JP2010261846A - Signal processor of gas sensor - Google Patents

Signal processor of gas sensor Download PDF

Info

Publication number
JP2010261846A
JP2010261846A JP2009113676A JP2009113676A JP2010261846A JP 2010261846 A JP2010261846 A JP 2010261846A JP 2009113676 A JP2009113676 A JP 2009113676A JP 2009113676 A JP2009113676 A JP 2009113676A JP 2010261846 A JP2010261846 A JP 2010261846A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust
gas sensor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009113676A
Other languages
Japanese (ja)
Other versions
JP5152097B2 (en
Inventor
Tetsuharu Mitsuta
徹治 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009113676A priority Critical patent/JP5152097B2/en
Publication of JP2010261846A publication Critical patent/JP2010261846A/en
Application granted granted Critical
Publication of JP5152097B2 publication Critical patent/JP5152097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of reductions in acquisition accuracy of an air-fuel ratio based on output signals of A/F sensors 58a and 58b due to in output-signal perturbations of the A/F sensors 58a and 58b caused by exhaust pulsations and the problem of reductions in the controllability of an air-fuel ratio by air-fuel-ratio feedback control. <P>SOLUTION: A cutoff frequency is set as a frequency corresponding to one rotation of a crankshaft 36. A low-pass filter computed on the basis of the cutoff frequency fc is used to perform filter processing on output signals of the A/F sensors 58a and 58b. An average air-fuel ratio based on filter-processed output signals of the A/F sensors 58a and 58b is taken as a control variable of average F/B control. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気通路に備えられ、同排気通路内の排気中の特定成分の濃度を検出するガスセンサに適用されるガスセンサの信号処理装置に関する。   The present invention relates to a signal processing device for a gas sensor that is provided in an exhaust passage of an internal combustion engine and is applied to a gas sensor that detects the concentration of a specific component in exhaust gas in the exhaust passage.

この種のガスセンサとしては、内燃機関の燃焼室に供給される混合気の実際の空燃比(吸気量/燃料量)をリニアに検出すべく内燃機関の排気通路に備えられる空燃比センサ(A/Fセンサ)が知られている。A/Fセンサは、実際の空燃比を目標値にフィードバック制御(空燃比F/B制御)するために用いられる。ここでは通常、上記目標値が、A/Fセンサの下流側に設けられる排気浄化用触媒の排気浄化効率が高くなる空燃比付近に設定されるため、排気特性を良好なものとすることができる。   As this type of gas sensor, an air-fuel ratio sensor (A / A) provided in an exhaust passage of an internal combustion engine to linearly detect an actual air-fuel ratio (intake amount / fuel amount) of an air-fuel mixture supplied to a combustion chamber of the internal combustion engine. F sensor) is known. The A / F sensor is used for feedback control (air-fuel ratio F / B control) of the actual air-fuel ratio to a target value. Here, normally, the target value is set in the vicinity of the air-fuel ratio at which the exhaust purification efficiency of the exhaust purification catalyst provided on the downstream side of the A / F sensor becomes high, so that the exhaust characteristics can be improved. .

ところで、内燃機関の燃焼室から排気通路へと排気が間欠的に排出されることに起因して、排気通路内では排気圧力が変動するため、A/Fセンサに加わる排気圧力は、脈動を伴ったものとなる。ここで、A/Fセンサの出力信号は、センサの構造に起因して圧力依存性を有するため、この脈動を伴った排気圧力(排気脈動)に起因してセンサ出力信号が変動し得る。この場合、変動したセンサ出力信号を空燃比F/B制御の制御量の検出値とすることで、実際の空燃比の制御性が低下するおそれがある。   By the way, because exhaust gas is intermittently discharged from the combustion chamber of the internal combustion engine to the exhaust passage, the exhaust pressure fluctuates in the exhaust passage. Therefore, the exhaust pressure applied to the A / F sensor is accompanied by pulsation. It will be. Here, since the output signal of the A / F sensor has pressure dependency due to the structure of the sensor, the sensor output signal may fluctuate due to the exhaust pressure (exhaust pulsation) accompanied by this pulsation. In this case, the controllability of the actual air-fuel ratio may be reduced by using the changed sensor output signal as the detected value of the control amount of the air-fuel ratio F / B control.

そこで従来は、下記特許文献1に見られるように、排気脈動周期の整数倍の時間に渡るセンサ出力信号の積分値を空燃比F/B制御の制御量の検出値とすることで、排気脈動に起因するA/Fセンサの出力信号の変動が実際の空燃比の制御性に及ぼす影響を抑制する技術も提案されている。   Therefore, conventionally, as can be seen in Patent Document 1 below, exhaust pulsation is obtained by setting the integral value of the sensor output signal over an integral multiple of the exhaust pulsation period as the detected value of the control amount of the air-fuel ratio F / B control. There has also been proposed a technique for suppressing the influence of fluctuations in the output signal of the A / F sensor caused by the above on the controllability of the actual air-fuel ratio.

特開平01−206251号公報JP-A-01-206251

ただし、上記積分値を空燃比F/B制御の制御量の検出値とする場合、実際の空燃比の変化を上記制御量の検出値の変化として把握するまでに要する時間が長くなることで、実際の空燃比を応答性良く把握することができなくなるおそれがある。   However, when the integrated value is used as the detected value of the control amount of the air-fuel ratio F / B control, the time required to grasp the actual change of the air-fuel ratio as the change of the detected value of the control amount is increased. There is a possibility that the actual air-fuel ratio cannot be grasped with good responsiveness.

なお、上記A/Fセンサに限らず、排気中の特定成分の濃度を検出するガスセンサについては、排気脈動に起因するガスセンサの出力信号の変動が排気中の特定成分の濃度の把握に及ぼす影響を抑制することと、実際の排気中の特定成分の濃度を応答性良く把握することとの両立が困難なこうした事情も概ね共通したものとなっている。   In addition to the A / F sensor described above, for gas sensors that detect the concentration of a specific component in exhaust, the effect of fluctuations in the output signal of the gas sensor due to exhaust pulsation on the determination of the concentration of the specific component in exhaust Such a situation that it is difficult to achieve both suppression and grasping the concentration of the specific component in the actual exhaust gas with high responsiveness is generally common.

本発明は、上記課題を解決するためになされたものであり、その目的は、排気脈動に起因するガスセンサの出力信号の変動が排気中の特定成分の濃度の把握に及ぼす影響を好適に抑制しつつも、実際の排気中の特定成分の濃度を極力応答性良く把握することのできるガスセンサの信号処理装置を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its purpose is to suitably suppress the influence of fluctuations in the output signal of the gas sensor due to exhaust pulsation on the grasp of the concentration of specific components in the exhaust. However, an object of the present invention is to provide a signal processing device for a gas sensor that can ascertain the concentration of a specific component in actual exhaust gas as much as possible.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、内燃機関の排気通路に備えられ、同排気通路内の排気中の特定成分の濃度を検出するガスセンサに適用されるガスセンサの信号処理装置において、前記ガスセンサの出力信号の高周波成分を除去するフィルタ手段を備え、同フィルタ手段は、前記除去する高周波成分の最低周波数を、前記内燃機関の運転状態に応じて可変設定する可変手段を備えることを特徴とする。   According to a first aspect of the present invention, there is provided a signal processing apparatus for a gas sensor, which is provided in an exhaust passage of an internal combustion engine and is applied to a gas sensor for detecting a concentration of a specific component in exhaust gas in the exhaust passage. Filter means for removing high-frequency components is provided, and the filter means comprises variable means for variably setting the minimum frequency of the high-frequency components to be removed according to the operating state of the internal combustion engine.

上記最低周波数を低くするほど、フィルタ処理されたセンサ出力信号(フィルタ手段の出力信号)は、ガスセンサに加わる排気圧力の変動に起因したセンサ出力信号の変動が抑制されたものとなる反面、実際の排気中の特定成分の濃度に対する応答性が低下する。しかし、内燃機関の運転状態に応じて上記ガスセンサに加わる排気圧力の変動の影響度合いが相違したり、排気中の特定成分の濃度の把握精度と上記応答性との優先度合いが変化したりする傾向がある。上記発明では、この点に鑑み、内燃機関の運転状態に応じて上記最低周波数を可変設定することで、ガスセンサに加わる排気圧力の変動の影響を好適に抑制しつつも、実際の排気中の特定成分の濃度に対するフィルタ手段の出力信号の応答性を極力高くすることができる。   As the minimum frequency is lowered, the filtered sensor output signal (the output signal of the filter means) is the one in which the fluctuation of the sensor output signal due to the fluctuation of the exhaust pressure applied to the gas sensor is suppressed. Responsiveness to the concentration of specific components in the exhaust gas is reduced. However, the degree of influence of fluctuations in the exhaust pressure applied to the gas sensor differs depending on the operating state of the internal combustion engine, and the degree of priority between the accuracy of grasping the concentration of the specific component in the exhaust gas and the responsiveness tends to change. There is. In the above invention, in view of this point, the minimum frequency is variably set according to the operating state of the internal combustion engine, so that the influence of the fluctuation of the exhaust pressure applied to the gas sensor is suitably suppressed, while the actual exhaust gas is specified. The responsiveness of the output signal of the filter means to the component concentration can be made as high as possible.

請求項2記載の発明は、請求項1記載の発明において、前記可変手段は、前記内燃機関の機関回転速度が高くなるほど、前記除去する高周波成分の最低周波数を高くするものであることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the variable means increases the minimum frequency of the high-frequency component to be removed as the engine speed of the internal combustion engine increases. To do.

ガスセンサの出力信号は、センサの構造に起因して圧力依存性を有するため、ガスセンサへと排出される排気の周期に応じた周波数(変動周波数)で変動し得る。ここで、機関回転速度が高くなるほど、この変動周波数は高くなる。このため、機関回転速度が高くなるほど、ガスセンサの出力信号の変動周波数は高くなる。上記発明では、この点に鑑み、機関回転速度が高くなるほど、排気脈動に起因するガスセンサの出力信号の変動成分を除去するための上記最低周波数を高くする。これにより、排気脈動に起因するガスセンサの出力信号の変動によって、センサ出力信号に基づき排気中の特定成分の濃度を把握する際に及ぼされる影響を好適に抑制しつつも、実際の排気中の特定成分の濃度を極力応答性良く把握することができる。   Since the output signal of the gas sensor has pressure dependency due to the structure of the sensor, it can fluctuate at a frequency (fluctuation frequency) corresponding to the cycle of the exhaust gas discharged to the gas sensor. Here, the higher the engine rotation speed, the higher this fluctuation frequency. For this reason, the fluctuation frequency of the output signal of the gas sensor increases as the engine speed increases. In the above invention, in view of this point, as the engine rotational speed increases, the minimum frequency for removing the fluctuation component of the output signal of the gas sensor due to exhaust pulsation is increased. As a result, fluctuations in the output signal of the gas sensor due to exhaust pulsation can effectively suppress the influence exerted on grasping the concentration of a specific component in the exhaust based on the sensor output signal, while specifying the actual exhaust gas. It is possible to grasp the concentration of the component with high responsiveness as much as possible.

請求項3記載の発明は、請求項2記載の発明において、前記可変手段は、前記可変設定される最低周波数を、前記内燃機関の燃焼室から前記ガスセンサへと排出される排気の排出間隔に対応する周波数以下の周波数とするものであることを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the variable means corresponds to the discharge interval of the exhaust discharged from the combustion chamber of the internal combustion engine to the gas sensor. The frequency is lower than the frequency to be used.

排気中の特定成分の濃度の変化の周波数は、大きくは、ガスセンサへと排出される上記排気の排出間隔の逆数によって定まる周波数(排気周波数)となると考えられる。このため、ガスセンサの出力信号のうち、排気周波数よりも高周波成分については、ノイズとなる。上記発明では、こうした点に鑑み、上記可変設定される最低周波数を上記設定とすることで、ガスセンサの出力信号に基づき排気中の特定成分の濃度を把握する際に排気脈動によって及ぼされる影響を極力抑制することができる。   The frequency of the change in the concentration of the specific component in the exhaust gas is considered to be largely a frequency (exhaust frequency) determined by the reciprocal of the exhaust interval discharged to the gas sensor. For this reason, in the output signal of the gas sensor, the higher frequency component than the exhaust frequency becomes noise. In the above invention, in view of such a point, by setting the minimum frequency to be variably set to the above setting, the influence exerted by the exhaust pulsation when determining the concentration of the specific component in the exhaust based on the output signal of the gas sensor is minimized. Can be suppressed.

