JP2010219714A - Illumination device and image reading apparatus - Google Patents

Illumination device and image reading apparatus Download PDF

Info

Publication number
JP2010219714A
JP2010219714A JP2009062334A JP2009062334A JP2010219714A JP 2010219714 A JP2010219714 A JP 2010219714A JP 2009062334 A JP2009062334 A JP 2009062334A JP 2009062334 A JP2009062334 A JP 2009062334A JP 2010219714 A JP2010219714 A JP 2010219714A
Authority
JP
Japan
Prior art keywords
light
blue
light emitting
color gamut
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009062334A
Other languages
Japanese (ja)
Inventor
Hidetoshi Matsuo
英俊 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009062334A priority Critical patent/JP2010219714A/en
Publication of JP2010219714A publication Critical patent/JP2010219714A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Planar Illumination Modules (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To adopt a white light LED of high luminance suitable for use in a linear illumination device, as a light source of an original document reader in terms of securing color reproducibility, by overcoming the problem that the classification is performed by the chromaticity of the synthetic light of the light emitting color of a blue light emitting chip and a complementary color emitted by exciting a phosphor and the variance of a light emitting spectrum, especially the peak wavelength of blue light, is large. <P>SOLUTION: In the illumination device and the image reading apparatus, the white LED 31 of the high luminance classified by the chromaticity, the phosphor for emitting the complementary color of the blue light among light from the white LED 31, an optical filter 70 for attenuating the light from a blue LED 41 among the light from the white LED 31, and the blue LED 41 classified by the peak wavelength complementing attenuation light from the blue LED 41 are used as the light source. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、照明装置及びこれを用いた画像読取装置に係り、特に白色LEDを光源として導光体を用いた照明装置に関する。   The present invention relates to an illuminating device and an image reading apparatus using the illuminating device, and more particularly to an illuminating device using a light guide with white LED as a light source.

一般に、ファクリシミリやイメージリーダ等においては、原稿面を画情報として読取る密着型イメージセンサを備えた原稿読取り装置が用いられる。   In general, a facsimile reader, an image reader, or the like uses a document reading device including a contact image sensor that reads a document surface as image information.

例えば(特許文献1)では、導光体を用い、その端部(両端または一端)の表面から光を入射させ、導光体の一側表面に設けた多数の三角波状の光屈折領域及びまたは反射領域により屈折または反射させ、線状に出射させるようにした線状照明装置を提案されている。   For example, in (Patent Document 1), a light guide is used, light is incident from the surface of both ends (both ends or one end), and a large number of triangular wave-shaped light refraction regions provided on one side surface of the light guide and / or There has been proposed a linear illumination device that is refracted or reflected by a reflection region and is emitted linearly.

これにより、原稿面照度のばらつきが軽減され、線状照明装置から原稿面までの距離を短くすることができると共に、光の伝送効率を飛躍的に向上させることができ、更に光源としてのLEDチップ数の飛躍的削減も可能となり、低コスト化を図ることができる。   As a result, variations in the illuminance on the document surface are reduced, the distance from the linear illumination device to the document surface can be shortened, the light transmission efficiency can be dramatically improved, and an LED chip as a light source can be obtained. The number can be drastically reduced, and the cost can be reduced.

図6は高輝度白色LEDの発光スペクトルの説明図、図10は高輝度の白色LEDの色度の分布範囲の説明図、図13は光電変換素子アレイの分光感度の説明図、図15は原稿の反射率の説明図、図17は高輝度白色LEDの色度の分布範囲の説明図、図18は白紙の反射率の説明図、図19は原稿の色差[△E]の説明図である。   6 is an explanatory diagram of an emission spectrum of a high-intensity white LED, FIG. 10 is an explanatory diagram of a chromaticity distribution range of the high-intensity white LED, FIG. 13 is an explanatory diagram of the spectral sensitivity of the photoelectric conversion element array, and FIG. 17 is an explanatory diagram of the chromaticity distribution range of the high-intensity white LED, FIG. 18 is an explanatory diagram of the reflectance of the blank paper, and FIG. 19 is an explanatory diagram of the color difference [ΔE] of the document. .

導光体の端部(両端または一端)表面から光を入射させ、導光体の一側表面に設けた多数の三角波状の光屈折領域及びまたは反射領域により屈折または反射させ、線状に出射させるようにした線状照明装置への使用に適した高輝度のLEDとしては、単色の青色発光チップを発光させ、発光の一部で蛍光体を励起させて青色の補色を発光させることによって白色光へ色変換する白色LEDが知られている。
特開平10−150526号公報
Light is made incident from the end (both ends or one end) surface of the light guide, refracted or reflected by a number of triangular wave-shaped light refraction areas and / or reflection areas provided on one side surface of the light guide, and emitted linearly. As a high-brightness LED suitable for use in the linear illumination device, white light is emitted by emitting a single color blue light-emitting chip and exciting a phosphor with part of the light emission to emit a complementary color of blue. White LEDs that convert color to light are known.
JP-A-10-150526

しかしながら、上記のような型式の白色LEDは、青色発光チップの発光色と蛍光体を励起させて発光した青色の補色との合成光の色度で分類されていて、発光スペクトル、特に青色発光チップの発光色のピーク波長のバラツキが大きい為、色再現性の確保の面から原稿読取装置の光源としては採用が困難であった。   However, the above-mentioned types of white LEDs are classified according to the chromaticity of the combined light of the emission color of the blue light emitting chip and the blue complementary color emitted by exciting the phosphor, and the emission spectrum, particularly the blue light emitting chip. Since the variation in the peak wavelength of the emitted color is large, it has been difficult to adopt it as the light source of the document reading apparatus from the viewpoint of ensuring color reproducibility.

