JP2010226126A - Solid-state image sensor - Google Patents

Solid-state image sensor Download PDF

Info

Publication number
JP2010226126A
JP2010226126A JP2010113720A JP2010113720A JP2010226126A JP 2010226126 A JP2010226126 A JP 2010226126A JP 2010113720 A JP2010113720 A JP 2010113720A JP 2010113720 A JP2010113720 A JP 2010113720A JP 2010226126 A JP2010226126 A JP 2010226126A
Authority
JP
Japan
Prior art keywords
solid
semiconductor substrate
imaging device
state imaging
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113720A
Other languages
Japanese (ja)
Other versions
JP5223883B2 (en
Inventor
Yoshiyuki Kitazawa
良幸 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010113720A priority Critical patent/JP5223883B2/en
Publication of JP2010226126A publication Critical patent/JP2010226126A/en
Application granted granted Critical
Publication of JP5223883B2 publication Critical patent/JP5223883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a back-reflection solid-state image sensor capable of preventing color mixture, and furthermore controlling a reduction of aperture ratio, a degradation of sensitivity, etc. of a photoelectric converter. <P>SOLUTION: The solid-state image sensor includes: photoelectric converters 34 formed in a semiconductor substrate 32; a plurality of pixels 35 made up of means for reading signal charges of the photoelectric converters 34; a light irradiated face which is irradiated with light from a backside of the semiconductor substrate 32; and light-shielding films 45 positioned between neighboring pixels in such a fashion as to be embedded inward of the backside of the semiconductor substrate 32. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、裏面照射型の固体撮像素子に関する。   The present invention relates to a back-illuminated solid-state imaging device.

従来のCMOSセンサあるいはCCDセンサ等の固体撮像素子においては、半導体基板に画素となる光電変換部が形成され、光電変換部の信号電荷を読み出す手段等の半導体パターンを形成した基板主面側にカラーフィルタ及びオントップレンズを形成して、基板表面側から光を入射する方式が最も一般的である。しかし、この表面照射型の例えばCMOS型固体撮像素子では、半導体ウェハ表面に配線層、遮光層、あるいはゲート電極などが配置されていることから、光電変換部以外のパターン面積によって光電変換部であるフォトダイオードの開口率が低下し、取り扱い電荷量及び感度が低下するという問題があった。また、配線層、遮光層、あるいはゲート電極で乱反射された入射光が隣接する画素に入射することによって混色が発生する。   In a conventional solid-state imaging device such as a CMOS sensor or a CCD sensor, a photoelectric conversion unit serving as a pixel is formed on a semiconductor substrate, and a color is formed on the main surface of the substrate on which a semiconductor pattern such as a means for reading signal charges of the photoelectric conversion unit is formed. The most common method is to form a filter and an on-top lens so that light is incident from the substrate surface side. However, in this surface irradiation type CMOS solid-state imaging device, for example, a wiring layer, a light-shielding layer, or a gate electrode is disposed on the surface of the semiconductor wafer, so that it is a photoelectric conversion unit depending on the pattern area other than the photoelectric conversion unit. There has been a problem that the aperture ratio of the photodiode is lowered, and the amount of charge handled and sensitivity are lowered. In addition, color mixing occurs when incident light irregularly reflected by a wiring layer, a light shielding layer, or a gate electrode enters an adjacent pixel.

近年、これらの問題を解決するために、特許文献1にあるように、画素パターンが形成された主面とは反対側の半導体基板裏面、すなわちシリコンウェハ裏面にカラーフィルタ及びオンチップレンズを形成して、光を裏面から入射する裏面照射型の固体撮像素子が提案されている。   In recent years, in order to solve these problems, as disclosed in Patent Document 1, a color filter and an on-chip lens are formed on the back surface of the semiconductor substrate opposite to the main surface on which the pixel pattern is formed, that is, on the back surface of the silicon wafer. Thus, a back-illuminated solid-state imaging device that makes light incident from the back surface has been proposed.

図10に、従来のシリコン単結晶基板内部に光電変換部となるフォトダイオードを埋め込んだ裏面照射型のCMOS固体撮像素子の一例を示す。同図は要部の断面構造を示す。
この裏面照射型のCMOS固体撮像素子1は、第1導電型例えばp型のシリコン半導体基板2の表面に各画素を区画するための素子分離領域3を形成し、各区画領域に光電変換部となるフォトダイオード4、フォトダイオードの信号電荷を読み出すための複数のMOSトランジスタTr、例えば読出しトランジスタ、リセットトランジスタ、アンプトランジスタ及び垂直選択トランジスタの4つのMOSトランジスタが形成されて単位画素セル5が形成される。この単位画素セル5が多数個、2次元マトリクッス状に配列される。フォトダイオード4は、各赤色、緑色及び青色に対応したフォトダイオード4R、4G及び4Bが順次配列されるように形成される。
FIG. 10 shows an example of a back-illuminated CMOS solid-state imaging device in which a photodiode serving as a photoelectric conversion unit is embedded in a conventional silicon single crystal substrate. This figure shows the cross-sectional structure of the main part.
This back-illuminated CMOS solid-state imaging device 1 is formed with an element isolation region 3 for partitioning each pixel on the surface of a first conductivity type, eg, p-type silicon semiconductor substrate 2, and a photoelectric conversion unit and A unit pixel cell 5 is formed by forming a photodiode 4 and a plurality of MOS transistors Tr for reading signal charges of the photodiode, for example, four MOS transistors of a read transistor, a reset transistor, an amplifier transistor, and a vertical selection transistor. . A large number of the unit pixel cells 5 are arranged in a two-dimensional matrix. The photodiode 4 is formed so that the photodiodes 4R, 4G, and 4B corresponding to each of red, green, and blue are sequentially arranged.

フォトダイオード4は、p型半導体基板2の基板表面から所定の深さにわたってイオン注入により形成した第2導電型であるn型半導体領域6により形成される。MOSトランジスタTrなどは、p型半導体基板2の表面側に形成したn+ ソース/ドレイン領域8とゲート絶縁膜を介して形成したゲート電極9により形成される。このp型半導体領域2の表面側には、層間絶縁膜9を介して所要パターンの多層配線10が形成される。 The photodiode 4 is formed by an n-type semiconductor region 6 of the second conductivity type formed by ion implantation over a predetermined depth from the substrate surface of the p-type semiconductor substrate 2. The MOS transistor Tr or the like is formed by an n + source / drain region 8 formed on the surface side of the p-type semiconductor substrate 2 and a gate electrode 9 formed through a gate insulating film. On the surface side of the p-type semiconductor region 2, a multilayer wiring 10 having a required pattern is formed via an interlayer insulating film 9.

