JP2010208488A - Cooling system of flight vehicle - Google Patents

Cooling system of flight vehicle Download PDF

Info

Publication number
JP2010208488A
JP2010208488A JP2009056928A JP2009056928A JP2010208488A JP 2010208488 A JP2010208488 A JP 2010208488A JP 2009056928 A JP2009056928 A JP 2009056928A JP 2009056928 A JP2009056928 A JP 2009056928A JP 2010208488 A JP2010208488 A JP 2010208488A
Authority
JP
Japan
Prior art keywords
pressurizing chamber
outside
pressurized chamber
cooling system
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009056928A
Other languages
Japanese (ja)
Other versions
JP5208817B2 (en
Inventor
Kenji Okubo
健次 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009056928A priority Critical patent/JP5208817B2/en
Publication of JP2010208488A publication Critical patent/JP2010208488A/en
Application granted granted Critical
Publication of JP5208817B2 publication Critical patent/JP5208817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve efficient thermal control by a simple configuration and an improved degree of freedom of an attachment arrangement including design. <P>SOLUTION: An aerial 11 is arranged on an outer wall of a flight vehicle body 10, and a pressurized chamber 101 and an outside 102 of the pressurized chamber of the flight vehicle body 10 are communicated with a duct member 13. Air in the pressurized chamber 101 is flowed to the outside 102 of the pressurized chamber by using the pressure difference between the pressurized chamber 101 and the outside 102 of the pressurized chamber, the ambient temperature of the outside 102 of the pressurized chamber is cooled, a heat sink 12 thermally combined with a heat release face of the aerial 11 is blown by the air, and the aerial 11 is therefore thermally controlled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば航空機、飛行船等の飛行体に係り、特に、その冷却システムに関する。   The present invention relates to a flying body such as an aircraft or an airship, and more particularly to a cooling system thereof.

一般に、飛行体には、空中線や送受信機等の多数の電子機器が搭載され、この電子機器を送風機や熱交換器等の冷却装置を用いて熱制御することにより、電子機器の性能を維持する冷却システムが構築されている。ところで、このような飛行体の冷却システムにあっては、飛行体に搭載する電子機器の高能力化により、その発熱量が増加されている一方で、飛行体における電子機器の搭載空間の制約が更に厳しくなってきていることで、飛行体の分野における重要な課題の一つとなっている。   In general, a large number of electronic devices such as antennas and transceivers are mounted on a flying body, and the performance of the electronic devices is maintained by thermally controlling the electronic devices using a cooling device such as a blower or a heat exchanger. A cooling system has been established. By the way, in such a cooling system for an air vehicle, the amount of heat generated is increased due to the increase in the capacity of the electronic device mounted on the aircraft, while the space for mounting the electronic device on the aircraft is limited. Increasingly severe is one of the important issues in the field of flying objects.

例えば従来、飛行体に搭載する空中線は、飛行体本体に搭載して、送風機、熱交換器を備えた冷却装置を組付けて、この冷却装置を駆動制御して空中線を熱制御する方法が採られている。   For example, conventionally, an antenna mounted on a flying body is mounted on the flying body, and a cooling device including a blower and a heat exchanger is assembled, and the cooling device is driven and controlled to thermally control the antenna. It has been.

このような飛行体に搭載される冷却システムとしては、例えば冷却用ファンを備えた空冷器材を用いる空冷方式(例えば、非特許文献1参照)、作動媒体が循環供給される熱交換器を用いて器材を熱制御する液冷方式(例えば、非特許文献2参照)のものが知られている。   As a cooling system mounted on such a flying object, for example, an air cooling method using an air cooling device provided with a cooling fan (see, for example, Non-Patent Document 1), a heat exchanger in which a working medium is circulated and supplied is used. A liquid cooling system (for example, see Non-Patent Document 2) that thermally controls equipment is known.

また、最近、飛行体に搭載される空中線の分野では、飛行体本体の外壁に直接的に配置して使用に供する構成のものが研究されている。このような空中線は、特に、飛行体本体の外形形状が、飛行性能との関係から制約を受けることで、小形・薄形化が図られているために、高発熱密度な構成となることにより、その熱制御が重要な課題であると考えられている。   Recently, in the field of an aerial mounted on a flying object, a structure in which it is directly arranged on the outer wall of the flying object for use is being studied. Such an aerial is especially high because the outer shape of the aircraft body is constrained by the relationship with flight performance, and is made smaller and thinner. The thermal control is considered to be an important issue.

