JP2010247106A - Gas-liquid mixing nozzle device for miniaturization acceleration - Google Patents

Gas-liquid mixing nozzle device for miniaturization acceleration Download PDF

Info

Publication number
JP2010247106A
JP2010247106A JP2009100674A JP2009100674A JP2010247106A JP 2010247106 A JP2010247106 A JP 2010247106A JP 2009100674 A JP2009100674 A JP 2009100674A JP 2009100674 A JP2009100674 A JP 2009100674A JP 2010247106 A JP2010247106 A JP 2010247106A
Authority
JP
Japan
Prior art keywords
gas
miniaturization
liquid
chamber
liquid mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009100674A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Asakawa
博良 麻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nozzle Network Co Ltd
Original Assignee
Nozzle Network Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nozzle Network Co Ltd filed Critical Nozzle Network Co Ltd
Priority to JP2009100674A priority Critical patent/JP2010247106A/en
Publication of JP2010247106A publication Critical patent/JP2010247106A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0425Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid without any source of compressed gas, e.g. the air being sucked by the pressurised liquid

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-liquid mixing nozzle device for miniaturization acceleration, capable of miniaturizing an atomized body injected from a gas-liquid mixing nozzle. <P>SOLUTION: The gas-liquid mixing nozzle device 10 for the miniaturization acceleration includes a miniaturization chamber 20 for receiving a first atomized body 31 jetted from a nozzle distal end part, and is configured to miniaturize the first atomized body 31 in the miniaturization chamber 20 and distribute a second atomized body 32 from the miniaturization chamber 20. On the sidewall surface of the miniaturization chamber, at least one through-hole or at least one slit-like distribution part is formed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気液混合(または2流体)ノズル装置に関し、より詳細には、従来の気液混合ノズル装置から噴射される霧化体を微細化することができる微細化促進用の液混合ノズル装置に関する。   The present invention relates to a gas-liquid mixing (or two-fluid) nozzle device, and more specifically, a liquid mixing nozzle for promoting miniaturization capable of miniaturizing an atomized body ejected from a conventional gas-liquid mixing nozzle device. Relates to the device.

医療機器(例えば、吸引機)、半導体(成膜技術)、スプレードライヤー(セラミック新素材)等の分野で液滴径がサブミクロン(1〜10μm)またはナノ(1μm未満)粒子のニーズが普及しつつある。現状の霧化技術は、気液混合式(2流体式)、超音波式、超高圧式(100〜300MPa)、蒸発式等があるが、いずれも装置コストが高く、小型化が困難である。さらに、6μm以下のサブミクロンサイズ、ナノサイズの液滴平均粒子径(MMD:マスミーディアン径)が得られる装置は少ない。   The need for droplets with submicron (1 to 10 μm) or nano (less than 1 μm) droplet sizes has become widespread in fields such as medical equipment (for example, suction machines), semiconductors (film formation technology), and spray dryers (new ceramic materials). It's getting on. Current atomization techniques include gas-liquid mixing type (two-fluid type), ultrasonic type, ultra-high pressure type (100 to 300 MPa), evaporation type, etc., all of which are expensive and difficult to miniaturize. . Furthermore, there are few apparatuses that can obtain submicron-size and nano-size droplet average particle diameters (MMD: mass median diameter) of 6 μm or less.

また、微粒子ミストを生成するための噴霧ノズル装置が知られている(特許文献1)。この噴霧ノズル装置は、第1ノズル部と第2ノズル部を有し、第1ノズル部からの噴射液と第2ノズル部からの噴射液とを衝突させて、微粒子ミストを形成することができる。しかしながら、2流体ノズル部を2つ備えるため、コスト高であり、小型化にも適していない。また、2流体のそれぞれを高圧の空気圧(3kg/cm)と水道水(50cc/min)とした場合に、この噴霧ノズル装置で形成された微粒子の平均粒径は8.8μm程度であり(特許文献1、段落番号0024)、6μm以下のサブミクロンサイズの噴霧粒子を得ることができない。 Moreover, the spray nozzle apparatus for producing | generating fine particle mist is known (patent document 1). This spray nozzle device has a first nozzle portion and a second nozzle portion, and can form a fine particle mist by colliding an injection liquid from the first nozzle portion with an injection liquid from the second nozzle portion. . However, since two two-fluid nozzle portions are provided, the cost is high and it is not suitable for downsizing. Further, when each of the two fluids is a high-pressure air pressure (3 kg / cm 2 ) and tap water (50 cc / min), the average particle size of the fine particles formed by this spray nozzle device is about 8.8 μm ( Patent Document 1, Paragraph No. 0024), spray particles having a submicron size of 6 μm or less cannot be obtained.

また、他の2流体ノズルとして特許文献2が知られている。特許文献2の2流体ノズルは、中心軸線に沿って液体流路20Bを設け、外周に環状の外側気体流路21Bを設け、液体流路の途中に液体分岐流路23を介設し、液体分岐流路の再合流位置に旋回手段28を配置して液体を一次微粒化させ、かつ、液体分岐流路で囲まれた中央部位に中央気体流入部25を形成し、中央気体流入部に外側気体流路より気体を導入して、旋回して環状膜となった液体の中央に気体を衝突混合で導入して、二次微粒化させながら第1混合を行わせ、さらに、再合流されて気液混合流路30となる流路周面に、外側気体流路を連通する気体流入孔15dを設けて、気液混合流路の混合流体に対して外周面より気体を衝突混合で流入して三次微粒化しながら第2混合を行わせて、噴射口16gより気液混合ミストとして噴射させている。しかしながら、ノズル内部の構造が複雑であり、コスト高である。また、噴霧流量を230〜700L/時間とした条件下において気水比100とすると、得られた噴霧液の平均粒子径が50μm程度であり、サブミクロンサイズの噴霧粒子を得ることができない。   Patent Document 2 is known as another two-fluid nozzle. The two-fluid nozzle of Patent Document 2 is provided with a liquid flow path 20B along the central axis, an annular outer gas flow path 21B is provided on the outer periphery, and a liquid branch flow path 23 is provided in the middle of the liquid flow path. The swirling means 28 is disposed at the re-merging position of the branch flow path to primary atomize the liquid, and the central gas inflow portion 25 is formed in the central portion surrounded by the liquid branch flow path, and the outer side of the central gas inflow portion Gas is introduced from the gas flow path, swirled to introduce the gas into the center of the liquid that has become an annular film by collision mixing, the first mixing is performed while secondary atomization is performed, and further recombined A gas inflow hole 15d that communicates with the outer gas flow path is provided on the circumferential surface of the flow path that becomes the gas-liquid mixing flow path 30, and gas flows into the mixed fluid of the gas-liquid mixing flow path from the outer peripheral surface by collision mixing. The second mixing is performed while making the particles fine, and the gas-liquid mixing mist is obtained from the injection port 16g. It is made to injection. However, the structure inside the nozzle is complicated and the cost is high. Further, when the air / water ratio is 100 under the condition that the spray flow rate is 230 to 700 L / hour, the average particle size of the obtained spray liquid is about 50 μm, and submicron-size spray particles cannot be obtained.

特開2002−126587号公報(請求項1、段落番号0024、図1)Japanese Patent Laid-Open No. 2002-126587 (claim 1, paragraph number 0024, FIG. 1) 特開2002−159889号公報(請求項1、段落番号0038、図1、図2)JP 2002-159889 A (Claim 1, paragraph number 0038, FIG. 1, FIG. 2)

本発明は、上記問題に鑑みてなされたものであって、気液混合ノズルから噴射された霧化体を微細化させることができる微細化促進用の気液混合ノズル装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas-liquid mixing nozzle device for promoting miniaturization that can atomize an atomized body ejected from a gas-liquid mixing nozzle. And

上記課題を解決するための本発明の微細化促進用の気液混合ノズル装置は、
ノズル先端部から噴出する第1霧化体を受け入れる微細化室を備え、
前記微細化室で第1霧化体を微細化し、当該微細化室から第2霧化体を流出する構成である。
The gas-liquid mixing nozzle device for promoting miniaturization of the present invention for solving the above-mentioned problems is
A finer chamber for receiving the first atomized body ejected from the nozzle tip,
It is the structure which refines | miniaturizes a 1st atomization body in the said refinement | miniaturization chamber, and flows out a 2nd atomization body from the said refinement | miniaturization chamber.