図6に示す例のような青色発光チップのピーク波長が大きく異なった発光スペクトルでも、図17に示すような白色LEDの色度の分布範囲に含まれる。   A light emission spectrum having a significantly different peak wavelength of the blue light emitting chip as in the example shown in FIG. 6 is also included in the chromaticity distribution range of the white LED as shown in FIG.

更に、図18に示す例のように白紙の場合でも読み取る原稿の反射率は、光の波長によって均一ではなく、特に青色(波長380〜480nm)付近では平坦ではない。また、図15に示す例のように、グレースケール(白色〜灰色〜黒色)の場合でも読み取る原稿の反射率は光の波長によって均一ではなく、特に青色(波長380〜480nm)付近では平坦ではない。   Further, as in the example shown in FIG. 18, the reflectance of the original to be read even in the case of a blank sheet is not uniform depending on the wavelength of light, and is not flat particularly in the vicinity of blue (wavelength 380 to 480 nm). Further, as in the example shown in FIG. 15, even in the case of gray scale (white to gray to black), the reflectance of the original to be read is not uniform depending on the wavelength of light, and is not flat particularly in the vicinity of blue (wavelength 380 to 480 nm). .

ここで、図6に示す例のような青色発光チップのピーク波長が大きく異なった発光スペクトルの白色LEDを光源として、図3に示す例のような分光感度を持つ光電変換素子アレイで、図15に示すグレースケール(白色〜灰色〜黒色)の原稿を読み取った場合の、標準の光D65の下での測色値との色差[△E]は図19に示すようになり、グレースケ
ール(白色〜灰色〜黒色)で色差[△E]3以上(3つの青色LEDチップのピーク周波
数がずれるために、色が着いて見える)という問題がある。
Here, a photoelectric conversion element array having a spectral sensitivity as in the example shown in FIG. 3 using a white LED having a light emission spectrum with a significantly different peak wavelength of the blue light emitting chip as in the example shown in FIG. The color difference [ΔE] from the colorimetric value under the standard light D65 when a gray scale (white to gray to black) document is read as shown in FIG. There is a problem that the color difference [ΔE] is 3 or more (colors appear to be worn because the peak frequencies of the three blue LED chips are shifted).

従って、青色光のピーク波長のバラツキ範囲が広い高輝度の白色LEDは、色再現性の確保の面から原稿読取り装置の光源としては採用が困難であった。   Therefore, a high-intensity white LED with a wide variation range of the peak wavelength of blue light has been difficult to adopt as a light source for an original reading apparatus from the viewpoint of ensuring color reproducibility.

上述のような課題を解決するため、本願発明は、第1の青色発光チップが射出した青色光を蛍光体で励起させて青色の補色を発光させることによって色変換した白色光を射出する白色LEDと、白色LEDが射出した白色光のうち前記青色発光チップが射出した青色光を減衰する光学フィルタと、光学フィルタを通して減衰された青色領域を補完する色領域の光を射出する第2の青色発光チップとを光源として用いる照明装置とした。   In order to solve the above-described problems, the present invention provides a white LED that emits white light that is color-converted by exciting blue light emitted from the first blue light emitting chip with a phosphor to emit a complementary color of blue. And an optical filter for attenuating the blue light emitted by the blue light emitting chip out of the white light emitted by the white LED, and a second blue light emission for emitting light in a color region that complements the blue region attenuated through the optical filter An illumination device using a chip as a light source was obtained.

(実施の形態1)
図1は本願の一実施の形態に係る照明装置の構成図、図2は本願の一実施の形態に係る照明装置の断面図、図3は本願の一実施の形態に係る照明装置に用いる光学フィルタの配置図、図4は本願の一実施の形態に係る照明装置に用いるバンドパスフィルタ(光学フィルタ)の分光特性の説明図、図5は本願の一実施の形態に係る照明装置の光路説明図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of an illumination device according to an embodiment of the present application, FIG. 2 is a cross-sectional view of the illumination device according to an embodiment of the present application, and FIG. 3 is an optical used in the illumination device according to an embodiment of the present application. FIG. 4 is an explanatory diagram of spectral characteristics of a bandpass filter (optical filter) used in the illumination device according to the embodiment of the present application, and FIG. 5 is an optical path description of the illumination device according to the embodiment of the present application. FIG.