一般的には、これら多層配線層10が形成された後、表面上に第1のパシベーション膜12が成膜される。次いで、例えばシリコンウェハによる支持基板25が基板表面側の第1のパシベーション膜12上に接着された後、p型半導体基板2の裏面側が10μm以下になるまで研磨除去される。次いで、p型半導体基板2の裏面側にn型半導体領域6に接してp+ 半導体領域(いわゆるアキュミュレーション層)7が形成される。なお、フォトダイオード4を構成するn型半導体領域6の表面側にもp半導体領域(いわゆるアキュミュレーション層)20が形成される。フォトダイオード4は、このp半導体領域7,20、n型半導体領域26及びp型半導体基板2によるHAD(Hole Accumulation Diode)構造による埋込みフォトダイオードとして形成される。 Generally, after these multilayer wiring layers 10 are formed, a first passivation film 12 is formed on the surface. Next, for example, a support substrate 25 made of, for example, a silicon wafer is bonded onto the first passivation film 12 on the substrate surface side, and then polished and removed until the back surface side of the p-type semiconductor substrate 2 becomes 10 μm or less. Next, a p + semiconductor region (so-called accumulation layer) 7 is formed on the back side of the p-type semiconductor substrate 2 in contact with the n-type semiconductor region 6. A p + semiconductor region (so-called accumulation layer) 20 is also formed on the surface side of the n-type semiconductor region 6 constituting the photodiode 4. The photodiode 4 is formed as a buried photodiode having a HAD (Hole Accumulation Diode) structure composed of the p + semiconductor regions 7 and 20, the n-type semiconductor region 26 and the p-type semiconductor substrate 2.

基板裏面側の埋込みフォトダイオード4直上に、シリコン酸化膜13、第2のパシベーション膜(例えばプラズマシリコン窒化膜)14が順次成膜され、この上に画素間の混色を防止するための遮光膜(例えばAl膜)15が形成される。さらに、透明平坦化膜16、カラーフィルタ17R、17G、17B及びオンチップレンズ18などの樹脂製薄膜が形成される。符号19はこの固体撮像素子1を収容したパッケージの上面に配置された赤外線カットフィルタである。   A silicon oxide film 13 and a second passivation film (for example, a plasma silicon nitride film) 14 are sequentially formed immediately above the embedded photodiode 4 on the back side of the substrate, and a light shielding film (for preventing color mixture between pixels) on the silicon oxide film 13 and the second passivation film (for example, plasma silicon nitride film) 14. For example, an Al film) 15 is formed. Further, resin thin films such as the transparent flattening film 16, the color filters 17R, 17G, and 17B and the on-chip lens 18 are formed. Reference numeral 19 denotes an infrared cut filter disposed on the upper surface of the package containing the solid-state imaging device 1.

上述の裏面照射型のCMOS固体撮像素子1では、入射光のうち赤外線21は赤外線カットフィルタ19によりカットされてフォトダイオード4側への入射が阻止される。赤外線カットフィルタ19を透過した赤色光線22、緑色光線23、青色光線24は、それぞれ対応する赤色、緑色及び青色に対応するフォトダイオード4R、4G及び4Bに入射される。遮光膜15で反射された各色光線22、23、24はフォトダイオード4側に入射されない。   In the backside illumination type CMOS solid-state imaging device 1 described above, the infrared ray 21 of the incident light is cut by the infrared cut filter 19 and is prevented from entering the photodiode 4 side. The red light beam 22, the green light beam 23, and the blue light beam 24 transmitted through the infrared cut filter 19 are incident on the corresponding photodiodes 4R, 4G, and 4B corresponding to red, green, and blue, respectively. Each color light beam 22, 23, 24 reflected by the light shielding film 15 is not incident on the photodiode 4 side.

特開2003ー31785号公報Japanese Patent Laid-Open No. 2003-31785

ところで、上述裏面照射型の固体撮像素子1では、混色が生じ易い。一般に、長波長の赤色光線22は単結晶シリコン中の吸収係数が小さいことから、特に混色が発生し易い。すなわち、撮像領域の周辺においてフォトダイオードの水平面に対して斜め方向から入射する赤色光線L1 は、単結晶シリコン中を透過して隣接画素〔緑色画素、青色画素〕のフォトダイオード4G,4B(図示の例ではフォトダイオード4B)に直接入射して混色の原因となる。この斜め方向からの入射光線L1 を遮光するためには、画素間に遮光膜15が必要であるが、単位画素セル5の微細化、集積化を行うために、隣接する画素間のフォトダイオード4を近づけ過ぎた場合、あるいは画素間の遮光膜15の幅W1 を小さくし過ぎた場合は、混色を防止することが困難になる。これは、結果的に埋込みフォトダイオード4の面積低下による取り扱い電荷量の低下、あるいは画素開口率の低下に伴う光利用効率の低下を招く。さらに、画素間に配置した遮光膜15の側面で反射した入射光線L2 が隣接画素〔青色画素、緑色画素〕のフォトダイオード4B,4G(図示の例ではフォトダイオード4G)へ入射して混色を発生する懼れがあった。   By the way, in the above-described back-illuminated solid-state imaging device 1, color mixing tends to occur. In general, the long wavelength red light 22 has a small absorption coefficient in single crystal silicon, and therefore color mixing is particularly likely to occur. That is, the red light beam L1 incident obliquely with respect to the horizontal plane of the photodiode in the periphery of the imaging region is transmitted through the single crystal silicon, and the photodiodes 4G and 4B (shown in the drawing) of the adjacent pixels (green pixel, blue pixel). In the example, it directly enters the photodiode 4B) and causes color mixing. In order to shield the incident light beam L1 from the oblique direction, a light shielding film 15 is required between the pixels. However, in order to make the unit pixel cell 5 finer and more integrated, the photodiode 4 between adjacent pixels is used. If the distance is too close, or if the width W1 of the light shielding film 15 between the pixels is too small, it is difficult to prevent color mixing. This results in a decrease in the amount of charge handled due to a decrease in the area of the embedded photodiode 4 or a decrease in light utilization efficiency due to a decrease in the pixel aperture ratio. Further, the incident light beam L2 reflected by the side surface of the light shielding film 15 disposed between the pixels enters the photodiodes 4B and 4G (photodiode 4G in the illustrated example) of the adjacent pixels [blue pixel and green pixel] to generate color mixing. There was a drowning to do.