請求項4記載の発明は、請求項1〜3のいずれか1項に記載の発明において、前記ガスセンサは、空燃比センサであり、前記フィルタ手段の出力信号に基づく空燃比をその目標値に制御する空燃比制御手段を更に備え、前記フィルタ手段は、実際の空燃比と前記目標値との差が大きくなる状況であると判断されてから前記実際の空燃比と前記目標値との差が所定以下となるまでの期間に渡って、前記可変設定される最低周波数を高くするものであることを特徴とする。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the gas sensor is an air-fuel ratio sensor, and an air-fuel ratio based on an output signal of the filter means is controlled to a target value. An air-fuel ratio control means for determining the difference between the actual air-fuel ratio and the target value after it is determined that the difference between the actual air-fuel ratio and the target value is large. The minimum frequency to be variably set is increased over a period until it becomes below.

フィルタ手段の出力信号は、上記最低周波数以上の周波数の空燃比の変化に対して応答遅れを生じ得る。この場合、実際の空燃比と空燃比の目標値(目標空燃比)との差が大きくなると、実際の空燃比の変化に対してフィルタ手段の出力信号の変化が追いつかず、実際の空燃比の変化を速やかに把握することができなくなるおそれがある。この点、上記発明では、実際の空燃比と目標空燃比との差が大きくなる状況であると判断されてから、実際の空燃比と目標空燃比との差が所定以下となるまでの期間に渡って、上記最低周波数を高くすることで、フィルタ手段の出力信号の応答遅れを極力抑制することができる。これにより、フィルタ手段の出力信号から実際の空燃比の変化を極力速やかに把握することができ、ひいてはフィルタ手段の出力信号に基づく空燃比の制御性の低下を極力抑制することができる。   The output signal of the filter means may cause a response delay with respect to a change in the air-fuel ratio at a frequency equal to or higher than the minimum frequency. In this case, if the difference between the actual air-fuel ratio and the target value of air-fuel ratio (target air-fuel ratio) increases, the change in the output signal of the filter means cannot catch up with the actual air-fuel ratio change, and the actual air-fuel ratio There is a risk that changes cannot be grasped quickly. In this regard, in the above invention, during the period from when it is determined that the difference between the actual air-fuel ratio and the target air-fuel ratio is large, until the difference between the actual air-fuel ratio and the target air-fuel ratio becomes equal to or less than a predetermined value. The response delay of the output signal of the filter means can be suppressed as much as possible by increasing the minimum frequency. As a result, the actual change in the air-fuel ratio can be grasped as quickly as possible from the output signal of the filter means, and as a result, a decrease in controllability of the air-fuel ratio based on the output signal of the filter means can be suppressed as much as possible.

なお、空燃比制御手段が、フィルタ手段の出力信号に基づく空燃比と目標空燃比との差に応じた値の積分演算値に基づき、上記空燃比を目標空燃比にフィードバック制御する場合、実際の空燃比と目標空燃比との差が大きくなると、積分演算値が増大することに起因してフィルタ手段の出力信号に基づく空燃比の制御性が大きく低下しやすいため、上記可変手段を備えるメリットが大きい。   In the case where the air-fuel ratio control means feedback-controls the air-fuel ratio to the target air-fuel ratio based on the integral calculation value of the value corresponding to the difference between the air-fuel ratio based on the output signal of the filter means and the target air-fuel ratio, When the difference between the air-fuel ratio and the target air-fuel ratio increases, the controllability of the air-fuel ratio based on the output signal of the filter means is likely to be greatly reduced due to an increase in the integral calculation value. large.

請求項5記載の発明は、請求項4記載の発明において、前記フィルタ手段は、加速増量制御、触媒早期暖機制御又は燃料カットの停止制御が行われると判断された場合、前記実際の空燃比と前記目標値との差が大きくなる状況であると判断するものであることを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, when it is determined that the acceleration increase control, the catalyst early warm-up control, or the fuel cut stop control is performed, the filter means is the actual air-fuel ratio. And the target value are determined to be large.

加速増量制御や、触媒早期暖機制御、燃料カットの停止制御によれば、フィルタ手段の出力信号に基づく空燃比と目標空燃比との差が大きくなる。このため、上記発明によれば、上記空燃比と目標空燃比との差が大きくなる状況を適切に判断することができる。   According to acceleration increase control, early catalyst warm-up control, and fuel cut stop control, the difference between the air-fuel ratio based on the output signal of the filter means and the target air-fuel ratio becomes large. For this reason, according to the said invention, the condition where the difference of the said air fuel ratio and a target air fuel ratio becomes large can be judged appropriately.

請求項6記載の発明は、請求項1〜5のいずれか1項に記載の発明において、前記ガスセンサは、空燃比センサであり、前記フィルタ手段は、同フィルタ手段の出力信号に基づく空燃比と理論空燃比との差が大きくなるほど、前記最低周波数以上の周波数の前記ガスセンサの出力信号の除去度合いを大きくするものであることを特徴とする。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the gas sensor is an air-fuel ratio sensor, and the filter means is an air-fuel ratio based on an output signal of the filter means. The greater the difference from the stoichiometric air-fuel ratio, the greater the degree of removal of the output signal of the gas sensor having a frequency equal to or higher than the lowest frequency.

空燃比センサの構造に起因して、実際の空燃比と理論空燃比との差が大きいと排気脈動に起因する空燃比センサの出力信号の変動量が増大する。ここで、上記発明では、フィルタ手段の出力信号に基づく空燃比と理論空燃比とが差が大きくなるほど、上記最低周波数以上の周波数のセンサ出力信号の除去度合いを大きくすることで、排気脈動に起因する空燃比センサの出力信号の変動量が大きくなる状況において、この影響を好適に抑制することができる。   Due to the structure of the air-fuel ratio sensor, if the difference between the actual air-fuel ratio and the theoretical air-fuel ratio is large, the amount of fluctuation of the output signal of the air-fuel ratio sensor due to exhaust pulsation increases. Here, in the above invention, as the difference between the air-fuel ratio based on the output signal of the filter means and the stoichiometric air-fuel ratio increases, the degree of removal of the sensor output signal having a frequency equal to or higher than the lowest frequency increases, thereby causing exhaust pulsation. In the situation where the fluctuation amount of the output signal of the air-fuel ratio sensor to be increased becomes large, this influence can be suitably suppressed.

請求項7記載の発明は、請求項1〜6のいずれか1項に記載の発明において、前記排気通路における前記ガスセンサの下流側には、過給機の排気タービンが備えられることを特徴とする。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein an exhaust turbine of a supercharger is provided on the downstream side of the gas sensor in the exhaust passage. .

排気タービンを備える場合、これが排気の抵抗となり、この排気タービンよりも上流側の排気通路の排気圧力が大きく変動しやすい。このため、排気タービンよりも上流側にガスセンサが配置される場合、ガスセンサの出力信号の変動量が増大するおそれがある。このため、上記発明では、上記可変手段を備えるメリットが大きい。   When an exhaust turbine is provided, this becomes an exhaust resistance, and the exhaust pressure in the exhaust passage upstream of the exhaust turbine tends to fluctuate greatly. For this reason, when a gas sensor is arrange | positioned upstream from an exhaust turbine, there exists a possibility that the fluctuation amount of the output signal of a gas sensor may increase. For this reason, in the said invention, the merit provided with the said variable means is large.

請求項8記載の発明は、請求項1〜7のいずれか1項に記載の発明において、前記内燃機関は、多気筒内燃機関であり、前記ガスセンサは、前記内燃機関の各気筒に接続される排気通路の集合部に備えられる空燃比センサであり、前記フィルタ手段の出力信号に基づく空燃比をその目標値に制御すべく、前記内燃機関に燃料を噴射供給する燃料噴射弁を操作する操作手段と、前記フィルタ手段に入力される前の前記ガスセンサの出力信号に基づき、前記内燃機関の各気筒間の相対的な空燃比のずれを把握する把握手段と、前記各気筒間の相対的な空燃比のずれが小さくなるように、前記燃料噴射弁の操作量を補正する操作量補正手段とを更に備えることを特徴とする。   The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the internal combustion engine is a multi-cylinder internal combustion engine, and the gas sensor is connected to each cylinder of the internal combustion engine. An air-fuel ratio sensor provided in a collecting portion of the exhaust passage, and operating means for operating a fuel injection valve for injecting and supplying fuel to the internal combustion engine so as to control the air-fuel ratio based on the output signal of the filter means to the target value And a grasping means for grasping a relative air-fuel ratio shift between the cylinders of the internal combustion engine based on an output signal of the gas sensor before being input to the filter means, and a relative air gap between the cylinders. An operation amount correcting means for correcting the operation amount of the fuel injection valve is further provided so that the deviation of the fuel ratio becomes small.

気筒毎の空燃比のフィードバック制御を行うことで内燃機関の燃焼制御精度の向上を図る場合、空燃比センサの出力信号の応答性の向上が要求されることとなる。このため、フィルタ処理における上記最低周波数の設定によっては、フィルタ手段の出力信号に基づき、実際の空燃比の変化を高応答に把握することができず、気筒毎の空燃比を把握することが困難となるおそれがある。この点、上記発明では、フィルタ手段に入力される前の空燃比センサの出力信号に基づき、内燃機関の各気筒間の相対的な空燃比のずれを把握する。そして、このずれが小さくなるように、フィルタ手段の出力信号に基づく空燃比を目標空燃比に制御するための燃料噴射弁の操作量を補正する。これにより、排気脈動に起因する空燃比センサの出力信号の変動の影響をフィルタ処理によって好適に抑制するとともに、気筒毎の空燃比のフィードバック制御を行うことができる。   In order to improve the combustion control accuracy of the internal combustion engine by performing feedback control of the air-fuel ratio for each cylinder, it is required to improve the responsiveness of the output signal of the air-fuel ratio sensor. For this reason, depending on the setting of the minimum frequency in the filter processing, it is difficult to grasp the actual change in the air-fuel ratio with high response based on the output signal of the filter means, and it is difficult to grasp the air-fuel ratio for each cylinder. There is a risk of becoming. In this regard, in the above-described invention, the relative air-fuel ratio deviation between the cylinders of the internal combustion engine is grasped based on the output signal of the air-fuel ratio sensor before being input to the filter means. Then, the operation amount of the fuel injection valve for controlling the air-fuel ratio based on the output signal of the filter means to the target air-fuel ratio is corrected so that this deviation becomes small. Thereby, the influence of the fluctuation of the output signal of the air-fuel ratio sensor due to the exhaust pulsation can be suitably suppressed by the filter process, and the air-fuel ratio feedback control for each cylinder can be performed.

第1の実施形態にかかるシステム構成図。1 is a system configuration diagram according to a first embodiment. FIG. 同実施形態にかかるA/Fセンサ出力信号のフィルタ処理の手順を示すフローチャート。7 is a flowchart showing a procedure of filtering processing of an A / F sensor output signal according to the embodiment. 同実施形態にかかるフィルタ処理前後のA/Fセンサ出力信号の周波数スペクトルを示す図。The figure which shows the frequency spectrum of the A / F sensor output signal before and behind the filter process concerning the embodiment. 同実施形態にかかるフィルタ処理前後のA/Fセンサ出力信号波形を示すタイムチャート。The time chart which shows the A / F sensor output signal waveform before and behind the filter process concerning the embodiment. 第2の実施形態にかかるカットオフ周波数を高くする処理の手順を示すフローチャート。The flowchart which shows the procedure of the process which raises the cutoff frequency concerning 2nd Embodiment. 第3の実施形態にかかる減衰係数変更処理の手順を示すフローチャート。The flowchart which shows the procedure of the attenuation coefficient change process concerning 3rd Embodiment.

(第1の実施形態)
以下、本発明にかかるガスセンサの信号処理装置を多気筒ガソリンエンジンシステムに適用した第1の実施形態について、図面を参照しつつ説明する。
(First embodiment)
Hereinafter, a first embodiment in which a signal processing device for a gas sensor according to the present invention is applied to a multi-cylinder gasoline engine system will be described with reference to the drawings.

図1に本実施形態にかかるシステム構成を示す。   FIG. 1 shows a system configuration according to the present embodiment.