「最新版 電子装置の冷却技術実用マニュアル」(日本技術経済センター 刊)著者:DAVES.STEINBERG 監修:大島耕一 松下正"Latest version of electronic device cooling technology practical manual" (published by Japan Technology Center) Author: DAVES. Steinberg supervision: Koichi Oshima Tadashi Matsushita 「電子通信装置の機械設計」(森北出版株式会社 刊) 著者:窪田雅男 鵜沢高吉"Mechanical design of electronic communication devices" (published by Morikita Publishing Co., Ltd.) Author: Masao Kubota Takayoshi Serizawa

しかしながら、上記飛行体の冷却システムでは、いずれの方式も冷却用ファンや熱交換器等の駆動源を備えなければならない構成上、その構成が複雑となるうえ、大形となり、重量が嵩むために、その設計を含む取付け配置の自由度が劣るという問題を有する。   However, in the above cooling system of the flying body, any system must be equipped with a driving source such as a cooling fan or a heat exchanger, and the structure is complicated and large, and the weight increases. There is a problem that the degree of freedom of the mounting arrangement including the design is inferior.

係る熱制御の事情は、特に、最近研究されている飛行体本体の外壁に配する空中線方式の場合、その構成上、高発熱密度となることで重大な課題となる。   The situation of such thermal control becomes a serious problem because of the high heat generation density due to its configuration, particularly in the case of the antenna system that is arranged on the outer wall of the aircraft body that has been recently studied.

この発明は、上記の事情に鑑みてなされたもので、簡易な構成で、設計を含む取付け配置の自由度の向上を図り得、且つ、高効率な熱制御を実現し得るようにした飛行体の冷却システムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a simple configuration, can improve the degree of freedom of mounting and placement including design, and can realize high-efficiency thermal control. An object of the present invention is to provide a cooling system.

この発明は、飛行体本体の与圧室外に配置された電子機器と、一端部が前記飛行体本体の与圧室に開放され、他端部が前記与圧室外に開放されて配置され、前記与圧室と前記与圧室外の圧力差を利用して前記与圧室内の空気を前記与圧室外に流動させて、該与圧室外の周囲温度で冷却させ、前記電子機器の放熱面側に吹付けて該電子機器を冷却する空気路とを備えて飛行体の冷却システムを構成した。   According to the present invention, the electronic device disposed outside the pressurizing chamber of the flying body, one end portion is opened to the pressurizing chamber of the flying body, and the other end portion is disposed to be opened outside the pressurizing chamber. Using the pressure difference between the pressurizing chamber and the pressurizing chamber, the air in the pressurizing chamber is caused to flow outside the pressurizing chamber, and cooled at the ambient temperature outside the pressurizing chamber, and on the heat radiation surface side of the electronic device A cooling system for an air vehicle was configured by including an air passage for spraying to cool the electronic device.

上記構成によれば、与圧室内の空気は、与圧室外との圧力差により空気路を通り与圧室外に流動され、与圧室外の周囲温度により冷却されて電子機器の放熱面に吹付けられ、電子機器の放熱面に発熱部から熱移送された熱を排熱する。   According to the above configuration, the air in the pressurizing chamber flows through the air path due to a pressure difference with the outside of the pressurizing chamber, flows outside the pressurizing chamber, is cooled by the ambient temperature outside the pressurizing chamber, and is blown to the heat radiation surface of the electronic device. The heat transferred from the heat generating part to the heat radiating surface of the electronic device is exhausted.

これにより、送風機等の送風源及び熱交換器を備えることなく、電子機器の高効率な冷却が実現されると共に、小形・軽量化の促進を図ることが可能となり、構成部品の軽減が図れて、その設計を含む取付け配置の自由度の向上を図ることができる。   As a result, it is possible to achieve highly efficient cooling of electronic equipment without providing a blower or other air source and a heat exchanger, and it is possible to promote downsizing and weight reduction, thereby reducing the number of components. Thus, the degree of freedom of the mounting arrangement including the design can be improved.