本発明は、上述の点に鑑み、混色防止、さらに光電変換部の開口率の低下、感度低下等を抑制できる裏面照射型の固体撮像素子を提供するものである。   In view of the above-described points, the present invention provides a back-illuminated solid-state imaging device capable of preventing color mixing and further suppressing a decrease in aperture ratio and a decrease in sensitivity of a photoelectric conversion unit.

本発明に係る固体撮像素子は、半導体基板に形成された光電変換部と、光電変換部の信号電荷を読み出す手段からなる複数の画素と、半導体基板の裏面から光照射する光照射面と、隣接する画素間に位置して半導体基板の裏面より内側に埋め込まれた遮光膜とを有する。   A solid-state imaging device according to the present invention includes a photoelectric conversion unit formed on a semiconductor substrate, a plurality of pixels including means for reading out signal charges of the photoelectric conversion unit, a light irradiation surface that emits light from the back surface of the semiconductor substrate, and an adjacent surface. And a light-shielding film embedded inside the back surface of the semiconductor substrate.

本発明に係る裏面照射型の固体撮像素子によれば、隣接する画素間に位置して半導体基板の裏面より内側に埋め込まれた遮光膜を有するので、遮光膜が光電変換部に近接して形成され、特に撮像領域の周辺画素において斜め方向から入射する光の隣接する画素への入射が阻止されて混色を回避することができる。光電変換部の開口率の低下、感度低下等を抑制できる。   According to the backside illumination type solid-state imaging device according to the present invention, the light-shielding film is formed close to the photoelectric conversion unit because the light-shielding film is located between adjacent pixels and embedded inside the back surface of the semiconductor substrate. In particular, in the peripheral pixels of the imaging region, light incident from an oblique direction is prevented from entering the adjacent pixels, and color mixing can be avoided. A decrease in the aperture ratio of the photoelectric conversion unit, a decrease in sensitivity, and the like can be suppressed.

従来では単位画素セルのサイズが微細化するにしたがい画素間の混色防止が困難となるが、本発明では画素開口率を下げることなく微細サイズの画素でも理想的な混色防止を実現できる。   Conventionally, it is difficult to prevent color mixture between pixels as the size of the unit pixel cell is miniaturized. However, according to the present invention, ideal color mixture prevention can be realized even for a fine pixel without reducing the pixel aperture ratio.

本発明に係る裏面照射型の固体撮像素子の一実施の形態を示す要部の断面図である。It is sectional drawing of the principal part which shows one Embodiment of the backside illumination type solid-state image sensor concerning this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その1)である。It is a manufacturing process figure (the 1) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その2)である。It is a manufacturing process figure (the 2) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その3)である。It is a manufacturing process figure (the 3) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その4)である。It is a manufacturing process figure (the 4) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その5)である。It is a manufacturing process figure (the 5) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その6)である。It is a manufacturing process figure (the 6) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その7)である。It is a manufacturing process figure (the 7) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 本発明に係る裏面照射型の固体撮像素子の製造方法の一実施の形態を示す製造工程図(その8)である。It is a manufacturing process figure (the 8) which shows one Embodiment of the manufacturing method of the backside illumination type solid-state image sensor which concerns on this invention. 従来の裏面照射型の固体撮像素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional backside illumination type solid-state image sensor.

以下、図面を参照して本発明に実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明に係る裏面照射型の固体撮像素子をCMOS固体撮像素子に適用した実施の形態を示す。同図は撮像領域の要部の断面構造を示す。
本実施の形態に係る裏面照射型のCMOS固体撮像素子31は、第1導電型例えばp型のシリコン半導体基板、いわゆる単結晶シリコンウェハ32の表面(一方の主面)に各画素を区画するための素子分離領域33を形成し、各区画領域に光電変換部となるフォトダイオード34、フォトダイオード34の信号電荷を読み出すための複数のMOSトランジスタTr、例えば読出しトランジスタ、リセットトランジスタ、アンプトランジスタ及び垂直選択トランジスタの4つのMOSトランジスタが形成されて単位画素セル35が形成される。この単位画素セル35が多数個、2次元マトリクッス状に配列される。フォトダイオード34は、各赤色、緑色及び青色に対応したフォトダイオード34R、34G及び34Bが順次配列されるように形成される。
FIG. 1 shows an embodiment in which a back-illuminated solid-state imaging device according to the present invention is applied to a CMOS solid-state imaging device. This figure shows a cross-sectional structure of the main part of the imaging region.
The back-illuminated CMOS solid-state imaging device 31 according to the present embodiment partitions each pixel on the surface (one main surface) of a first conductivity type, for example, a p-type silicon semiconductor substrate, that is, a so-called single crystal silicon wafer 32. Device isolation regions 33 and photodiodes 34 serving as photoelectric conversion portions in each partition region, and a plurality of MOS transistors Tr for reading signal charges of the photodiodes 34, for example, read transistors, reset transistors, amplifier transistors, and vertical selections A unit pixel cell 35 is formed by forming four MOS transistors. Many unit pixel cells 35 are arranged in a two-dimensional matrix. The photodiode 34 is formed such that photodiodes 34R, 34G, and 34B corresponding to red, green, and blue are sequentially arranged.

フォトダイオード34は、p型半導体基板32の基板表面から所定の深さにわたってイオン注入により形成した第2導電型である例えばn型半導体領域36により形成される。MOSトランジスタTrは、p型半導体基板32の表面側に形成したn+ ソース/ドレイン領域38とゲート絶縁膜を介して形成したゲート電極39により形成される。このp型半導体領域32の表面側には、層間絶縁膜300を介して所要パターンの多層配線40が形成される。さらに、最上層の層間絶縁膜300上に例えばプラズマシリコン窒化膜等による第1のパシベーション膜42が形成される。 The photodiode 34 is formed by, for example, an n-type semiconductor region 36 of the second conductivity type formed by ion implantation from the substrate surface of the p-type semiconductor substrate 32 over a predetermined depth. The MOS transistor Tr is formed by an n + source / drain region 38 formed on the surface side of the p-type semiconductor substrate 32 and a gate electrode 39 formed through a gate insulating film. On the surface side of the p-type semiconductor region 32, a multilayer wiring 40 having a required pattern is formed via an interlayer insulating film 300. Further, a first passivation film 42 made of, for example, a plasma silicon nitride film is formed on the uppermost interlayer insulating film 300.