図示されるエンジン10は、4ストロークエンジンであり、火花点火式内燃機関である。本実施形態では、エンジン10として、多気筒(直列6気筒)ガソリンエンジンを想定しており、図中#1〜#6は、第1〜第6気筒を示している。エンジン10の吸気通路11には、上流側から順に、空気中の異物を除去するエアクリーナ12、吸入される空気量(吸気量)を検出するエアフローメータ14、吸気を冷却するインタークーラ16、吸気温度を検出する吸気温センサ18及びDCモータ等のアクチュエータによって開度調節される電子制御式のスロットルバルブ20が設けられている。スロットルバルブ20の下流側には、サージタンク22が設けられ、このサージタンク22には、吸気圧を検出する吸気圧センサ24が設けられている。サージタンク22には、エンジン10の各気筒の燃焼室28に吸気を導入する吸気マニホールド30が接続されている。吸気マニホールド30において各気筒の吸気ポート近傍には、燃料を噴射供給する電磁駆動式の燃料噴射弁32が設けられている。   The illustrated engine 10 is a four-stroke engine and is a spark ignition type internal combustion engine. In the present embodiment, a multi-cylinder (in-line 6-cylinder) gasoline engine is assumed as the engine 10, and # 1 to # 6 in the figure indicate the first to sixth cylinders. In the intake passage 11 of the engine 10, in order from the upstream side, an air cleaner 12 that removes foreign matters in the air, an air flow meter 14 that detects the amount of intake air (intake amount), an intercooler 16 that cools intake air, and intake air temperature An intake air temperature sensor 18 for detecting the above and an electronically controlled throttle valve 20 whose opening degree is adjusted by an actuator such as a DC motor are provided. A surge tank 22 is provided on the downstream side of the throttle valve 20, and an intake pressure sensor 24 that detects intake pressure is provided in the surge tank 22. Connected to the surge tank 22 is an intake manifold 30 that introduces intake air into the combustion chamber 28 of each cylinder of the engine 10. An electromagnetically driven fuel injection valve 32 that injects and supplies fuel is provided in the vicinity of the intake port of each cylinder in the intake manifold 30.

一方、エンジン10の各気筒の排気ポートには、排気マニホールド34a、34bが接続されている。ここで、本実施形態では、#1〜#3に対応する排気ポートには、排気マニホールド34aが接続され、#4〜#6に対応する排気ポートには、排気マニホールド34bが接続されている。一方、吸気バルブ42及び排気バルブ44のそれぞれは、クランク軸36と連動する吸気側カム軸38及び排気側カム軸40のそれぞれに取り付けられたカムによって駆動される。こうした構成によれば、吸気バルブ42の開弁によって吸気と燃料との混合気が燃焼室28内に導入され、図示しない点火プラグの火花放電によって混合気が着火され燃焼に供される。燃焼に供された混合気は、排気バルブ44の開弁によって排気として排気マニホールド34a、34bに排出される。なお、各気筒の圧縮上死点は、互いに「120°CA」ずれており、#1,#5,#3,#6、#2、#4の順に出現する。   On the other hand, exhaust manifolds 34 a and 34 b are connected to the exhaust ports of the cylinders of the engine 10. Here, in the present embodiment, the exhaust manifold 34a is connected to the exhaust ports corresponding to # 1 to # 3, and the exhaust manifold 34b is connected to the exhaust ports corresponding to # 4 to # 6. On the other hand, each of the intake valve 42 and the exhaust valve 44 is driven by a cam attached to each of the intake side camshaft 38 and the exhaust side camshaft 40 interlocked with the crankshaft 36. According to such a configuration, the air-fuel mixture of intake air and fuel is introduced into the combustion chamber 28 by opening the intake valve 42, and the air-fuel mixture is ignited by the spark discharge of a spark plug (not shown) and used for combustion. The air-fuel mixture subjected to combustion is discharged to the exhaust manifolds 34 a and 34 b as exhaust gas by opening the exhaust valve 44. The compression top dead center of each cylinder is shifted by “120 ° CA”, and appears in the order of # 1, # 5, # 3, # 6, # 2, and # 4.

エンジン10には、クランク軸36近傍でクランク軸36の回転角度を検出するクランク角度センサ46や、エンジン10を冷却する冷却水の温度を検出する水温センサ48、吸気側カム軸38の回転角度を検出する吸気側カム角センサ50、排気側カム軸40の回転角度を検出する排気側カム角センサ52が設けられている。   The engine 10 includes a crank angle sensor 46 that detects the rotation angle of the crankshaft 36 in the vicinity of the crankshaft 36, a water temperature sensor 48 that detects the temperature of cooling water that cools the engine 10, and the rotation angle of the intake camshaft 38. An intake side cam angle sensor 50 for detecting and an exhaust side cam angle sensor 52 for detecting the rotation angle of the exhaust side cam shaft 40 are provided.

排気マニホールド34a、34bの集合部には、排気通路56a、56bが接続されている。排気通路56a、56bには、A/Fセンサ58a、58bが設けられている。これらA/Fセンサは、排気中の酸素濃度や未燃成分(CO,HC及びH2等)に応じてリニアな電気信号を出力するセンサであり、広域の実際の空燃比(実空燃比)を検出可能な、いわゆる全領域空燃比センサである。   Exhaust passages 56a and 56b are connected to the gathering portions of the exhaust manifolds 34a and 34b. A / F sensors 58a and 58b are provided in the exhaust passages 56a and 56b. These A / F sensors are sensors that output a linear electric signal in accordance with the oxygen concentration in the exhaust gas and unburned components (CO, HC, H2, etc.), and the actual air-fuel ratio (actual air-fuel ratio) over a wide area. This is a so-called full-range air-fuel ratio sensor that can be detected.

排気通路56a、56bの下流側は、過給機(ターボチャージャ60)に接続されている。このように、本実施形態では、A/Fセンサ58a、58bを、ターボチャージャ60の上流側に設けている。これは、第1に、気筒毎の実空燃比(気筒別空燃比)に対するA/Fセンサ58a、58bの出力信号の応答性の向上を狙ったものである。また、第2に、エンジン10の始動時において暖機が不十分な場合、ターボチャージャ60の下流側に排気熱が届きにくいことに起因して水が溜まりやすいため、A/Fセンサと水との接触頻度が増大し、A/Fセンサの信頼性が低下するおそれがあることに鑑みたものである。   The downstream sides of the exhaust passages 56a and 56b are connected to a supercharger (turbocharger 60). Thus, in the present embodiment, the A / F sensors 58 a and 58 b are provided on the upstream side of the turbocharger 60. This is primarily intended to improve the responsiveness of the output signals of the A / F sensors 58a and 58b to the actual air-fuel ratio (cylinder-by-cylinder) for each cylinder. Secondly, when the engine 10 is not warmed up at the time of starting the engine, water tends to accumulate due to the fact that exhaust heat does not easily reach the downstream side of the turbocharger 60. This is because the contact frequency of the A / F sensor may increase and the reliability of the A / F sensor may decrease.

上記ターボチャージャ60は、吸気通路11上に設けられた吸気コンプレッサ62aと、排気通路56a、56bの下流側に設けられた排気タービン62bとを有して構成される。排気タービン62bは、これら排気通路を流れる排気によって回転エネルギが付与されるものであり、この回転エネルギによって吸気コンプレッサ62aが駆動される。吸気コンプレッサ62aの駆動によって加圧された吸気は、上記インタークーラ16にて冷却されることで圧縮される。これにより、エンジン10の燃焼室28に供給される吸気の充填効率が向上する。ちなみに、吸気の過給圧は、吸気通路11上の吸気コンプレッサ62aの上流部と下流部との間をバイパスする通路に設けられるエアバイパスバルブ64等を操作することで調節される。   The turbocharger 60 includes an intake compressor 62a provided on the intake passage 11 and an exhaust turbine 62b provided on the downstream side of the exhaust passages 56a and 56b. The exhaust turbine 62b is provided with rotational energy by the exhaust flowing through these exhaust passages, and the intake compressor 62a is driven by this rotational energy. The intake air pressurized by the drive of the intake air compressor 62a is compressed by being cooled by the intercooler 16. Thereby, the charging efficiency of the intake air supplied to the combustion chamber 28 of the engine 10 is improved. Incidentally, the supercharging pressure of the intake air is adjusted by operating an air bypass valve 64 provided in a passage that bypasses between the upstream portion and the downstream portion of the intake compressor 62a on the intake passage 11.

ターボチャージャ60の下流側には、第2排気通路68が接続されている。第2排気通路68には、排気浄化を行うための排気後処理システムとして、排気中の有害成分を浄化する第1の三元触媒70及び第2の三元触媒72が設けられている。第1の三元触媒70及び第2の三元触媒72は、排気中のNOx、HC及びCOを浄化するためのものである。また、第1の三元触媒70と第2の三元触媒72との間には、排気中の酸素濃度に応じて2値的に出力信号を変化させるO2センサ74が設けられている。O2センサ74は、排気中の実際の酸素濃度に基づき、実空燃比が理論空燃比(λ=1)に対して小さい値である(リッチ)か大きい値である(リーン)かを検出するものである。   A second exhaust passage 68 is connected to the downstream side of the turbocharger 60. The second exhaust passage 68 is provided with a first three-way catalyst 70 and a second three-way catalyst 72 that purify harmful components in the exhaust gas as an exhaust aftertreatment system for purifying exhaust gas. The first three-way catalyst 70 and the second three-way catalyst 72 are for purifying NOx, HC and CO in the exhaust. Further, an O2 sensor 74 is provided between the first three-way catalyst 70 and the second three-way catalyst 72 to change the output signal in a binary manner according to the oxygen concentration in the exhaust gas. The O2 sensor 74 detects whether the actual air-fuel ratio is a small value (rich) or a large value (lean) with respect to the theoretical air-fuel ratio (λ = 1) based on the actual oxygen concentration in the exhaust gas. It is.

電子制御装置(ECU76)は、エンジン10の各種制御に必要な各種アクチュエータを操作する制御装置である。ECU76は、ユーザのアクセル操作量を検出するアクセルセンサ78や、A/Fセンサ58a、58b、O2センサ74、クランク角度センサ46、排気側カム角センサ52、更にはエアフローメータ14等の検出信号を逐次入力する。ECU76は、これらの入力信号に基づきエンジン10の燃焼制御等を行う。   The electronic control device (ECU 76) is a control device that operates various actuators necessary for various controls of the engine 10. The ECU 76 detects detection signals from an accelerator sensor 78 that detects the amount of accelerator operation by the user, A / F sensors 58a and 58b, an O2 sensor 74, a crank angle sensor 46, an exhaust side cam angle sensor 52, and the air flow meter 14. Enter sequentially. The ECU 76 performs combustion control of the engine 10 based on these input signals.

特に、ECU76は、エンジン10の各気筒の燃焼室28に供給される混合気の実空燃比を目標値(目標空燃比)にフィードバック制御すべく燃料噴射弁32を通電操作する。詳しくは、実空燃比の気筒間のばらつきを抑制すべく、気筒別に空燃比をフィードバック制御する(気筒別空燃比F/B制御)。気筒別空燃比F/B制御は、各気筒の燃料噴射弁32の噴射特性が個体差及び経時変化によって相違したり、各気筒の燃焼室28に供給される吸気量が相違したりすることに起因して生じる気筒別空燃比のばらつきを抑制することで、実空燃比の制御精度を向上させ、排気特性を更に向上させるために行われるものである。   In particular, the ECU 76 energizes the fuel injection valve 32 so as to feedback control the actual air-fuel ratio of the air-fuel mixture supplied to the combustion chamber 28 of each cylinder of the engine 10 to a target value (target air-fuel ratio). More specifically, the air-fuel ratio is feedback-controlled for each cylinder (cylinder-specific air-fuel ratio F / B control) in order to suppress variations in the actual air-fuel ratio among the cylinders. In the cylinder-by-cylinder air-fuel ratio F / B control, the injection characteristics of the fuel injection valve 32 of each cylinder differ depending on individual differences and changes over time, or the amount of intake air supplied to the combustion chamber 28 of each cylinder differs. This is performed in order to improve the control accuracy of the actual air-fuel ratio and further improve the exhaust characteristics by suppressing the variation in the air-fuel ratio by cylinder caused by the cause.