図1の照明装置は密着型イメージセンサが代表的であり、図2に示すように、原稿10を密着させ、原稿10上の画情報を読取るための透光性のガラスプレートからなるプラテン20と、プラテン20を介して原稿10を照射する第1の発光部としての線状照明装置(白色)30と、原稿10を照射する第2の発光部としての線状照明装置(青色)40と、原稿面からの反射光(二次反射光)を受光するロッドレンズアレイ50と、光電変換素子アレイ60とで構成される。   The illuminating device of FIG. 1 is typically a contact image sensor. As shown in FIG. 2, a platen 20 made of a translucent glass plate for closely contacting a document 10 and reading image information on the document 10 is provided. A linear illumination device (white) 30 as a first light emitting unit that irradiates the document 10 via the platen 20, and a linear illumination device (blue) 40 as a second light emitting unit that irradiates the document 10; A rod lens array 50 that receives reflected light (secondary reflected light) from the document surface and a photoelectric conversion element array 60 are included.

図3に示すように、第1の発光部としての線状照明装置(白色)30は発光ダイオード(LED)素子35と導光体95の間に光学フィルタ70を配置して、発光ダイオード(LED)素子35からの光が光学フィルタ70を透過して導光体95に導かれるように構成されている。   As shown in FIG. 3, the linear illumination device (white) 30 serving as the first light emitting unit has an optical filter 70 disposed between a light emitting diode (LED) element 35 and a light guide 95, and a light emitting diode (LED ) The light from the element 35 passes through the optical filter 70 and is guided to the light guide 95.

即ち、線状照明装置(白色)30では、図6に示すような概ね青色の第1の色域(波長約380〜約480nm)の発光スペクトルを持つ第1の発光部を構成する発光ダイオード(LED)素子35を発光させ、蛍光体を励起させて第1の色域(青色)の補色を発光させる。光学フィルタ70を透過して光量が減衰した青色域光は蛍光体に励起された補色光と混色して白色光へ色変換する白色LEDを発光ダイオード(LED)素子として使用している。   That is, in the linear illumination device (white) 30, a light emitting diode (1) that constitutes a first light emitting unit having an emission spectrum of a substantially blue first color gamut (wavelength of about 380 to about 480 nm) as shown in FIG. LED) element 35 emits light, and the phosphor is excited to emit a complementary color of the first color gamut (blue). A blue light whose intensity has been attenuated by passing through the optical filter 70 is mixed with complementary color light excited by a phosphor, and a white LED that converts color to white light is used as a light emitting diode (LED) element.

更に、線状照明装置(白色)30では、図4に示すような分光特性を持ち、前述の白色LEDの青色発光チップからの光を減衰させる光学フィルタ70を使用している。   Further, the linear illumination device (white) 30 uses an optical filter 70 having spectral characteristics as shown in FIG. 4 and attenuating light from the blue light emitting chip of the white LED described above.

線状照明装置(青色)40は図5に示すような構成を持ち、青色LEDを発光ダイオード(LED)素子45として使用している。   The linear illumination device (blue) 40 has a configuration as shown in FIG. 5 and uses a blue LED as a light emitting diode (LED) element 45.

次に、この原稿読取り装置の動作原理について説明する。図7は本願の一実施の形態に係る画像読取装置のブロック図である。線状照明装置(白色)30より発せられた照明光(白色)80と線状照明装置(青色)40より発せられた照明光(青色)90をプラテン20に載置した原稿10に照射する。   Next, the operating principle of this document reading apparatus will be described. FIG. 7 is a block diagram of an image reading apparatus according to an embodiment of the present application. The illumination light (white) 80 emitted from the linear illumination device (white) 30 and the illumination light (blue) 90 emitted from the linear illumination device (blue) 40 are irradiated onto the document 10 placed on the platen 20.

そこで、原稿10の濃度や色に対応した反射光がロッドレンズアレイ50を通り、光電変換素子アレイ60に結像する。光電変換素子アレイ60において、光信号は電気信号に変換されて増幅され、光電変換素子アレイ(A/D変換)61においてアナログ信号からデジタル信号に変換し、最終的にセンサデータとして、記憶装置63に記憶される。   Therefore, the reflected light corresponding to the density and color of the original 10 passes through the rod lens array 50 and forms an image on the photoelectric conversion element array 60. In the photoelectric conversion element array 60, the optical signal is converted into an electric signal and amplified, converted in the photoelectric conversion element array (A / D conversion) 61 from an analog signal to a digital signal, and finally stored as sensor data in a storage device 63. Is remembered.

従来、原稿読取り装置の光源としてキセノンランプ(XE)が用いられるが、キセノンランプは駆動にインバータ回路等を必要とし、光源を構成するシステムとして高価であるという問題がある。   Conventionally, a xenon lamp (XE) is used as a light source of an original reading apparatus. However, the xenon lamp requires an inverter circuit or the like for driving, and has a problem that it is expensive as a system constituting the light source.

そこで、図8に示すような回路導体を形成したLED実装用基板100上にLEDチップ110を複数個、直線状に所定間隔を配置したLEDアレイ110が用いられている。図8はLEDアレイ100の構成図である。   Therefore, an LED array 110 is used in which a plurality of LED chips 110 are linearly arranged at predetermined intervals on an LED mounting substrate 100 on which circuit conductors as shown in FIG. 8 are formed. FIG. 8 is a configuration diagram of the LED array 100.