この構成によれば、気液混合ノズル装置のノズル先端部から噴出する第1霧化体を微細化室に流入させ、この微細化室で第1霧化体を微細化し、この微細化されて得られた第2霧化体を微細化室から流出する構成である。よって、気液混合ノズルによって形成された第1霧化体を、微細化室で好適に微細化(または微粒化)し、第2霧化体を形成することができる。   According to this configuration, the first atomized body ejected from the nozzle tip of the gas-liquid mixing nozzle device is caused to flow into the miniaturization chamber, and the first atomized body is refined in the miniaturization chamber. It is the structure which flows out the obtained 2nd atomization body from a refinement | miniaturization chamber. Therefore, the 1st atomization body formed with the gas-liquid mixing nozzle can be suitably refined | miniaturized (or atomized) in a refinement | miniaturization chamber, and a 2nd atomization body can be formed.

例えば、市販の多種の気液混合ノズルにおいて、空気圧力0.02〜0.5MPa、噴霧流量1〜1000mL/minの条件化で、気液混合ノズルから噴霧された第1霧化体の平均粒子径が10〜200μmの広範囲であった。そして、気液混合ノズルから噴出された第1霧化体中の粒子径の大きい霧(例えば、湿った霧)は、気液混合ノズルからの噴出方向に対し大きな角度で広がって噴出する傾向にある(図1、「飛沫」参照)。粒子径の小さい霧(例えば、乾いた霧、煙霧)は、気液混合ノズルからの噴出方向軸上に噴出する傾向にある(図1、霧化体参照)。例えば、図1の気液混合ノズルのスプレー半角が15°の場合に飛沫の噴出半角は約55°であって、飛沫粒子の平均粒子径(MMD)が50〜100μmであり、スプレー半角15°部分の粒子の平均粒子径(MMD)が10〜20μmであった。   For example, in a variety of commercially available gas-liquid mixing nozzles, the average particles of the first atomized body sprayed from the gas-liquid mixing nozzle under conditions of air pressure 0.02-0.5 MPa and spray flow rate 1-1000 mL / min The diameter was a wide range of 10 to 200 μm. And the mist (for example, wet mist) with a large particle diameter in the 1st atomization body ejected from the gas-liquid mixing nozzle tends to spread at a large angle with respect to the ejection direction from the gas-liquid mixing nozzle. Yes (see Figure 1, "Splashes"). A mist having a small particle diameter (for example, dry mist or haze) tends to be ejected on the ejection direction axis from the gas-liquid mixing nozzle (see FIG. 1, atomized body). For example, when the spray half angle of the gas-liquid mixing nozzle of FIG. 1 is 15 °, the spray half angle is about 55 °, the average particle size (MMD) of the splash particles is 50 to 100 μm, and the spray half angle is 15 °. The average particle diameter (MMD) of the particles in the part was 10 to 20 μm.

そして、微細化室に流入した粒子径の大きい霧(例えば、湿った霧)は、微細化室壁面(側面、天面等)に衝突(または接触)し、微細化室壁面に付着し、大きな液滴に成長すると思われる。また、微細化室に流入した粒子径の小さい霧(例えば、乾いた霧)は、微細化室流入の際に微細化すると思われる。また、微細化室に流入した粒子径のより小さい霧(例えば、乾いた霧、煙霧)は、微細化室壁面に接触または衝突しても付着することなく空気中に浮遊する傾向にある。したがって、微細化室の機能によって、第1霧化体中の大きい粒子径の霧(例えば、湿った霧)は、液滴に成長し、また粒子径の小さい霧(例えば、乾いた霧、その中でも粒子径の大きい霧)は、微細化されるため、第1霧化体よりも平均粒子径が小さい第2霧化体を好適に生成することができる。   Then, the mist having a large particle diameter (for example, wet mist) that has flowed into the miniaturization chamber collides (or comes into contact) with the miniaturization chamber wall surface (side surface, top surface, etc.), adheres to the miniaturization chamber wall surface, and is large. It appears to grow into droplets. Moreover, it is considered that a mist having a small particle diameter (for example, a dry mist) that has flowed into the miniaturization chamber is miniaturized during the inflow of the miniaturization chamber. Further, a mist having a smaller particle diameter (for example, dry mist or smoke) that has flowed into the miniaturization chamber tends to float in the air without adhering to or contacting the micronization chamber wall surface. Therefore, due to the function of the miniaturization chamber, a mist having a large particle size (for example, a wet mist) in the first atomized body grows into a droplet, and a mist having a small particle size (for example, a dry mist, its mist) In particular, the mist having a large particle diameter is refined, so that a second atomized body having an average particle diameter smaller than that of the first atomized body can be suitably generated.

気液混合ノズルとしては、公知の気液混合ノズル(2流体ノズル)を用いることができ、これに微細化室を備えることで、微細化促進用の気液混合ノズル装置を好適に構成できるため、低コスト、かつ小型化が可能である。気液混合ノズルは、例えば、金属製、プラスチック製、ゴム製、それらが混在したもの等が挙げられる。気液混合ノズル装置に供給される「気体」は、特に制限されず、例えば、空気、清浄空気、高酸素濃度空気、不活性ガス等の気体が挙げられる。また、気液混合ノズル装置に供給される「液体」は、特に制限されないが、水、イオン化水、化粧水等の化粧薬液、医薬液、殺菌液、除菌液等の薬液、塗料、コーティング剤、溶剤、樹脂等が挙げられる。   As the gas-liquid mixing nozzle, a known gas-liquid mixing nozzle (two-fluid nozzle) can be used, and a gas-liquid mixing nozzle device for promoting miniaturization can be suitably configured by providing a miniaturization chamber. Low cost and downsizing are possible. Examples of the gas-liquid mixing nozzle include metal, plastic, rubber, and a mixture thereof. The “gas” supplied to the gas-liquid mixing nozzle device is not particularly limited, and examples thereof include gases such as air, clean air, high oxygen concentration air, and inert gas. In addition, the “liquid” supplied to the gas-liquid mixing nozzle device is not particularly limited, but is a chemical solution such as water, ionized water, and lotion, a chemical solution such as a pharmaceutical solution, a bactericidal solution, and a sterilizing solution, a paint, and a coating agent. , Solvent, resin and the like.

また、気液混合ノズルで形成され噴出される第1霧化体の平均粒子径(MMD)は大きく(例えば、6μmより大きく)、粒度分布において粒子径が大きくなる方向に分布が広くなる傾向であるが、微細化室で微細化された第2霧化体の平均粒子径(MMD)は小さく(例えば、6μm以下)、粒度分布の分布幅も小さく、粒子径が略そろった霧となる。   Further, the average particle diameter (MMD) of the first atomized body formed and ejected by the gas-liquid mixing nozzle is large (for example, larger than 6 μm), and the distribution tends to increase in the direction in which the particle diameter increases in the particle size distribution. However, the average particle diameter (MMD) of the second atomized body refined in the miniaturization chamber is small (for example, 6 μm or less), the distribution width of the particle size distribution is small, and the particle diameter is substantially uniform.

微細化室は、例えば、金属製、プラスチック製、ゴム製、それらが混在したもの等が挙げられる。霧化体の液体に応じて、微細化室内壁の濡れ性(固体面と液体との付着性)を考慮した材料設計をすることが好ましい。また、微細化室内面にコーティング剤をコーティングし、微細化を促進させることができる。第1霧化体中の大きい粒子径の霧(例えば、湿った霧、乾いた霧中の大きい粒子径の霧)を微細化室の壁面に付着させて液滴に成長させることで、第1霧化体全体の微細化を行って第2霧化体を形成することができる。また、飛沫として噴出するような大きい粒子径の霧を微細化室壁面に接触または衝突するように微細化室を構成して、大きい霧を液滴に成長させることが好ましい。   Examples of the miniaturization chamber include metal, plastic, rubber, and a mixture thereof. It is preferable to design the material in consideration of the wettability (adhesion between the solid surface and the liquid) of the miniaturized interior wall according to the liquid of the atomized body. In addition, a coating agent can be coated on the inside of the miniaturization chamber to promote miniaturization. A mist having a large particle diameter in the first atomized body (for example, a wet mist, a mist having a large particle diameter in a dry mist) is attached to the wall surface of the miniaturization chamber and grown into droplets, whereby the first mist The second atomized body can be formed by refining the entire body. In addition, it is preferable to configure the miniaturization chamber so that a mist having a large particle diameter that is ejected as droplets contacts or collides with the wall of the miniaturization chamber and grows the large mist into droplets.