上記気筒別空燃比F/B制御は、全気筒の平均空燃比を一律に目標空燃比とするためのフィードバック制御(平均F/B制御)と、気筒別空燃比のばらつきを低減するためのフィードバック制御(気筒別F/B制御)とからなる。ここでは、#1〜#3の気筒別空燃比F/B制御を例にとって説明する。なお、#4〜#6の気筒別空燃比F/B制御については、制御手法が#1〜#3のものと同様であるため、説明を省略する。   The cylinder-by-cylinder air-fuel ratio F / B control includes feedback control (average F / B control) for uniformly setting the average air-fuel ratio of all cylinders to the target air-fuel ratio, and feedback for reducing variation in the cylinder-by-cylinder air-fuel ratio. Control (F / B control for each cylinder). Here, the cylinder-by-cylinder air-fuel ratio F / B control of # 1 to # 3 will be described as an example. Note that the cylinder-by-cylinder air-fuel ratio F / B control of # 4 to # 6 is the same as the control method of # 1 to # 3, and thus the description thereof is omitted.

上記平均F/B制御ではまず、O2センサ74の出力信号に基づき目標空燃比を設定する。ここで、目標空燃比は、第1の三元触媒70の排気浄化効率が高くなる空燃比(λ=1)付近に設定される。次に、A/Fセンサ58aの出力信号に基づき算出される空燃比を平均空燃比とし、この平均空燃比と上記目標空燃比との偏差に基づくPI制御(比例微分制御)によってF/B補正係数を算出する。そして、エアフローメータ14の出力信号に基づく吸気量や、クランク角度センサ46の出力信号に基づくエンジン回転速度、アクセルセンサ78の出力信号に基づくアクセル操作量等から基本噴射量を算出し、算出された基本噴射量にF/B補正係数を乗算することで、平均空燃比を目標空燃比にフィードバック制御するための操作量を算出する。   In the average F / B control, first, the target air-fuel ratio is set based on the output signal of the O2 sensor 74. Here, the target air-fuel ratio is set in the vicinity of the air-fuel ratio (λ = 1) at which the exhaust purification efficiency of the first three-way catalyst 70 becomes high. Next, the air-fuel ratio calculated based on the output signal of the A / F sensor 58a is set as the average air-fuel ratio, and F / B correction is performed by PI control (proportional differential control) based on the deviation between the average air-fuel ratio and the target air-fuel ratio. Calculate the coefficient. Then, the basic injection amount is calculated from the intake air amount based on the output signal of the air flow meter 14, the engine speed based on the output signal of the crank angle sensor 46, the accelerator operation amount based on the output signal of the accelerator sensor 78, and the like. By multiplying the basic injection amount by the F / B correction coefficient, an operation amount for feedback control of the average air-fuel ratio to the target air-fuel ratio is calculated.

一方、上記気筒別F/B制御ではまず、A/Fセンサ58aの出力信号に基づき、#1〜#3の気筒別空燃比を算出する。次に、#1〜#3間での気筒別空燃比のばらつきが小さくなるように、#1〜#3のそれぞれに対応する燃料噴射量の補正係数を各別に算出する。   On the other hand, in the cylinder-by-cylinder F / B control, first, the cylinder-by-cylinder air-fuel ratios # 1 to # 3 are calculated based on the output signal of the A / F sensor 58a. Next, the fuel injection amount correction coefficient corresponding to each of # 1 to # 3 is calculated separately so that the variation in the cylinder-by-cylinder air-fuel ratio between # 1 and # 3 is reduced.

そして、平均空燃比を目標空燃比にフィードバック制御するための操作量に、上記補正係数を乗算することで、#1〜#3のそれぞれに対応する燃料噴射弁32から噴射される最終的な燃料量を算出する。   Then, the final fuel injected from the fuel injection valves 32 corresponding to each of # 1 to # 3 is obtained by multiplying the operation amount for performing feedback control of the average air-fuel ratio to the target air-fuel ratio by the correction coefficient. Calculate the amount.

ところで、上記A/Fセンサ58a、58bの出力信号は、センサの構造に起因して圧力依存性を有する。このため、ECU76では、A/Fセンサ58a、58bに加わる排気圧力として特定の圧力を想定することで、センサ出力信号から実空燃比を把握している。ただし、A/Fセンサ58a、58bに加わる排気圧力は脈動を伴ったものとなる。これは、エンジン10の各気筒の燃焼室28からA/Fセンサ58a、58bへと排気が所定クランク角度間隔(240°CA)毎に排出されることで、A/Fセンサ58a、58bに加わる排気圧力が変動するためである。ここで、エンジン回転速度が高くなるほど排気の排出間隔が短くなるため、A/Fセンサ58a、58bに加わる排気圧力が変動する周波数(変動周波数)は、エンジン回転速度が高くなるほど高くなる。また、上記変動周波数は、燃焼室28からセンサへの排気の排出間隔の逆数の値及びその整数倍の値が支配的となる。そして、A/Fセンサ58a、58bに加わる排気圧力が上記変動周波数で変動すると、ECU76の想定する特定の圧力と、センサに実際に加わる排気圧力とがずれることで、センサ出力信号が上記変動周波数で変動し、ECU76による実空燃比の把握精度が低下するおそれがある。   By the way, the output signals of the A / F sensors 58a and 58b have pressure dependency due to the structure of the sensors. For this reason, the ECU 76 grasps the actual air-fuel ratio from the sensor output signal by assuming a specific pressure as the exhaust pressure applied to the A / F sensors 58a and 58b. However, the exhaust pressure applied to the A / F sensors 58a and 58b is accompanied by pulsation. This is because exhaust gas is discharged from the combustion chamber 28 of each cylinder of the engine 10 to the A / F sensors 58a and 58b at predetermined crank angle intervals (240 ° CA), thereby being added to the A / F sensors 58a and 58b. This is because the exhaust pressure varies. Here, since the exhaust discharge interval becomes shorter as the engine speed increases, the frequency (fluctuation frequency) at which the exhaust pressure applied to the A / F sensors 58a and 58b fluctuates increases as the engine speed increases. Further, the fluctuation frequency is dominated by the reciprocal value of the exhaust interval from the combustion chamber 28 to the sensor and the integral multiple thereof. When the exhaust pressure applied to the A / F sensors 58a and 58b fluctuates at the fluctuation frequency, the specific pressure assumed by the ECU 76 deviates from the exhaust pressure actually applied to the sensor, so that the sensor output signal becomes the fluctuation frequency. There is a risk that the accuracy of grasping the actual air-fuel ratio by the ECU 76 may be reduced.

特に、本実施形態では、気筒別空燃比F/B制御を行うための設定に起因して、A/Fセンサ58a、58bの出力信号が排気圧力の変動に伴って大きく変動するため、実空燃比の把握精度の低下が顕著となるおそれがある。すなわち、上述したように、A/Fセンサ58a、58bは、排気タービン62bの上流側に設けられている。ここで、排気タービン62bの上流側では、排気タービン62bが排気の抵抗となることで、A/Fセンサ58a、58b近傍の排気圧力が大きく変動しやすい。排気圧力が大きく変動する場合、センサ出力信号の変動量が増大するおそれがある。更に、気筒別空燃比F/B制御の制御精度を向上させるべくA/Fセンサ58a、58bの出力信号の応答性を向上させることで、排気脈動がセンサ出力信号に及ぼす影響が顕著となり、センサ出力信号の変動量が更に増大するおそれがある。   In particular, in the present embodiment, the output signal of the A / F sensors 58a and 58b largely fluctuates with the fluctuation of the exhaust pressure due to the setting for performing the cylinder-by-cylinder air-fuel ratio F / B control. There is a risk that the decrease in the accuracy of grasping the fuel ratio will be significant. That is, as described above, the A / F sensors 58a and 58b are provided on the upstream side of the exhaust turbine 62b. Here, on the upstream side of the exhaust turbine 62b, the exhaust turbine 62b becomes an exhaust resistance, so that the exhaust pressure in the vicinity of the A / F sensors 58a and 58b is likely to fluctuate greatly. When the exhaust pressure fluctuates greatly, the amount of fluctuation of the sensor output signal may increase. Further, by improving the responsiveness of the output signals of the A / F sensors 58a and 58b in order to improve the control accuracy of the cylinder-by-cylinder air-fuel ratio F / B control, the influence of the exhaust pulsation on the sensor output signal becomes significant. There is a possibility that the fluctuation amount of the output signal further increases.

ここで、気筒別F/B制御については、A/Fセンサ58a、58bに加わる排気圧力が同一となるタイミングで各気筒の空燃比を計測することで、センサ出力信号の変動の影響を除去することができる。すなわち、こうした設定によれば、各気筒について計測されるセンサ出力信号のうち、排気脈動に起因するセンサ出力変動分が同じになるため、上記タイミングにおける各気筒についてのA/Fセンサ58a、58bの出力信号に基づき、各気筒間の相対的な空燃比のずれを高精度に把握することができる。   Here, for the cylinder-by-cylinder F / B control, the air-fuel ratio of each cylinder is measured at the same timing when the exhaust pressure applied to the A / F sensors 58a and 58b becomes the same, thereby eliminating the influence of fluctuations in the sensor output signal. be able to. That is, according to such setting, sensor output fluctuations caused by exhaust pulsation are the same among the sensor output signals measured for each cylinder, so that the A / F sensors 58a and 58b for each cylinder at the above timings. Based on the output signal, the relative air-fuel ratio shift between the cylinders can be grasped with high accuracy.

これに対し、平均空燃比については、その絶対値が問題となるため、A/Fセンサ58a、58bの出力信号に基づき、平均空燃比の絶対値を高精度に把握することが要求される。   On the other hand, since the absolute value of the average air-fuel ratio becomes a problem, it is required to accurately grasp the absolute value of the average air-fuel ratio based on the output signals of the A / F sensors 58a and 58b.

そこで本実施形態では、ECU76に入力されるA/Fセンサ58a、58bの出力信号をフィルタ処理することで、A/Fセンサ58a、58bの出力信号から排気脈動に起因するセンサ出力変動成分を除去する。これにより、排気脈動に起因するセンサ出力信号の変動に起因した平均空燃比の把握精度の低下を抑制する。   Therefore, in this embodiment, the output signals of the A / F sensors 58a and 58b input to the ECU 76 are filtered to remove the sensor output fluctuation component caused by exhaust pulsation from the output signals of the A / F sensors 58a and 58b. To do. This suppresses a decrease in the accuracy of grasping the average air-fuel ratio due to fluctuations in the sensor output signal due to exhaust pulsation.

図2に、本実施形態にかかるA/Fセンサ58a、58bの出力信号のフィルタ処理の手順を示す。この処理は、ECU76によって、例えば所定周期で繰り返し実行される。   FIG. 2 shows a procedure for filtering the output signals of the A / F sensors 58a and 58b according to the present embodiment. This process is repeatedly executed by the ECU 76, for example, at a predetermined cycle.

この一連の処理では、まずステップS10において、計測されたA/Fセンサ58a、58bの出力信号をローパスフィルタ(LPF)処理することで、センサの出力信号から排気脈動に起因するセンサ出力変動成分を除去する。本実施形態では、フィルタ処理を2次のLPFを用いて行う。LPFの伝達関数G(s)を下式(1)で表し、この伝達関数G(s)の振幅特性及び位相特性を、下式(2)及び(3)でそれぞれ表す。なお、ζは減衰係数、ωnは固有角周波数、fnは固有周波数、fは入力信号の周波数を示し、ωn=2πfnの関係がある。   In this series of processing, first, in step S10, the measured output signals of the A / F sensors 58a and 58b are subjected to low-pass filter (LPF) processing, so that sensor output fluctuation components caused by exhaust pulsation are detected from the sensor output signals. Remove. In the present embodiment, the filtering process is performed using a secondary LPF. The transfer function G (s) of the LPF is represented by the following expression (1), and the amplitude characteristic and the phase characteristic of the transfer function G (s) are represented by the following expressions (2) and (3), respectively. Here, ζ is an attenuation coefficient, ωn is a natural angular frequency, fn is a natural frequency, f is a frequency of an input signal, and there is a relationship of ωn = 2πfn.