一方、単結晶シリコンウェハ32の裏面(他方の主面)には、従来のようにウェハ全体を薄く研磨除去することなく、各画素のフォトダイオード34のn型半導体領域36が露出するように所要の深さの開口部52が形成される。この開口部52は、開口部52の底面からウェハ表面(一方の主面)までの距離mがフォトダイオード34の深さ、例えば5μm〜10μmの厚さを残して形成される。また、開口部52の深さDは、開口部52間(いわゆる画素間)の開口部52が形成されない領域、すなわち非開口領域53において、可視光のうち最も長波長の赤色光線62がフォトダイオード34まで到達しないだけの十分な厚さ(距離)Fを確保できる深さに設定される。   On the other hand, it is necessary that the n-type semiconductor region 36 of the photodiode 34 of each pixel is exposed on the back surface (the other main surface) of the single crystal silicon wafer 32 without thinly polishing and removing the entire wafer as in the prior art. An opening 52 having a depth of 5 mm is formed. The opening 52 is formed with a distance m from the bottom surface of the opening 52 to the wafer surface (one main surface) leaving the depth of the photodiode 34, for example, a thickness of 5 μm to 10 μm. Further, the depth D of the opening 52 is such that the red light beam 62 having the longest wavelength among visible light in the region where the openings 52 between the openings 52 (so-called pixels) are not formed, that is, the non-opening region 53. It is set to a depth that can secure a sufficient thickness (distance) F that does not reach 34.

このn型半導体領域36の露出面、開口部52の内壁面(すなわち内側面)を含む単結晶シリコンウェハ32の裏面全面に接して第1導電型のアキュミュレーション層、本例ではp+ 半導体領域37が形成される。なお、フォトダイオード4を構成するn型半導体領域6の表面側にも、アキュミュレーション層となるp半導体領域46が形成される。フォトダイオード34は、このp+ 半導体領域37、46、n型半導体領域36及びp型半導体基板32によるHAD構造による埋込みフォトダイオードとして形成される。また、単結晶シリコンウェハ32の裏面には、開口部52の底面、側面の内壁面及び非開口領域53の上面を含む全面に絶縁膜の例えばシリコン酸化膜43が形成される。さらに、開口部52の底面を除いて少なくとも内壁面に遮光膜となる反射膜45が形成される。反射膜45は金属膜が好ましく、例えばAl膜で形成される。そして、開口部52内に透明絶縁膜54が埋め込まれる。この透明絶縁膜54によりウェハ裏面は平坦化される。図1に示すように、遮光膜となる反射膜45は、隣接する画素間に位置して半導体基板32の裏面より内側に埋め込まれて形成される。 An accumulation layer of the first conductivity type in contact with the entire back surface of the single crystal silicon wafer 32 including the exposed surface of the n-type semiconductor region 36 and the inner wall surface (that is, the inner surface) of the opening 52, in this example, a p + semiconductor. Region 37 is formed. A p + semiconductor region 46 serving as an accumulation layer is also formed on the surface side of the n-type semiconductor region 6 constituting the photodiode 4. The photodiode 34 is formed as a buried photodiode having an HAD structure composed of the p + semiconductor regions 37 and 46, the n-type semiconductor region 36 and the p-type semiconductor substrate 32. Further, on the back surface of the single crystal silicon wafer 32, for example, a silicon oxide film 43 of an insulating film is formed on the entire surface including the bottom surface of the opening 52, the inner wall surface of the side surface, and the top surface of the non-opening region 53. Further, a reflection film 45 serving as a light shielding film is formed at least on the inner wall surface except for the bottom surface of the opening 52. The reflective film 45 is preferably a metal film, for example, an Al film. A transparent insulating film 54 is embedded in the opening 52. The back surface of the wafer is flattened by the transparent insulating film 54. As shown in FIG. 1, the reflective film 45 serving as a light shielding film is formed so as to be embedded between the back surface of the semiconductor substrate 32 and located between adjacent pixels.

この平坦化されたウェハ裏面上に例えばプラズマシリコン窒化膜等による第2のパシベーション膜44が形成され、この上にカラーフィルタ47R、47G、47B、オンチップレンズ48などの樹脂製薄膜が画素ごとに形成される。符号49は、固体撮像素子31を収容したパッケ−ジの上面に配置された赤外線カットフィルタである。   A second passivation film 44 made of, for example, a plasma silicon nitride film is formed on the flattened wafer back surface, and resin thin films such as color filters 47R, 47G, 47B and an on-chip lens 48 are formed on the second passivation film 44 for each pixel. It is formed. Reference numeral 49 denotes an infrared cut filter disposed on the upper surface of the package containing the solid-state image pickup device 31.

CMOS固体撮像素子の周辺回路では、CMOSトランジスタで構成される。なお、図1では単位画素セルの複数のMOSトランジスタをnチャネルトランジスタで構成した。   The peripheral circuit of the CMOS solid-state image sensor is composed of CMOS transistors. In FIG. 1, the plurality of MOS transistors of the unit pixel cell are composed of n-channel transistors.

上述の本実施の形態に係る裏面照射型のCMOS固体撮像素子31では、光学レンズ系及び赤外線カットフィルタ49を通してウェハ裏面を光照射面としてウェハ裏面から光入射される。前述と同様に、入射光のうち赤外線61は赤外線カットフィルタ49によりカットされてフォトダイオード34側への入射が阻止される。赤外線カットフィルタ49を透過した赤色光線62、緑色光線63、青色光線64は、カラーフィルタを通して、それぞれ対応する赤色、緑色及び青色に対応するフォトダイオード34R、34G及び34Bに入射される。各色光線については、長波長の赤色光線62が最も深くフォトダイオード34R内に入射され、緑色光線63が赤色光線62より浅くフォトダイオード34G内に入射され、青色光線64が最も浅くフォトダイオード34B内に入射される。   In the backside illumination type CMOS solid-state imaging device 31 according to the above-described embodiment, light is incident from the backside of the wafer through the optical lens system and the infrared cut filter 49 with the backside of the wafer as a light irradiation surface. In the same manner as described above, the infrared ray 61 of the incident light is cut by the infrared cut filter 49 and is prevented from entering the photodiode 34 side. The red light beam 62, the green light beam 63, and the blue light beam 64 transmitted through the infrared cut filter 49 are incident on the corresponding photodiodes 34R, 34G, and 34B corresponding to red, green, and blue, respectively, through the color filter. For each color ray, the long-wavelength red ray 62 is incident most deeply into the photodiode 34R, the green ray 63 is incident shallower than the red ray 62 into the photodiode 34G, and the blue ray 64 is shallowest and enters the photodiode 34B. Incident.