微細化室の形状は、特に制限されず、例えば、筒状、錐状(円錐、円錐台、多角錘、錐台も含む概念であって以下同じ。)、ラッパ状、多角柱、球状、多面体、これらの組み合わせ形状等が挙げられ、第1霧化体の噴出方向に平行な筒状、円錐台状、ラッパ状等が好ましい。また、微細化室の室内部空間サイズは、特に制限されず、例えば、気液混合ノズルとの連結構造、第2霧化体を形成するための仕様に応じて設定可能である。微細化室のサイズは、小型の気液混合ノズルと同程度に設計することができ、よって気液混合ノズル装置を小型にできる。微細化室と気液混合ノズルとの連結構造は、特に制限されず、例えば、微細化室の一方開口部をノズル先端部に直接固定する構造、微細化室とノズル先端部との間に連結部を介在させる構造等が挙げられる。連結部は、例えばフレキシブルチューブ、管等が挙げられる。   The shape of the miniaturization chamber is not particularly limited. For example, a cylindrical shape, a cone shape (concept including a cone, a truncated cone, a polygonal pyramid, and a truncated cone, the same shall apply hereinafter), a trumpet shape, a polygonal column, a spherical shape, and a polyhedron. These shapes are combined, and a cylindrical shape, a truncated cone shape, a trumpet shape, and the like parallel to the ejection direction of the first atomized body are preferable. Moreover, the indoor space size of the miniaturization chamber is not particularly limited, and can be set according to, for example, a connection structure with a gas-liquid mixing nozzle and specifications for forming the second atomized body. The size of the miniaturization chamber can be designed to be the same as that of a small gas-liquid mixing nozzle, and thus the gas-liquid mixing nozzle device can be made small. The connection structure between the micronization chamber and the gas-liquid mixing nozzle is not particularly limited. For example, the structure in which one opening of the micronization chamber is directly fixed to the nozzle tip, and the connection between the micronization chamber and the nozzle tip is connected. Examples include a structure in which a part is interposed. As for a connection part, a flexible tube, a pipe | tube, etc. are mentioned, for example.

また、上記の本発明の実施形態として、微細化室の側壁面に1以上の貫通孔または1以上のスリット状の流通部を形成する構成がある。この構成によれば、微細化室の側壁面に形成された流通部から第2霧化体がその外に流通する。流通部は、1以上の貫通孔またはスリット状である。壁面に対し、垂直に貫通孔またはスリットを形成すれば、壁面に対し略垂直に第2霧化体が流出する。また、壁面に対し、所定の角度で貫通孔またはスリットを形成すれば、壁面に対し、その所定の角度方向に第2霧化体が流出する。これにより流出方向を規制することができる。   In addition, as an embodiment of the present invention, there is a configuration in which one or more through holes or one or more slit-shaped circulation portions are formed on the side wall surface of the miniaturization chamber. According to this structure, the 2nd atomization body distribute | circulates out from the distribution | circulation part formed in the side wall surface of a micronization chamber. The circulation part has one or more through holes or slits. If a through-hole or a slit is formed perpendicular to the wall surface, the second atomized body flows out substantially perpendicular to the wall surface. Moreover, if a through-hole or a slit is formed at a predetermined angle with respect to the wall surface, the second atomized body flows out in the predetermined angle direction with respect to the wall surface. Thereby, the outflow direction can be regulated.

また、上記の本発明の実施形態として、ノズル先端から噴出する第1霧化体の噴出方向軸上に微細化室が配置される構成がある。この構成によれば、第1霧化体の噴出方向軸上に微細化室が配置されているため、第1霧化体を微細化室にスムーズに送りこめる。   In addition, as an embodiment of the present invention, there is a configuration in which a miniaturization chamber is arranged on the ejection direction axis of the first atomized body ejected from the nozzle tip. According to this configuration, since the miniaturization chamber is arranged on the ejection direction axis of the first atomized body, the first atomized body can be smoothly fed into the miniaturization chamber.

また、上記の本発明の実施形態として、微細化室の外側に、流通部から流出する第2霧化体の流出方向を規制する開口部を有する放出壁をさらに備える構成がある。この構成によれば、流通部から流通した第2霧化体の放出方向を好適に規制できる。放出壁は、少なくとも流通部周辺に設置されていればよく、放出壁を、流通部周辺に固定された管で構成することができる。また、放出壁を、微細化室の外周を取り囲み、流通部から放出される第2霧化体の放出方向を、放出壁の開口部方向に規制するように構成できる(図2、3参照)。   In addition, as an embodiment of the present invention, there is a configuration further including a discharge wall having an opening that regulates the outflow direction of the second atomized body flowing out from the circulation portion outside the miniaturization chamber. According to this structure, the discharge | release direction of the 2nd atomization body distribute | circulated from the distribution part can be controlled suitably. The discharge wall only needs to be installed at least around the circulation part, and the discharge wall can be constituted by a pipe fixed around the circulation part. Further, the discharge wall can be configured to surround the outer periphery of the miniaturization chamber and restrict the discharge direction of the second atomized body discharged from the flow part to the opening part direction of the discharge wall (see FIGS. 2 and 3). .

また、上記の本発明の他の実施形態として、
前記微細化室内に第1霧化体の噴出方向軸に、当該霧化体と接触する接触部を設け、微細化室の天井壁面に1以上の貫通孔または1以上のスリット状の流通部を形成する構成がある(図4参照)。この構成によれば、第1霧化体中の大きい粒子径の霧は、接触部に接触して液滴に成長し、小さい粒子径の霧は、接触部に接触しても霧のまま空気中に浮遊しながら、流通部から放出する(図4参照)。
As another embodiment of the present invention,
A contact portion that contacts the atomized body is provided on the ejection direction axis of the first atomized body in the refined chamber, and one or more through holes or one or more slit-shaped flow portions are provided on the ceiling wall surface of the refined chamber. There is a structure to be formed (see FIG. 4). According to this configuration, the mist having a large particle diameter in the first atomized body comes into contact with the contact portion and grows into a droplet, and the mist having a small particle diameter remains in the mist even when contacting the contact portion. While floating inside, discharge from the circulation part (see FIG. 4).

また、上記の本発明の実施形態として、微細化室に液体の排出部を設ける構成がある。この構成によれば、微細化室で液滴に成長した液体を微細化室外部に好適に排出することができ、ノズル先端部に液体(排出液)が溜まって第1霧化体の噴出を邪魔することがない。また、ノズル先端部を凸状に形成することで、液体の逆流を抑制するように構成することが好ましい。   Further, as an embodiment of the present invention, there is a configuration in which a liquid discharge unit is provided in the miniaturization chamber. According to this configuration, the liquid that has grown into droplets in the miniaturization chamber can be suitably discharged to the outside of the miniaturization chamber, and the liquid (discharged liquid) accumulates at the tip of the nozzle, thereby ejecting the first atomized body. There is no disturbing. Further, it is preferable that the nozzle tip is formed in a convex shape so as to suppress the back flow of the liquid.

また、上記の実施形態において、排出部から排出された液体を溜める液溜部と、液溜部の液体を、気液混合ノズル装置に供給する吸込部とを備える構成が好ましい。この構成によれば、微細化室で液滴に成長した液体を排出部から排出し、排出された液体を液溜部に貯留することができ、液体による微細化作用の低減を好適に抑制できる。排出部と貯留部は直接連結されてもよく配管等の連結管で連結してもよい。液滴が自重で落下して(または壁面を流れて)排出部から排出され、そのまま液溜部に流れる構成が好ましい。また、液溜部の液体を、気液混合ノズル装置に供給する吸込部を備えているので、液溜部内の液体(排出液)を吸込部によって吸引し、気液混合ノズルの液体送給管に供給して、液体を再利用することができる。吸引は、例えば、供給液体の送給(水流による負圧作用)による吸引作用が挙げられる。   Moreover, in said embodiment, the structure provided with the liquid storage part which stores the liquid discharged | emitted from the discharge part, and the suction part which supplies the liquid of a liquid storage part to a gas-liquid mixing nozzle apparatus is preferable. According to this configuration, the liquid that has grown into droplets in the miniaturization chamber can be discharged from the discharge section, and the discharged liquid can be stored in the liquid storage section, and the reduction of the micronization effect due to the liquid can be suitably suppressed. . The discharge part and the storage part may be directly connected or connected by a connecting pipe such as a pipe. A configuration in which the droplet falls by its own weight (or flows on the wall surface), is discharged from the discharge portion, and flows to the liquid storage portion as it is is preferable. Moreover, since the suction part which supplies the liquid of a liquid reservoir part to a gas-liquid mixing nozzle apparatus is provided, the liquid (discharge liquid) in a liquid reservoir part is attracted | sucked by a suction part, and the liquid feed pipe of a gas-liquid mixing nozzle And the liquid can be reused. The suction includes, for example, a suction action by feeding the supply liquid (negative pressure action by water flow).

また、上記の本発明の他の実施形態において、微細化室に気体を流入する気体流入部を形成する構成がある。この構成によれば、微細化室内部の気圧バランスを調節できるため、ノズルから噴射される第1霧化体の噴射速度や噴射量を微調整できて微細化作用を調整し、微細化室から流出される第2霧化体の流出速度を調整できるため好ましい。微細化室に形成される気体流入部は、1以上の孔、またはスリットで構成できる。気体流入部は、気液混合ノズル先端部の高さ位置と略同じ位置に形成されるのが好ましい(図8(b)参照)。また、微細化室の外側を覆う外壁が存在する場合、この外壁にも気体流入部を形成することが好ましい。微細化室に形成された第1気体流入部または外壁に形成された第2気体流入部の開口サイズを調整することで、微細化室に流入される気体量を調節できる。ここでの「気体」は、特に制限されず、例えば、空気、清浄空気、高酸素濃度空気、不活性ガス等の気体が挙げられる。   In another embodiment of the present invention described above, there is a configuration in which a gas inflow portion for introducing gas into the miniaturization chamber is formed. According to this configuration, since the atmospheric pressure balance in the miniaturization chamber can be adjusted, the spraying speed and the injection amount of the first atomized body sprayed from the nozzle can be finely adjusted to adjust the micronization effect, and from the miniaturization chamber This is preferable because the outflow speed of the second atomized body to be discharged can be adjusted. The gas inflow portion formed in the miniaturization chamber can be composed of one or more holes or slits. The gas inflow portion is preferably formed at a position substantially the same as the height position of the gas-liquid mixing nozzle tip (see FIG. 8B). Moreover, when the outer wall which covers the outer side of a micronization chamber exists, it is preferable to form a gas inflow part also in this outer wall. The amount of gas flowing into the miniaturization chamber can be adjusted by adjusting the opening size of the first gas inflow portion formed in the miniaturization chamber or the second gas inflow portion formed in the outer wall. The “gas” here is not particularly limited, and examples thereof include gases such as air, clean air, high oxygen concentration air, and inert gas.

また、上記の本発明の気液混合ノズル装置は、気液混合ノズル装置に供給される気体(空気)圧力を0.01MPa以上0.1MPa以下の条件で、全噴射液(水)量を0.3ml/min以上1.5mL/min以下、有効霧化率を8%以上17%以下に構成できる。また、装置外部に放出された霧(第2霧化体)の平均粒子径(MMD)を、1.0μm以上6.0μm以下に、より好ましくは1.0μm以上5.0μm以下に、さらに好ましくは1.0μm以上4.0μm以下に構成できる。すなわち、気体圧力を小さくできるため、本発明の気液混合ノズル装置の気体送給に必要な駆動源(例えば、エアポンプ、電源、圧縮空気ボンベ、手動の空気送給機構)を小型化できる。   In the gas-liquid mixing nozzle device of the present invention, the gas (air) pressure supplied to the gas-liquid mixing nozzle device is 0.01 MPa or more and 0.1 MPa or less, and the total injection liquid (water) amount is 0. .3 ml / min to 1.5 mL / min, and effective atomization rate can be 8% to 17%. Moreover, the average particle diameter (MMD) of the mist (second atomized body) discharged to the outside of the apparatus is 1.0 μm or more and 6.0 μm or less, more preferably 1.0 μm or more and 5.0 μm or less. Can be configured to be 1.0 μm or more and 4.0 μm or less. That is, since the gas pressure can be reduced, the drive source (for example, an air pump, a power source, a compressed air cylinder, a manual air supply mechanism) necessary for gas supply of the gas-liquid mixing nozzle device of the present invention can be reduced in size.

有効霧化率は、(全噴射液(水)量−液体(水)付着量)/全噴射液(水)量×100(%)で算出される。液体(水)付着量は、排出部から排出された液(水)量を測定して得られる。全噴射液(水)量は、所定時間に対する噴射液量を予め測定することで得られる。   The effective atomization rate is calculated by (total injection liquid (water) amount−liquid (water) adhesion amount) / total injection liquid (water) amount × 100 (%). The amount of liquid (water) adhesion is obtained by measuring the amount of liquid (water) discharged from the discharge portion. The total amount of the injected liquid (water) is obtained by measuring the amount of the injected liquid for a predetermined time in advance.

気液混合ノズルから噴出された霧化体の一例の写真を示す図である。It is a figure which shows the photograph of an example of the atomized body ejected from the gas-liquid mixing nozzle. 実施形態1の微細化促進用の気液混合ノズル装置の例を示す模式図である。It is a schematic diagram which shows the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 1. FIG. 実施形態2の微細化促進用の気液混合ノズル装置の例を示す模式図である。It is a schematic diagram which shows the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 2. FIG. 実施形態3の微細化促進用の気液混合ノズル装置の例を示す模式図である。It is a schematic diagram which shows the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 3. FIG. 微細化室の例を示す模式図である。It is a schematic diagram which shows the example of a miniaturization chamber. 微細化室の例を示す模式図である。It is a schematic diagram which shows the example of a miniaturization chamber. 実施例の粒度分布を示す図である。It is a figure which shows the particle size distribution of an Example. 実施形態4の微細化促進用の気液混合ノズル装置の例を示す模式図である。It is a schematic diagram which shows the example of the gas-liquid mixing nozzle apparatus for refinement | miniaturization of Embodiment 4. FIG.

(実施形態1)
以下に、実施形態1の微細化促進用の気液混合ノズル装置について図2を用いて説明する。図2の気液混合ノズル装置10は、ノズル先端部から噴出する第1霧化体31を受け入れる微細化室20を備える。気液混合ノズル装置10は、公知の構造であり図2はその模式図である(以下の実施形態においても同様である。)。液体は、液体送給管11を通って送給され、気体は、気体送給管12を通って送給される。図2(a)の微細化室20は、噴出方向軸上のノズル先端部に連結固定され、第1霧化体31を受け入れる。微細化室20の噴出方向前方部分に、4つの孔の流通部21が形成され、微細化室20で微細化された第2霧化体32がその微細化室20外部に流出する。微細化室20のノズル先端部に近い位置に、第1霧化体中の霧が液滴に成長して形成された液体を排出するための排出部22が形成されている。微細化室20は、図2において筒形状であるが、排出部壁面を他の壁面よりも窪んだ壁面として液体の排出を容易にするように構成してもよい。また、気液混合ノズル先端部を凸形状にして液体がノズル内部に逆流するのを防ぐように構成することもできる(以下の実施形態でも同様である)。
(Embodiment 1)
The gas-liquid mixing nozzle device for promoting miniaturization according to the first embodiment will be described below with reference to FIG. The gas-liquid mixing nozzle device 10 of FIG. 2 includes a miniaturization chamber 20 that receives a first atomized body 31 ejected from the nozzle tip. The gas-liquid mixing nozzle device 10 has a known structure, and FIG. 2 is a schematic diagram thereof (the same applies to the following embodiments). Liquid is fed through the liquid feed tube 11 and gas is fed through the gas feed tube 12. The miniaturization chamber 20 in FIG. 2A is connected and fixed to the nozzle tip on the ejection direction axis and receives the first atomized body 31. In the forward portion of the atomization chamber 20 in the ejection direction, four holes 21 are formed, and the second atomized body 32 refined in the atomization chamber 20 flows out of the atomization chamber 20. A discharge portion 22 for discharging the liquid formed by the mist in the first atomized body growing into droplets is formed at a position near the nozzle tip of the miniaturization chamber 20. Although the miniaturization chamber 20 has a cylindrical shape in FIG. 2, the discharge portion wall surface may be configured to be a wall surface recessed from the other wall surfaces so as to facilitate liquid discharge. Further, the gas-liquid mixing nozzle tip may be convex to prevent the liquid from flowing back into the nozzle (the same applies to the following embodiments).

また、図2(b)のように、微細化室20の外周に、半径方向に拡張した開口部24aを有する円錐台24を連結固定し、放出壁24bおよび開口部24aによって、流通部21から流出する第2霧化体32の流出方向を規制する。なお、微細化室20と円錐台24を一体構造に構成することもできる。   Further, as shown in FIG. 2B, a truncated cone 24 having an opening 24a radially expanded is connected and fixed to the outer periphery of the miniaturization chamber 20, and the circulation wall 21 is separated from the circulation portion 21 by the discharge wall 24b and the opening 24a. The outflow direction of the second atomized body 32 that flows out is regulated. Note that the miniaturization chamber 20 and the truncated cone 24 can be configured as an integral structure.

また、図2(c)のように、第2霧化体32の放出方向を切り換え、第2霧化体32の粒子を滞留させて霧化体の単位時間あたりの放出量を均一に提供できる、フード部40を配置することができる。フード部40の先端に放出部41が形成されている。また、排出部22から伸びる排管26をフード部40の外部に導かれる構成とする。この配管26は、液体の送給部(不図示)または液体送給管11に導くようにして、液体を再利用することができる。排出部22は、孔であるが、その数、サイズは、排出液の量に応じて設計できる。   Further, as shown in FIG. 2C, the discharge direction of the second atomized body 32 is switched, the particles of the second atomized body 32 are retained, and the amount of discharge of the atomized body per unit time can be provided uniformly. The food part 40 can be arranged. A discharge portion 41 is formed at the tip of the hood portion 40. Further, the exhaust pipe 26 extending from the discharge unit 22 is guided to the outside of the hood unit 40. The pipe 26 can recycle the liquid by guiding it to a liquid feeding section (not shown) or the liquid feeding pipe 11. Although the discharge part 22 is a hole, the number and size can be designed according to the quantity of discharge liquid.

また、図2(d)は、図2(c)の気液混合ノズル装置を、第2霧化体32の放出方向が上向きになるようにした図である。また、図2(e)は、図2(c)の気液混合ノズル装置を、第2霧化体32の放出方向が下向きになるようにした図である。この場合、液体の排出部22は、微細化室20の底面に形成され、この排出部22から伸びる排管26がフード部40の外部に導される構成である。   Moreover, FIG.2 (d) is the figure which made the discharge | release direction of the 2nd atomizer 32 the upward direction for the gas-liquid mixing nozzle apparatus of FIG.2 (c). Moreover, FIG.2 (e) is the figure which made the discharge | release direction of the 2nd atomization body 32 face down the gas-liquid mixing nozzle apparatus of FIG.2 (c). In this case, the liquid discharge portion 22 is formed on the bottom surface of the miniaturization chamber 20, and a discharge pipe 26 extending from the discharge portion 22 is guided to the outside of the hood portion 40.

また、ノズル先端部に微細化室20やフード部40を着脱可能な構造(例えば、ネジ式、勘合式等)で取り付けることで、微細化室20、フード部40、ノズル先端部等の清掃、メンテナンスを容易に行なえ、微細化室20やフード部40を使い捨てにすることもできる(以下の実施形態においても同様である)。円推台24においても同様に着脱可能に構成できる。   In addition, the micronization chamber 20, the hood unit 40, the nozzle tip, etc. can be cleaned by attaching the micronization chamber 20 and the hood unit 40 to the nozzle tip with a detachable structure (for example, screw type, fitting type). Maintenance can be easily performed, and the miniaturization chamber 20 and the hood portion 40 can be made disposable (the same applies to the following embodiments). Similarly, the circular platform 24 can be configured to be detachable.

また、微細化室20の排出部22と同様に、円錐台24またはフード部40の壁面に霧が付着する場合には、付着した液体を排出するための排出部(不図示)が円錐台24、フード部40に形成される構成もある。   Similarly to the discharge part 22 of the miniaturization chamber 20, when mist adheres to the wall surface of the truncated cone 24 or the hood part 40, the discharge part (not shown) for discharging the attached liquid is a truncated cone 24. There is also a configuration formed in the hood portion 40.

また、図2(f)に示すように、微細化室20およびフード部40に外気を流入するための吸気孔71(気体流入部に相当する)を形成し、微細化室内の気圧を調節して、微細化作用を微調整し、形成される第2霧化体の放出速度を調節することができる。   Further, as shown in FIG. 2 (f), an intake hole 71 (corresponding to a gas inflow portion) for allowing outside air to flow into the miniaturization chamber 20 and the hood portion 40 is formed, and the atmospheric pressure in the miniaturization chamber is adjusted. Thus, the finening effect can be finely adjusted, and the release rate of the formed second atomized body can be adjusted.

(微細化室)
図5(a)に示すように、微細化室20の流出部21は4つの孔(2つは不図示)として構成できる。孔は4つに限定されず、1つでもよく、2つ以上でもよい。また、孔のサイズは、すべて同じでなくてもよく、大小の混在した複数の孔で流通部21を構成してもよい。また、図5(b)に示すように、流通部21はスリットとして構成できる。スリットは、2重、3重に構成されていてもよく、周上に分断した複数のスリットとして構成してもよい。また、流通部21を孔とスリットの両方で構成することもできる。
(Miniaturization room)
As shown in FIG. 5A, the outflow portion 21 of the miniaturization chamber 20 can be configured as four holes (two not shown). The number of holes is not limited to four, and may be one or two or more. Also, the size of the holes may not be the same, and the flow part 21 may be configured by a plurality of holes mixed in size. Moreover, as shown in FIG.5 (b), the distribution | circulation part 21 can be comprised as a slit. The slit may be configured to be double or triple, and may be configured as a plurality of slits divided on the circumference. Moreover, the distribution | circulation part 21 can also be comprised by both a hole and a slit.

図6(a)の微細化室20は、筒状である。図6(b)、(c)の微細化室は、円錐台である。図6(d)の微細化室20は、先端半球の筒状である。なお、微細化室の形状は、図6に制限されない。   The miniaturization chamber 20 in FIG. 6A is cylindrical. 6B and 6C is a truncated cone. The miniaturization chamber 20 in FIG. 6D has a cylindrical shape with a tip hemisphere. The shape of the miniaturization chamber is not limited to FIG.

実施形態1によれば、微細化室20で、第1霧化体31を好適に微細化することができる。また、円錐台24またはフード部40(後段微細化室の機能に相当する)で第2段階目の微細化を行うこともできる。   According to the first embodiment, the first atomized body 31 can be suitably miniaturized in the miniaturization chamber 20. Further, the second stage of miniaturization can be performed by the truncated cone 24 or the hood part 40 (corresponding to the function of the latter stage miniaturization chamber).

(実施例)
図2(b)の気液混合ノズル装置を用い、空気圧の変化に応じた有効霧化率の結果を表1に示す。ノズル先端部のオリフィスの直径が0.45mmである。液体として、タンクに貯めた水道水を用いた。エアポンプを用いて空気圧(MPa)を変えたときの有効霧化率(%)を算出した。表1において、実施例3から5、実施例8から10、実施例11から13は、同じ空気圧値における実施結果を示し、それらの平均の有効霧化率を算出している。
(Example)
Table 1 shows the result of the effective atomization rate corresponding to the change in air pressure using the gas-liquid mixing nozzle device of FIG. The diameter of the orifice at the nozzle tip is 0.45 mm. Tap water stored in a tank was used as the liquid. The effective atomization rate (%) when the air pressure (MPa) was changed using an air pump was calculated. In Table 1, Examples 3 to 5, Examples 8 to 10, and Examples 11 to 13 show the results of implementation at the same air pressure value, and the average effective atomization rate is calculated.

気液混合ノズル装置に供給される空気圧を0.01MPa以上0.09MPa以下の条件とした場合、水全噴射量が0.3ml/min以上1.5mL/min以下であり、有効霧化率が8%以上17%以下であった。   When the air pressure supplied to the gas-liquid mixing nozzle device is 0.01 MPa or more and 0.09 MPa or less, the total water injection amount is 0.3 ml / min or more and 1.5 mL / min or less, and the effective atomization rate is It was 8% or more and 17% or less.

また、表1の実施例8の場合の第2霧化体(32)の粒度分布(粒子径ヒストグラム(個数分布および質量分布))を図7に示す。第2霧化体(32)の噴出位置(円錐台24の開口部24a)から距離7mmの位置でレーザー測定した結果である。レーザー測定の方法として、位相差ドップラー式レーザー粒子解析(PDPA)方法を用いた。測定結果は、第2霧化体(32)の測定粒子数941個において、算術平均径が2.21μm(最大6.0μm)、ザウター平均径が3.68μm、平均粒子径(MMD)が4.18μmであった。また、微細化室(20)を取り付けていない状態の第1霧化体(31)の平均粒子径(MMD)は6.96μであった。   Moreover, the particle size distribution (particle diameter histogram (number distribution and mass distribution)) of the second atomized body (32) in the case of Example 8 in Table 1 is shown in FIG. It is the result of carrying out laser measurement in the position of distance 7mm from the ejection position (opening 24a of the truncated cone 24) of the 2nd atomization body (32). As a laser measurement method, a phase difference Doppler laser particle analysis (PDPA) method was used. As a result of the measurement, the number of measured particles of the second atomized body (32) was 941, and the arithmetic average diameter was 2.21 μm (maximum 6.0 μm), the Sauter average diameter was 3.68 μm, and the average particle diameter (MMD) was 4. .18 μm. Moreover, the average particle diameter (MMD) of the 1st atomization body (31) in the state which has not attached the refinement | miniaturization chamber (20) was 6.96micrometer.

また、比較例として、市販の超音波式霧化装置について測定した結果、算術平均径が2.48μm(最大8.0μm)、平均粒子径(MMD)が5.37μmであった。すなわち、超音波霧化装置よりも平均粒子径の小さい霧化体を形成できたことを確認できた。   Moreover, as a comparative example, as a result of measuring about a commercially available ultrasonic atomizer, the arithmetic average diameter was 2.48 μm (maximum 8.0 μm), and the average particle diameter (MMD) was 5.37 μm. That is, it was confirmed that an atomized body having an average particle size smaller than that of the ultrasonic atomizer could be formed.

また、表1や実施例8の粒度分布からわかるように、平均粒子径(MMD)6.96μの第1霧化体(31)を平均粒子径(MMD)4.18μmの第2霧化体(32)に好適に微細化できたことを確認できた。また、供給する空気圧(またはエアポンプ性能)を小さくしても有効霧化率を8%以上にできることを確認できた。   Moreover, as can be seen from the particle size distribution in Table 1 and Example 8, the first atomized body (31) having an average particle diameter (MMD) of 6.96 μm is changed to the second atomized body having an average particle diameter (MMD) of 4.18 μm. It was confirmed that (32) was suitably miniaturized. It was also confirmed that the effective atomization rate could be 8% or more even if the supplied air pressure (or air pump performance) was reduced.

(実施形態2)
以下に、実施形態2の微細化促進用の気液混合ノズル装置について図3を用いて説明する。図3の気液混合ノズル装置10は、ノズル先端部から噴出する第1霧化体31を受け入れる微細化室20を備える。微細化室20のノズル先端部に近い位置に、第1霧化体31中の霧が液滴に成長して形成された液体を排出するための排出部22が形成されている。また、図3(a)で示すように、微細化室20の外周に、半径方向に拡張した開口部24aを有する円錐台24が、実施形態1と異なる方向に連結固定されている。実施形態1と同様に、放出壁24bおよび開口部24aによって、流通部21から流出する第2霧化体32の流出方向を規制する。また、図3(b)は、開口部24aが、尻すぼみになる形状の一例を示す図である。
(Embodiment 2)
The gas-liquid mixing nozzle device for promoting miniaturization according to the second embodiment will be described below with reference to FIG. The gas-liquid mixing nozzle device 10 of FIG. 3 includes a miniaturization chamber 20 that receives a first atomized body 31 ejected from the nozzle tip. A discharge portion 22 for discharging the liquid formed by the mist in the first atomizing body 31 growing into droplets is formed at a position near the nozzle tip of the miniaturization chamber 20. Further, as shown in FIG. 3A, a truncated cone 24 having an opening 24 a radially expanded on the outer periphery of the miniaturization chamber 20 is connected and fixed in a direction different from that in the first embodiment. Similarly to the first embodiment, the discharge direction of the second atomized body 32 flowing out from the circulation portion 21 is regulated by the discharge wall 24b and the opening 24a. FIG. 3B is a view showing an example of a shape in which the opening 24a becomes a bottom dent.

また、図3(c)に示すように、実施形態1と同様の機能構成であるフード部40が配置される。また、図3(d)は、円錐台24がない状態でフード部40が配置される例を示す。フード部40の壁面40aが放出壁の機能を実現し、開口部41から第2霧化体32が放出される。実施形態1と同様に、液体の排出部22から伸びる排管26がフード部40の外部に導かれる構成である。   Moreover, as shown in FIG.3 (c), the food | hood part 40 which is the function structure similar to Embodiment 1 is arrange | positioned. FIG. 3D shows an example in which the hood portion 40 is arranged without the truncated cone 24. The wall surface 40a of the hood part 40 realizes the function of a discharge wall, and the second atomized body 32 is discharged from the opening 41. Similar to the first embodiment, the exhaust pipe 26 extending from the liquid discharge section 22 is guided to the outside of the hood section 40.

また、微細化室20およびフード部40に外気を流入するための吸気孔(気体流入部に相当する)を形成し、微細化室内の気圧を調節して、微細化作用を微調整し、形成される第2霧化体の放出速度を調節することができる。   Further, an intake hole (corresponding to a gas inflow portion) for allowing outside air to flow into the miniaturization chamber 20 and the hood portion 40 is formed, and the atmospheric pressure in the miniaturization chamber is adjusted to finely adjust the miniaturization effect. It is possible to adjust the release rate of the second atomized body.

実施形態2によれば、微細化室20で、第1霧化体31を好適に微細化することができる。また、円錐台24またはフード部40(後段微細化室の機能に相当する)で第2段階目の微細化を行うこともできる。   According to the second embodiment, the first atomized body 31 can be suitably miniaturized in the miniaturization chamber 20. Further, the second stage of miniaturization can be performed by the truncated cone 24 or the hood part 40 (corresponding to the function of the latter stage miniaturization chamber).

(実施形態3)
以下に、実施形態3の微細化促進用の気液混合ノズル装置について図4を用いて説明する。図4の気液混合ノズル装置10は、ノズル先端部から噴出する第1霧化体31を受け入れる微細化室20を備える。図4(a)に示すように、この微細化室20内の第1霧化体31の噴出方向軸に、第1霧化体31と接触する接触部28が設けられ、微細化室20の天井壁面に1以上の貫通孔または1以上のスリット状の流通部21が形成されている。
(Embodiment 3)
The gas-liquid mixing nozzle device for promoting miniaturization according to Embodiment 3 will be described below with reference to FIG. The gas-liquid mixing nozzle device 10 in FIG. 4 includes a miniaturization chamber 20 that receives a first atomized body 31 ejected from the nozzle tip. As shown in FIG. 4A, a contact portion 28 that comes into contact with the first atomized body 31 is provided on the ejection direction axis of the first atomized body 31 in the miniaturized chamber 20. One or more through holes or one or more slit-shaped flow portions 21 are formed on the ceiling wall surface.

また、図4(b)に示すように、実施形態1と同様の機能構成であるフード部40が配置される。また、図4(c)は、図4(b)の気液混合ノズル装置を、第2霧化体32の放出方向が上向きになるようにした図である。また、図4(d)は、図4(b)の気液混合ノズル装置を、第2霧化体32の放出方向が下向きになるようにした図である。実施形態1と同様に、液体の排出部22は、微細化室20の底面に形成され、この排出部22から伸びる排管26がフード部40の外部に導かれる構成である。   Moreover, as shown in FIG.4 (b), the food | hood part 40 which is the function structure similar to Embodiment 1 is arrange | positioned. FIG. 4C is a view in which the gas-liquid mixing nozzle device of FIG. 4B is arranged such that the discharge direction of the second atomized body 32 is upward. FIG. 4D is a diagram in which the gas-liquid mixing nozzle device of FIG. 4B is configured such that the discharge direction of the second atomized body 32 is downward. Similarly to the first embodiment, the liquid discharge portion 22 is formed on the bottom surface of the miniaturization chamber 20, and a discharge pipe 26 extending from the discharge portion 22 is guided to the outside of the hood portion 40.

また、図4(e)に示すように、微細化室20およびフード部40に外気を流入するための吸気孔71(気体流入部に相当する)を形成し、微細化室内の気圧を調節して、微細化作用を微調整し、形成される第2霧化体の放出速度を調節することができる。   Further, as shown in FIG. 4E, an intake hole 71 (corresponding to a gas inflow portion) for allowing outside air to flow into the miniaturization chamber 20 and the hood portion 40 is formed, and the atmospheric pressure in the miniaturization chamber is adjusted. Thus, the finening effect can be finely adjusted, and the release rate of the formed second atomized body can be adjusted.