Figure 2010261846
Figure 2010261846

Figure 2010261846
Figure 2010261846

Figure 2010261846
本実施形態では、まずLPFのカットオフ周波数fc(LPFの入力信号の振幅に対する出力信号の振幅の比が1/√2となる周波数)を、クランク軸36の1回転(360°CA)に対応する周波数とする。すなわち、エンジン回転速度Ne(rpm)を用いて、カットオフ周波数fcを、「Ne/60(Hz)」に設定する。これにより、カットオフ周波数fcは、エンジン回転速度が高くなるほど高くなる。これは、フィルタ処理されたA/Fセンサ58a、58bの出力信号(フィルタ出力信号)の応答性を目標空燃比が変化する過渡時等における要求に対して過度に低くならないようにしつつも、フィルタ出力信号の精度(平均空燃比の絶対値を示す精度)を極力高く保つための設定である。ここでは、フィルタ出力信号に、平均空燃比を高精度に表現することが要求されているものの、気筒別の空燃比の変動についてはこれを表現する要求がないことに鑑み、カットオフ周波数fcを、センサへと排気が排出される周期の逆数である上記変動周波数よりも低周波とした。なお、上記の式(1)に示した固有周波数fn及び減衰係数ζは、カットオフ周波数fcに基づき設定することができる。
Figure 2010261846
In this embodiment, first, the LPF cutoff frequency fc (the frequency at which the ratio of the amplitude of the output signal to the amplitude of the input signal of the LPF is 1 / √2) corresponds to one rotation (360 ° CA) of the crankshaft 36. Frequency. That is, the cut-off frequency fc is set to “Ne / 60 (Hz)” using the engine rotation speed Ne (rpm). Thereby, the cut-off frequency fc increases as the engine speed increases. This is because the responsiveness of the output signals (filter output signals) of the filtered A / F sensors 58a and 58b is not excessively lowered with respect to the request at the time of a transient when the target air-fuel ratio changes, etc. This is a setting for keeping the accuracy of the output signal (accuracy indicating the absolute value of the average air-fuel ratio) as high as possible. Here, the filter output signal is required to express the average air-fuel ratio with high accuracy, but in view of the fact that there is no requirement to express the fluctuation of the air-fuel ratio for each cylinder, the cutoff frequency fc is set. The frequency is lower than the fluctuation frequency, which is the reciprocal of the cycle in which exhaust is discharged to the sensor. The natural frequency fn and the attenuation coefficient ζ shown in the above equation (1) can be set based on the cut-off frequency fc.

詳しくは、ECU76がディジタル演算処理手段であることに鑑み、本実施形態では、上記LPFとして、上記式(1)で表される伝達関数に対応した下式(4)で表されるディジタルフィルタ(FIRフィルタ)を用いる(x[n]:入力データ(フィルタ処理前のA/Fセンサ58a、58bの出力信号)、y[n]:出力データ(フィルタ処理後のセンサ出力信号)、h[k]:フィルタ係数)。ここで、フィルタ係数h[k]は、カットオフ周波数fcにて定まるため、フィルタ係数h[k]をエンジン回転速度に応じて可変設定する。   Specifically, in view of the fact that the ECU 76 is a digital arithmetic processing means, in the present embodiment, as the LPF, a digital filter represented by the following expression (4) corresponding to the transfer function represented by the expression (1) ( Fx filter) (x [n]: input data (output signals of A / F sensors 58a and 58b before filtering), y [n]: output data (sensor output signals after filtering), h [k ]: Filter coefficient). Here, since the filter coefficient h [k] is determined by the cutoff frequency fc, the filter coefficient h [k] is variably set according to the engine speed.

Figure 2010261846
図3に、上記手法で算出されたフィルタを用いた場合におけるセンサ出力信号の変動成分の除去の効果を示す。詳しくは、図3(a)に、フィルタ処理前におけるA/Fセンサ58a、58bの出力信号のスペクトルを示し、図3(b)に、フィルタ処理後におけるセンサ出力信号のスペクトルを示す。なお、図3では、エンジン回転速度が2000rpmの場合において、カットオフ周波数fcをクランク軸36の1回転に対応する周波数である33Hzとして設定したフィルタの効果を示す。図示されるように、フィルタ処理前においては、排気バルブ44の開閉に起因したA/Fセンサ58a,58bに加わる排気圧力の変動周波数である50Hz及びその高調波の周波数である100Hz、150Hzの周波数成分が大きくなっている。一方、フィルタ処理後においては、カットオフ周波数fcである33Hz以上の周波数成分が除去されている。
Figure 2010261846
FIG. 3 shows the effect of removing the fluctuation component of the sensor output signal when the filter calculated by the above method is used. Specifically, FIG. 3 (a) shows the spectrum of the output signals of the A / F sensors 58a and 58b before the filtering process, and FIG. 3 (b) shows the spectrum of the sensor output signal after the filtering process. FIG. 3 shows the effect of a filter in which the cutoff frequency fc is set to 33 Hz, which is a frequency corresponding to one rotation of the crankshaft 36, when the engine rotation speed is 2000 rpm. As shown in the figure, before filtering, the frequency of 50 Hz which is the fluctuation frequency of the exhaust pressure applied to the A / F sensors 58a and 58b due to the opening and closing of the exhaust valve 44 and the frequency of 100 Hz and 150 Hz which are harmonics thereof. Ingredients are getting bigger. On the other hand, after the filtering process, the frequency component of 33 Hz or higher which is the cut-off frequency fc is removed.

また図4に、フィルタ処理前後におけるA/Fセンサ58a、58bの出力信号波形を示す。図示されるように、フィルタ処理前のA/Fセンサ58a、58bの出力信号には、排気脈動に起因するセンサ出力信号の変動成分が混入している。これに対し、フィルタ処理後のセンサ出力信号は、上記変動成分が除去されたものとなっている。   FIG. 4 shows output signal waveforms of the A / F sensors 58a and 58b before and after the filter processing. As shown in the drawing, fluctuation components of the sensor output signal due to exhaust pulsation are mixed in the output signals of the A / F sensors 58a and 58b before the filter processing. On the other hand, the sensor output signal after the filtering process has the fluctuation component removed.

図2の説明に戻り、続くステップS12では、フィルタ出力信号に基づき、上述した平均F/B制御を行う。   Returning to the description of FIG. 2, in the subsequent step S12, the above-described average F / B control is performed based on the filter output signal.

続くステップS14では、気筒別F/B制御を行う。ここでは、まず、A/Fセンサ58a,58bのそれぞれによる空燃比の検出対象となる気筒から排気が排出されるタイミング(排気バルブ44の開弁タイミング)を基準タイミングとして、その排気がA/Fセンサ58a(58b)に到達するまでに要すると想定される規定時間の経過時のタイミングにおけるA/Fセンサ58a(58b)の出力信号(生値)を計測する。そして、#1〜#3(#4〜#6)の3気筒の計測値の平均値に各計測値をフィードバック制御すべく、各気筒に対応する燃料噴射量の補正係数を各別に算出する。ここで、上記各計測値は、対応する気筒の空燃比を高精度に示す値とは限らない。しかし、各気筒間での計測値のばらつきは、各気筒間の空燃比のばらつきと強い相関を有する。これは、エンジン10の運転状態が同一なら、上記基準タイミングから上記規定時間だけ経過したタイミングでA/Fセンサ58a,58bに加わる排気圧力が互いに等しいと考えられるからである。このため、上記平均値へと各計測値を制御するための上記補正係数は、気筒別空燃比のばらつきを抑制するための操作量となる。   In the subsequent step S14, cylinder-by-cylinder F / B control is performed. Here, first, the timing at which exhaust is discharged from the cylinder for which the air-fuel ratio is detected by each of the A / F sensors 58a and 58b (opening timing of the exhaust valve 44) is used as a reference timing, and the exhaust is A / F. The output signal (raw value) of the A / F sensor 58a (58b) is measured at the timing when the specified time that is assumed to be required to reach the sensor 58a (58b) has elapsed. Then, in order to feedback control each measurement value to the average value of the three cylinders # 1 to # 3 (# 4 to # 6), a fuel injection amount correction coefficient corresponding to each cylinder is calculated separately. Here, each measured value is not necessarily a value indicating the air-fuel ratio of the corresponding cylinder with high accuracy. However, variations in measured values among the cylinders have a strong correlation with variations in the air-fuel ratio among the cylinders. This is because if the operating state of the engine 10 is the same, the exhaust pressure applied to the A / F sensors 58a, 58b is considered to be equal to each other at the timing when the specified time has elapsed from the reference timing. For this reason, the correction coefficient for controlling each measured value to the average value is an operation amount for suppressing variation in the air-fuel ratio for each cylinder.

なお、ステップS14の処理が完了する場合には、この一連の処理を一旦終了する。   In addition, when the process of step S14 is completed, this series of processes is once complete | finished.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)カットオフ周波数fcをクランク軸36の1回転に対応する周波数として設定し、このカットオフ周波数fcに基づき算出されたLPFを用いてA/Fセンサ58a、58bの出力信号をフィルタ処理した。これにより、平均F/B制御の制御量である平均空燃比から排気脈動に起因するセンサ出力信号の変動成分を除去することができ、センサ出力信号の変動が平均F/B制御に及ぼす影響を好適に抑制することができる。   (1) The cut-off frequency fc is set as a frequency corresponding to one rotation of the crankshaft 36, and the output signals of the A / F sensors 58a and 58b are filtered using the LPF calculated based on the cut-off frequency fc. . Thereby, the fluctuation component of the sensor output signal due to the exhaust pulsation can be removed from the average air-fuel ratio which is the control amount of the average F / B control, and the influence of the fluctuation of the sensor output signal on the average F / B control. It can suppress suitably.

(2)排気バルブ44の開弁タイミングから、その排気がA/Fセンサ58a(58b)に到達するまでに要すると想定される規定時間が経過するタイミングにおけるA/Fセンサ58a(58b)の出力信号を計測し、これら計測値間のばらつきを小さくするように燃料噴射量を気筒毎に操作した。これにより、気筒別空燃比の把握精度を高くすることなく、各気筒間での気筒別空燃比のばらつきを簡易に低減することができる。更に、平均F/B制御との協働により、各気筒の空燃比を高精度に目標空燃比に制御することもできる。   (2) The output of the A / F sensor 58a (58b) at the timing when the specified time that is assumed to be required until the exhaust reaches the A / F sensor 58a (58b) from the opening timing of the exhaust valve 44. The signal was measured, and the fuel injection amount was manipulated for each cylinder so as to reduce the variation between these measured values. Thereby, the dispersion | variation in the air-fuel ratio according to each cylinder between each cylinder can be reduced easily, without raising the grasping precision of the air-fuel ratio according to cylinder. Further, in cooperation with the average F / B control, the air-fuel ratio of each cylinder can be controlled to the target air-fuel ratio with high accuracy.

(3)A/Fセンサ58a、58bの下流側に排気タービン62bが設けられる構成とした。この場合、排気タービン62bよりも上流側のA/Fセンサ58a、58b近傍の排気圧力が大きく変動しやすく、センサ出力信号の変動量が増大しやすい。このため、排気タービン62bの上流側にA/Fセンサ58a、58bが設けられる本実施形態は、上記フィルタ処理の利用価値が高い。   (3) The exhaust turbine 62b is provided downstream of the A / F sensors 58a and 58b. In this case, the exhaust pressure in the vicinity of the A / F sensors 58a and 58b on the upstream side of the exhaust turbine 62b is likely to fluctuate greatly, and the fluctuation amount of the sensor output signal is likely to increase. For this reason, this embodiment in which the A / F sensors 58a and 58b are provided on the upstream side of the exhaust turbine 62b has a high utility value of the filter processing.