しかしながら、従来のようなLEDアレイ100では、LEDチップ110の指向特性のため照明効率が低く、また原稿面照度のばらつきが大きくなるため、画像読取りの性能を低下させる原因となっていた。また、原稿面からLEDアレイ100まではある程度距離をおく必要があり、ユニット自体のサイズも大きなものとなり、更に数多くのLEDチップ110を使用するためコストの高騰の要因となっていた。   However, in the conventional LED array 100, the illumination efficiency is low due to the directional characteristics of the LED chip 110, and the variation in the illuminance on the original surface is large, which has been a cause of deterioration in image reading performance. Further, it is necessary to provide a certain distance from the document surface to the LED array 100, the size of the unit itself is large, and the use of a large number of LED chips 110 causes a cost increase.

図9は線状照明装置の基本構成図である。図9に示す線状照明装置は、接続部120から他端部130へ行くに従って断面積(円の径)が小さくなるように構成した透光性材料よりなる導光体140の長手方向の一側表面に、多数の三角波状のプリズムからなる光屈折・反射領域150を設け、この導光体140の端部に設けられた発光ダイオード(LED)素子160からの光を導光体140内部に伝搬させると共に、光屈折・反射領域150によって、導光体140上方の出射面145から出射させ、導光体140の長手方向に沿った線上を照射するものである。   FIG. 9 is a basic configuration diagram of the linear illumination device. The linear illumination device shown in FIG. 9 has a longitudinal direction of a light guide 140 made of a translucent material configured such that a cross-sectional area (diameter of a circle) decreases from the connecting portion 120 to the other end portion 130. A light refracting / reflecting region 150 made up of a large number of triangular wave prisms is provided on the side surface, and light from a light emitting diode (LED) element 160 provided at the end of the light guide 140 is introduced into the light guide 140. In addition to propagating, the light is refracted and emitted from the exit surface 145 above the light guide 140 by the light refraction / reflection region 150 to irradiate a line along the longitudinal direction of the light guide 140.

ここで、光源としてのLEDチップ110は導光体140の端部に設けられたLED保持部170内の回路基板上に搭載され、LED保持部170内に形成した凹反射面180に光を反射させて導光体140に光を入射させ、接続部120を介して導光体140に導かれるようになっている。図5において、接続部120は円筒状に形成され、この内周に光拡散層175が設けられて、LEDチップ110からの光を導光体140に導く接続部である。   Here, the LED chip 110 as a light source is mounted on the circuit board in the LED holding unit 170 provided at the end of the light guide 140 and reflects light to the concave reflection surface 180 formed in the LED holding unit 170. Thus, light is incident on the light guide 140 and guided to the light guide 140 through the connecting portion 120. In FIG. 5, the connecting portion 120 is formed in a cylindrical shape, and a light diffusion layer 175 is provided on the inner periphery thereof, and is a connecting portion that guides light from the LED chip 110 to the light guide 140.

この構成により、接続部120に入射した光のうち接続部120の側面に到達する光成分は光拡散層175により拡散され、その大部分を導光体140に入射できるようになっている。導光体140に入射した光の成分は、同じく導光体140の側面から直接出射するか、または何回か側面で全反射を繰り返しながら光屈折・反射領域150に到達し、急激に角度を曲げられ(即ち角度変換を施され)、導光体140から上方へ出射して原稿を照明する。   With this configuration, the light component that reaches the side surface of the connection portion 120 out of the light incident on the connection portion 120 is diffused by the light diffusion layer 175 so that most of the light component can enter the light guide 140. The light component incident on the light guide 140 is also emitted directly from the side surface of the light guide 140 or reaches the photorefractive / reflective region 150 while repeating total reflection on the side surface several times. The document is bent (ie, subjected to angle conversion) and emitted upward from the light guide 140 to illuminate the document.

光は光拡散層175によって接続部120の側面から直接導光体140外へ出射されることなく、接続部120内で反射を繰り返して導光体140に導かれ、導光体140の光屈折・反射領域150で図5の実線矢印方向に反射して出射面145から出射せしめられるようになっているため、原稿面での照度の均一化を図ることができる。   The light is not emitted directly from the side surface of the connection part 120 to the outside of the light guide 140 by the light diffusion layer 175, but is repeatedly reflected in the connection part 120 and guided to the light guide 140. Since the light is reflected from the reflection area 150 in the direction indicated by the solid line arrow in FIG. 5 and is emitted from the emission surface 145, the illuminance on the document surface can be made uniform.

しかしながら、LEDチップ110の数を増やしやすい前述のようなLEDアレイ100とは異なり、十分な光量を得るには高輝度のLEDチップ110が必要である。また、カラー画像読取を実現するためには、R(赤色)、G(緑色)、B(青色)の光の3原色のLEDもしくは白色LEDが必要となる。   However, unlike the LED array 100 as described above, which easily increases the number of LED chips 110, a high-brightness LED chip 110 is required to obtain a sufficient amount of light. In order to realize color image reading, LEDs of three primary colors or white LEDs of R (red), G (green), and B (blue) light are required.

白色LEDは図10に一例を示すような色度の分布範囲を持つため、図7に一例を示すような補正手段としての演算装置62が必要となる。   Since the white LED has a chromaticity distribution range as shown in FIG. 10 as an example, an arithmetic unit 62 as correction means as shown in FIG. 7 is required.