そして、本実施形態の裏面照射型のCMOS固体撮像素子31によれば、単結晶シリコンウェハ32の裏面側を研磨除去せずに各画素に対応した領域にフォトダイオード34が臨むような開口部52を形成し、開口部52の底面を除いて少なくとも開口部52の内壁面に反射膜45を形成している。このような構成により、撮像領域の周辺画素においてフォトダイオード34に斜め方向から入射する光線(図示の例では長波長の赤色光線)L3 は、開口部52の内壁面の反射膜45で反射されて対応する画素のフォトダイオード34(図示の例では赤色に対応したフォトダイオード34R)に入射され、隣接する画素への入射が阻止されて混色を回避することができる。この反射膜45は、混色防止のための遮光と、入射光をフォトダイオード34へ集光し導く光ガイドの役割の機能を合せ持つ。   Then, according to the backside illumination type CMOS solid-state imaging device 31 of the present embodiment, the opening 52 such that the photodiode 34 faces the region corresponding to each pixel without polishing and removing the backside of the single crystal silicon wafer 32. The reflective film 45 is formed on at least the inner wall surface of the opening 52 except for the bottom surface of the opening 52. With such a configuration, light rays (long-wavelength red light rays in the illustrated example) L3 incident on the photodiode 34 from an oblique direction in the peripheral pixels of the imaging region are reflected by the reflective film 45 on the inner wall surface of the opening 52. Incident light is incident on the photodiode 34 of the corresponding pixel (photodiode 34R corresponding to red in the illustrated example), and is prevented from entering adjacent pixels, thereby preventing color mixing. The reflection film 45 has both functions of light shielding for preventing color mixing and a role of a light guide for collecting and guiding incident light to the photodiode 34.

このように開口部52の内壁面に形成された反射膜45によって、画素間遮光と集光が同時に実現できるので、画素開口率の低下に伴う光利用率の低下、感度の低下、混色等の問題を生じることがない。本実施形態では、反射膜45が光集光の役割をはたすので、光利用率の向上が図れる。従来では単位画素セルのサイズが微細化するにしたがい画素間の混色防止が困難となるが、本実施の形態では画素開口率を下げることなく微細サイズの画素でも理想的な混色防止を実現できる。   Since the inter-pixel light shielding and condensing can be realized at the same time by the reflection film 45 formed on the inner wall surface of the opening 52 in this way, a decrease in light utilization rate, a decrease in sensitivity, a color mixture, etc. There is no problem. In the present embodiment, since the reflective film 45 plays a role of collecting light, the light utilization rate can be improved. Conventionally, it is difficult to prevent color mixture between pixels as the size of the unit pixel cell is miniaturized. However, in this embodiment, ideal color mixture prevention can be realized even for a fine pixel without reducing the pixel aperture ratio.

一方、非開口領域53では、厚さ(距離)Fが可視光のうち最も長波長の赤色光線62がフォトダイオード34まで到達しないだけの十分な厚さ(距離)を確保しているので、光吸収層としての役割を果している。従って、非開口領域53に入射された可視光はフォトダイオード34へ入射されることがない。   On the other hand, the non-opening region 53 has a thickness (distance) F that is sufficient to prevent the red light beam 62 having the longest wavelength of visible light from reaching the photodiode 34. It plays a role as an absorption layer. Accordingly, the visible light incident on the non-opening region 53 is not incident on the photodiode 34.

すなわち、半導体基板の開口部が形成されない領域における裏面から開口部底面に対応する面までの処理を、可視光が光電変換部まで到達させない距離に設定するので、上記領域の面上に反射膜が形成されていなくても、この領域を入射する可視光の悪影響は生じない。また、開口部の底面から半導体基板の表面までの距離を、裏面側から照射された可視光を光電変換部へ入射できる距離に設定されるので、各画素での入射光による光電変換を十分に行うことができる。   That is, since the processing from the back surface to the surface corresponding to the bottom surface of the opening in the region where the opening of the semiconductor substrate is not formed is set to a distance at which visible light does not reach the photoelectric conversion unit, the reflective film is formed on the surface of the region. Even if it is not formed, there is no adverse effect of visible light entering this region. In addition, since the distance from the bottom surface of the opening to the surface of the semiconductor substrate is set to a distance at which visible light irradiated from the back side can enter the photoelectric conversion unit, photoelectric conversion by incident light at each pixel is sufficiently performed. It can be carried out.

前述の図10に示す裏面照射型のCMOS固体撮像素子1では、製造する場合、支持基板25を接着した後、半導体基板2、すなわち数100μm〜700μm厚の単結晶シリコンウェハの裏面を厚さt1 が10μm以下になるまで研磨除去することが必須である。しかし、単結晶シリコンウェハの全面を均一な厚さで研磨除去することは難しい。単結晶シリコンウェハの厚さが不均一になると、裏面側の埋込みフォトダイオード4の取り扱い電荷量及び感度がウェハ面内でバラツキを生じる懼れがある。   In the case of manufacturing the back-illuminated CMOS solid-state imaging device 1 shown in FIG. 10 described above, after the support substrate 25 is bonded, the back surface of the semiconductor substrate 2, that is, a single crystal silicon wafer having a thickness of several hundreds μm to 700 μm is formed with a thickness t1. It is essential to polish and remove until the thickness becomes 10 μm or less. However, it is difficult to polish and remove the entire surface of the single crystal silicon wafer with a uniform thickness. If the thickness of the single crystal silicon wafer is not uniform, the charge amount and sensitivity of the embedded photodiode 4 on the back surface side may vary in the wafer surface.

本実施形態では、このように単結晶シリコンウェハ32の厚さを薄く均一に研磨除去する工程を必要としないため、単結晶シリコンウェハの厚さの不均一性を原因とする、従来のようなフォトダイオード34の取り扱い電荷量のバラツキ、及び感度のウェハ面内でのバラツキが生じない。また、単結晶シリコンウェハ32を薄く研磨除去することがないので、簡便な半導体プロセスにより裏面照射型のCMOS固体撮像素子を製造することがきる。   In the present embodiment, since the step of thinly and uniformly polishing and removing the thickness of the single crystal silicon wafer 32 is not required, the conventional single crystal silicon wafer thickness non-uniformity is caused. Variations in the amount of charge handled by the photodiode 34 and variations in sensitivity within the wafer surface do not occur. Further, since the single crystal silicon wafer 32 is not thinly removed by polishing, a back-illuminated CMOS solid-state imaging device can be manufactured by a simple semiconductor process.