(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

本実施形態では、フィルタ出力信号に基づく平均空燃比と目標空燃比との差が大きくなる状況であると判断されてから、上記平均空燃比と目標空燃比との差が所定以下となるまでの期間に渡って、上記カットオフ周波数fcを高くする処理を行う。これは、フィルタ出力信号に基づく平均空燃比が、カットオフ周波数fc以上の周波数の実空燃比の変化に反応できないことに鑑みたものである。つまり、平均空燃比と目標空燃比との差が大きくなると、実空燃比の変化に対してフィルタ出力信号に応答遅れが生じることで、実空燃比の変化を平均空燃比の変化として把握するまでに時間差が生じ、実空燃比の変化を速やかに把握することができなくなるおそれがある。この場合、フィードバック制御における平均空燃比と目標空燃比との偏差に基づく積分項が増大することに起因してオーバーシュートやアンダーシュートが生じる等、平均空燃比の制御性が低下し、ひいては排気特性が悪化するおそれがある。そこで本実施形態では、フィルタ出力信号に基づく平均空燃比と目標空燃比との差が大きくなり、平均空燃比が目標空燃比に収束するまでの期間である過渡期において、上記カットオフ周波数fcを高くすることで、フィルタ出力信号の応答遅れを極力抑制し、平均空燃比の制御性の低下を極力抑制する。   In the present embodiment, after it is determined that the difference between the average air-fuel ratio based on the filter output signal and the target air-fuel ratio is large, the difference between the average air-fuel ratio and the target air-fuel ratio becomes a predetermined value or less. A process of increasing the cut-off frequency fc is performed over a period. This is because the average air-fuel ratio based on the filter output signal cannot react to a change in the actual air-fuel ratio having a frequency equal to or higher than the cutoff frequency fc. In other words, when the difference between the average air-fuel ratio and the target air-fuel ratio becomes large, a response delay occurs in the filter output signal with respect to the change in the actual air-fuel ratio, so that the change in the actual air-fuel ratio is grasped as the change in the average air-fuel ratio. There is a risk that a time difference will occur and the change in the actual air-fuel ratio cannot be quickly grasped. In this case, the controllability of the average air-fuel ratio is reduced, such as overshoot or undershoot due to an increase in the integral term based on the deviation between the average air-fuel ratio and the target air-fuel ratio in feedback control, and consequently the exhaust characteristics. May get worse. Therefore, in this embodiment, the difference between the average air-fuel ratio based on the filter output signal and the target air-fuel ratio becomes large, and the cutoff frequency fc is set in the transition period, which is a period until the average air-fuel ratio converges to the target air-fuel ratio. By increasing it, the response delay of the filter output signal is suppressed as much as possible, and the decrease in controllability of the average air-fuel ratio is suppressed as much as possible.

図5に、本実施形態にかかるLPFのカットオフ周波数fcを高くする処理の手順を示す。この処理は、ECU76によって、例えば所定周期で繰り返し実行される。なお、図5において先の図2に示した処理と同一の処理については、便宜上同一のステップ番号を付している。   FIG. 5 shows a processing procedure for increasing the cut-off frequency fc of the LPF according to the present embodiment. This process is repeatedly executed by the ECU 76, for example, at a predetermined cycle. In FIG. 5, the same steps as those shown in FIG. 2 are given the same step numbers for the sake of convenience.

この一連の処理では、まずステップS16において平均空燃比λmと目標空燃比λaとの差が大きくなる状況にあるか否かを判断するためのものである。本実施形態では、以下(ア)〜(ウ)のいずれかの制御が行われると判断される場合、上記差が大きくなる状況にあると判断する。   In this series of processes, first, in step S16, it is determined whether or not the difference between the average air-fuel ratio λm and the target air-fuel ratio λa is large. In this embodiment, when it is determined that any one of the following controls (a) to (c) is performed, it is determined that the difference is in a large state.

(ア)加速増量制御:この制御は、エンジン10の加速応答性を向上させるべく目標空燃比をリッチ側(λ=1.0→0.9)に設定するためのものである。このため、加速増量制御が行われると判断される場合、平均空燃比λmと目標空燃比λaとの差が大きくなる状況にあると判断する。   (A) Acceleration increase control: This control is for setting the target air-fuel ratio to the rich side (λ = 1.0 → 0.9) in order to improve the acceleration response of the engine 10. Therefore, when it is determined that the acceleration increase control is performed, it is determined that the difference between the average air-fuel ratio λm and the target air-fuel ratio λa is large.

(イ)触媒早期暖機制御:この制御は、エンジン10の起動直後の排気特性の悪化を抑制すべく目標空燃比をリーン側に設定するためのものである。このため、触媒早期暖機制御が行われると判断される場合、平均空燃比λmと目標空燃比λaとの差が大きくなる状況にあると判断する。なお、触媒早期暖機制御とは、第1の三元触媒70及び第2の三元触媒72の温度が低温である場合に、これら触媒の温度を活性温度へと到達させるべく排気温度を上昇させる制御である。   (A) Early catalyst warm-up control: This control is for setting the target air-fuel ratio to the lean side so as to suppress the deterioration of exhaust characteristics immediately after the engine 10 is started. For this reason, when it is determined that the early catalyst warm-up control is performed, it is determined that the difference between the average air-fuel ratio λm and the target air-fuel ratio λa is large. The catalyst early warm-up control means that when the temperature of the first three-way catalyst 70 and the second three-way catalyst 72 is low, the exhaust temperature is raised so that the temperature of these catalysts reaches the activation temperature. Control.

(ウ)燃料カットの停止制御:燃料カット制御では通常、燃料カットの開始制御が行われることで空燃比F/B制御を停止し、燃料カットの停止制御が行われることで空燃比F/B制御を開始する。ここで、燃料カットの開始制御が行われることで、実空燃比が「吸気量/0」(非常に大きな値)となる。このため、その後燃料カットの停止制御が行われることで、空燃比F/B制御が開始される時点における目標空燃比λaと平均空燃比λmとの差は、大きい傾向にある。このため、燃料カットの停止制御が行われると判断される場合、平均空燃比λmと目標空燃比λaとの差が大きくなる状況にあると判断する。   (C) Stop control of fuel cut: In fuel cut control, the air-fuel ratio F / B control is usually stopped by performing fuel cut start control, and the air-fuel ratio F / B is controlled by performing fuel cut stop control. Start control. Here, by performing the fuel cut start control, the actual air-fuel ratio becomes “intake amount / 0” (very large value). Therefore, the fuel cut stop control is performed thereafter, so that the difference between the target air-fuel ratio λa and the average air-fuel ratio λm at the time when the air-fuel ratio F / B control is started tends to be large. Therefore, when it is determined that the fuel cut stop control is performed, it is determined that the difference between the average air-fuel ratio λm and the target air-fuel ratio λa is large.

ステップS16において平均空燃比λmと目標空燃比λaとの差が大きくなる状況にあると判断された場合、ステップS18に進み、カットオフ周波数fcを、通常のフィルタ処理(先の図2のステップS10の処理)で設定されるカットオフ周波数fLから、この周波数fLよりも高い周波数fH(>fL)とする処理を行う。この処理は、LPFのカットオフ周波数fcを高くすることで、実空燃比の変化に対するフィルタ出力信号の応答遅れを極力抑制するためのものである。なお、カットオフ周波数fHを高くしすぎると、排気脈動に起因するA/Fセンサ58a、58bの出力信号の変動成分を適切に除去することができなくなるおそれがある。このため、フィルタ出力信号の応答遅れが平均空燃比λmの制御性に及ぼす影響と、排気脈動に起因するセンサ出力信号の変動が上記制御性に及ぼす影響との双方の影響を極力小さくできるようにカットオフ周波数fHを決定するのが望ましい。ちなみに、空燃比の更新周期が各気筒における燃料噴射間の間隔であることに鑑みれば、カットオフ周波数fHは、A/Fセンサ58a,58bのそれぞれの検出対象となる気筒間での排気の排出間隔の逆数以下の値とすることが望ましい。   If it is determined in step S16 that the difference between the average air-fuel ratio λm and the target air-fuel ratio λa is large, the process proceeds to step S18, and the cutoff frequency fc is changed to normal filtering (step S10 in FIG. 2). From the cut-off frequency fL set in step (5), a process of setting a frequency fH (> fL) higher than the frequency fL is performed. This process is for suppressing the delay in the response of the filter output signal to the change in the actual air-fuel ratio as much as possible by increasing the cutoff frequency fc of the LPF. If the cut-off frequency fH is too high, the fluctuation components of the output signals of the A / F sensors 58a and 58b due to exhaust pulsation may not be properly removed. For this reason, both the influence of the response delay of the filter output signal on the controllability of the average air-fuel ratio λm and the influence of the fluctuation of the sensor output signal caused by the exhaust pulsation on the controllability can be minimized. It is desirable to determine the cut-off frequency fH. Incidentally, considering that the air-fuel ratio update cycle is the interval between fuel injections in each cylinder, the cut-off frequency fH is the exhaust emission between the cylinders to be detected by the A / F sensors 58a and 58b. It is desirable that the value be equal to or less than the reciprocal of the interval.

続くステップS20では、平均空燃比λmと目標空燃比λaとの差の絶対値が所定値Δ以下であるか否かを判断する。この処理は、平均空燃比λmが目標空燃比λaへと収束したか否かを判断するためのものである。   In subsequent step S20, it is determined whether or not the absolute value of the difference between the average air-fuel ratio λm and the target air-fuel ratio λa is equal to or smaller than a predetermined value Δ. This process is for determining whether or not the average air-fuel ratio λm has converged to the target air-fuel ratio λa.

ステップS18において平均空燃比λmが収束すると判断された場合には、ステップS10に進み、カットオフ周波数fcをfHからfLとすることで、通常のフィルタ処理を行う。   If it is determined in step S18 that the average air-fuel ratio λm converges, the process proceeds to step S10, and normal filter processing is performed by changing the cut-off frequency fc from fH to fL.

なお、ステップS10の処理が完了する場合には、この一連の処理を一旦終了する。   In addition, when the process of step S10 is completed, this series of processes is once complete | finished.

このように本実施形態では、フィルタ出力信号に基づく平均空燃比λmと目標空燃比λaとの差が大きくなる状況であると判断されてから平均空燃比λmと目標空燃比λaとの差が所定値Δ以下となるまでの期間に渡って、カットオフ周波数fcを高くすることで、平均空燃比λmの応答遅れを極力抑制することができ、実空燃比の変化を平均空燃比λmの変化として極力速やかに把握することができる。これにより、気筒別空燃比F/B制御における積分項の増大を極力抑制し、平均空燃比λmの制御性の低下を極力抑制することができ、ひいてはエンジン10の発生トルクや排気特性を速やかに要求されるものとすることができる。   As described above, in the present embodiment, the difference between the average air-fuel ratio λm and the target air-fuel ratio λa is predetermined after it is determined that the difference between the average air-fuel ratio λm based on the filter output signal and the target air-fuel ratio λa is large. By increasing the cut-off frequency fc over the period until the value Δ or less, the response delay of the average air-fuel ratio λm can be suppressed as much as possible, and the change in the actual air-fuel ratio is regarded as the change in the average air-fuel ratio λm. It is possible to grasp as quickly as possible. As a result, an increase in integral term in the cylinder-by-cylinder air-fuel ratio F / B control can be suppressed as much as possible, and a decrease in controllability of the average air-fuel ratio λm can be suppressed as much as possible. As a result, the generated torque and exhaust characteristics of the engine 10 can be quickly reduced. Can be as required.

(第3の実施形態)
以下、第3の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Third embodiment)
Hereinafter, the third embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

本実施形態では、平均空燃比と理論空燃比との差が大きくなるほど、2次のLPFの減衰係数ζを大きくする処理を行う。これは、A/Fセンサ58a、58bの構造に起因して、実空燃比と理論空燃比とのずれが大きいと排気脈動に起因するセンサ出力信号の変動量が増大することに鑑みたものである。つまり、加速増量制御や、触媒早期暖機制御、燃料カットの停止制御が行われる場合、実空燃比と理論空燃比との差が大きくなり、排気脈動に起因するセンサ出力信号の変動量が増大する。このため、実空燃比と理論空燃比とのずれが大きい場合、LPFの減衰係数ζを大きくすることで、排気圧力の変動周波数付近におけるLPFの振幅特性を小さくし、A/Fセンサ58a、58bの出力信号から排気脈動に起因するセンサ出力信号の変動成分の除去度合いを大きくする。   In the present embodiment, a process of increasing the secondary LPF attenuation coefficient ζ is performed as the difference between the average air-fuel ratio and the stoichiometric air-fuel ratio increases. This is because the fluctuation amount of the sensor output signal due to the exhaust pulsation increases when the difference between the actual air fuel ratio and the theoretical air fuel ratio is large due to the structure of the A / F sensors 58a and 58b. is there. That is, when acceleration increase control, early catalyst warm-up control, or fuel cut stop control is performed, the difference between the actual air-fuel ratio and the stoichiometric air-fuel ratio increases, and the amount of fluctuation in sensor output signal due to exhaust pulsation increases. To do. For this reason, when the difference between the actual air-fuel ratio and the stoichiometric air-fuel ratio is large, the LPF amplitude characteristic near the fluctuation frequency of the exhaust pressure is reduced by increasing the LPF damping coefficient ζ, and the A / F sensors 58a, 58b. The degree of removal of the fluctuation component of the sensor output signal due to the exhaust pulsation is increased from the output signal.