ここで、補正手段の動作原理を図7を用いて説明する。図7では光源として白色LED31及び青色LED41を用いている。   Here, the principle of operation of the correcting means will be described with reference to FIG. In FIG. 7, white LEDs 31 and blue LEDs 41 are used as light sources.

白色LED31は白色LED駆動回路32で定電流駆動され、青色LED41は青色LED駆動回路42で定電流駆動されている。図7において、光電変換素子アレイ61はR(赤色)、G(緑色)、B(青色)の光の3原色の各波長を測定し、センサデータとして出力する。演算装置62は記憶装置63が記憶したセンサデータから照度を算出する。記憶装置63には照度が設定値として保存されており、演算装置62はセンサデータと記憶装置63に記憶された設定値とを比較演算し、電流値をシェーディング時に記憶装置63に保存されている設定値に補正調整する。最後に、補正後の設定値を記憶装置63に保存する。   The white LED 31 is driven with a constant current by a white LED drive circuit 32, and the blue LED 41 is driven with a constant current by a blue LED drive circuit 42. In FIG. 7, the photoelectric conversion element array 61 measures the wavelengths of the three primary colors of R (red), G (green), and B (blue) light, and outputs them as sensor data. The computing device 62 calculates illuminance from the sensor data stored in the storage device 63. Illuminance is stored as a set value in the storage device 63, and the calculation device 62 compares the sensor data with the set value stored in the storage device 63, and the current value is stored in the storage device 63 during shading. Correct and adjust to the set value. Finally, the corrected set value is stored in the storage device 63.

その後、画像読取時において、白色LED駆動回路32及び青色LED駆動回路42に流れる電流の電流値が記憶装置63に保存された設定値に設定調整される。読み取られた画像データは、シェーディング時に保存されたセンサデータに対応して「光量分布及びRGBの分光感度」の不均一性を補正すると共に、予め記憶装置63に保存された「照明装置」及び「原稿読取り装置」に固有の「補正係数」により補正して、色再現性を確保する。   Thereafter, at the time of image reading, the current value of the current flowing through the white LED drive circuit 32 and the blue LED drive circuit 42 is set and adjusted to the set value stored in the storage device 63. The read image data corrects the non-uniformity of the “light quantity distribution and RGB spectral sensitivity” corresponding to the sensor data stored at the time of shading, and the “illumination device” and “ Correction is performed using a “correction coefficient” unique to the “document reading device” to ensure color reproducibility.

図11は本願の一実施の形態に係る照明装置の補完後の発光スペクトルの説明図、図12は本願の一実施の形態に係る照明装置の補完後の色度の分布範囲の説明図、図13は本願の一実施の形態に係る照明装置に用いる光電変換素子アレイの分光感度の説明図、図14は補完後の原稿の色差[△E]の説明図である。   FIG. 11 is an explanatory diagram of an emission spectrum after complementing the lighting device according to the embodiment of the present application, and FIG. 12 is an explanatory diagram of a distribution range of chromaticity after complementing the lighting device according to the embodiment of the present application. 13 is an explanatory diagram of the spectral sensitivity of the photoelectric conversion element array used in the illumination device according to the embodiment of the present application, and FIG. 14 is an explanatory diagram of the color difference [ΔE] of the document after complementation.

補完後の合成光の発光スペクトルは図11に示すようなり、図12に示すような色度範囲を有する。図15に示すグレースケール(白色〜灰色〜黒色)の原稿を図13に示す分光感度を持つ光電変換素子アレイで読み取った場合の、標準の光D65の下での測色値との色差[△E]は図14に示すようになり、グレースケール(白色〜灰色〜黒色)で色差
[△E]3以内に改善される。
The emission spectrum of the synthesized light after complementation is as shown in FIG. 11, and has a chromaticity range as shown in FIG. When a gray scale (white to gray to black) document shown in FIG. 15 is read by the photoelectric conversion element array having the spectral sensitivity shown in FIG. 13, the color difference from the colorimetric value under the standard light D65 [Δ E] is as shown in FIG. 14 and is improved within a color difference [ΔE] of 3 on a gray scale (white to gray to black).

色差[△E]とは、等しい大きさに知覚される色差が、空間内の等しい距離に対応する
ように意図した色空間である均等色空間のひとつであるL*a*b*表色系(CIE1976)における2色間の距離をいい、色違いの度合いが心理的に同じに見える時には、その2色間の距離は同じになる。
Color difference [ΔE] is an L * a * b * color system in which color differences perceived to be equal in size are one of uniform color spaces that are intended to correspond to equal distances in space. The distance between two colors in (CIE 1976) is the same, and when the degree of color difference seems to be the same psychologically, the distance between the two colors is the same.

色差[△E]に対する感覚の一例を以下に示す
色差[△E]1.5〜 3.0:一般には同じ色だと思われているレベル
色差[△E]3.0〜 6.0:印象レベルでは同じ色として扱える範囲
色差[△E]6.0〜12.0:異なる色として感じられる。
An example of the sensation for the color difference [ΔE] is shown below. Color difference [ΔE] 1.5 to 3.0: Level generally considered to be the same color Color difference [ΔE] 3.0 to 6.0: Range that can be handled as the same color at the impression level Color difference [ΔE] 6.0 to 12.0: Perceived as different colors.