(実施形態4)
以下に、実施形態4の微細化促進用の気液混合ノズル装置について図8を用いて説明する。図8(a)、(b)の気液混合ノズル装置10は、ノズル先端部から噴出する第1霧化体31を受け入れる微細化室20を備える。この微細化室20は、第1霧化体31の噴出方向軸上に設置される。流通部21は、上記の実施形態と同様である。気液混合ノズルの外観形状を断面6角(6角に制限されず、断面多角形状でもよい)にし、微細化室20の一方開口部直径を6角の対角長に合わせて嵌め込むように構成できる。この場合、6角の各辺上と微細化室20内壁面との間に隙間ができる。この隙間を排出部22として機能させる。排出部22から排出された液滴(液体)は、液溜部50と気液混合ノズルとの間の隙間50aから液溜部50内部に流入される。液溜部50を筒状とし、微細化室20と同様に気液混合ノズルに嵌め込むように構成して隙間50aを形成できる。また、別実施形態として、ノズルの外壁面に溝またはノズル内部に配管を形成して液滴(液体)を液溜部50に流入するように構成することもできる。
(Embodiment 4)
The gas-liquid mixing nozzle device for promoting miniaturization according to the fourth embodiment will be described below with reference to FIG. The gas-liquid mixing nozzle device 10 in FIGS. 8A and 8B includes a miniaturization chamber 20 that receives a first atomized body 31 that is ejected from the nozzle tip. The miniaturization chamber 20 is installed on the ejection direction axis of the first atomized body 31. The distribution unit 21 is the same as in the above embodiment. The external shape of the gas-liquid mixing nozzle has a hexagonal cross section (not limited to a hexagonal shape but may be a polygonal cross sectional shape), and the one opening diameter of the miniaturization chamber 20 is fitted according to the diagonal length of the hexagon. Can be configured. In this case, a gap is formed between each side of the hexagon and the inner wall surface of the miniaturization chamber 20. This gap functions as the discharge unit 22. The liquid droplets (liquid) discharged from the discharge unit 22 flow into the liquid storage unit 50 through the gap 50a between the liquid storage unit 50 and the gas-liquid mixing nozzle. The liquid reservoir 50 can be formed in a cylindrical shape and can be fitted into the gas-liquid mixing nozzle in the same manner as the miniaturization chamber 20 to form the gap 50a. As another embodiment, a groove or a pipe is formed in the outer wall surface of the nozzle so that the liquid droplet (liquid) flows into the liquid reservoir 50.

液溜部50内部に吸込管51(吸込部に相当する)が配置され、この吸込管51によって、液溜部50内に溜まった液体を気液混合ノズルの液体送給管11に送り込み再利用することができる。吸い込み作用としては、例えば、液体送給による負圧作用を用いることができる。   A suction pipe 51 (corresponding to the suction part) is disposed inside the liquid reservoir 50, and the liquid accumulated in the liquid reservoir 50 is sent to the liquid feed pipe 11 of the gas-liquid mixing nozzle by the suction pipe 51 and reused. can do. As the suction action, for example, a negative pressure action by liquid feeding can be used.

図8(a)、(b)では、微細化室20と放出壁24bが一体構造となっている。微細化室20で微細化された第2霧化体は流通部21から流出し、放出壁24bで案内されて開口部24aから流出し、そしてフード部40に導かれて、放出部41から放出される。   8A and 8B, the miniaturization chamber 20 and the discharge wall 24b are integrated. The second atomized body refined in the miniaturization chamber 20 flows out from the flow part 21, is guided by the discharge wall 24 b, flows out from the opening part 24 a, is guided to the hood part 40, and is discharged from the discharge part 41. Is done.

符号60は、ノズル台であり、本装置を固定等するために用いられる。図8において、液溜部50とノズル台60とが連結されているが、これに制限されず、ノズル台60とフード部40が連結されていてもよい。また、液溜部50とフード部40とが連結されているが、これに制限されず、フード部40と微細化室20または気液混合ノズルとが連結されていてもよい。なおこの場合、排液の流通路が確保されるように構成される。   Reference numeral 60 denotes a nozzle base, which is used for fixing the apparatus. In FIG. 8, the liquid reservoir 50 and the nozzle base 60 are connected, but the present invention is not limited to this, and the nozzle base 60 and the hood part 40 may be connected. Moreover, although the liquid reservoir 50 and the hood part 40 are connected, it is not restricted to this, The hood part 40 and the refinement | miniaturization chamber 20 or the gas-liquid mixing nozzle may be connected. In this case, the drainage flow path is secured.

また、別実施形態として図8(b)に示すように、微細化室20の外周に吸気筒70を形成する構成がある。吸気筒70は微細化室20と一体構造に構成でき、またはそれぞれ別体に構成して固着してもよく、着脱自在に取り付けてもよい。そして、微細化室20、吸気筒70、液溜部50およびフード部40を共に貫通する吸気孔71(気体流入部に相当する)が形成される。図8(b)では、吸気孔71を一つ図示しているが、断面視で十字になるような4つの吸気孔が形成されていてもよい。なお、吸気孔71は、1つ以上であればよい。これによって、吸気孔71から外気が流入して、微細化室20内の気圧を調節でき、形成される第2霧化体の放出速度を調節することができる。また、吸気孔71の最外壁のフード部40を軸方向に回転スライドさせることで、吸気孔71の開口サイズを調節でき、外気流入量を調節して、微細化作用、第2霧化体の放出速度を調整することができる。   As another embodiment, as shown in FIG. 8B, there is a configuration in which an intake cylinder 70 is formed on the outer periphery of the miniaturization chamber 20. The intake cylinder 70 can be configured integrally with the miniaturization chamber 20, or can be configured separately and fixed, or can be detachably attached. Then, an intake hole 71 (corresponding to a gas inflow portion) penetrating through the miniaturization chamber 20, the intake cylinder 70, the liquid reservoir 50 and the hood portion 40 is formed. In FIG. 8B, one intake hole 71 is illustrated, but four intake holes that are cross-shaped in cross-sectional view may be formed. The number of intake holes 71 may be one or more. Thereby, outside air flows in from the intake hole 71, the atmospheric pressure in the miniaturization chamber 20 can be adjusted, and the discharge speed of the formed second atomized body can be adjusted. Further, by rotating and sliding the hood portion 40 on the outermost wall of the intake hole 71 in the axial direction, the opening size of the intake hole 71 can be adjusted, and the outside air inflow amount can be adjusted to reduce the size of the second atomized body. The release rate can be adjusted.

また、吸気筒70には、図面上の上から下に貫通するは排液孔(不図示)を形成している。フード部40で霧から液滴に成長した液体をこの排液孔を通して下部の液溜部50に流し込むことができる。排液孔は、1つ以上形成されていればよい。   The intake cylinder 70 has a drain hole (not shown) penetrating from the top to the bottom of the drawing. The liquid that has grown from mist into droplets in the hood 40 can flow into the lower liquid reservoir 50 through this drainage hole. One or more drain holes may be formed.

また、微細化室20、吸気筒70、フード部40、液溜部50、ノズル台60を着脱可能な構造(例えば、ネジ式、勘合式等)で取り付けることで、各部材、ノズル先端部等の清掃、メンテナンスを容易に行なえ、各部材を使い捨てにすることもできる。   Further, each member, nozzle tip, etc. can be obtained by attaching the miniaturization chamber 20, the intake cylinder 70, the hood 40, the liquid reservoir 50, and the nozzle base 60 with a detachable structure (for example, screw type, fitting type). Cleaning and maintenance can be easily performed, and each member can be made disposable.

10 気液混合ノズル
20 微細化室
21 流通部
22 排出部
24 円錐台
24a 開口部
24b 放出壁
31 第1霧化体
32 第2霧化体
40 フード部
41 開口部
50 液溜部
51 吸込管
71 吸気孔
DESCRIPTION OF SYMBOLS 10 Gas-liquid mixing nozzle 20 Micronization chamber 21 Distribution | circulation part 22 Discharge part 24 Frustum 24a Opening part 24b Release wall 31 1st atomization body 32 2nd atomization body 40 Hood part 41 Opening part 50 Liquid reservoir part 51 Intake pipe 71 Air intake hole

Claims (8)

ノズル先端部から噴出する第1霧化体を受け入れる微細化室を備え、
前記微細化室で第1霧化体を微細化し、当該微細化室から第2霧化体を流出する、微細化促進用の気液混合ノズル装置。
A finer chamber for receiving the first atomized body ejected from the nozzle tip,
A gas-liquid mixing nozzle device for promoting miniaturization, wherein the first atomized body is refined in the refinement chamber, and the second atomized body flows out from the refinement chamber.
前記微細化室の側壁面に1以上の貫通孔または1以上のスリット状の流通部を形成する請求項1に記載の微細化促進用の気液混合ノズル装置。   The gas-liquid mixing nozzle device for promoting miniaturization according to claim 1, wherein one or more through holes or one or more slit-shaped flow portions are formed on a side wall surface of the miniaturization chamber. 前記ノズル先端から噴出する第1霧化体の噴出方向軸上に前記微細化室が配置される請求項1または2に記載の微細化促進用の気液混合ノズル装置。   The gas-liquid mixing nozzle device for promoting miniaturization according to claim 1 or 2, wherein the miniaturization chamber is disposed on an ejection direction axis of a first atomized body ejected from the nozzle tip. 前記微細化室の外側に、前記流通部から流出する第2霧化体の流出方向を規制する開口部を有する放出壁をさらに備える、請求項1から3のいずれか1項に記載の微細化促進用の気液混合ノズル装置。   The miniaturization according to any one of claims 1 to 3, further comprising a discharge wall having an opening that regulates an outflow direction of the second atomized body flowing out from the circulation section outside the miniaturization chamber. Gas-liquid mixing nozzle device for promotion. 前記微細化室内に前記第1霧化体の噴出方向軸に、当該第1霧化体と接触する接触部を設け、前記微細化室の天井壁面に1以上の貫通孔または1以上のスリット状の流通部を形成する請求項1に記載の微細化促進用の気液混合ノズル装置。   A contact portion that comes into contact with the first atomized body is provided on the ejection direction axis of the first atomized body in the micronized chamber, and one or more through holes or one or more slits are formed on the ceiling wall surface of the micronized chamber. The gas-liquid mixing nozzle device for promoting miniaturization according to claim 1, wherein the gas-liquid mixing nozzle device according to claim 1 is formed. 前記微細化室に液体の排出部を設ける請求項1から5のいずれか1項に記載の微細化促進用の気液混合ノズル装置。   The gas-liquid mixing nozzle device for promoting miniaturization according to any one of claims 1 to 5, wherein a liquid discharge section is provided in the miniaturization chamber. 前記排出部から排出された液体を溜める液溜部と、
前記液溜部の液体を、気液混合ノズル装置に供給する吸込部とを備える請求項6に記載の微細化促進用の気液混合ノズル装置。
A liquid reservoir for storing the liquid discharged from the discharge portion;
The gas-liquid mixing nozzle device for promoting miniaturization according to claim 6, further comprising a suction unit that supplies the liquid in the liquid reservoir to the gas-liquid mixing nozzle device.
前記微細化室に気体を流入する気体流入部を形成する請求項1から7のいずれか1項に記載の微細化促進用の気液混合ノズル装置。
The gas-liquid mixing nozzle device for promoting miniaturization according to any one of claims 1 to 7, wherein a gas inflow portion through which gas flows into the miniaturization chamber is formed.
JP2009100674A 2009-04-17 2009-04-17 Gas-liquid mixing nozzle device for miniaturization acceleration Pending JP2010247106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100674A JP2010247106A (en) 2009-04-17 2009-04-17 Gas-liquid mixing nozzle device for miniaturization acceleration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100674A JP2010247106A (en) 2009-04-17 2009-04-17 Gas-liquid mixing nozzle device for miniaturization acceleration

Publications (1)

Publication Number Publication Date
JP2010247106A true JP2010247106A (en) 2010-11-04

Family

ID=43310073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100674A Pending JP2010247106A (en) 2009-04-17 2009-04-17 Gas-liquid mixing nozzle device for miniaturization acceleration

Country Status (1)

Country Link
JP (1) JP2010247106A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229855A (en) * 2011-04-26 2012-11-22 Toshiba Mitsubishi-Electric Industrial System Corp Humidifier
WO2013073336A1 (en) * 2011-11-14 2013-05-23 ノズルネットワーク株式会社 Liquid atomization device
WO2013094522A1 (en) * 2011-12-19 2013-06-27 ノズルネットワーク株式会社 Liquid atomization device
JP2013180258A (en) * 2012-03-02 2013-09-12 Nozzle Network Co Ltd Liquid atomizing device
WO2014070516A1 (en) * 2012-10-31 2014-05-08 Tenneco Automotive Operating Company Inc. Injector with capillary aerosol generator
US8978364B2 (en) 2012-05-07 2015-03-17 Tenneco Automotive Operating Company Inc. Reagent injector
CN104874500A (en) * 2015-06-04 2015-09-02 北京七星华创电子股份有限公司 Two-phase flow atomizing cleaner
JP5914690B2 (en) * 2012-11-05 2016-05-11 東芝三菱電機産業システム株式会社 Deposition equipment
US9759113B2 (en) 2012-05-10 2017-09-12 Tenneco Automotive Operating Company Inc. Coaxial flow injector
KR20190037720A (en) * 2017-09-29 2019-04-08 오지수 Nozzle apparatus for sterilization
CN110385208A (en) * 2018-04-12 2019-10-29 瓦格纳国际公司 Convey the powder conveyer of coating powder and the powder center for being used to supply powder coating equipment including powder conveyer
CN110596363A (en) * 2019-09-29 2019-12-20 上海化工研究院有限公司 Forced dispersion type aerial fog quantitative release device and use method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229855A (en) * 2011-04-26 2012-11-22 Toshiba Mitsubishi-Electric Industrial System Corp Humidifier
WO2013073336A1 (en) * 2011-11-14 2013-05-23 ノズルネットワーク株式会社 Liquid atomization device
WO2013094522A1 (en) * 2011-12-19 2013-06-27 ノズルネットワーク株式会社 Liquid atomization device
EP2799149A1 (en) * 2011-12-19 2014-11-05 Nozzle Network Co., Ltd Liquid atomization device
EP2799149A4 (en) * 2011-12-19 2015-03-25 Nozzle Network Co Ltd Liquid atomization device
JPWO2013094522A1 (en) * 2011-12-19 2015-04-27 ノズルネットワーク株式会社 Liquid atomizer
JP2013180258A (en) * 2012-03-02 2013-09-12 Nozzle Network Co Ltd Liquid atomizing device
US8978364B2 (en) 2012-05-07 2015-03-17 Tenneco Automotive Operating Company Inc. Reagent injector
US10465582B2 (en) 2012-05-07 2019-11-05 Tenneco Automotive Operating Company Inc. Reagent injector
US9759113B2 (en) 2012-05-10 2017-09-12 Tenneco Automotive Operating Company Inc. Coaxial flow injector
WO2014070516A1 (en) * 2012-10-31 2014-05-08 Tenneco Automotive Operating Company Inc. Injector with capillary aerosol generator
JP5914690B2 (en) * 2012-11-05 2016-05-11 東芝三菱電機産業システム株式会社 Deposition equipment
KR101764987B1 (en) * 2012-11-05 2017-08-03 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Film-forming apparatus
US10458017B2 (en) 2012-11-05 2019-10-29 Toshiba Mitsubishi-Electric Industrial Systems Corporation Film-forming apparatus to form a film on a substrate
CN104874500B (en) * 2015-06-04 2017-02-01 北京七星华创电子股份有限公司 Two-phase flow atomizing cleaner
CN104874500A (en) * 2015-06-04 2015-09-02 北京七星华创电子股份有限公司 Two-phase flow atomizing cleaner
KR20190037720A (en) * 2017-09-29 2019-04-08 오지수 Nozzle apparatus for sterilization
KR102118776B1 (en) 2017-09-29 2020-06-03 오지수 Nozzle apparatus for sterilization
CN110385208A (en) * 2018-04-12 2019-10-29 瓦格纳国际公司 Convey the powder conveyer of coating powder and the powder center for being used to supply powder coating equipment including powder conveyer
CN110596363A (en) * 2019-09-29 2019-12-20 上海化工研究院有限公司 Forced dispersion type aerial fog quantitative release device and use method thereof
CN110596363B (en) * 2019-09-29 2023-05-30 上海化工研究院有限公司 Forced dispersion type aerosol quantitative release device and use method thereof

Similar Documents

Publication Publication Date Title
JP2010247106A (en) Gas-liquid mixing nozzle device for miniaturization acceleration
JP3544350B2 (en) Spray nozzle device
JP2011078923A (en) Atomizer and atomizing apparatus
WO2009157803A1 (en) Aerosol device
JP6539468B2 (en) Ultrasonic atomizer
JP2011212665A (en) Two-fluid nozzle and atomizing device provided with two-fluid nozzle
JP2005288390A (en) Two-fluid nozzle and spraying method
JP2006346611A (en) Washing liquid spraying apparatus
JP5991685B1 (en) Sprayer and spraying apparatus using the sprayer
JP2007181802A (en) Spray nozzle and insert
US20170144119A1 (en) Granular material and method of producing granular material
NZ556180A (en) Swirl spray nozzle and insert thereof, with retaining portion of insert to allow it to be retained to nozzle body via O ring
US10413873B2 (en) Mixing apparatus for mixing powder having liquid repellent property and liquid
JP5562601B2 (en) Miniaturization promoting device and gas-liquid mixing nozzle device for miniaturization promoting device
JP2003001090A (en) Fluidized bed apparatus
JP2011098284A (en) Nozzle for mixing gas and liquid
JP2019018183A (en) Two-fluid nozzle
JP2004097852A (en) Fluidized bed apparatus
JP6814993B2 (en) Sprayer
CN113856977B (en) Ultrasonic spraying device
JP2012066168A (en) Liquid atomizing device and liquid atomizing method
JP2011098285A (en) Apparatus for helping micronization, and gas-liquid mixing nozzle device for use therein
JP2012030179A (en) Micronizer
JP7122826B2 (en) Seeding device
RU2665539C1 (en) Swirl nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130726