以上述べたように、この発明によれば、簡易な構成で、設計を含む取付け配置の自由度の向上を図り得、且つ、高効率な熱制御を実現し得るようにした飛行体の冷却システムを提供することができる。   As described above, according to the present invention, a cooling system for an aircraft that can improve the degree of freedom of mounting and placement including design and achieve high-efficiency thermal control with a simple configuration. Can be provided.

この発明の一実施の形態に係る飛行体の冷却システムの構成を説明するために示した断面図である。It is sectional drawing shown in order to demonstrate the structure of the cooling system of the aircraft which concerns on one embodiment of this invention. 図1の空中線を飛行体本体の外壁に取付け配置した状態を示した斜視図である。It is the perspective view which showed the state which attached and arrange | positioned the antenna of FIG. 1 to the outer wall of a flying body. 図1の飛行体本体の内壁側にヒートシンクを空中線に対応して熱的に結合させて配置した状態を示した斜視図である。It is the perspective view which showed the state which has arrange | positioned the heat sink on the inner wall side of the aircraft main body of FIG. 図1の空中線の飛行体本体の内壁側にヒートシンクを覆うようにダクト部材を取付けた状態を示した斜視図である。It is the perspective view which showed the state which attached the duct member so that the heat sink might be covered on the inner wall side of the aircraft main body of the antenna of FIG.

以下、この発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、この発明の一実施の形態に係る飛行体の冷却システムを示すもので、飛行体本体10は、搭乗員の搭乗する与圧室101と隔壁103で仕切られた与圧室外102で構成されている。   FIG. 1 shows a flying body cooling system according to an embodiment of the present invention. A flying body 10 is composed of a pressurized chamber outside 102 partitioned by a pressurized chamber 101 and a partition wall 103 on which a crew member rides. It is configured.

このうち与圧室101は、飛行体本体10の飛行状態において、例えば室温が約20℃に保たれ、気圧が約0.6atmに保たれた快適な環境が維持される。他方の与圧室外102は、各種の器材等が収容配置され、飛行体本体10の飛行状態において、上記与圧室101と異なり、その外部環境と略同様の例えば温度が約−54℃、気圧が約0.1atm程度の環境となる。   Among these, the pressurized chamber 101 maintains a comfortable environment in which, for example, the room temperature is maintained at about 20 ° C. and the atmospheric pressure is maintained at about 0.6 atm in the flight state of the flying body 10. The other pressurization chamber outside 102 accommodates and arranges various equipments and the like, in the flight state of the aircraft body 10, unlike the pressurization chamber 101, for example, the temperature is approximately −54 ° C., which is substantially the same as the external environment. Becomes an environment of about 0.1 atm.

上記飛行体本体10の外壁には、電子機器である空中線11が例えば与圧室外102に対応して設置され(図2参照)、この空中線11は、例えば与圧室101内に配される図示しない内部機器に電気的に接続される。この空中線11は、飛行体本体10の飛行に影響を及ぼさないように薄型の外壁形状に形成され、例えばその飛行状態において、所望のレーダー空間における目標の探知に供される。   On the outer wall of the flying body 10, an aerial wire 11, which is an electronic device, is installed corresponding to, for example, the outside of the pressurizing chamber 102 (see FIG. 2). Not electrically connected to internal equipment. The aerial line 11 is formed in a thin outer wall shape so as not to affect the flight of the flying vehicle body 10, and is used for detecting a target in a desired radar space, for example, in the flight state.

空中線11は、例えば背面側に放熱面が設けられ、この放熱面が、例えば飛行体本体10の外壁に熱的に接続されて配置される。そして、この空中線11の放熱面が熱的に結合された飛行体本体10の内壁には、図3に示すようにヒートシンク12が熱的に結合されて取付けられる。これにより、ヒートシンク12は、空中線11の放熱面に対して飛行体本体10の壁面を挟んで熱的に結合される。   The aerial wire 11 is provided with, for example, a heat radiating surface on the back side, and this heat radiating surface is disposed, for example, thermally connected to the outer wall of the flying body 10. Then, as shown in FIG. 3, a heat sink 12 is thermally coupled and attached to the inner wall of the aircraft body 10 to which the heat radiation surface of the antenna 11 is thermally coupled. Thereby, the heat sink 12 is thermally coupled to the heat radiating surface of the antenna 11 with the wall surface of the flying body 10 interposed therebetween.

