JP2010270724A - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
JP2010270724A
JP2010270724A JP2009125067A JP2009125067A JP2010270724A JP 2010270724 A JP2010270724 A JP 2010270724A JP 2009125067 A JP2009125067 A JP 2009125067A JP 2009125067 A JP2009125067 A JP 2009125067A JP 2010270724 A JP2010270724 A JP 2010270724A
Authority
JP
Japan
Prior art keywords
fuel
amount
current
fuel injection
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009125067A
Other languages
English (en)
Inventor
Takeshi Nagao
健 長尾
Original Assignee
Denso Corp
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, 株式会社デンソー filed Critical Denso Corp
Priority to JP2009125067A priority Critical patent/JP2010270724A/ja
Publication of JP2010270724A publication Critical patent/JP2010270724A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】内燃機関の駆動状態に関わらず、簡易な方法で吸入調量弁の印加電流−吐出量特性を適切に補正することができる燃料噴射装置を提供する。
【解決手段】エンジンの吸入空気量を検出するエアフロメータ85で検出される吸入空気量、およびエンジンの排気の空燃費を検出するA/Fセンサ84で検出される空燃費から燃料噴射量を算出し、燃料噴射量および燃料リターン量から燃料供給ポンプ10の実際の吐出量である実吐出量Qを推定し、予め記憶された吸入調量弁12への印加電流と吐出量の関係を表す基準特性線に基づいて、実吐出量Qに対応する印加電流値である基準印加電流値Iを算出し、吸入調量弁12へ実際に印加した実印加電流値Iと基準印加電流値Iとの差を印加電流補正値ΔIとして算出する。
【選択図】図3

Description

本発明は、吸入調量型の燃料供給ポンプを備える燃料噴射装置に関するものである。
従来、ディーゼルエンジン用の燃料噴射装置として、コモンレール式燃料噴射装置が知られている。コモンレールに燃料を供給する燃料供給ポンプとしては、例えば、吸入調量弁を有する燃料供給ポンプが用いられ、吸入調量弁の電磁駆動部への印加電流によって吸入量を調整することにより、コモンレールへの高圧燃料の吐出量を制御して、コモンレール圧力を目標圧力にフィードバック制御している。
ところが、個々の吸入調量弁の印加電流−吐出量特性は、燃料供給ポンプの機差や経時変化により、基準となる機差中央ポンプの印加電流−吐出量特性(中央特性)に対して、電流方向および傾き方向にバラツキを生じることが知られている。このため、吐出量制御を精度よく行うには、制御部に記憶されている吸入調量弁の印加電流−吐出量特性を学習補正する必要がある。
具体的には、機差によるバラツキの影響が、主に実際の吸入開始電流値のズレとして現れることに着目し、アイドル状態において、吸入量ゼロが保証される電流から印加電流値を徐々に変化させて、実際の吸入開始電流値を算出し、補正値として反映することにより、印加電流−吐出量特性のバラツキを吸収する方法が提案されている(特許文献1参照)。
特開2001−82230号公報
しかしながら、上記特許文献1に記載の方法は、アイドル状態における印加電流−吐出量特性のズレを検出するものであるため、アイドル状態で要求される吐出量とは大きく異なる運転条件下では、燃料供給ポンプの印加電流−吐出量特性のバラツキを適切に補正することができない虞がある。また、補正値を算出する機会がアイドル状態に限定されるため、補正値の算出機会が少なく、時間の経過とともに現状に即した補正値とならない可能性がある。さらに、近年では、環境負荷対策としてアイドル状態においてエンジンを停止する制御が採用される場合もあり、補正値算出のために必要な時間を十分に確保できなくなるという問題もある。
本発明は上記点に鑑みて、内燃機関の駆動状態に関わらず、簡易な方法で吸入調量弁の印加電流−吐出量特性を適切に補正することができる燃料噴射装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、制御手段(50)は、内燃機関の吸入空気量を検出する吸入空気量センサ(85)で検出される吸入空気量、および内燃機関の排気の空燃費を検出する空燃比センサ(84)で検出される空燃費から、内燃機関への燃料噴射量を算出する燃料噴射量算出手段(S106)と、燃料噴射量算出手段(S106)で算出された燃料噴射量、およびコモンレール(20)から流出する燃料のうち内燃機関に噴射されずに燃料タンク(70)に返戻される燃料リターン量から、燃料供給ポンプ(10)の実際の吐出量である実吐出量(Q)を推定する実吐出量推定手段(S107)と、予め記憶された吸入調量弁(12)への印加電流と吐出量の関係を表す基準特性線に基づいて、実吐出量推定手段(S107)で推定された実吐出量(Q)に対応する印加電流値である基準印加電流値(I)を算出する電流値算出手段(S108)と、吸入調量弁(12)へ実際に印加した実印加電流値(I)と基準印加電流値(I)との差を印加電流補正値(ΔI)として算出する補正電流値算出手段(S109)とを有することを特徴としている。
これによれば、吸入空気量および空燃費から内燃機関への燃料噴射量を算出することができ、算出された燃料噴射量と燃料リターン量から燃料供給ポンプ(10)の実吐出量(Q)を推定することができる。そして、吸入調量弁(12)への印加電流と吐出量の関係を表す基準特性線に基づいて、実吐出量(Q)に対応する基準印加電流値(I)を算出し、この基準印加電流値(I)と吸入調量弁(12)へ実際に印加した実印加電流値(I)との差である印加電流補正値(ΔI)に基づいて補正を行うことで、吸入調量弁(12)の印加電流−吐出量特性を適切に補正することができる。これにより、アイドル状態のみならず、内燃機関に負荷がかかる通常の運転条件下においても、吸入調量弁(12)の印加電流−吐出量特性を適切に補正することができる。したがって、内燃機関の駆動状態に関わらず、簡易な方法で吸入調量弁(12)の印加電流−吐出量特性を適切に補正することが可能となる。
また、請求項2に記載の発明のように、燃料噴射量算出手段(S106)は、吸入空気量センサ(85)で検出される吸入空気量を、空燃比センサ(84)で検出される空燃費で除することにより内燃機関への燃料噴射量を算出するようにしてもよい。
また、請求項3に記載の発明では、制御手段(50)は、印加電流補正値(ΔI)が予め定められた基準値を上回っている場合に、印加電流補正値(ΔI)を基準特性線の電流方向の補正を行うための補正量として記憶する補正量記憶手段(S111)を有することを特徴としている。
これによれば、補正の必要性が高い場合にのみ、補正電流値(ΔI)に基づいて吸入調量弁(12)の印加電流−吐出量特性を補正することが可能となる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明の実施形態における蓄圧式燃料噴射装置を示す全体構成図である。 本発明の実施形態におけるエンジンECU50において実行されるコモンレール圧力制御処理を示すフローチャートである。 本発明の実施形態におけるエンジンECU50において実行される印加電流−吐出量特性の補正量を算出する処理を示すフローチャートである。 本発明の実施形態の蓄圧式燃料噴射装置における吸入調量弁12への印加電流と吐出量との関係を示す特性図である。
以下、本発明の一実施形態について図1〜図4に基づいて説明する。図1は、本実施形態における蓄圧式燃料噴射装置を示す全体構成図である。図1に示すように、蓄圧式燃料噴射装置は、内燃機関としてのディーゼルエンジンに燃料を噴射するものであり、燃料供給ポンプ10と、コモンレール20と、EDU30と、インジェクタ40と、制御手段としてのエンジンECU50とを備えている。
燃料供給ポンプ10は、コモンレール20に高圧燃料を圧送するものである。具体的には、燃料供給ポンプ10は、吸入配管61を介して燃料タンク70から燃料を汲み上げるフィードポンプ11と、エンジンECU50から入力される制御信号に応じてフィードポンプ11からポンプシリンダへ供給される燃料流量を調整する吸入調量弁12と、エンジンによって回転するカム軸とともにカムが回転するとポンプシリンダの内部に液密を保って摺動するプランジャ13と、燃料の逆流を防止する逆止弁14とを備えている。
このような燃料供給ポンプ10では、フィードポンプ11にて燃料タンク70から汲み上げられた燃料が吸入調量弁12によって調整され、図示しないポンプ室に吸入されるようになっている。また、カムの回転に応じてプランジャ13がポンプシリンダ内を摺動することでポンプ室内の燃料が加圧される。そして、加圧された燃料圧力が逆止弁14の開弁圧を超えると、加圧された燃料が供給配管62を介してコモンレール20に供給される。
さらに、燃料供給ポンプ10には燃料温度センサ15が備えられており、燃料タンク70から汲み上げられた燃料の温度が検出され、当該温度に応じた信号がエンジンECU50に入力されるようになっている。なお、図1では燃料温度センサ15をブロック図で描いてあるが、実際には燃料供給ポンプ10に取り付けられている。
そして、燃料供給ポンプ10内の過剰な燃料は燃料配管63を介して燃料タンク70に戻される。また、吸入配管61には、燃料タンク70より吸入された燃料を濾過して異物を除去するフェールフィルタ64が配置されている。
コモンレール20は、燃料供給ポンプ10より供給された高圧燃料を目標圧力(以下、目標レール圧という)に保持して蓄える畜圧手段である。この目標レール圧は、例えば、アクセル開度信号、エンジン回転数信号といったディーゼルエンジンの運転状態に基づいて、エンジンECU50によって決定される。
また、コモンレール20には、コモンレール20内の燃料圧力が予め定めた上限値を超えたときに開弁してコモンレール20の燃料圧力を逃がすプレッシャリミッタ21が取り付けられている。プレッシャリミッタ21より流出した燃料は、燃料配管63を介して燃料タンク70に戻される。
さらに、コモンレール20にはレール圧センサ22が取り付けられており、コモンレール20内の実際のコモンレール圧(以下、実レール圧という)に応じた信号がエンジンECU50に入力されるようになっている。なお、レール圧センサ22が本発明の圧力センサに相当している。
EDU30は、エンジンECU50から入力される駆動信号に基づいて、インジェクタ40の燃料噴射弁を開閉させる開閉信号をインジェクタ40に入力する駆動装置である。
インジェクタ40は、ディーゼルエンジンのシリンダに取り付けられ、EDU30から入力される開閉信号に基づいて燃料噴射弁を開閉することで、シリンダ内に燃料を噴射するものである。このようなインジェクタ40には、高圧配管65を介してコモンレール20からの高圧燃料が導入される燃料入口部41と、燃料配管63を介してインジェクタ40内部の余剰燃料を燃料タンク70に向けて流出させる燃料出口部42とを備えている。
また、図示しないが、インジェクタ40は、周知の通り、燃料を噴射するノズル部(ノズルボディとノズルニードル)と、噴射量を制御する電磁弁と、噴射率を制御するオリフィスおよびコマンドピストンとを備えている。
図1では、このようなインジェクタ40が1つのみ示されているが、インジェクタ40は、ディーゼルエンジンの気筒数に応じて各気筒に備え付けられており、各高圧配管65を介して各インジェクタ40に高圧燃料が供給されるようになっている。
エンジンECU50は、図示しないCPU、ROM、EEPROM、RAM等からなるマイクロコンピュータを備え、マイクロコンピュータに記憶したプログラムに従って演算処理を行うものである。
このエンジンECU50には、センサ類から信号が入力されるようになっており、エンジンECU50は、これらの入力信号等に基づいて、ディーゼルエンジンの運転状態に応じた最適な噴射時期や噴射量等を決定して各インジェクタ40を駆動する。
エンジンECU50は、レール圧センサ22により検出されるコモンレール20の実レール圧が、噴射圧力に相当する目標レール圧に追従するように、燃料供給ポンプ10の指令吐出量を算出し、吸入調量弁12を駆動して、コモンレール圧力をフィードバック制御する。
ここで、センサ類としては、例えば、上述の燃料温度センサ15およびレール圧センサ22の他に、ディーゼルエンジンに備えられたエンジン回転数を検出するエンジン回転数センサ80、車速を検出する車速センサ81、エンジン冷却水の温度を検出する冷却水温度センサ82、ディーゼルエンジンの燃焼室内に吸入される空気(以下、この吸入空気を吸気という)の温度を検出する吸気温度センサ83、エンジンの排気の空燃比を検出するA/F(空燃比)センサ84、吸気の質量流量(以下、吸気量という)を検出する吸入空気量センサとしてのエアフロメータ85、およびアクセル開度を検出するアクセル開度センサ86等が挙げられる。
図2は、本発明の実施形態におけるエンジンECU50において実行されるコモンレール圧力制御処理を示すフローチャートである。まず、ステップS1において、エンジンECU50は、上述した各種センサの検出信号からエンジン回転数およびアクセル開度を算出する。ステップS2では、算出したエンジン回転数とアクセル開度等から目標レール圧を算出し、続くステップS3で、レール圧センサ22からの信号を基に実レール圧を算出する。
ステップS4では、燃料供給ポンプ10からの必要吐出量、すなわち指令吐出量Qを算出する。例えば、ステップS2、S3で算出された目標レール圧と実レール圧の差分に相当する必要燃料量を、公知のPIまたはPID手法を用いたフィードバック演算によって算出し、予測される燃料リターン量や噴射量等を加算して、指令吐出量Qを算出することができる。
ステップS5では、ステップS4で算出した指令吐出量Qを、吐出量Qとエンジン回転数NEをパラメータとする2次元マップ(I−Qベースマップ)を用いて、吸入調量弁12のコイルへの印加電流値Iに変換する。I−Qベースマップには、既知の機差中央ポンプの印加電流−吐出量特性(I−Q特性)が、基準特性として記憶されている。
ここで、吸入調量弁12の弁部形状やばね力のばらつきといった機差の影響や経時劣化等により、燃料供給ポンプ10の実際のI−Q特性が、I−Qベースマップ特性に対してずれが生じることがある。このずれが大きくなると、吸入調量弁12への印加電流値に対して必要とする指令吐出量が得られず、コモンレール20の圧力制御性が低下する。そこで、本発明では、燃料供給ポンプ10の機差や経時劣化によるI−Q特性のずれを検出し、これに応じて既知のI−Qベースマップ特性の電流方向のずれを補正する。この電流方向の補正を実施するための処理を図3のフローチャートに示す。
まず、ステップS100において、エンジンECU50は、走行開始から予め定めた第1基準時間が経過したか否かを判定する。この結果、走行開始から第1基準時間が経過していない場合は、I−Q特性のずれを補正する必要がないと判定し、そのまま処理を本終了する。
一方、走行開始から第1基準時間が経過した場合は、I−Q特性のずれを補正する必要がないと判定し、ステップS101へ進む。ステップS101では、定常状態が予め定めた第2基準時間継続しているか否かを判定する。ここで、定常状態とは、車両が一定の速度で走行している状態、すなわち加速や減速をしていない状態のことをいう。ステップS101において、定常状態が第2基準時間継続していない場合は、エンジン出力が安定していないと判定し、再度ステップS101を実行する。
一方、定常状態が第2基準時間継続している場合は、エンジン出力が安定していると判定し、ステップS102で、冷却水温センサ82で検出された冷却水温度が予め定めた基準冷却水温度範囲内か否かを判定する。この結果、冷却水温度が基準冷却水温度範囲外である場合は、A/Fセンサ84の検出精度が低下していると判定し、ステップS101の判定を再度実行する。
一方、冷却水温度が基準冷却水温度範囲内である場合は、A/Fセンサ84の検出精度が良好であると判定し、ステップS103で、吸気温度が予め定めた基準吸気温度範囲内か否かを判定する。この結果、吸気温度が基準吸気温度範囲外である場合は、エアフロメータ85の精度が低下していると判定し、ステップS101の判定を再度実行する。
一方、吸気温度が基準吸気温度範囲内である場合は、エアフロメータ85の検出精度が良好であると判定し、ステップS104へ進む。ステップS104では、燃料供給ポンプ10の指令吐出量Qを記憶し、ステップS105へ進む。
ステップS105では、インジェクタ40から燃料タンク70に返戻される燃料リターン量を算出する。例えば、レール圧センサ22で検出された実レール圧、エンジン回転数センサ80で検出されたエンジン回転数、およびインジェクタ40への通電期間を用いて、公知の方法により燃料リターン量を算出することができる。
続いて、ステップS106では、エアフロメータ85で検出された吸気量と、A/Fセンサ84で検出された空燃比とに基づいて、インジェクタ40からの燃料噴射量を算出する。具体的には、燃料噴射量は、以下の数式1により算出することができる。
(数1)
燃料噴射量=吸気量/空燃比
なお、このステップS106が燃料噴射量算出手段に相当している。
続いて、ステップS107では、ステップS105で算出された燃料リターン量、およびステップS106で算出された燃料噴射量に基づいて、燃料供給ポンプ10の実際の吐出量である実吐出量Qを推定する。
ところで、燃料供給ポンプ10の吐出量Qは、以下の数式2により求められる。
(数式2)
Q=燃料噴射量+燃料リターン量+燃料圧力変化量×高圧部容積/体積弾性係数
ここで、本ステップS107は、定常状態となっているときにのみ実行されるので、上記の数式2における燃料圧力変化量は0に近くなる。このため、本実施形態のステップS107においては、ステップS105で算出された燃料リターン量、およびステップS106で算出された燃料噴射量に基づいて、実吐出量Qを以下の数式3により推定する。
(数式3)
=燃料噴射量+燃料リターン量
なお、このステップS107が実吐出量推定手段に相当している。
続いて、ステップS108で、図4に示すように、機差中央ポンプのI−Q特性、すなわち吸入調量弁12への印加電流と吐出量との関係を表す基準特性線に基づいて、実吐出量Qに対応する電流値である基準電流値Iを算出するとともに、指令吐出量Qに対応する電流値、すなわち吸入調量弁12へ実際に印加した電流値である実印加電流値Iを算出する。このステップS108が電流値算出手段に相当している。
続いて、ステップS109で、実印加電流値Iと基準電流値Iとの差である補正電流値ΔIを算出する。このステップS109が補正電流値算出手段に相当している。
続いて、ステップS110で、補正電流値ΔIが、予め定めた基準値を上回っているか否かを判定する。この結果、補正電流値ΔIが基準値を上回っていない場合は、機差中央ポンプのI−Q特性線からのずれが十分に小さく、補正の必要がないと判断し、そのまま本処理を終了する。
一方、補正電流値ΔIが基準値を上回っている場合は、機差中央ポンプのI−Q特性線からのずれが大きいため、補正の必要があると判断し、ステップS111で、補正電流値ΔIを基準特性線の電流方向の補正量として記憶した後、本処理を終了する。なお、このステップS111が補正量記憶手段に相当している。
これによれば、吸入空気量および空燃費から燃料噴射量を算出することができ、算出された燃料噴射量と燃料リターン量から燃料供給ポンプ10の実吐出量Qを推定することができる。そして、機差中央ポンプのI−Q特性線に基づいて、実吐出量Qに対応する基準印加電流値Iを算出し、この基準印加電流値Iと実印加電流値Iとの差である印加電流補正値ΔIに基づいて補正を行うことで、吸入調量弁12のI−Q特性を適切に補正することができる。
これにより、アイドル状態のみならず、通常走行時のようにエンジンに負荷がかかる通常の運転条件下においても、吸入調量弁12のI−Q特性を適切に補正することができる。したがって、エンジンの駆動状態に関わらず、簡易な方法で吸入調量弁12のI−Q特性を適切に補正することが可能となる。
また、印加電流補正値ΔIが予め定められた基準値を上回っている場合にのみ、印加電流補正値ΔIを基準特性線の電流方向の補正を行うための補正量として記憶することで、補正の必要性が高い場合にのみ、補正電流値ΔIに基づいて吸入調量弁12のI−Q特性を補正することが可能となる。
(他の実施形態)
なお、上記実施形態では、ステップS100において、走行開始から予め定めた第1基準時間が経過したか否かを判定し、走行開始から第1基準時間が経過した場合にステップS101に進むようにした例について説明したが、これに限らず、例えば走行開始から予め定めた所定距離を走行したか否かを判定し、走行開始から所定距離を走行した場合にステップS101に進むようにしてもよい。
また、上記実施形態では、ステップS107において、実吐出量Qを数式3に基づいて推定しているが、将来的に燃料リターン量が0に近くなる場合には、以下の数式4により推定することができる。
(数式4)
=燃料噴射量=吸気量/空燃比
これによれば、より簡易な方法で実吐出量Qを推定することができる。
10 燃料供給ポンプ
12 吸入調量弁
20 コモンレール
22 レール圧センサ(圧力センサ)
50 エンジンECU(制御手段)
84 A/Fセンサ(空燃比センサ)
85 エアフロメータ(吸入空気量センサ)

Claims (3)

  1. 内燃機関に噴射される高圧燃料を蓄圧するコモンレール(20)と、吸入調量弁(12)によって調量される燃料を加圧して前記コモンレール(20)へ圧送する燃料供給ポンプ(10)と、前記コモンレール(20)の圧力を検出する圧力センサ(22)と、前記圧力センサ(22)で検出されるコモンレール圧力が目標圧力となるように前記吸入調量弁(12)への印加電流を調整して前記コモンレール(20)への吐出量を制御する制御手段(50)とを備える燃料噴射装置であって、
    前記制御手段(50)は、
    前記内燃機関の吸入空気量を検出する吸入空気量センサ(85)で検出される吸入空気量、および前記内燃機関の排気の空燃費を検出する空燃比センサ(84)で検出される空燃費から、前記内燃機関への燃料噴射量を算出する燃料噴射量算出手段(S106)と、
    前記燃料噴射量算出手段(S106)で算出された前記燃料噴射量、および前記コモンレール(20)から流出する燃料のうち前記内燃機関に噴射されずに燃料タンク(70)に返戻される燃料リターン量から、前記燃料供給ポンプ(10)の実際の吐出量である実吐出量(Q)を推定する実吐出量推定手段(S107)と、
    予め記憶された前記吸入調量弁(12)への印加電流と吐出量の関係を表す基準特性線に基づいて、前記実吐出量推定手段(S107)で推定された前記実吐出量(Q)に対応する印加電流値である基準印加電流値(I)を算出する電流値算出手段(S108)と、
    前記吸入調量弁(12)へ実際に印加した実印加電流値(I)と前記基準印加電流値(I)との差を印加電流補正値(ΔI)として算出する補正電流値算出手段(S109)とを有することを特徴とする燃料噴射装置。
  2. 前記燃料噴射量算出手段(S106)は、前記吸入空気量センサ(85)で検出される吸入空気量を、前記空燃比センサ(84)で検出される空燃費で除することにより前記内燃機関への燃料噴射量を算出することを特徴とする請求項1に記載の燃料噴射装置。
  3. 前記制御手段(50)は、前記印加電流補正値(ΔI)が予め定められた基準値を上回っている場合に、前記印加電流補正値(ΔI)を前記基準特性線の電流方向の補正を行うための補正量として記憶する補正量記憶手段(S111)を有することを特徴とする請求項1または2に記載の燃料噴射装置。
JP2009125067A 2009-05-25 2009-05-25 燃料噴射装置 Withdrawn JP2010270724A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125067A JP2010270724A (ja) 2009-05-25 2009-05-25 燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125067A JP2010270724A (ja) 2009-05-25 2009-05-25 燃料噴射装置

Publications (1)

Publication Number Publication Date
JP2010270724A true JP2010270724A (ja) 2010-12-02

Family

ID=43418945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125067A Withdrawn JP2010270724A (ja) 2009-05-25 2009-05-25 燃料噴射装置

Country Status (1)

Country Link
JP (1) JP2010270724A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172549A (ja) * 2011-02-18 2012-09-10 Denso Corp 燃料噴射装置
JP2012246840A (ja) * 2011-05-27 2012-12-13 Denso Corp 蓄圧式燃料噴射装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172549A (ja) * 2011-02-18 2012-09-10 Denso Corp 燃料噴射装置
US8812215B2 (en) 2011-02-18 2014-08-19 Denso Corporation Fuel injection system for internal combustion engine
JP2012246840A (ja) * 2011-05-27 2012-12-13 Denso Corp 蓄圧式燃料噴射装置

Similar Documents

Publication Publication Date Title
JP4416026B2 (ja) 蓄圧式燃料噴射システムの制御装置
JP4424395B2 (ja) 内燃機関の燃料噴射制御装置
JP4111123B2 (ja) コモンレール式燃料噴射装置
US8239118B2 (en) Method and system for controlling a high pressure pump, particularly for a diesel engine fuel injection system
JP4349451B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP3901073B2 (ja) 蓄圧式燃料噴射装置
JP2009174383A (ja) 液体供給装置
JP2010196472A (ja) 内燃機関の燃料供給制御装置
JP2011144711A (ja) 燃料噴射装置
JP2008274843A (ja) ポンプ制御装置およびそれを用いた燃料噴射システム
JP2010270724A (ja) 燃料噴射装置
JP2007040265A (ja) 燃料噴射装置の製造方法
JP4470976B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP4424275B2 (ja) 内燃機関用燃料噴射制御装置
JP2010216279A (ja) 燃料噴射制御装置およびそれを用いた蓄圧式燃料噴射システム
JP2017160916A (ja) 内燃機関の制御装置
JP2009103059A (ja) 筒内噴射式内燃機関の制御装置
JP4689695B2 (ja) 燃料噴射システム
JP6146274B2 (ja) 内燃機関の制御装置
JP5218260B2 (ja) 燃料噴射制御装置
JP5545823B2 (ja) 蓄圧式燃料噴射装置の制御装置
JP4214907B2 (ja) 蓄圧式燃料噴射装置
JP4613920B2 (ja) 内燃機関用燃料噴射装置
JP5430770B2 (ja) 制御部材の制御処理装置、圧力制御処理装置、egr制御処理装置及び過給圧制御処理装置
JP6167830B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807