図6に、本実施形態にかかるLPFの減衰係数変更処理の手順を示す。この処理は、ECU76によって、例えば所定周期で繰り返し実行される。   FIG. 6 shows a procedure of LPF attenuation coefficient changing processing according to this embodiment. This process is repeatedly executed by the ECU 76, for example, at a predetermined cycle.

この一連の処理では、まずステップS22においてフィルタ出力に基づく平均空燃比と理論空燃比とのずれを検出する。この処理は、排気脈動に起因してA/Fセンサ58a、58bの出力信号の変動が大きくなる状況にあるか否かを把握するためのものである。   In this series of processing, first, in step S22, a deviation between the average air-fuel ratio and the theoretical air-fuel ratio based on the filter output is detected. This process is for ascertaining whether or not fluctuations in the output signals of the A / F sensors 58a and 58b increase due to exhaust pulsation.

続くステップS24では、検出された平均空燃比と理論空燃比とのずれに応じて減衰係数ζを変更する処理を行う。具体的には、上記ずれ(の絶対値)が大きいほど、減衰係数ζを大きくする。一方、上記ずれが0又は0付近である場合には、減衰係数ζを変更しない。なお、減衰係数ζが過度に大きいと、排気脈動に起因するセンサ出力信号の変動成分の除去度合いが大きくなるものの、LPFの位相特性の位相遅れが大きくなることで、フィルタ出力信号の応答遅れが大きくなるおそれがある。このため、フィルタ出力信号の応答遅れが平均空燃比の制御性に及ぼす影響と、排気脈動に起因するセンサ出力信号の変動が上記制御性に及ぼす影響との双方の影響を極力小さくできるように減衰係数ζを大きくするのが望ましい。   In the subsequent step S24, processing for changing the damping coefficient ζ is performed in accordance with the difference between the detected average air-fuel ratio and theoretical air-fuel ratio. Specifically, the damping coefficient ζ is increased as the deviation (absolute value) increases. On the other hand, when the deviation is 0 or near 0, the attenuation coefficient ζ is not changed. If the attenuation coefficient ζ is excessively large, the degree of removal of the fluctuation component of the sensor output signal due to the exhaust pulsation increases, but the phase delay of the LPF phase characteristic increases, so that the response delay of the filter output signal is reduced. May grow. For this reason, the influence of the delay in the response of the filter output signal on the controllability of the average air-fuel ratio and the influence of fluctuations in the sensor output signal caused by exhaust pulsation on the controllability are attenuated so as to be minimized. It is desirable to increase the coefficient ζ.

なお、ステップS24の処理が完了する場合には、この一連の処理を一旦終了する。   In addition, when the process of step S24 is completed, this series of processes is once complete | finished.

このように本実施形態によれば、平均空燃比と理論空燃比とのずれが大きくなるほどLPFの減衰係数ζを大きくすることで、排気脈動に起因するA/Fセンサ58a、58bの出力信号の変動が大きくなる状況において、センサ出力信号から排気脈動に起因するセンサ出力信号の変動成分を好適に除去することができ、ひいては平均空燃比の誤差をいっそう好適に抑制することができる。   As described above, according to the present embodiment, as the difference between the average air-fuel ratio and the stoichiometric air-fuel ratio increases, the LPF damping coefficient ζ is increased, so that the output signals of the A / F sensors 58a and 58b caused by exhaust pulsation are reduced. In a situation where the fluctuation becomes large, the fluctuation component of the sensor output signal due to the exhaust pulsation can be suitably removed from the sensor output signal, and the error of the average air-fuel ratio can be further suitably suppressed.

(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
Each of the above embodiments may be modified as follows.

・空燃比をフィードバック制御する手段としては、積分項を備えるものに限らず、これを備えないものであってもよい。   The means for feedback control of the air-fuel ratio is not limited to the one having an integral term, and may be one not having this.

・上記第1の実施形態では、2次のLPFを用いてA/Fセンサ58a、58bをフィルタ処理したがこれに限らない。例えば、更に高次又は1次のLPFを用いてフィルタ処理してもよい。更に、バンドパスフィルタであってもよい。この場合、1燃焼サイクルに対応する時間の逆数以上であって且つ上記カットオフ周波数fc以下の周波数を透過させるものであることが望ましい。   In the first embodiment, the A / F sensors 58a and 58b are filtered using a secondary LPF, but the present invention is not limited to this. For example, filtering may be performed using a higher-order or first-order LPF. Furthermore, a band pass filter may be used. In this case, it is desirable to transmit a frequency that is equal to or greater than the reciprocal of the time corresponding to one combustion cycle and equal to or less than the cut-off frequency fc.

・カットオフ周波数fcの設定手法としては、クランク軸36の1回転(360°CA)に対応する周波数として設定するものに限らず、フィルタ出力信号に基づく平均空燃比の把握精度や、平均空燃比の制御性についての要求に応じて適宜設定すればよい。すなわち例えば、排気脈動に起因したA/Fセンサ58a、58bの出力信号の変動の抑制を優先させたい場合には、カットオフ周波数fcを、上記クランク軸36の1回転に対応する周波数よりも低い周波数としてもよい。ここでは、カットオフ周波数fcを、1燃焼サイクルに対応する時間の逆数以上とすることが望ましい。また例えば、A/Fセンサ58a、58b出力信号の応答性を優先させたい場合には、上記クランク軸36の1回転に対応する周波数よりも高い周波数としてもよい。ここでは、カットオフ周波数fcを、A/Fセンサ58a、58bのそれぞれの空燃比の検出対象気筒における排気バルブ44の開弁周期(240°CA)に対応する周波数以下の周波数とすることが望ましい。特に、カットオフ周波数fcを空燃比の検出対象気筒の排気バルブ44の開弁周期に対応する周波数とするなら、フィルタ出力信号に基づき気筒別空燃比を把握することも可能となる。   The method for setting the cut-off frequency fc is not limited to a frequency corresponding to one rotation (360 ° CA) of the crankshaft 36, but the accuracy of grasping the average air-fuel ratio based on the filter output signal, the average air-fuel ratio What is necessary is just to set suitably according to the request | requirement about this controllability. That is, for example, when priority is given to suppressing fluctuations in the output signals of the A / F sensors 58a and 58b caused by exhaust pulsation, the cutoff frequency fc is lower than the frequency corresponding to one rotation of the crankshaft 36. It is good also as a frequency. Here, it is desirable that the cutoff frequency fc be equal to or greater than the reciprocal of the time corresponding to one combustion cycle. For example, when priority is given to the responsiveness of the output signals of the A / F sensors 58a and 58b, the frequency may be higher than the frequency corresponding to one rotation of the crankshaft 36. Here, the cut-off frequency fc is preferably set to a frequency equal to or lower than the frequency corresponding to the valve opening cycle (240 ° CA) of the exhaust valve 44 in the air-fuel ratio detection target cylinder of each of the A / F sensors 58a and 58b. . In particular, if the cutoff frequency fc is set to a frequency corresponding to the valve opening cycle of the exhaust valve 44 of the cylinder for which the air-fuel ratio is to be detected, the air-fuel ratio for each cylinder can be grasped based on the filter output signal.

ちなみに、実際のフィルタ処理においては、カットオフ周波数fc近傍において、これよりも低周波の信号の強度が低減される。このため、例えば、カットオフ周波数fcを、A/Fセンサ58a、58bのそれぞれの空燃比の検出対象気筒における排気バルブ44の開弁周期に対応する周波数よりも大きい周波数成分を抑制したい場合には、カットオフ周波数fcをこの周波数よりもやや高めに設定するなどしてもよい。   Incidentally, in actual filter processing, the intensity of a signal having a frequency lower than this is reduced in the vicinity of the cutoff frequency fc. For this reason, for example, when it is desired to suppress the cutoff frequency fc to a frequency component that is larger than the frequency corresponding to the valve opening cycle of the exhaust valve 44 in the detection target cylinder of each of the A / F sensors 58a and 58b. Alternatively, the cut-off frequency fc may be set slightly higher than this frequency.

・上記第2の実施形態では、加速増量制御、触媒早期暖機制御又は燃料カットの停止制御が行われると判断された場合、平均空燃比λmと目標空燃比λaとの差が大きくなる状況にあると判断したがこれに限らない。例えば、フィルタ出力信号に基づく平均空燃比λmと目標空燃比λaとの差の絶対値を検出し、絶対値が所定の閾値よりも大きいと判断された場合、上記差が大きくなる状況にあると判断してもよい。   In the second embodiment, when it is determined that acceleration increase control, catalyst early warm-up control, or fuel cut stop control is performed, the difference between the average air-fuel ratio λm and the target air-fuel ratio λa increases. Although it was judged that there was, it is not restricted to this. For example, when the absolute value of the difference between the average air-fuel ratio λm and the target air-fuel ratio λa based on the filter output signal is detected and it is determined that the absolute value is larger than a predetermined threshold, the difference is large. You may judge.

・上記第3の実施形態では、平均空燃比と理論空燃比とのずれに応じて、LPFの減衰係数ζを変更(大きく)することで、排気圧力の変動周波数付近のLPFの振幅特性を小さくしたがこれに限らない。例えば、LPFのカットオフ周波数fcを低くすることで、上記振幅特性を小さくするようにしてもよい。   In the third embodiment, by changing (increasing) the LPF attenuation coefficient ζ according to the difference between the average air-fuel ratio and the stoichiometric air-fuel ratio, the amplitude characteristics of the LPF near the fluctuation frequency of the exhaust pressure are reduced. However, it is not limited to this. For example, the amplitude characteristic may be reduced by lowering the cutoff frequency fc of the LPF.

・エンジンシステムとしては、上記第1の実施形態の図1に例示した2つの排気通路56a、56bを備えるものに限らず、例えば、エンジン10の各気筒の燃焼室28とつながる排気マニホールドの集合部と、ターボチャージャ60とが1つの排気通路で接続されているものであってもよい。この場合であっても、A/Fセンサがターボチャージャ60の上流側に設けられるなら、A/Fセンサ近傍の排気圧力が大きく変動しやすく、センサ出力の変動量が増大しやすいため、本発明の適用が有効である。   The engine system is not limited to the one having the two exhaust passages 56a and 56b illustrated in FIG. 1 of the first embodiment. And the turbocharger 60 may be connected by a single exhaust passage. Even in this case, if the A / F sensor is provided on the upstream side of the turbocharger 60, the exhaust pressure in the vicinity of the A / F sensor is likely to fluctuate greatly, and the fluctuation amount of the sensor output tends to increase. Is effective.

・排気中の特定成分の濃度を検出するガスセンサとしては、A/Fセンサに限らず、例えば排気中のNOx濃度を検出するNOxセンサや、排気中のHC濃度を検出するHCセンサ、O2センサであってもよい。排気脈動に起因してこれらセンサの出力が変動するおそれがあるなら、本発明の適用が有効である。   The gas sensor for detecting the concentration of a specific component in the exhaust gas is not limited to the A / F sensor. For example, a NOx sensor for detecting the NOx concentration in the exhaust gas, an HC sensor for detecting the HC concentration in the exhaust gas, or an O2 sensor. There may be. If there is a possibility that the output of these sensors will fluctuate due to exhaust pulsation, the application of the present invention is effective.

・内燃機関としては、ガソリンエンジンのような火花点火式内燃機関に限らない。例えばディーゼルエンジン等の圧縮着火式内燃機関であってもよい。   -The internal combustion engine is not limited to a spark ignition type internal combustion engine such as a gasoline engine. For example, it may be a compression ignition type internal combustion engine such as a diesel engine.

10…エンジン、14…エアフローメータ、44…排気バルブ、46…クランク角度センサ、52…排気側カム角センサ、56a、56b…排気通路、58a、58b…A/Fセンサ、60…ターボチャージャ、62b…排気タービン、76…ECU(ガスセンサの信号処理装置の一実施形態)。   DESCRIPTION OF SYMBOLS 10 ... Engine, 14 ... Air flow meter, 44 ... Exhaust valve, 46 ... Crank angle sensor, 52 ... Exhaust side cam angle sensor, 56a, 56b ... Exhaust passage, 58a, 58b ... A / F sensor, 60 ... Turbocharger, 62b ... exhaust turbine, 76 ... ECU (one embodiment of signal processing device for gas sensor).

Claims (8)

内燃機関の排気通路に備えられ、同排気通路内の排気中の特定成分の濃度を検出するガスセンサに適用されるガスセンサの信号処理装置において、
前記ガスセンサの出力信号の高周波成分を除去するフィルタ手段を備え、
同フィルタ手段は、前記除去する高周波成分の最低周波数を、前記内燃機関の運転状態に応じて可変設定する可変手段を備えることを特徴とするガスセンサの信号処理装置。
In a signal processing device for a gas sensor that is provided in an exhaust passage of an internal combustion engine and is applied to a gas sensor that detects a concentration of a specific component in exhaust in the exhaust passage.
Filter means for removing high frequency components of the output signal of the gas sensor,
The filter means comprises a variable means for variably setting a minimum frequency of the high-frequency component to be removed according to an operating state of the internal combustion engine.
前記可変手段は、前記内燃機関の機関回転速度が高くなるほど、前記除去する高周波成分の最低周波数を高くするものであることを特徴とする請求項1記載のガスセンサの信号処理装置。   2. The signal processing apparatus for a gas sensor according to claim 1, wherein the variable means increases the minimum frequency of the high-frequency component to be removed as the engine speed of the internal combustion engine increases. 前記可変手段は、前記可変設定される最低周波数を、前記内燃機関の燃焼室から前記ガスセンサへと排出される排気の排出間隔に対応する周波数以下の周波数とするものであることを特徴とする請求項2記載のガスセンサの信号処理装置。   The variable means is characterized in that the variably set minimum frequency is a frequency equal to or lower than a frequency corresponding to an exhaust interval of exhaust exhausted from a combustion chamber of the internal combustion engine to the gas sensor. Item 3. A signal processing device for a gas sensor according to Item 2. 前記ガスセンサは、空燃比センサであり、
前記フィルタ手段の出力信号に基づく空燃比をその目標値に制御する空燃比制御手段を更に備え、
前記フィルタ手段は、実際の空燃比と前記目標値との差が大きくなる状況であると判断されてから前記実際の空燃比と前記目標値との差が所定以下となるまでの期間に渡って、前記可変設定される最低周波数を高くするものであることを特徴とする請求項1〜3のいずれか1項に記載のガスセンサの信号処理装置。
The gas sensor is an air-fuel ratio sensor,
Air-fuel ratio control means for controlling the air-fuel ratio based on the output signal of the filter means to its target value;
The filter means is in a period from when it is determined that the difference between the actual air-fuel ratio and the target value is large until the difference between the actual air-fuel ratio and the target value becomes a predetermined value or less. 4. The gas sensor signal processing device according to claim 1, wherein the variably set minimum frequency is increased.
前記フィルタ手段は、加速増量制御、触媒早期暖機制御又は燃料カットの停止制御が行われると判断された場合、前記実際の空燃比と前記目標値との差が大きくなる状況であると判断するものであることを特徴とする請求項4記載のガスセンサの信号処理装置。   The filter means determines that the difference between the actual air-fuel ratio and the target value is large when it is determined that acceleration increase control, catalyst early warm-up control, or fuel cut stop control is performed. 5. The signal processing apparatus for a gas sensor according to claim 4, wherein the signal processing apparatus is one. 前記ガスセンサは、空燃比センサであり、
前記フィルタ手段は、同フィルタ手段の出力信号に基づく空燃比と理論空燃比との差が大きくなるほど、前記最低周波数以上の周波数の前記ガスセンサの出力信号の除去度合いを大きくするものであることを特徴とする請求項1〜5のいずれか1項に記載のガスセンサの信号処理装置。
The gas sensor is an air-fuel ratio sensor,
The filter means increases the degree of removal of the output signal of the gas sensor having a frequency equal to or higher than the lowest frequency as the difference between the air-fuel ratio based on the output signal of the filter means and the stoichiometric air-fuel ratio increases. The signal processing apparatus for a gas sensor according to any one of claims 1 to 5.
前記排気通路における前記ガスセンサの下流側には、過給機の排気タービンが備えられることを特徴とする請求項1〜6のいずれか1項に記載のガスセンサの信号処理装置。   The signal processing apparatus for a gas sensor according to claim 1, wherein an exhaust turbine of a supercharger is provided on the downstream side of the gas sensor in the exhaust passage. 前記内燃機関は、多気筒内燃機関であり、
前記ガスセンサは、前記内燃機関の各気筒に接続される排気通路の集合部に備えられる空燃比センサであり、
前記フィルタ手段の出力信号に基づく空燃比をその目標値に制御すべく、前記内燃機関に燃料を噴射供給する燃料噴射弁を操作する操作手段と、
前記フィルタ手段に入力される前の前記ガスセンサの出力信号に基づき、前記内燃機関の各気筒間の相対的な空燃比のずれを把握する把握手段と、
前記各気筒間の相対的な空燃比のずれが小さくなるように、前記燃料噴射弁の操作量を補正する操作量補正手段とを更に備えることを特徴とする請求項1〜7のいずれか1項に記載のガスセンサの信号処理装置。
The internal combustion engine is a multi-cylinder internal combustion engine;
The gas sensor is an air-fuel ratio sensor provided in a collecting portion of an exhaust passage connected to each cylinder of the internal combustion engine,
Operating means for operating a fuel injection valve for injecting and supplying fuel to the internal combustion engine in order to control the air-fuel ratio based on the output signal of the filter means to the target value;
Grasping means for grasping a relative air-fuel ratio shift between the cylinders of the internal combustion engine based on an output signal of the gas sensor before being input to the filter means;
The operation amount correcting means for correcting the operation amount of the fuel injection valve so as to reduce a relative air-fuel ratio shift between the cylinders. The signal processing device for a gas sensor according to item.
JP2009113676A 2009-05-08 2009-05-08 Gas sensor signal processing device Active JP5152097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113676A JP5152097B2 (en) 2009-05-08 2009-05-08 Gas sensor signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113676A JP5152097B2 (en) 2009-05-08 2009-05-08 Gas sensor signal processing device

Publications (2)

Publication Number Publication Date
JP2010261846A true JP2010261846A (en) 2010-11-18
JP5152097B2 JP5152097B2 (en) 2013-02-27

Family

ID=43360040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113676A Active JP5152097B2 (en) 2009-05-08 2009-05-08 Gas sensor signal processing device

Country Status (1)

Country Link
JP (1) JP5152097B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130275024A1 (en) * 2010-06-04 2013-10-17 Hitachi Automotive Systems, Ltd. Engine control device
WO2015029460A1 (en) * 2013-08-27 2015-03-05 日立オートモティブシステムズ株式会社 Gas sensor device
WO2016047626A1 (en) * 2014-09-24 2016-03-31 株式会社デンソー Signal processing device of gas sensor
US9588017B2 (en) 2013-04-05 2017-03-07 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting variation abnormality in air-fuel ratio between cylinders

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206251A (en) * 1987-12-21 1989-08-18 Robert Bosch Gmbh Apparatus for processing measuring signal for air/fuel ratio sensor
JPH03180715A (en) * 1989-11-25 1991-08-06 Robert Bosch Gmbh Apparatus for detecting quantity changing cyclically for internal combustion engine
JP2000329730A (en) * 1999-05-21 2000-11-30 Denso Corp Method and device for detecting element impedance of oxygen concentration sensor
JP2001003804A (en) * 1999-06-16 2001-01-09 Mazda Motor Corp Engine intake condition detecting device
JP2002047980A (en) * 2000-08-03 2002-02-15 Fuji Heavy Ind Ltd Air-fuel ratio controller of engine
JP2002303601A (en) * 1997-04-23 2002-10-18 Denso Corp Controller for gas concentration sensor
JP2004257377A (en) * 2003-02-03 2004-09-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005188335A (en) * 2003-12-24 2005-07-14 Denso Corp Control device for on-vehicle engine
JP2005337194A (en) * 2004-05-31 2005-12-08 Denso Corp Device for calculating air fuel ratio in each cylinder of multi-cylinder internal combustion engine
JP2006097521A (en) * 2004-09-29 2006-04-13 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2006105054A (en) * 2004-10-07 2006-04-20 Toyota Motor Corp Air fuel ratio control device for internal combustion engine
JP2007291984A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2008095577A (en) * 2006-10-10 2008-04-24 Toyota Motor Corp Air-fuel ratio control unit of internal combustion engine

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206251A (en) * 1987-12-21 1989-08-18 Robert Bosch Gmbh Apparatus for processing measuring signal for air/fuel ratio sensor
JPH03180715A (en) * 1989-11-25 1991-08-06 Robert Bosch Gmbh Apparatus for detecting quantity changing cyclically for internal combustion engine
JP2002303601A (en) * 1997-04-23 2002-10-18 Denso Corp Controller for gas concentration sensor
JP2000329730A (en) * 1999-05-21 2000-11-30 Denso Corp Method and device for detecting element impedance of oxygen concentration sensor
JP2001003804A (en) * 1999-06-16 2001-01-09 Mazda Motor Corp Engine intake condition detecting device
JP2002047980A (en) * 2000-08-03 2002-02-15 Fuji Heavy Ind Ltd Air-fuel ratio controller of engine
JP2004257377A (en) * 2003-02-03 2004-09-16 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005188335A (en) * 2003-12-24 2005-07-14 Denso Corp Control device for on-vehicle engine
JP2005337194A (en) * 2004-05-31 2005-12-08 Denso Corp Device for calculating air fuel ratio in each cylinder of multi-cylinder internal combustion engine
JP2006097521A (en) * 2004-09-29 2006-04-13 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2006105054A (en) * 2004-10-07 2006-04-20 Toyota Motor Corp Air fuel ratio control device for internal combustion engine
JP2007291984A (en) * 2006-04-26 2007-11-08 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JP2008095577A (en) * 2006-10-10 2008-04-24 Toyota Motor Corp Air-fuel ratio control unit of internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130275024A1 (en) * 2010-06-04 2013-10-17 Hitachi Automotive Systems, Ltd. Engine control device
US9588017B2 (en) 2013-04-05 2017-03-07 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting variation abnormality in air-fuel ratio between cylinders
WO2015029460A1 (en) * 2013-08-27 2015-03-05 日立オートモティブシステムズ株式会社 Gas sensor device
JP2015045515A (en) * 2013-08-27 2015-03-12 日立オートモティブシステムズ株式会社 Gas sensor device
US9958305B2 (en) 2013-08-27 2018-05-01 Hitachi Automotive Systems, Ltd. Gas sensor device
WO2016047626A1 (en) * 2014-09-24 2016-03-31 株式会社デンソー Signal processing device of gas sensor
JP2016065473A (en) * 2014-09-24 2016-04-28 株式会社デンソー Signal processing device for gas sensor
US10288526B2 (en) 2014-09-24 2019-05-14 Denso Corporation Signal processing apparatus for gas sensor

Also Published As

Publication number Publication date
JP5152097B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4130800B2 (en) Engine control device
JP4733002B2 (en) Exhaust gas purification device for internal combustion engine
EP2284378B1 (en) Engine control apparatus
JP5182157B2 (en) Diesel engine control device
JP2008175101A (en) Fuel injection control device and combustion equipment of engine
JP2009209741A (en) Engine
US7742866B2 (en) Fuel volatility compensation for engine cold start speed control
JP4065784B2 (en) Control device for internal combustion engine
JP4192759B2 (en) Injection quantity control device for diesel engine
JP5152097B2 (en) Gas sensor signal processing device
JP2004324538A (en) Engine control device
JP2011132906A (en) Regeneration control device of dpf
US8117829B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP2009203918A (en) Operation control method of gasoline engine
JP2010236358A (en) Signal-processing apparatus for gas sensor
JP5803653B2 (en) Abnormality determination device for internal combustion engine
JP2008180225A (en) Engine control device
US10288526B2 (en) Signal processing apparatus for gas sensor
JP2006052684A (en) Control device of engine
JP2012145054A (en) Apparatus for detecting fluctuation abnormality of air-fuel ratios among cylinders of multi-cylinder internal combustion engine
JP2012117463A (en) Device for detecting abnormal variation of air-fuel ratio between cylinders
JP5690181B2 (en) Fuel injection control device
JP5138712B2 (en) Control device for supercharged engine
JP4710729B2 (en) Control device for internal combustion engine
JP5260770B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250