ヒートシンク12は、例えばピン形状の複数の放熱フィン121が所定の間隔を有して直並列状に立設され(図3参照)、この複数の放熱フィン121には、空中線11の熱が放熱面から飛行体本体10の壁面を通って熱伝導される。このヒートシンク12としては、ピン形状の放熱フィン121を備えたものに限るものでなく、その他、各種形状のものを用いて構成することが可能である。   In the heat sink 12, for example, a plurality of pin-shaped radiating fins 121 are erected in series and parallel with a predetermined interval (see FIG. 3), and the heat of the antenna 11 is radiated to the plurality of radiating fins 121. Through the wall surface of the aircraft body 10. The heat sink 12 is not limited to the one having the pin-shaped heat dissipating fins 121, and can be configured by using various other shapes.

そして、このヒートシンク12は、図4に示すように空気路を構成するダクト部材13の中間部に内装される如く該ダクト部材13内に収容配置される。このダクト部材13は、一端部が与圧室外102において排気可能に開口されて空気排出可能に開放され、その一端部が上記隔壁103を挿通されて与圧室101内まで配管されて(図1参照)、該与圧室101内に空気取入可能に開口されて出入り可能に開放される。これにより、ダクト部材13は、飛行体本体10の飛行状態において、与圧室101と与圧室外102との間の圧力差により、与圧室101の空気が与圧室外102方向に流れ出て、その他端部から与圧室外102に排気される。   And this heat sink 12 is accommodated and arrange | positioned in this duct member 13 so that it may be comprised by the intermediate part of the duct member 13 which comprises an air path, as shown in FIG. One end of the duct member 13 is opened so as to be evacuated outside the pressurizing chamber 102 and opened so that air can be discharged. One end of the duct member 13 is inserted into the pressurizing chamber 101 through the partition wall 103 (FIG. 1). The pressure chamber 101 is opened so as to be able to take in air and is opened so as to be able to enter and exit. Thereby, in the flight state of the airframe body 10, the duct member 13 causes the air in the pressurizing chamber 101 to flow out in the direction of the pressurizing chamber 102 due to the pressure difference between the pressurizing chamber 101 and the pressurizing chamber outside 102. Exhaust from the other end to the pressurized chamber 102.

即ち、飛行体本体10は、その飛行時、与圧室101の気圧、例えば0.6atmと、与圧室外102の気圧、例えば0.1atmと、与圧室101と与圧室外102に圧力差が生じ、その圧力差により与圧室101内の空気が、ダクト部材13を通ってヒートシンク12方向に所定の流速で流動される。この際、ダクト部材13内を流動する空気は、与圧室101の温度、例えば20℃から与圧室外102の温度、例えば−54℃の温度により冷却されてヒートシンク12の放熱フィン121に吹付けられ、ダクト部材13の一端部から与圧室外102に排出される。   That is, during the flight, the airframe body 10 has a pressure difference between the pressurized chamber 101 and the pressurized chamber 102, such as an atmospheric pressure of the pressurized chamber 101, for example, 0.6 atm, and an atmospheric pressure of the pressurized chamber 102, for example, 0.1 atm. Due to the pressure difference, the air in the pressurizing chamber 101 flows through the duct member 13 toward the heat sink 12 at a predetermined flow rate. At this time, the air flowing in the duct member 13 is cooled by the temperature of the pressurizing chamber 101, for example, from 20 ° C. to the temperature of the pressurizing chamber outside 102, for example, −54 ° C., and sprayed to the radiating fins 121 of the heat sink 12. And is discharged from one end of the duct member 13 to the outside of the pressurizing chamber 102.

上記構成において、空中線11が駆動されると共に、飛行体本体10が飛行されると、空中線11が発熱されて、その熱が放熱面から飛行体本体10の壁面を通ってヒートシンク12に熱移送される。   In the above configuration, when the aerial wire 11 is driven and the flying vehicle body 10 flies, the aerial wire 11 generates heat, and the heat is transferred from the heat radiation surface to the heat sink 12 through the wall surface of the flying vehicle body 10. The

同時に、ダクト部材13には、上述したように与圧室101と、与圧室外102とに圧力差が発生することで、与圧室101内の空気がヒートシンク方向に所定の流速で流れて与圧室外102に排出される。この空気は、ダクト部材13内を流動して与圧室外102から排出されるまでの間に、ダクト部材13の周囲の与圧室外102の非常に冷たい外気により冷却された後、ヒートシンク12に吹付けられる。これにより、ヒートシンク12の放熱フィン121に熱移送された空中線11からの熱は、与圧室外102に効率的よく排熱されて、空中線11が所望の温度に熱制御される。   At the same time, the duct member 13 has a pressure difference between the pressurizing chamber 101 and the pressurizing chamber outside 102 as described above, so that the air in the pressurizing chamber 101 flows at a predetermined flow rate in the heat sink direction. It is discharged outside the pressure chamber 102. This air is cooled by the very cool outside air outside the pressurizing chamber 102 around the duct member 13 until it flows inside the duct member 13 and is discharged from the pressurizing chamber 102, and then blown to the heat sink 12. Attached. Thereby, the heat from the aerial wire 11 transferred to the heat radiation fins 121 of the heat sink 12 is efficiently exhausted to the outside of the pressurizing chamber 102, and the aerial wire 11 is thermally controlled to a desired temperature.

このように、上記飛行体の冷却システムは、飛行体本体10の外壁に空中線11を配置して、飛行体本体10の与圧室101と与圧室外102とをダクト部材13を介して連通させ、与圧室101と与圧室外102との圧力差を利用して与圧室101内の空気を与圧室外102に流動させると共に、与圧室外102の周囲温度で冷却させて、空中線11の放熱面に熱的に結合させたヒートシンク12に吹付けて空中線11の熱制御を行うように構成した。   As described above, in the cooling system for the flying body, the aerial line 11 is arranged on the outer wall of the flying body 10, and the pressurized chamber 101 and the pressurized chamber outside 102 of the flying body 10 are communicated with each other via the duct member 13. The air in the pressurizing chamber 101 flows into the pressurizing chamber 102 using the pressure difference between the pressurizing chamber 101 and the pressurizing chamber 102, and is cooled at the ambient temperature of the pressurizing chamber 102. It was configured to perform thermal control of the antenna 11 by spraying on the heat sink 12 thermally coupled to the heat radiating surface.

これによれば、与圧室101内の空気が、該与圧室101と与圧室外102との圧力差によりダクト部材13を流れて与圧室外102に流動されると共に、その流動途中で与圧室外102の冷えた周囲温度により、冷却された後、ヒートシンク12の放熱フィン121に吹付けられ、空中線10の熱制御が行われる。これにより、送風機等の送風源及び熱交換器等の冷却源を備えることなく、空中線11の高効率な熱制御が実現されると共に、小形・軽量化の促進を図ることができるため、構成部品の軽減が図れ、その設計を含む取付け配置の自由度の向上を図ることができる。   According to this, air in the pressurizing chamber 101 flows through the duct member 13 due to a pressure difference between the pressurizing chamber 101 and the pressurizing chamber 102 and flows to the pressurizing chamber 102, and is applied in the middle of the flow. After being cooled by the cold ambient temperature outside the pressure chamber 102, the air is blown to the radiating fins 121 of the heat sink 12, and the thermal control of the antenna 10 is performed. Thereby, without providing an air source such as a blower and a cooling source such as a heat exchanger, high-efficiency heat control of the antenna 11 can be realized, and it is possible to promote a reduction in size and weight. Can be reduced, and the degree of freedom of the mounting arrangement including the design can be improved.

なお、上記実施の形態では、ヒートシンク12を空中線11の放熱面が熱的に結合された飛行体本体10の内壁に設けて熱制御するように構成した場合について説明したが、これに限ることなく、その他、ヒートシンク12を設けないで、空中線11の放熱面が熱的に結合された飛行体本体10の内壁に対して直接的に空気を吹付けて熱制御するように構成することも可能で、同様に有効な効果が期待される。   In the above-described embodiment, the heat sink 12 is provided on the inner wall of the aircraft body 10 where the heat radiation surface of the aerial wire 11 is thermally coupled, and is configured to be thermally controlled. However, the present invention is not limited to this. In addition, it is also possible to configure such that the heat control is performed by directly blowing air to the inner wall of the aircraft body 10 in which the heat dissipation surface of the antenna 11 is thermally coupled without providing the heat sink 12. Similarly, an effective effect is expected.

また、上記実施の形態では、飛行体本体10の外壁に配する空中線11に適用した場合について説明したが、これに限ることなく、その他、例えば飛行体本体10の与圧室外102に収容配置される送受信機等の各種の電子機器の冷却構造に適用することも可能で、同様に有効な効果が期待される。   In the above-described embodiment, the case where the present invention is applied to the aerial wire 11 disposed on the outer wall of the aircraft body 10 has been described. However, the present invention is not limited to this. The present invention can be applied to a cooling structure for various electronic devices such as transceivers, and similarly effective effects are expected.

よって、この発明は、上記実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施の形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。   Therefore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

例えば実施の形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the effect of the invention can be obtained. In such a case, a configuration in which this configuration requirement is deleted can be extracted as an invention.

10…飛行体本体、101…与圧室、102…与圧室外、103…隔壁、11…空中線、12ヒートシンク、121…放熱フィン、13…ダクト部材。   DESCRIPTION OF SYMBOLS 10 ... Aircraft body, 101 ... Pressurization chamber, 102 ... Outside pressurization chamber, 103 ... Partition, 11 ... Aerial wire, 12 Heat sink, 121 ... Radiation fin, 13 ... Duct member

Claims (4)

飛行体本体の与圧室外に配置された電子機器と、
一端部が前記飛行体本体の与圧室に開放され、他端部が前記与圧室外に開放されて配置され、前記与圧室と前記与圧室外の圧力差を利用して前記与圧室内の空気を前記与圧室外に流動させて、該与圧室外の周囲温度で冷却させ、前記電子機器の放熱面側に吹付けて該電子機器を冷却する空気路と、
を具備することを特徴とする飛行体の冷却システム。
Electronic devices arranged outside the pressurized chamber of the aircraft body;
One end portion is opened to the pressurizing chamber of the flying body, and the other end portion is opened to the outside of the pressurizing chamber, and the pressurizing chamber is utilized using a pressure difference between the pressurizing chamber and the pressurizing chamber. Air flow outside the pressurizing chamber, cooled at an ambient temperature outside the pressurizing chamber, and blown to the heat radiation surface side of the electronic device to cool the electronic device;
An aircraft cooling system comprising:
前記電子機器の放熱面は、ヒートシンクが熱的に結合されていることを特徴とする請求項1又は2記載の飛行体の冷却システム。   3. The flying body cooling system according to claim 1, wherein a heat sink is thermally coupled to the heat radiation surface of the electronic device. 前記電子機器は、前記飛行体本体の外壁に配置され、背面に前記飛行体本体の外壁に熱的に結合される放熱面が設けられた空中線であることを特徴とする請求項1記載の飛行体の冷却システム。   2. The flight according to claim 1, wherein the electronic device is an aerial wire that is disposed on an outer wall of the aircraft body and has a heat radiation surface that is thermally coupled to the outer wall of the aircraft body on a rear surface. Body cooling system. 前記飛行体本体の内壁には、前記空中線の放熱面と熱的に結合されるヒートシンクが設けられることを特徴とする請求項3記載の飛行体の冷却システム。   4. The aircraft cooling system according to claim 3, wherein a heat sink that is thermally coupled to a heat radiation surface of the antenna is provided on an inner wall of the aircraft body.
JP2009056928A 2009-03-10 2009-03-10 Aircraft cooling system Expired - Fee Related JP5208817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056928A JP5208817B2 (en) 2009-03-10 2009-03-10 Aircraft cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056928A JP5208817B2 (en) 2009-03-10 2009-03-10 Aircraft cooling system

Publications (2)

Publication Number Publication Date
JP2010208488A true JP2010208488A (en) 2010-09-24
JP5208817B2 JP5208817B2 (en) 2013-06-12

Family

ID=42969159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056928A Expired - Fee Related JP5208817B2 (en) 2009-03-10 2009-03-10 Aircraft cooling system

Country Status (1)

Country Link
JP (1) JP5208817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155494A (en) * 2015-02-25 2016-09-01 三菱航空機株式会社 Aircraft
CN113782940A (en) * 2021-08-31 2021-12-10 西南电子技术研究所(中国电子科技集团公司第十研究所) High-speed airflow through type air-cooling heat dissipation airborne antenna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481084U (en) * 1990-11-27 1992-07-15
US5327744A (en) * 1992-12-18 1994-07-12 United Technologies Corporation Integrated environmental control system for a helicopter
JP2003110330A (en) * 2001-10-02 2003-04-11 Mitsubishi Electric Corp Antenna device
JP2004028980A (en) * 2002-01-09 2004-01-29 Eads Deutschland Gmbh Phase control type antenna subsystem
JP2005014627A (en) * 2003-06-23 2005-01-20 Matsushita Electric Ind Co Ltd Cooling device of electronic device for aircraft
US20050076661A1 (en) * 2003-09-22 2005-04-14 Thomas Zywiak Aircraft galley chiller system
JP2008258976A (en) * 2007-04-05 2008-10-23 Toshiba Corp Array antenna device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481084U (en) * 1990-11-27 1992-07-15
US5327744A (en) * 1992-12-18 1994-07-12 United Technologies Corporation Integrated environmental control system for a helicopter
JPH08504704A (en) * 1992-12-18 1996-05-21 ユナイテッド テクノロジーズ コーポレイション Integrated environment control system for helicopter
JP2003110330A (en) * 2001-10-02 2003-04-11 Mitsubishi Electric Corp Antenna device
JP2004028980A (en) * 2002-01-09 2004-01-29 Eads Deutschland Gmbh Phase control type antenna subsystem
JP2005014627A (en) * 2003-06-23 2005-01-20 Matsushita Electric Ind Co Ltd Cooling device of electronic device for aircraft
US20050076661A1 (en) * 2003-09-22 2005-04-14 Thomas Zywiak Aircraft galley chiller system
JP2007521183A (en) * 2003-09-22 2007-08-02 ハミルトン・サンドストランド・コーポレイション Aircraft cooking room cooling system
JP2008258976A (en) * 2007-04-05 2008-10-23 Toshiba Corp Array antenna device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155494A (en) * 2015-02-25 2016-09-01 三菱航空機株式会社 Aircraft
CN113782940A (en) * 2021-08-31 2021-12-10 西南电子技术研究所(中国电子科技集团公司第十研究所) High-speed airflow through type air-cooling heat dissipation airborne antenna
CN113782940B (en) * 2021-08-31 2023-05-26 西南电子技术研究所(中国电子科技集团公司第十研究所) High-speed air-flow through type air-cooled radiating airborne antenna

Also Published As

Publication number Publication date
JP5208817B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
US8388142B2 (en) Thermal management of very small form factor projectors with synthetic jets
EP2681847B1 (en) Cooling system and method for cooling radio unit
US8621842B2 (en) Exhaust silencer convection cooling
US7940524B2 (en) Remote cooling of a phased array antenna
CA2772268C (en) System and method for cooling at least one heat-producing device in an aircraft
CN105276411B (en) Light irradiation device
KR101808592B1 (en) Air cooling type radar antenna for aircraft
WO2016099785A1 (en) Battery pack with variable-conductance heat pipe (vchp) cooling
CN106507635B (en) Machine cabinet
WO2007130583A3 (en) Scalable liquid cooling system with modular radiators
WO2020000182A1 (en) Heat dissipation device and unmanned aerial vehicle having the heat dissipation device
JPWO2020136861A1 (en) Antenna device
JP5208817B2 (en) Aircraft cooling system
JP2022542435A (en) Re-entry flow cooling plate
US20170183099A1 (en) Multi-axis passenger-carrying aircraft
EP3301999B1 (en) Light emitting diode heatsink
JP2006050742A (en) Forced air-cooling power converter and electric motor car
US20090290305A1 (en) Entrainment heatsink using engine bleed air
CN113782940A (en) High-speed airflow through type air-cooling heat dissipation airborne antenna
JP2008007009A (en) Pod for navigation body
KR101366616B1 (en) Heat sink and Repeater having the same
JP2010075660A (en) Ion discharge device
JP6678649B2 (en) Air cooling system and airflow generator
WO2018061814A1 (en) Power supply device
CN213768940U (en) Unmanned plane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5208817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees