射し、ピンクや赤紫の蛍光ペンなど赤色の蛍光を発生する蛍光領域があれば、赤色センサ21には反射成分に加えて蛍光成分が入射する。したがって、生成される通常画像には、蛍光成分が含まれる。蛍光判別方法や蛍光画像データの取得方法については、上記第1実施形態と同様であることができる。
図17は、通常画像を撮像する方法を示す図、図18は、緑色LED12を点灯させて蛍光領域を撮像する方法を示す図、図19は、青色LED13を点灯させて蛍光領域を撮像する方法を示す図である。
通常画像を撮像する場合、図17に示すように、光源制御部42は、LED駆動部41に対して赤色LED11、緑色LED12、および青色LED13を点灯させる指令を出力する。これにより、LED駆動部41は、各LED11,12,13に通電して点灯させ、原稿Sに対して白色光を照射させる。画像処理部44は、画像入力部43から赤色ラインデータ、緑色ラインデータ、および青色ラインデータを取得し、これら3つのラインデータを画像処理部44に出力する。画像処理部44は、画像入力部43からの各ラインデータを通常画像のラインデータとして画像データ出力部45に出力する。画像データ出力部45は、3色のラインデータを合成して通常画像のカラー画像ラインデータとし、生成したカラー画像データを出力する。
また、緑色LED12を点灯して蛍光画像データを取得する場合、図18に示すように、光源制御部42はLED駆動部41を制御して緑色LED12を点灯させ、原稿Sに対して緑色光を照射させる。画像処理部44は、赤色ラインデータを画像入力部43から取得し、赤色センサ21の各画素の出力のうち、出力が予め定められた閾値を超えるものを蛍光領域を示すデータと判定する。画像処理部44は、得られた蛍光領域のラインデータを画像データ出力部45に出力する。
青色LED13を点灯して蛍光画像データを取得する場合、図19に示すように、光源制御部42は、LED駆動部41を制御して青色LED13を点灯させ、原稿Sに対して青色光を照射させる。画像処理部44は、緑色ラインデータを画像入力部43から取得し、緑色センサ22の各画素の出力のうち、出力が予め定められた閾値を超えるものを蛍光領域を示すデータと判定する。画像処理部44は、得られた蛍光領域のラインデータを画像データ出力部45に出力する。
画像読取装置1−1は、読取ラインに対する主走査として、白色光を照射しての通常画像の撮像、緑色光を照射しての蛍光領域の撮像、青色光を照射しての蛍光領域の撮像を順次行い、かつ、この主走査を原稿Sの搬送に合わせて副走査方向に繰り返し実行することにより、原稿Sの通常画像のカラー画像データおよび蛍光画像データを撮像する。
(第2実施形態の第1変形例)
図20を参照して、第2実施形態の第1変形例について説明する。図20は、本変形例に係る画像読取装置1−2の概略構成を示す図である。
本変形例の画像読取装置1−2が、上記実施形態の画像読取装置1−1と異なる点は、光源50が、励起光用の光源である励起光用LEDアレイ51と、白色光用の白色光源52とを独立した光源として有する点である。励起光用LEDアレイ51は、原稿Sに励起光を照射して蛍光を発生させるための光源であり、緑色LED12と青色LED13とを有している。励起光用LEDアレイ51において、緑色LED12の配置数は、青色LED13の配置数と比較して多い。具体的には、1つの青色LED13につき、2つの緑色LED12が配置されている。これは、一般的に、RGBの単色LEDでは、緑色LED12の発光効率が低いためである。励起光用LEDアレイ51には、2つの緑色LED12と1つの青色LED13とが交互にアレイ状に配置されている。
白色光源52は、白色LED53と導光管54を有する。白色LED53は、通電されることで白色光を照射するものである。導光管54は、管状の形状で形成されており、管状の一端部が白色LED53に近接、或いは接触した状態で配設されている。導光管54は、主走査方向に配置され、かつ、原稿Sと互いに対向する位置に配置されている。白色LED53を点灯させると、白色LED53から照射される光は、導光管54に進入する。導光管54内に進入した光は、導光管54内を反射しながら主走査方向に進む。導光管54内を進む光は、その一部が導光管54の外側に透光する。したがって、白色LED53から導光管54内に進入した白色光は、導光管54の全体から導光管54の外部に向かって照射される。主走査方向において、導光管54の設置範囲は、原稿Sの通過する範囲を含んでいる。したがって、導光管54から照射される白色光は、原稿Sの読取ライン全体を照射することができる。
画像読取装置1−2による通常画像データおよび蛍光画像データの撮像方法は、上記第2実施形態において画像読取装置1−1で撮像する方法と同様であることができる。この場合、通常画像の撮像において白色光を照射させる場合、赤色LED11、緑色LED12、および青色LED13を点灯させることに代えて、白色LED53を点灯させる点が異なる。
画像読取装置1−2では、例えば、蛍光領域の読取り用の緑色LED12と青色LED13は順電流が数十mAのLEDとし、白色光源52は、青色LEDに黄色蛍光体を用いた発光効率の高いタイプで順電流が数百mAの白色LEDを導光管54と組み合わせたものとすることができる。通常画像用に発光効率の低い緑色LED12を使用しないことで、全体の発光効率を高めることができ、実用的には良い。
(第2実施形態の第2変形例)
第2実施形態の第2変形例について説明する。
上記第2実施形態や第1変形例では、白色光源を点灯して通常画像データを読取るため、以下に説明するように、偽色の発生が抑制される。
偽色は、イメージセンサがモノラインセンサであり、光源がRGBの3色光源である場合等に発生するものである。図34は、従来の画像の読取りにおける偽色の発生について説明するための図である。図34において、(a)は、RGBの各色の光源が点灯されるタイミングと線画像の位置との関係、(b)は各色の出力を合成して生成される画像データを示す。
原稿Sには、画素幅Wよりも細い3本の線画像が存在する。各線画像は、画素幅Wの1/3の幅であり、主走査方向に伸びている。ラインL2上に存在する線画像401と、ラインL3上に存在する線画像402と、ラインL4上に存在する線画像403とは、ライン上の位置が互いに異なり、線画像401はラインL2上において副走査方向の一方の端部に、線画像402はラインL3上において副走査方向の中央部に、線画像403はラインL4上において副走査方向の他方の端部にそれぞれ形成されている。
RGBの3色光源とモノラインセンサで画像を読取る場合、1ラインの走査において、赤色光源、緑色光源、青色光源を順に点灯させてそれぞれの色のラインデータを取得する。したがって、画素幅Wよりも細い線画像がある場合、各色の光源の点灯タイミングと線画像の位置とに応じた偽色が発生してしまう。例えば、ラインL2上の線画像401では、線画像401の反射光がモノラインセンサに入射するタイミングで、青色光が照射されているため、赤色や緑色の出力と比較して、青色の出力が小さな値となる。その結果、生成された画像においてラインL2の色がイエローとなり偽色が発生してしまう。ラインL3およびラインL4についても同様であり、それぞれ緑色、赤色の出力が小さな値となって偽色が発生してしまう。このような細線がある場合の偽色は、一般的な密着型イメージセンサのようにRGBの光源を線順に切替える方式で発生するものであり、第1実施形態で生成される通常画像のカラー画像データにおいても発生しうるものである。
これに対して、白色光源と3ラインセンサで画像を読取る方式では、偽色は発生しない。図35は、従来の白色光源と3ラインセンサで画像を読取る画像読取装置で生成される画像について説明するための図である。図35において、(a)は赤色センサの出力、(b)は緑色センサの出力、(c)は青色センサの出力、(d)は各センサの出力を合成して生成される画像データを示す。
白色光源と3ラインセンサによる画像読取では、画素幅Wよりも細い黒線がある場合、その細線は解像されず、面積で積分されて灰色で表現される。(d)に示すように、ラインL2,L3,L4は、細線ではなく、一様な濃度の灰色の画像とされる。黒線が細いものであるほど、濃度の小さい灰色とされる。これは、画像としては理想的な状態である。
第2実施形態および第2実施形態の第1変形例では、白色光源で通常画像データを読取り、緑色や青色の光源で蛍光画像データを読取る。白色光源と3ラインセンサ20とにより通常画像データを読取ることで、偽色は発生しない。しかしながら、図21を参照して説明するように、情報が間引かれたり強調されたりすることで、ジッタが発生する場合がある。図21は、ジッタの発生について説明するための図である。
図21において、(a)は緑色G、白色W、青色Bの各光源が点灯される期間と線画像の位置との関係、(b)は3ラインセンサ20の各色のセンサの出力を合成して生成される通常画像データを示す。
ラインL2では、線画像401を撮像する期間が青色光の照射期間と重なり、白色光の照射期間(通常画像の読取り期間)とは重なっていない。このため、ラインL2には通常画像が存在しないものとして情報が間引かれてしまう。同様に、ラインL4では、線画像403を撮像する期間が緑色光の照射期間と重なり、白色光の照射期間とは重なっていない。このため、ラインL4には通常画像が存在しないとして情報が間引かれてしまう。一方、ラインL3では、線画像402を撮像する期間が白色光の照射期間と重なって(ほぼ一致して)いる。これにより、画素幅いっぱいに線画像があるものとして線画像402が強調されてしまう。このように、通常画像データにおいて情報が間引かれたり強調されたりすることで、生成される画像にジッタが発生してしまう。言い換えると、緑色と青色の露光している部分は通常画像ではカットされるため、細線が正しく表現されずジッタとなってしまう。
ここで、上記第2実施形態や第1変形例の画像読取方法のように、白色光源で通常画像を取り出す方法では、異なる色の光源で順次読取った画像データ同士を合成して通常画像データを生成する方法とは異なり、各光源(W,G,B)の露光時間の割合を任意に設定することが可能である。
本変形例では、通常画像のカラー画像データの生成における白色光源の点灯時の3ラインセンサ20の露光時間が、蛍光画像データの生成における青色LED13や緑色LED12点灯時の3ラインセンサ20の露光時間と比較して長くされている。これにより、通常画像のS/N比の向上やジッタの低減、画像読取速度の向上等が可能となる。
まず、通常画像のS/N比の向上について説明する。通常、蛍光ペンによるマーキングでは、文字列の上を太い線で描いたり、文章の領域を太い枠線で囲んだりする。このようなマーキングによる画像は、空間周波数の低い情報である。このため、イメージセンサによる蛍光領域の撮像結果がS/N比の低いノイジーな画像であっても、ノイズ除去や平滑化やエッジ強調などの画像処理を施せば利用可能である。これに対して、通常画像は小さい文字や細い線やカラー画像の細かい濃淡などがあり高いS/N比が要求される。これらのことから、白色光源の露光時間を長くする(白色光源の露光時間の割合を高める)と共に蛍光画像データに画像処理を施すことで、通常画像のS/N比を向上させつつ、目的に応じた適切な品質の蛍光画像データを得ることが可能である。
また、白色光源の露光時間を長くすることで、低ジッタ(通常画像データの画像連続性向上)が可能となる。図22は、白色光源の露光時間が長くされることによるジッタの抑制について説明するための図である。図22において、符号(a)は緑色G、白色W、青色Bの各光源が点灯される期間と線画像の位置との関係、(b)は3ラインセンサ20の各色のセンサの出力を合成して生成される通常画像データを示す。
図22に示す例では、白色光源の露光時間は、緑色、白色、青色の露光時間が均等とされる場合(図21)の2倍、緑色LED12の露光時間および青色LED13の露光時間は0.5倍とされている。よって、緑色、白色、青色の露光時間が均等とされる場合と比較して、蛍光画像部としてカットされる領域が半分となる一方、白色光源の露光時間が倍となることで、細線および細線の周辺を白色光源で露光する確率が高くなる。その結果、線画像が間引かれたり強調されたりすることが抑制され、細線部が灰色で表現される理想画像に近い画像が生成される。
(第3実施形態)
図23および図24を参照して、第3実施形態について説明する。第3実施形態については、上記各実施形態と異なる点についてのみ説明する。
上記第1実施形態および第2実施形態は、光源を線順次で切替える方式であるため、1パスでの画像読取を要求されるシートフィード型の画像読取装置に適した読取り方法である。ここで、光源の切替えは、線順次には限定されず、線順次に代えて、面順次で光源を切替えるようにしてもよい。面順次の光源の切替えであっても、高い感度で蛍光判別を行うことができる。また、面順次で光源を切替える場合は、通常画像のカラー画像データの生成において偽色やジッタが原理的に発生しない。面順次の光源の切替え方法は、画像読取ユニット1をキャリアで副走査方向に移動させるフラットベッド型の画像読取装置で特に有効な光源の切替え方法である。
図23は、上記各実施形態の光源の切替えを線順次に代えて面順次で行った場合の効果をまとめた図である。
まず、(1)「第1実施形態の赤色LED11、緑色LED12、青色LED13の順次点灯を面順次で行う」場合、キャリアの往路は赤色LED11を点灯し、復路では緑色LED12を点灯し、2回目の往路では青色LED13を点灯させる。したがって、キャリアの走査回数は2回となる。面順次で光源を切り替えることで偽色やジッタは無くなるが、走査回数が多いため、画像の読み取りに時間がかかってしまう。
次に、(2)「第2実施形態の白色光源、緑色LED12、青色LED13の順次点灯を面順次で行う」場合、(1)と同様にキャリアの走査回数は2回となる。偽色やジッタは無いものの、走査回数が多く、画像の読み取りに時間がかかってしまう。
(2)と比較して読取り時間を短縮するために、(3)「通常画像の読み取りを往路で行い、蛍光領域の読み取りを復路1回で全て行う」ようにしてもよい。復路では、緑色LED12の点灯と青色LED13の点灯を線順次で行い、それぞれ異なる波長の蛍光を発する蛍光領域を読取る。このようにすれば、通常画像における偽色やジッタの発生をなくしつつ、高速に蛍光データを採取可能となる。通常画像の読み取りと蛍光領域の読み取りを1回(1往復)のキャリアの走査で完了することができ、高速な読み取りが実現される。
また、(3)の光源切替えによる画像読取において、図24に示すように、蛍光領域の読み取りを更に高速化するようにしてもよい。図24は、蛍光領域の読取りを高速化した画像読取りについて説明するための模式図である。図24において、(a)は往路の通常画像の読取り、(b)は復路の蛍光領域の読取りを示す。符号60は、キャリアを示す。復路の緑色LED12と青色LED13との線順次切替えによる蛍光画像データ読取りでは、蛍光画像データの解像度およびS/N比は、通常画像データの解像度およびS/N比と比較して小さくともよい。このため、3ラインセンサ20を高速駆動するか、低解像度読取にすることで、通常画像の読取り(往路)と比較して高速にキャリア60を移動させることができる。
(第4実施形態)
図25から図27を参照して第4実施形態について説明する。第4実施形態については、上記各実施形態と異なる点についてのみ説明する。
上記第2実施形態の第2変形例や、第3実施形態の(3)では、白色光源の露光時間を長くし、緑色LED12や青色LED13の露光時間が短縮された。このため、本実施形態では、蛍光画像データの出力を確保する制御がなされる。図25は、本実施形態に係る画像読取装置の主要な構成を示すブロック図である。本実施形態の画像入力部43は、アンプゲイン(増幅率)を可変に調節可能に構成されている。光源制御部42は、画像入力部43に制御信号を出力して画像入力部43のアンプゲインを制御することができる。
緑色LED12を点灯して蛍光領域を読取る場合、光源制御部42は、蛍光画像データの出力を確保する制御として、緑色LED12の発光量を増やす制御、あるいは、画像入力部43のアンプゲインを増やす制御の少なくともいずれか一方の制御を実行する。図26は、緑色LED12の発光量を増やす制御について説明するための図、図27は、画像入力部43のアンプゲインを増やす制御について説明するための図である。
図26には、RGB3色のLEDを有する光源10において緑色LED12の点灯、白色光源の点灯(赤色LED11、緑色LED12、青色LED13の同時点灯)、青色LED13の点灯を順次行う光源の切り替え制御が示されている。光源制御部42は、緑色LED12を単独で点灯させて蛍光領域を読取る場合に、LED駆動部41を制御し、緑色LED12の通電量を増加させる。このときの電流値I2は、白色光の照射時における緑色LED12の通電量I1と比較して大きな値である。これにより、蛍光領域に対するラインデータ出力を増加させることができる。電流値I2は、短時間だけ設定されるものであるため、例えば、定格電流よりも大きな値とされてもよい。
また、図27に示すように、光源制御部42は、蛍光領域の読取りにおいて緑色LED12を点灯させる場合、画像入力部43を制御し、画像入力部43のアンプゲインを増加させる。このときのゲインG2は、白色光や青色光を照射するときのアンプゲインG1と比較して大きな値である。これにより、蛍光領域に対するラインデータ出力を増加させることができる。よって、白色光源の点灯時の露光時間が長くされ、その分緑色LED12や青色LED13の点灯時の露光時間が短縮されたことにより蛍光領域の読取りと通常画像の読取りとでセンサ受光照度が異なったとしても、画像入力部43のA/D変換後の出力データをそれぞれ最適な明度に調節することができる。
なお、本実施形態では、緑色LED12を点灯するときに蛍光画像データの出力を確保する制御が実行されたが、緑色LED12を点灯するときだけでなく、青色LED13を点灯するときに蛍光画像データの出力を確保する制御が実行されてもよい。すなわち、青色LED13を単独で点灯させて蛍光領域を読取る場合に、青色LED13の通電量を他の点灯期間と比較して増加させる制御、あるいは画像入力部43のアンプゲインを白色光や緑色光の点灯時と比較して増加させる制御を実行することができる。また、白色光源は、赤色LED11、緑色LED12、青色LED13の同時点灯によるものに限らず、例えば、白色LED等であってもよい。
また、画像入力部43は、各センサ21,22,23のアナログ出力を増幅するものであったが、これに代えて、アナログ出力をA/D変換して得られたデジタル出力を増幅するものであってもよい。
(第5実施形態)
図28から図30を参照して第5実施形態について説明する。第5実施形態については、上記各実施形態と異なる点についてのみ説明する。
本実施形態では、蛍光画像データのシェーディング補正が行われる。シェーディング補正は、光源の主走査方向における輝度分布や撮像センサの各撮像素子のばらつきの影響を低減するためのものである。シェーディング補正では、主走査方向における輝度分布に基づいた基準データにより、3ラインセンサ20の各色のセンサの出力が補正される。
ここで、蛍光画像データをシェーディング補正する場合、通常画像用の白基準を使用することは適さない。これは、以下の理由による。
まず、光源の照度分布が異なることがある。例えば、上記第2実施形態では、通常画像を読取る場合、赤色LED11、緑色LED12、青色LED13の全てを点灯させた(白色光を照射した)ときの各センサ21,22,23の出力に基づいて通常画像が生成される。このとき、緑色センサ22に入射する光の光源は緑色LED12である。これに対して、蛍光領域を読取る場合、緑色センサ22で読取りを行うときには、青色LED13のみが点灯される。つまり、緑色センサ22に入射する光の光源は青色LEDである。したがって、通常画像の読取り時と蛍光領域の読取り時とで光源の照度分布が異なるため、通常画像用の白基準では適切なシェーディング補正を行うことができない。
また、蛍光領域を読取る場合(例えば、青色LED13を照射して緑色センサ22で読取る場合)は、励起光(青色光)が緑色センサ22のフィルタでほとんどカットされる。このため、蛍光領域の読取り時の光源とセンサとの組合せにおける白基準板の出力は、通常画像の読取り時の光源とセンサとの組合せにおける白基準板の出力と比較して小さな値となる。
以上の理由から、通常画像用と蛍光領域用のそれぞれの白基準が設定されることが望ましい。本実施形態では、通常画像用と蛍光領域用にそれぞれ白(蛍光)基準板と白(蛍光)基準メモリが設けられている。
図28は、本実施形態の画像読取装置1−3における通常画像用の白基準の設定方法を示す図である。図28において、符号70は基準板を示す。基準板70は、基準板本体71と、遮蔽板75を有する。基準板70は、上記第1実施形態の白基準板2(図1参照)と同様の位置に設置されている。
基準板本体71は、第一蛍光基準板72、白基準板73、および第二蛍光基準板74を有する。第一蛍光基準板72は、青色LED13から照射される光により緑色の蛍光を発する蛍光領域の蛍光基準とするものである。第一蛍光基準板72は、蛍光顔料を混練させた樹脂によって成形されているものや、被照射面に黄色蛍光塗料(蛍光材)が塗布されているもの等で構成されており、イエローの蛍光ペン等と同様に蛍光する。第二蛍光基準板74は、緑色LED12から照射される光により赤色の蛍光を発する蛍光領域の蛍光基準とするものである。第二蛍光基準板74は、蛍光顔料を混練させた樹脂によって成形されているものや、被照射面にピンクの蛍光塗料が塗布されているもの等で構成されており、ピンクの蛍光ペン等と同様に蛍光する。白基準板73は、白色光を照射するときの白色の基準とするもので、従来公知のものと同様であることができる。
第一蛍光基準板72と白基準板73と第二蛍光基準板74とは副走査方向に隣接しており、かつ、主走査方向(図中奥行き方向)において原稿Sの搬送路に対応する範囲に設置されている。基準板本体71は、原稿の搬送方向(副走査方向)に移動可能に設けられており、図示しない移動手段により副走査方向に移動される。遮蔽板75は、光源10と基準板本体71との間に基準板本体71と平行に配置されており、光源10から照射された光から基準板本体71を遮蔽することができる。遮蔽板75には、主走査方向に伸びるスリット状の孔部76が形成されている。孔部76の副走査方向の幅は、白基準板73の副走査方向の幅よりも小さい。したがって、孔部76は、第一蛍光基準板72、白基準板73、および第二蛍光基準板74のいずれかに選択的に光源10の光を照射させることができる。また、孔部76の主走査方向の設置範囲は、原稿Sの搬送路の幅に対応しており、少なくとも原稿Sの主走査方向の幅の範囲で光源10からの光が基準板本体71で反射され、3ラインセンサ20に入射する。
通常画像用白基準を設定する場合、基準板70の移動手段は、副走査方向において白基準板73の位置と孔部76の位置とを対応させるように、基準板本体71を移動させる。これにより、光源10から照射される光は、白基準板73で反射して3ラインセンサ20に入射する。また、第一蛍光基準板72と第二蛍光基準板74は、遮蔽板75により、光源10からの光から遮蔽されている。通常画像用の白基準を設定する場合、光源10において、赤色LED11、緑色LED12、青色LED13が全て点灯される。制御部40には、白基準を記憶する白基準メモリ46が設けられている。赤色センサ21の出力(輝度分布)は赤色LED11の白基準データとして、緑色センサ22の出力(輝度分布)は緑色LED12の白基準データとして、青色センサ23の出力(輝度分布)は青色LED13の白基準データとして、それぞれ白基準メモリ46に記憶される。原稿Sの通常画像を読込む場合、各センサ21,22,23の出力は、白基準メモリ46の白基準データに基づいてシェーディング補正される。
図29は、緑色LED12の蛍光基準の設定方法を示す図である。制御部40には、蛍光基準を記憶する蛍光基準メモリ47が設けられている。緑色LED12の蛍光基準を設定する場合、移動手段は、副走査方向において第二蛍光基準板74の位置と孔部76の位置とを対応させるように、基準板本体71を移動させる。これにより、光源10から照射される光は、第二蛍光基準板74に照射され、第二蛍光基準板74が発生する蛍光は、3ラインセンサ20に入射する。また、第一蛍光基準板72と白基準板73は、遮蔽板75により光源10からの光から遮蔽されている。緑色LED12の蛍光基準の設定では、緑色LED12が点灯される。このときの赤色センサ21の出力(輝度分布)は、緑色LED12の蛍光基準データとして蛍光基準メモリ47に記憶される。原稿Sの蛍光領域を読込む場合、赤色センサ21の出力は、緑色LED12の蛍光基準データに基づいてシェーディング補正される。
図30は、青色LED13の蛍光基準の設定方法を示す図である。青色LED13の蛍光基準を設定する場合、移動手段は、副走査方向において第一蛍光基準板72の位置と孔部76の位置とを対応させるように、基準板本体71を移動させる。これにより、光源10から照射される光は、第一蛍光基準板72に照射され、第一蛍光基準板72が発生する蛍光は、3ラインセンサ20に入射する。また、白基準板73と第二蛍光基準板74は、遮蔽板75により光源10からの光から遮蔽されている。青色LED13の蛍光基準の設定では、青色LED13が点灯される。このときの緑色センサ22の出力(輝度分布)は、青色LED13の蛍光基準データとして蛍光基準メモリ47に記憶される。原稿Sの蛍光領域を読込む場合、緑色センサ22の出力は、青色LED13の蛍光基準データに基づいてシェーディング補正される。
本実施形態によれば、蛍光領域用に設定された蛍光基準データに基づいて緑色LED12および青色LED13の出力が補正される。これにより、ムラのない蛍光画像データを生成することができると共に、蛍光判別の感度を高めたり、蛍光判別の精度の低下を抑制したりすることができる。
なお、本実施形態では、光源10を例に白基準や蛍光基準の設定、および基準に基づく補正について説明したが、他の光源、例えば、第2実施形態の第1変形例の光源50に白基準や蛍光基準の設定、および基準に基づく補正が適用されても良い。
1−1,1−2,1−3 画像読取装置
1 画像読取ユニット
10 光源
11 赤色LED
12 緑色LED
13 青色LED
20 3ラインセンサ
21 赤色センサ
22 緑色センサ
23 青色センサ
30 レンズ
40 制御部
41 LED駆動部
42 光源制御部
43 画像入力部
44 画像処理部
45 画像データ出力部
46 白基準メモリ
47 蛍光基準メモリ
50 光源
51 励起光用LEDアレイ
52 白色光源
70 基準板
71 基準板本体
72 第一蛍光基準板
73 白基準板
74 第二蛍光基準板
75 遮蔽板
76 孔部
S 原稿
W 画素幅

Claims (9)

  1. 可視領域の光を読取り対象の媒体に照射する照射手段と、
    前記照射手段により光が照射された前記媒体から入射する光に基づいて前記媒体に形成された画像のR色の画像データであるR色データを出力するR色撮像部と、G色の画像データであるG色データを出力するG色撮像部と、B色の画像データであるB色データを出力するB色撮像部とを有する撮像手段とを備え、
    前記R色データと前記G色データと前記B色データとに基づいて前記画像のカラー画像データを生成する画像読取装置であって、
    可視領域の光のうちR色と異なる第一波長域の光を前記媒体に照射する所定光源と、
    前記第一波長域と異なる可視領域の第二波長域の光に基づいて、前記第一波長域の光を受けて前記第二波長域の光を発生する蛍光領域を含む前記画像の画像データである蛍光画像データを生成する蛍光画像データ生成手段とを備え、
    前記蛍光画像データ生成手段は、前記所定光源を点灯させたときの、前記色データのうち前記第二波長域と対応する所定色データに基づいて、前記蛍光画像データを生成する
    ことを特徴とする画像読取装置。
  2. 請求項1に記載の画像読取装置において、
    前記所定光源として、G色光を照射するG色光源、あるいはB色光を照射するB色光源の少なくともいずれか一方を備え、
    前記蛍光画像データ生成手段は、前記G色光源を点灯させたときの前記R色データ、あるいは、前記B色光源を点灯させたときの前記G色データに基づいて前記蛍光画像データを生成する
    ことを特徴とする画像読取装置。
  3. 請求項2に記載の画像読取装置において、
    前記照射手段は、白色光を前記媒体に照射する白色光源を有し、
    前記白色光が照射されたときの前記R色データと、前記G色データと、前記B色データとに基づいて前記カラー画像データを生成する
    ことを特徴とする画像読取装置。
  4. 請求項3に記載の画像読取装置において、
    前記白色光源と前記所定光源とは独立している
    ことを特徴とする画像読取装置。
  5. 請求項3に記載の画像読取装置において、
    前記照射手段は、R色光を照射するR色光源と、前記所定光源としての前記G色光源および前記B色光源とを有し、前記カラー画像データを生成するときに、前記白色光源として前記R色光源と前記G色光源と前記B色光源を同時に点灯させる
    ことを特徴とする画像読取装置。
  6. 請求項3から5のいずれか1項に記載の画像読取装置において、
    前記白色光源を点灯させての前記カラー画像データの生成と、前記所定光源を点灯させての前記蛍光画像データの生成とを独立して実行し、
    前記カラー画像データの生成における前記白色光源の点灯時の前記撮像手段の露光時間が、前記蛍光画像データの生成における前記所定光源の点灯時の前記撮像手段の露光時間と比較して長い
    ことを特徴とする画像読取装置。
  7. 請求項6に記載の画像読取装置において、
    更に、前記撮像手段のアナログ出力を増幅する増幅手段を備え、
    前記増幅手段により増幅された前記色データに基づいて前記カラー画像データと前記蛍光画像データを生成し、
    前記白色光源を点灯させての前記カラー画像データの生成のときの前記アナログ出力に対する増幅率と比較して、前記所定光源を点灯させての前記蛍光画像データの生成のときの前記アナログ出力に対する増幅率が大きい
    ことを特徴とする画像読取装置。
  8. 請求項2に記載の画像読取装置において、
    前記照射手段は、前記R色光を照射するR色光源、前記G色光源、および前記B色光源を有し、
    前記R色光源、前記G色光源、前記B色光源は、それぞれ単独で点灯され、
    前記R色光源を点灯させたときの前記R色データ、前記G色光源を点灯させたときの前記G色データ、および前記B色光源を点灯させたときの前記B色データに基づいて前記カラー画像データを生成する
    ことを特徴とする画像読取装置。
  9. 請求項1から8に記載の画像読取装置において、
    前記撮像手段の主走査方向に配置され、前記第一波長域の光を受けて前記第二波長域の光を発生する基準板を備え、
    前記所定光源により前記基準板に前記第一波長域の光を照射させたときの前記所定色データに基づいて、前記媒体に前記第一波長域の光を照射させたときの前記所定色データを補正する
    ことを特徴とする画像読取装置。
JP2009125757A 2009-05-25 2009-05-25 画像読取装置 Withdrawn JP2010273301A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009125757A JP2010273301A (ja) 2009-05-25 2009-05-25 画像読取装置
US12/708,954 US20100296141A1 (en) 2009-05-25 2010-02-19 Image reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125757A JP2010273301A (ja) 2009-05-25 2009-05-25 画像読取装置

Publications (1)

Publication Number Publication Date
JP2010273301A true JP2010273301A (ja) 2010-12-02

Family

ID=43124405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125757A Withdrawn JP2010273301A (ja) 2009-05-25 2009-05-25 画像読取装置

Country Status (2)

Country Link
US (1) US20100296141A1 (ja)
JP (1) JP2010273301A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072314A (ja) * 2016-07-15 2018-05-10 アイメック・ヴェーゼットウェーImec Vzw 2次元空間分解能およびスペクトル分解能を有する画像を取得する方法および装置
JP2018160765A (ja) * 2017-03-22 2018-10-11 セイコーエプソン株式会社 画像読取装置及び半導体装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512220B1 (de) * 2011-11-30 2015-03-15 Ait Austrian Inst Technology Verfahren und eine aufnahmevorrichtung zur aufnahme von multispektralbildern
US8873113B2 (en) * 2012-03-06 2014-10-28 Kabushiki Kaisha Toshiba Image reading apparatus and related methods
US9245714B2 (en) * 2012-10-01 2016-01-26 Kla-Tencor Corporation System and method for compressed data transmission in a maskless lithography system
CN103902072B (zh) * 2012-12-25 2018-01-19 江苏东智数据技术股份有限公司 书写装置及其发光二极管显示板及书写笔
ES2964016T3 (es) * 2014-06-05 2024-04-03 Univ Heidelberg Métodos y aparato de formación de imágenes para la adquisición de imágenes de fluorescencia y reflectancia
JP6086111B2 (ja) * 2014-11-21 2017-03-01 コニカミノルタ株式会社 画像形成装置及び読取信号の補正方法
JP2017053663A (ja) * 2015-09-08 2017-03-16 株式会社東芝 画像読取装置、及び紙葉類処理装置
JPWO2017168477A1 (ja) * 2016-03-28 2019-02-07 パナソニックIpマネジメント株式会社 撮像装置および画像処理方法
JP6617728B2 (ja) * 2017-02-03 2019-12-11 京セラドキュメントソリューションズ株式会社 原稿読取装置
DE102017117428B4 (de) * 2017-08-01 2024-07-25 Schölly Fiberoptic GmbH Bildgebendes Verfahren unter Ausnutzung von Fluoreszenz sowie zugehörige Bildaufnahmevorrichtung
JP7114910B2 (ja) * 2018-01-25 2022-08-09 ブラザー工業株式会社 画像読取装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276162A (ja) * 2008-05-14 2009-11-26 Fujifilm Corp 蛍光検出方法
US8993972B2 (en) * 2009-01-23 2015-03-31 University Of Maryland Baltimore County Fluorescence based sensors utilizing a mirrored cavity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072314A (ja) * 2016-07-15 2018-05-10 アイメック・ヴェーゼットウェーImec Vzw 2次元空間分解能およびスペクトル分解能を有する画像を取得する方法および装置
JP2018160765A (ja) * 2017-03-22 2018-10-11 セイコーエプソン株式会社 画像読取装置及び半導体装置

Also Published As

Publication number Publication date
US20100296141A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP2010273301A (ja) 画像読取装置
EP1049055B1 (en) Image reading apparatus having multiple wavelength light sources and control method for the same
US7796310B2 (en) Image reading apparatus and control method therefor, as well as storage medium
CN101699844B (zh) 全光谱识别图像传感器
JP6242570B2 (ja) 画像読取装置、及び紙葉類処理装置
JP6313434B2 (ja) 画像走査装置及びその制御方法
CN103929560B (zh) 图像获取方法和装置
JP4424360B2 (ja) イメージセンサ
US6201616B1 (en) Method and apparatus for determining a predetermined pattern on an original based on visible and invisible information on the original
US7697175B2 (en) Image reading apparatus capable of detecting noise
US6198835B1 (en) Image input device and method for providing scanning artifact detection
US7796297B2 (en) Image processing system and method
US20020002410A1 (en) Information acquisition method and apparatus
JP4143279B2 (ja) 画像欠陥の検出方法および画像読取装置
JP2010135920A (ja) 読取装置及び画像形成装置
JP6733346B2 (ja) 画像読取装置、画像形成装置および画像読取方法
JP2010273302A (ja) 画像読取装置
US9979852B2 (en) Image reading apparatus
JP2010085388A (ja) 印刷物の検査方法及び検査装置
US20190342462A1 (en) Output information generating method of an image reading device, and an image reading device
US12028496B2 (en) Multi-mode scanning camera system and method
JP2018067769A (ja) 画像読取装置、画像形成装置および画像読取方法
US20190342463A1 (en) Output image generating method of an image reading device, and an image reading device
US20220392289A1 (en) Optical sensor, paper sheet identification device, and paper sheet processing device
JP5750846B2 (ja) 画像処理装置、画像処理システム及びプログラム

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807