図7で示されるように、白色LED31は白色LED駆動回路32により、また青色LED41は青色LED駆動回路42により独立に定電流駆動されており、定電流駆動の電流値は、R(赤色)、G(緑色)、B(青色)の光の3原色の各波長を測定する光電変換素子アレイ60からのセンサデータから算出された照度が記憶装置63に保存されている設定値となるように比較演算され、調整されるように構成され、シェーディング時に記憶装置63に保存されている設定値となるような電流が白色LED31及び青色LED41に流されるよう白色LED駆動回路32及び青色LED駆動回路42が調整され、調整値が記憶装置63に保存される。   As shown in FIG. 7, the white LED 31 is driven by the white LED drive circuit 32 and the blue LED 41 is independently driven by the constant current by the blue LED drive circuit 42. The current value of the constant current drive is R (red), Comparison is made so that the illuminance calculated from the sensor data from the photoelectric conversion element array 60 that measures the wavelengths of the three primary colors of G (green) and B (blue) light becomes a set value stored in the storage device 63. The white LED driving circuit 32 and the blue LED driving circuit 42 are configured to be calculated and adjusted so that a current that is a set value stored in the storage device 63 during shading flows through the white LED 31 and the blue LED 41. Adjustment is performed and the adjustment value is stored in the storage device 63.

その後、画像読取時には、白色LED駆動回路32及び青色LED駆動回路42は記憶装置63に保存された調整値に設定調整される。読み取られた画像データは、シェーディング時に保存されたセンサデータに対応して「光量分布及びRGBの分光感度」の不均一性を補正すると共に、予め記憶装置63に保存された「照明装置」及び「原稿読取り装置」に固有の「補正係数」により補正して、色再現性を確保する。   Thereafter, at the time of image reading, the white LED drive circuit 32 and the blue LED drive circuit 42 are set and adjusted to the adjustment values stored in the storage device 63. The read image data corrects the non-uniformity of the “light quantity distribution and RGB spectral sensitivity” corresponding to the sensor data stored at the time of shading, and the “illumination device” and “ Correction is performed using a “correction coefficient” unique to the “document reading device” to ensure color reproducibility.

本実施の形態は、前述の密着型イメージセンサを画像読取システムに使用したものである。   In the present embodiment, the contact image sensor described above is used in an image reading system.

図16は、画像読取システムの基本構成図である。   FIG. 16 is a basic configuration diagram of the image reading system.

画像読取システム200は、密着型イメージセンサ210とプラテン220とモーター230と支持シャフト240と駆動用シャフト250と原稿押えカバー260を備えている。   The image reading system 200 includes a contact image sensor 210, a platen 220, a motor 230, a support shaft 240, a drive shaft 250, and a document pressing cover 260.

画像読取システム200は、図示しない操作部を操作することにより、光を透過するプラテン220の上に置かれた状態の原稿270の画像情報を読取るために、密着型イメージセンサ210が備えている線状照明装置30,40は、原稿270に対して光を照射する。また、密着型イメージセンサ210は支持シャフト240上をモーター230によって回転する駆動用シャフト250により、平行に配置された2本のシャフト上を移動する。   The image reading system 200 includes a line provided in the contact image sensor 210 to read image information of the document 270 placed on the platen 220 that transmits light by operating an operation unit (not shown). The shape illumination devices 30 and 40 irradiate the original 270 with light. The contact image sensor 210 moves on two shafts arranged in parallel by a driving shaft 250 that is rotated on a support shaft 240 by a motor 230.

よって、密着型イメージセンサ210をモーター230でプラテン220に平行に移動させながら、原稿270からの反射光は、ロッドレンズアレイで集光され光電変換素子アレイに入射し、光電変換素子アレイで電気信号に変換され、図示しない情報処理装置へ出力される。   Therefore, while the contact image sensor 210 is moved in parallel with the platen 220 by the motor 230, the reflected light from the document 270 is collected by the rod lens array and incident on the photoelectric conversion element array, and an electric signal is output by the photoelectric conversion element array. And output to an information processing apparatus (not shown).

係る構成によれば、安価かつ小型で、読取り性能の高い画像読取システムを実現できる。   According to such a configuration, it is possible to realize an image reading system that is inexpensive, small, and has high reading performance.

以上説明してきたように、本発明によれば、原稿面の光量を十分に確保することができ、原稿面の照度が均一で光量深度の比較的大きく、色再現性の確保された線状照明装置を提供することができることから、電子黒板や画像形成装置(プリンタ等)や画像処理装置に用いられる画像読取部、若しくは画像読取装置(スキャナ)等の画像読取用、照明用光源として極めて有用である。   As described above, according to the present invention, a sufficient amount of light on the surface of the original can be ensured, the illumination on the surface of the original is uniform, the amount of light is relatively large, and the linear illumination is ensured in color reproducibility. Since the apparatus can be provided, it is extremely useful as a light source for image reading and illumination of an electronic blackboard, an image forming apparatus (printer, etc.), an image reading unit used in an image processing apparatus, or an image reading apparatus (scanner). is there.

本願の一実施の形態に係る照明装置の構成図The block diagram of the illuminating device which concerns on one embodiment of this application 本願の一実施の形態に係る照明装置の断面図Sectional drawing of the illuminating device which concerns on one embodiment of this application 本願の一実施の形態に係る照明装置に用いる光学フィルタの配置図Arrangement diagram of optical filter used for lighting device according to one embodiment of the present application 本願の一実施の形態に係る照明装置に用いるバンドパスフィルタ(光学フィルタ)の分光特性の説明図Explanatory drawing of the spectral characteristic of the band pass filter (optical filter) used for the illuminating device which concerns on one embodiment of this application 本願の一実施の形態に係る照明装置の光路説明図Optical path explanatory drawing of the illuminating device which concerns on one embodiment of this application 高輝度白色LEDの発光スペクトルの説明図Explanatory diagram of emission spectrum of high brightness white LED 本願の一実施の形態に係る画像読取装置のブロック図Block diagram of an image reading apparatus according to an embodiment of the present application LEDアレイの構成図Configuration diagram of LED array 線状照明装置の基本構成図Basic configuration diagram of linear illumination device 高輝度の白色LEDの色度の分布範囲の説明図Explanatory diagram of chromaticity distribution range of high-intensity white LED 本願の一実施の形態に係る照明装置の補完後の発光スペクトルの説明図Explanatory drawing of the emission spectrum after the complement of the illuminating device which concerns on one embodiment of this application 本願の一実施の形態に係る照明装置の補完後の色度の分布範囲の説明図Explanatory drawing of the distribution range of the chromaticity after the complement of the illuminating device which concerns on one embodiment of this application 光電変換素子アレイの分光感度の説明図Explanatory diagram of spectral sensitivity of photoelectric conversion element array 補完後の原稿の色差[△E]の説明図Explanatory drawing of color difference [△ E] of original after complement 原稿の反射率の説明図Illustration of the reflectance of the document 画像読取システムの基本構成図Basic configuration of image reading system 高輝度白色LEDの色度の分布範囲の説明図Illustration of chromaticity distribution range of high-intensity white LED 白紙の反射率の説明図Illustration of reflectivity of blank paper 原稿の色差[△E]の説明図Illustration of color difference [△ E] of the document

10 原稿
20 プラテン
30 線状照明装置(白色)
35 発光ダイオード(LED)素子
40 線状照明装置(青色)
50 ロッドレンズアレイ
60 受光装置
70 光学フィルタ
80 照明光(白色)
90 照明光(青色)
95 導光体
10 Document 20 Platen 30 Linear illumination device (white)
35 Light-Emitting Diode (LED) Element 40 Linear Lighting Device (Blue)
50 Rod lens array 60 Light receiving device 70 Optical filter 80 Illumination light (white)
90 Illumination light (blue)
95 Light guide

Claims (5)

第1の色域光を発光させる第1の発光部と、
前記第1の色域光の色域に含まれる色域の第2の色域光を発光させる第2の発光部と、
前記第1の発光部が発光させた前記第1の色域光の一部を透過させ光量を減衰させるフィルタと、
前記第1の発光部が発光させた前記第1の色域光の一部をその補色に変換する蛍光部材とを設け、
前記第2の発光部が発光させた前記第2の色域光により光量を補われた前記フィルタを透過した前記第1の色域光と、前記蛍光部材から発せられた前記第1の色域光の補色とにより白色光を発光させる照明装置。
A first light emitting unit that emits light of a first color gamut;
A second light emitting unit that emits light of a second color gamut in a color gamut included in the color gamut of the first color gamut light;
A filter that transmits a part of the first color gamut light emitted by the first light emitting unit and attenuates the amount of light;
A fluorescent member for converting a part of the first color gamut light emitted by the first light emitting unit into its complementary color;
The first color gamut light transmitted from the filter whose light amount has been compensated by the second color gamut light emitted by the second light emitting unit, and the first color gamut emitted from the fluorescent member. An illuminating device that emits white light using a complementary color of light.
第1の色域光を発光させる第1の発光部と、
前記第1の色域光の色域に含まれる色域の第2の色域光を発光させる第2の発光部と、
前記第1の発光部が発光させた前記第1の色域光の一部を透過させ光量を減衰させるフィルタと、
前記第1の発光部が発光させた前記第1の色域光の一部をその補色に変換する蛍光部材とを設け、
前記第2の発光部が発光させた前記第2の色域光により光量を補われた前記フィルタを透過した前記第1の色域光と、前記蛍光部材から発せられた前記第1の色域光の補色とにより白色光を発光させる照明装置。
A first light emitting unit that emits light of a first color gamut;
A second light emitting unit that emits light of a second color gamut in a color gamut included in the color gamut of the first color gamut light;
A filter that transmits a part of the first color gamut light emitted by the first light emitting unit and attenuates the amount of light;
A fluorescent member for converting a part of the first color gamut light emitted by the first light emitting unit into its complementary color;
The first color gamut light transmitted from the filter whose light amount has been compensated by the second color gamut light emitted by the second light emitting unit, and the first color gamut emitted from the fluorescent member. An illuminating device that emits white light using a complementary color of light.
青色光を発光させる青色発光チップをそれぞれ有する第1及び第2の発光部と、
前記第1の発光部の前記青色発光チップが発光させた前記青色光の一部を透過させ光量を減衰させるフィルタと、
前記第1の発光部が発光させた前記青色光の一部をその補色に変換する蛍光部材とを設け、
前記第2の発光部が発光させた前記青色光により光量を補われた前記フィルタを透過した前記青域光と、前記蛍光部材から発せられた前記青域光の補色とにより白色光を発光させる照明装置。
First and second light emitting units each having a blue light emitting chip for emitting blue light;
A filter that transmits a part of the blue light emitted by the blue light emitting chip of the first light emitting unit and attenuates the amount of light;
A fluorescent member that converts a part of the blue light emitted by the first light emitting unit into its complementary color;
White light is emitted by the blue light transmitted through the filter whose light amount is compensated by the blue light emitted by the second light emitting unit and the complementary color of the blue light emitted from the fluorescent member. Lighting device.
前記第1の発光部と前記第2の発光部はそれぞれ射出された光を導光する導光体に接続されていることを特徴とする請求項1乃至請求項3に記載の照明装置。 The lighting device according to claim 1, wherein the first light emitting unit and the second light emitting unit are connected to a light guide that guides the emitted light. 電子黒板、画像形成装置(プリンタ等)や画像処理装置に用いられる画像読取部若しくは画像読取装置に用いられることを特徴とする請求項1乃至請求項4記載の照明装置。 5. The illumination device according to claim 1, wherein the illumination device is used in an electronic blackboard, an image forming apparatus (printer or the like), an image reading unit or an image reading apparatus used in an image processing apparatus.
JP2009062334A 2009-03-16 2009-03-16 Illumination device and image reading apparatus Pending JP2010219714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009062334A JP2010219714A (en) 2009-03-16 2009-03-16 Illumination device and image reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062334A JP2010219714A (en) 2009-03-16 2009-03-16 Illumination device and image reading apparatus

Publications (1)

Publication Number Publication Date
JP2010219714A true JP2010219714A (en) 2010-09-30

Family

ID=42978097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062334A Pending JP2010219714A (en) 2009-03-16 2009-03-16 Illumination device and image reading apparatus

Country Status (1)

Country Link
JP (1) JP2010219714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374437A (en) * 2011-08-26 2012-03-14 友达光电股份有限公司 Light source module with multiple light sources
JP2012155907A (en) * 2011-01-24 2012-08-16 Panasonic Corp Lighting system
JP2013098144A (en) * 2011-11-07 2013-05-20 Ushio Inc Linear light source apparatus for reading device
JP2014007033A (en) * 2012-06-22 2014-01-16 Ushio Inc Linear light source device
JP2014053882A (en) * 2012-08-08 2014-03-20 Ricoh Co Ltd Scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155907A (en) * 2011-01-24 2012-08-16 Panasonic Corp Lighting system
CN102374437A (en) * 2011-08-26 2012-03-14 友达光电股份有限公司 Light source module with multiple light sources
JP2013098144A (en) * 2011-11-07 2013-05-20 Ushio Inc Linear light source apparatus for reading device
JP2014007033A (en) * 2012-06-22 2014-01-16 Ushio Inc Linear light source device
JP2014053882A (en) * 2012-08-08 2014-03-20 Ricoh Co Ltd Scanner

Similar Documents

Publication Publication Date Title
US8842344B2 (en) Image sensor unit and image reader
JP4781377B2 (en) Scanning device
US7294816B2 (en) LED illumination system having an intensity monitoring system
JPH07183994A (en) Image reader
JP2001343531A (en) Illumination device, image sensor having this illumination device and image reader and information processing system using this image sensor
JP2010219714A (en) Illumination device and image reading apparatus
JP2003046726A (en) Device for reading print pattern of a variety of paper leaves
US6376822B1 (en) Image reading apparatus
EP0729267B1 (en) Image forming apparatus and light source unit
JPH09330611A (en) Image reading device and light source unit
JP6128897B2 (en) Illumination device and image reading device
US20080030802A1 (en) Contact image sensor module
JP3689448B2 (en) Image reading apparatus and light source unit
JPH11317108A (en) Lighting apparatus, and image reading apparatus and image forming apparatus using the lighting apparatus
US6198551B1 (en) Image reading apparatus having line sensors arranged in specific order and with different or same interval between adjacent line sensors
JP2006017689A (en) Light source device
US7315405B2 (en) Image forming apparatus and image scanning method
US7893394B2 (en) Optical device, image reading device, and filter manufacturing method
JP2008263510A (en) Image reader
JP7041485B2 (en) Line light source and optical line sensor unit equipped with this
JP5059326B2 (en) Illumination device for image reading apparatus
JP2004221729A (en) Close contact type image sensor and close contact type image reader using the same
JP3905545B2 (en) Image scanner device
JP3591958B2 (en) Image reading device
JP7041539B2 (en) The light receiving output correction method and light receiving output correction system of the optical line sensor unit, and the optical line sensor unit used for this.