次に、図2〜図8を用いて上述の裏面照射型のCMOS固体撮像素子31の製造方法の一例を説明する。
先ず、図2に示すように、第1導電型、例えばp型の単結晶シリコンウェハ32を用意する。このp型の単結晶シリコンウェハ32の表面(一方の主面)に、例えば選択酸化(LOCOS)層、トレンチ分離等による画素分離のための素子分離領域33を形成する。また、ウェハ表面に光電変換部の電荷蓄積領域となる第2導電型の例えばn+ 半導体領域36aを形成し、第2導電型の例えばn+ ソース/ドレイン領域38とゲート絶縁膜とゲート電極39によるMOSトランジスタTrを形成する。n+ 半導体領域36aの基板表面側には、アキュミュレーション層となるp+半導体領域46を形成する。さらに、層間絶縁膜300を介して接続プラグ41、多層配線40を形成し、最上層の層間絶縁膜40上にだい1のパシベーション膜42を形成する。
Next, an example of a method for manufacturing the above-described back-illuminated CMOS solid-state imaging device 31 will be described with reference to FIGS.
First, as shown in FIG. 2, a first conductivity type, for example, p-type single crystal silicon wafer 32 is prepared. On the surface (one main surface) of the p-type single crystal silicon wafer 32, for example, a selective oxidation (LOCOS) layer, an element isolation region 33 for pixel isolation by trench isolation or the like is formed. Also, a second conductivity type n + semiconductor region 36a, for example, serving as a charge storage region of the photoelectric conversion unit is formed on the wafer surface, and the second conductivity type n + source / drain region 38, a gate insulating film, and a gate electrode 39 are formed. The MOS transistor Tr is formed. A p + semiconductor region 46 serving as an accumulation layer is formed on the substrate surface side of the n + semiconductor region 36a. Further, the connection plug 41 and the multilayer wiring 40 are formed via the interlayer insulating film 300, and the first passivation film 42 is formed on the uppermost interlayer insulating film 40.

次に、図3に示すように、単結晶シリコンウェハ32の裏面(他方の主面)に各画素ごとに所要に深さDの開口部52を選択エッチングにより形成する。このとき、開口部52としては、ウェハ表面から開口部52の底面までの距離mが5μm〜10μm程度になるように選択エッチングして形成する。従って、隣合う開口部52間の非開口領域53の厚さFは、可視光のうちの最も波長の長い赤色光線が後に形成するフォトダイオードまで到達しないだけの十分な長さを確保することができる。   Next, as shown in FIG. 3, an opening 52 having a required depth D is formed on the back surface (the other main surface) of the single crystal silicon wafer 32 for each pixel by selective etching. At this time, the opening 52 is formed by selective etching so that the distance m from the wafer surface to the bottom surface of the opening 52 is about 5 μm to 10 μm. Therefore, the thickness F of the non-opening region 53 between the adjacent openings 52 can ensure a sufficient length so that the red light having the longest wavelength of visible light does not reach the photodiode to be formed later. it can.

次に、図4に示すように、各開口部52の底面に臨むウェハ裏面にn+ 半導体領域36aに接続するようにn- 半導体領域36bを例えばイオン注入により形成し、n型半導体領域36を形成する。さらに、開口部52の底面に臨むn- 半導体領域36b、開口部52の内壁面及び非開口領域53の上面の全表面に不純物を導入して第1導電型であるp+ アキュミュレーション層37を形成する。このようにしてHAD構造の裏面埋め込み型のフォトダイオード34〔34R,34G,34B〕を形成する。 Next, as shown in FIG. 4, an n − semiconductor region 36b is formed on the back surface of the wafer facing the bottom surface of each opening 52 so as to be connected to the n + semiconductor region 36a by, for example, ion implantation, and the n-type semiconductor region 36 is formed. Form. Further, an impurity is introduced into the entire surface of the n − semiconductor region 36b facing the bottom surface of the opening 52, the inner wall surface of the opening 52, and the upper surface of the non-opening region 53, and the p + accumulation layer 37 of the first conductivity type. Form. In this way, the backside embedded photodiode 34 [34R, 34G, 34B] having the HAD structure is formed.

次に、図5に示すように、開口部52の内面を含むウェハ裏面全面に、絶縁膜(例えば熱酸化膜などのシリコン酸化膜)43を形成し、さらにその上に反射膜45となる金属膜、例えばAl膜を成膜する。   Next, as shown in FIG. 5, an insulating film (for example, a silicon oxide film such as a thermal oxide film) 43 is formed on the entire back surface of the wafer including the inner surface of the opening 52, and a metal that becomes the reflective film 45 is formed thereon. A film such as an Al film is formed.

次に、図6に示すように、反射膜45に対してエッチバックを施し、開口部52の底面の反射膜45を除去し、開口部52の内壁面(すなわち内側面)のみに反射膜45を残す。この反射膜45は自己整合的に所謂サイドウォールの反射膜として形成される。   Next, as shown in FIG. 6, the reflective film 45 is etched back, the reflective film 45 on the bottom surface of the opening 52 is removed, and the reflective film 45 is applied only to the inner wall surface (that is, the inner side surface) of the opening 52. Leave. The reflective film 45 is formed as a so-called sidewall reflective film in a self-aligning manner.

次に、図7に示すように、開口部52内に、例えばSOG(シリコン・オン・グラス)膜などの透明絶縁膜54を形成し、ウェハ裏面を平坦化する。
その後、図8に示すように、平坦化されたウェハ裏面上に例えばプラズマシリコン窒化膜などの第2のパシベーション膜44を形成し、さらにカラーフィルタ47R、47G、47G、オンチップレンズ48を形成して目的の裏面照射型のCMOS固体撮像素子31を得る。
Next, as shown in FIG. 7, a transparent insulating film 54 such as an SOG (silicon on glass) film is formed in the opening 52, and the wafer back surface is flattened.
Thereafter, as shown in FIG. 8, a second passivation film 44 such as a plasma silicon nitride film is formed on the flattened wafer back surface, and color filters 47R, 47G, 47G, and an on-chip lens 48 are formed. Thus, the desired backside illumination type CMOS solid-state imaging device 31 is obtained.

本実施の形態の裏面照射型のCMOS固体撮像素子の製造方法によれば、単結晶シリコンウェハ32の厚さを薄く均一に研磨除去する工程を必要としないため、ウェハ厚が全面均一となり、フォトダイオード34の取り扱い電荷量、ウェハ面内での感度を均一にしたCMOS固体撮像素子を製造できる。また、従来の支持基板の貼り合せ工程、ウェハの厚さを薄くする研磨工程などが省略されるので、製造が容易になる。   According to the backside illumination type CMOS solid-state imaging device manufacturing method of the present embodiment, the thickness of the single crystal silicon wafer 32 is not required to be thinned and uniformly removed. A CMOS solid-state imaging device in which the amount of charge handled by the diode 34 and the sensitivity in the wafer surface are made uniform can be manufactured. Further, since the conventional supporting substrate bonding step and the polishing step for reducing the thickness of the wafer are omitted, the manufacturing becomes easy.

また、単位画素セルの微細化、高集積化されても混色の生じにくい裏面照射型のCMOS固体撮像素子を製造することができる。   Further, it is possible to manufacture a back-illuminated CMOS solid-state imaging device in which color mixing is unlikely to occur even when unit pixel cells are miniaturized and highly integrated.

開口部52の内壁面に反射膜45を形成する工程において、開口部52の内面を含むウェハ裏面の全面に反射膜45を形成した後、ウェハ裏面側からエッチバックすることにより、自己整合的に開口部52底面の反射膜45が除去され、開口部52の内壁面のみに反射膜45を残すことができる。
開口部52の形成工程では、非開口領域53における入射される可視光がフォトダイオード34まで到達しない距離を確保するような深さDの開口部を形成することにより、非開口領域53からのフォトダイオード34への光入射を阻止することができる。
In the step of forming the reflective film 45 on the inner wall surface of the opening 52, the reflective film 45 is formed on the entire back surface of the wafer including the inner surface of the opening 52, and then etched back from the back surface side of the wafer in a self-aligning manner. The reflective film 45 on the bottom surface of the opening 52 is removed, and the reflective film 45 can be left only on the inner wall surface of the opening 52.
In the step of forming the opening 52, the opening from the non-opening region 53 is formed by forming an opening having a depth D so as to secure a distance where the incident visible light in the non-opening region 53 does not reach the photodiode 34. Light can be prevented from entering the diode 34.

なお、図9A,Bに、反射膜45のエッチバック工程の他の例を示す。この例では、反射膜45を開口部52内を含むウェハ全面に形成した後、非開口領域53の上面に選択的にレジストマスク67を形成し(図9A参照)、その状態で反射膜45に対して裏面側からエッチング処理を施す(図9B参照)。
このエッチバック処理によれば、開口部52の底面の反射膜45のみ除去し、他の開口部52の内壁面及び非開口領域53の上面には反射膜45が残る。従って、非開口領域53に入射される光線はこの反射膜45で反射され、フォトダイオード側へ入射を確実に阻止することができる。このように、非開口領域上にも反射膜45を残す構成としたとき、非開口領域53の厚さFは前述の条件を満たすことはない。
9A and 9B show another example of the etch back process of the reflective film 45. FIG. In this example, after the reflective film 45 is formed on the entire surface of the wafer including the inside of the opening 52, a resist mask 67 is selectively formed on the upper surface of the non-opening region 53 (see FIG. 9A). On the other hand, an etching process is performed from the back side (see FIG. 9B).
According to this etch back process, only the reflection film 45 on the bottom surface of the opening 52 is removed, and the reflection film 45 remains on the inner wall surface of the other opening 52 and the upper surface of the non-opening region 53. Therefore, the light incident on the non-opening region 53 is reflected by the reflective film 45 and can be reliably prevented from entering the photodiode side. Thus, when it is set as the structure which leaves the reflective film 45 also on a non-opening area | region, the thickness F of the non-opening area | region 53 does not satisfy | fill the above-mentioned conditions.

上例では、本発明を裏面照射型のCMOS固体撮像素子に適用したが、その他、図示せざるも裏面照射型のCCD固体撮像素子にも適用することができる。この場合も、CCD固体撮像素子のウェハ裏面側に、上述したように各画素に対応して光電変換部が臨むように開口部を形成し、開口部の内壁面に反射膜を形成するようにして構成することができる。   In the above example, the present invention is applied to a back-illuminated CMOS solid-state image sensor. However, the present invention can also be applied to a back-illuminated CCD solid-state image sensor, which is not shown. Also in this case, an opening is formed on the back side of the wafer of the CCD solid-state imaging device so that the photoelectric conversion unit faces each pixel as described above, and a reflection film is formed on the inner wall surface of the opening. Can be configured.

31・・裏面照射型のCMOS固体撮像素子、32・・単結晶シリコンウェハ、33・・素子分離領域、34〔34R,34G,34B〕・・フォトダイオード、Tr・・MOSトランジスタ、35・・単位画素セル、36・・n型半導体領域、38・・ソース/ドレイン領域、39・・ゲート電極、40・・多層配線、41・・接続プラグ、37・・p+ アキュミュレーション層、42・・第1のパシベーション膜、43・・絶縁膜、44・・第2のパシベーション膜、45・・遮光膜となる反射膜、47R、47G、47G・・カラーフィルタ、48・・オンチップレンズ、49・・赤外線カットフィルタ、52・・開口部、53・・非開口領域、61・・赤外線、62・・赤色光線、63・・緑色光線、64・・青色光線、100、300・・層間絶縁膜 31..Back-illuminated CMOS solid-state imaging device, 32..Single crystal silicon wafer, 33..Element isolation region, 34 [34R, 34G, 34B] .. Photodiode, Tr..MOS transistor, 35..Unit Pixel cell, 36..n-type semiconductor region, 38..source / drain region, 39..gate electrode, 40..multilayer wiring, 41..connection plug, 37..p + accumulation layer, 42 .. First passivation film 43 .. Insulating film 44.. Second passivation film 45.. Reflection film to be light-shielding film, 47 R, 47 G, 47 G... Color filter 48... On-chip lens 49. · Infrared cut filter, 52 ·· Opening portion, 53 ·· Non-opening region, 61 ·· Infrared ray, 62 ·· Red ray, 63 ·· Green ray, 64 ·· Blue ray, 100, 3 0 ... interlayer insulating film

Claims (7)

半導体基板に形成された光電変換部と、前記光電変換部の信号電荷を読み出す手段からなる複数の画素と、
前記半導体基板の裏面から光照射する光照射面と、
隣接する画素間に位置して前記半導体基板の裏面より内側に埋め込まれた遮光膜と
を有する固体撮像素子。
A plurality of pixels comprising a photoelectric conversion unit formed on a semiconductor substrate and means for reading out signal charges of the photoelectric conversion unit;
A light irradiation surface for irradiating light from the back surface of the semiconductor substrate;
A solid-state imaging device having a light-shielding film that is located between adjacent pixels and embedded inside the back surface of the semiconductor substrate.
前記光電変換部の信号電荷を読み出す手段が前記半導体基板の表面側に形成された
請求項1記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein means for reading signal charges of the photoelectric conversion unit is formed on a surface side of the semiconductor substrate.
前記半導体基板の裏面側に形成したカラーフィルタを有する
請求項1又は2記載の固体撮像素子。
The solid-state imaging device according to claim 1, further comprising a color filter formed on a back surface side of the semiconductor substrate.
前記遮光膜が、入射光を反射して前記光電変換部へ導く機能を合わせ持つ
請求項1乃至3のいずれかに記載の固体撮像素子。
The solid-state imaging device according to claim 1, wherein the light shielding film has a function of reflecting incident light and guiding it to the photoelectric conversion unit.
前記光電変換部の前記導体基板の厚みが、前記隣接する画素間の前記半導体基板の厚みより薄く、
前記光電変換部の前記半導体基板の裏面側に前記隣接する画素間の前記半導体基板の裏面まで透明絶縁膜が埋め込まれた
請求項1乃至4のいずれかに記載の固体撮像素子。
The thickness of the conductor substrate of the photoelectric conversion unit is thinner than the thickness of the semiconductor substrate between the adjacent pixels,
5. The solid-state imaging device according to claim 1, wherein a transparent insulating film is embedded on a back surface side of the semiconductor substrate of the photoelectric conversion portion up to a back surface of the semiconductor substrate between the adjacent pixels.
前記光電変換部の信号電荷を読み出す手段として画素トランジスタを有するCMOS固体撮像素子である請求項1乃至5のいずれかに記載の固体撮像素子。   The solid-state imaging device according to claim 1, which is a CMOS solid-state imaging device having a pixel transistor as means for reading signal charges of the photoelectric conversion unit. CCD固体撮像素子である請求項1乃至5のいずれかに記載の固体撮像素子。   The solid-state imaging device according to claim 1, which is a CCD solid-state imaging device.
JP2010113720A 2010-05-17 2010-05-17 Solid-state image sensor Expired - Fee Related JP5223883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113720A JP5223883B2 (en) 2010-05-17 2010-05-17 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113720A JP5223883B2 (en) 2010-05-17 2010-05-17 Solid-state image sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004265767A Division JP4765285B2 (en) 2004-09-13 2004-09-13 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010226126A true JP2010226126A (en) 2010-10-07
JP5223883B2 JP5223883B2 (en) 2013-06-26

Family

ID=43042910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113720A Expired - Fee Related JP5223883B2 (en) 2010-05-17 2010-05-17 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP5223883B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106000A1 (en) * 2011-02-03 2012-08-09 Digitaloptics Corporation East Bsi image sensor package with variable-height silicon for even reception of different wavelengths
US9041133B2 (en) 2011-02-03 2015-05-26 Nan Chang O-Film Optoelectronics Technology Ltd BSI image sensor package with embedded absorber for even reception of different wavelengths
KR102063795B1 (en) * 2017-10-12 2020-01-09 전자부품연구원 Image sensor using silicon nanowire and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288930U (en) * 1975-12-26 1977-07-02
JPH07307485A (en) * 1994-05-10 1995-11-21 Canon Inc Photoelectric conversion device
JP2002151668A (en) * 2000-11-10 2002-05-24 Denso Corp Optical integrated circuit and manufacturing method therefor
JP2002319669A (en) * 2001-04-23 2002-10-31 Hamamatsu Photonics Kk Backside incident type photodiode and photodiode array
JP2003273343A (en) * 2002-03-19 2003-09-26 Sony Corp Manufacturing method of solid-state image sensing element
WO2003096427A1 (en) * 2002-05-10 2003-11-20 Hamamatsu Photonics K.K. Rear surface irradiation photodiode array and method for producing the same
JP2004031452A (en) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp Rear face incident type imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288930U (en) * 1975-12-26 1977-07-02
JPH07307485A (en) * 1994-05-10 1995-11-21 Canon Inc Photoelectric conversion device
JP2002151668A (en) * 2000-11-10 2002-05-24 Denso Corp Optical integrated circuit and manufacturing method therefor
JP2002319669A (en) * 2001-04-23 2002-10-31 Hamamatsu Photonics Kk Backside incident type photodiode and photodiode array
JP2003273343A (en) * 2002-03-19 2003-09-26 Sony Corp Manufacturing method of solid-state image sensing element
WO2003096427A1 (en) * 2002-05-10 2003-11-20 Hamamatsu Photonics K.K. Rear surface irradiation photodiode array and method for producing the same
JP2004031452A (en) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp Rear face incident type imaging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106000A1 (en) * 2011-02-03 2012-08-09 Digitaloptics Corporation East Bsi image sensor package with variable-height silicon for even reception of different wavelengths
US8937361B2 (en) 2011-02-03 2015-01-20 Digitaloptics Corporation BSI image sensor package with variable-height silicon for even reception of different wavelengths
US9041133B2 (en) 2011-02-03 2015-05-26 Nan Chang O-Film Optoelectronics Technology Ltd BSI image sensor package with embedded absorber for even reception of different wavelengths
KR102063795B1 (en) * 2017-10-12 2020-01-09 전자부품연구원 Image sensor using silicon nanowire and manufacturing method thereof

Also Published As

Publication number Publication date
JP5223883B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US11735620B2 (en) Solid-state imaging device having optical black region, method of manufacturing the same, and electronic apparatus
US9287423B2 (en) Solid-state imaging device and method of manufacturing the solid-state imaging device
US8823847B2 (en) Solid-state imaging device and manufacturing method thereof
US8835981B2 (en) Solid-state image sensor
JP4765285B2 (en) Solid-state imaging device and manufacturing method thereof
JP5218502B2 (en) Method for manufacturing solid-state imaging device
JP6020933B2 (en) Solid-state imaging device and manufacturing method thereof
JP2012169530A (en) Solid state image sensor, manufacturing method therefor, and electronic apparatus
KR20150037897A (en) Solid-state imaging device, method for producing solid-state imaging device and electronic apparatus
JP5547260B2 (en) Solid-state imaging device
JP2008182142A (en) Solid-state image sensor, method of manufacturing the same, and imaging device
JP5223883B2 (en) Solid-state image sensor
JPH10189936A (en) Solid-state image sensor and manufacture thereof
JP2014003333A (en) Solid-state image pickup device, imaging system using the same, and method for manufacturing solid-state image pickup device
JP2012099743A (en) Solid-state imaging device and manufacturing method therefor
WO2023021758A1 (en) Photodetection device and electronic apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees