JP2010207843A - Continuous casting method of molten metal - Google Patents

Continuous casting method of molten metal Download PDF

Info

Publication number
JP2010207843A
JP2010207843A JP2009055501A JP2009055501A JP2010207843A JP 2010207843 A JP2010207843 A JP 2010207843A JP 2009055501 A JP2009055501 A JP 2009055501A JP 2009055501 A JP2009055501 A JP 2009055501A JP 2010207843 A JP2010207843 A JP 2010207843A
Authority
JP
Japan
Prior art keywords
mold
molten
molten metal
slab
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009055501A
Other languages
Japanese (ja)
Other versions
JP5073698B2 (en
Inventor
Masahiro Tani
雅弘 谷
Kazuhisa Tanaka
和久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009055501A priority Critical patent/JP5073698B2/en
Publication of JP2010207843A publication Critical patent/JP2010207843A/en
Application granted granted Critical
Publication of JP5073698B2 publication Critical patent/JP5073698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method of molten metal capable of improving lubrication between the inner wall face of a mold and a solidified shell and stably casting a slab having superior surface characteristic. <P>SOLUTION: In the continuous casting method of molten metal, an AC electric current satisfying a frequency of 30-300 Hz is made to flow in a solenoid type electromagnetic coil which is arranged in a manner surrounding a mold 15 or imbedded in the mold 15 having an inner width ≥800 mm in the width direction and ≥150 mm in the thickness direction of a cast slab. Also, to the molten metal 16 in the mold 15, an electromagnetic force is applied, the electromagnetic force satisfying 300-5,000 gausses in the maximum value of a magnetic flux density formed at least in the range up to 400 mm in the casting direction from a meniscus 17 position. In applying the electromagnetic force, a minimum thickness of a molten powder 18 layer covering the meniscus 17 upper face of the molten metal 16 is maintained at 7 mm or more, and the continuous casting is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶融金属(特に、溶鋼)の連続鋳造方法に関する。 The present invention relates to a continuous casting method for molten metal (particularly molten steel).

図3に示すように、溶融金属の連続鋳造において、精錬が完了した溶融金属80は、取鍋と呼ばれる容器81から、タンディッシュと呼ばれる中間容器82を経由し、連続鋳造用ノズル83により鋳型84内へ注入される。
そして、鋳型84による一次冷却で凝固シェル85を形成し、引き続き、鋳型84の下方に配置された支持セグメント86に敷設した冷却ノズルからの散水による二次冷却で凝固を促進して、連続的に鋳片87を製造している。なお、図3中の番号88は、鋳片87を下流側へ引抜くピンチロールである。
As shown in FIG. 3, in the continuous casting of molten metal, molten metal 80 that has been refined passes from a container 81 called a ladle through an intermediate container 82 called a tundish, and is cast by a continuous casting nozzle 83 into a mold 84. It is injected into.
Then, the solidified shell 85 is formed by the primary cooling by the mold 84, and subsequently the solidification is promoted by the secondary cooling by the water spray from the cooling nozzle laid on the support segment 86 disposed below the mold 84, and continuously. The slab 87 is manufactured. In addition, the number 88 in FIG. 3 is the pinch roll which draws out the slab 87 downstream.

鋳型84においては、溶融金属80のメニスカス表面に粉末状の潤滑剤パウダー89が添加され、潤滑剤パウダー89の溶融金属接触面側が溶融する。そして、この溶融状態のパウダー(以下、溶融パウダーという)90が、所定の条件で振動する鋳型84の内壁面と、一定速度で引抜かれる凝固シェル85との間に形成される流路91内に、溶融パウダー90の静圧による自然落下(自重によりメニスカス表面に働く力での流入)と、鋳型84の内壁面と凝固シェル85との相互作用により、流入して消費される。
この溶融パウダー90の流路91への流入量(消費量)は、鋳型84の内壁面と凝固シェル85の間の潤滑に影響を及ぼすため、連続鋳造で製造された鋳片87の表面性状を支配する重要な因子である。
In the mold 84, powdery lubricant powder 89 is added to the meniscus surface of the molten metal 80, and the molten metal contact surface side of the lubricant powder 89 is melted. This molten powder 90 (hereinafter referred to as molten powder) is placed in a flow path 91 formed between the inner wall surface of the mold 84 that vibrates under a predetermined condition and the solidified shell 85 drawn at a constant speed. The molten powder 90 flows in and is consumed due to the natural fall due to the static pressure of the molten powder 90 (inflow by the force acting on the meniscus surface by its own weight) and the interaction between the inner wall surface of the mold 84 and the solidified shell 85.
The inflow amount (consumption amount) of the molten powder 90 into the flow channel 91 affects the lubrication between the inner wall surface of the mold 84 and the solidified shell 85, and therefore the surface property of the slab 87 manufactured by continuous casting is determined. It is an important factor to dominate.

このため、流路91の幅(即ち、鋳型84の内壁面と凝固シェル85との間に形成されるパウダーフィルムの厚みに相当)が減少すれば、流路91内への溶融パウダー90の流入量が減少するため、以下の問題が発生する。
鋳型84の内壁面の表面温度の上昇や、鋳型84の内壁面と凝固シェル85との間の摩擦抵抗の上昇を招くため、鋳片87の表面が割れたり、また凝固シェル85が鋳型84の内壁面に焼付いて鋳片87の引抜きができなくなる。更に、このような状況下で、鋳片87を鋳型84から無理に引抜くと、凝固シェル85が破れ、未凝固状態の溶融金属が少量漏れ出す現象(ブリード)や、大量に漏れ出す現象(ブレークアウト)が発生する。
そこで、表面性状の優れた鋳片を、生産に支障をきたすことなく安定に鋳造するため、これまで、流路への溶融パウダーの流入量(消費量)を増大させる方法や、流入量を減少しにくくする方法が、種々提案されてきた。
For this reason, if the width of the flow path 91 (that is, the thickness of the powder film formed between the inner wall surface of the mold 84 and the solidified shell 85) is reduced, the molten powder 90 flows into the flow path 91. The following problems occur because the amount decreases.
Since the surface temperature of the inner wall surface of the mold 84 is increased and the frictional resistance between the inner wall surface of the mold 84 and the solidified shell 85 is increased, the surface of the slab 87 is cracked. The slab 87 cannot be pulled out by being seized on the inner wall surface. Furthermore, when the slab 87 is forcibly pulled out from the mold 84 under such circumstances, the solidified shell 85 is broken and a small amount of unmelted molten metal leaks (bleed) or a large amount leaks ( Breakout).
Therefore, in order to stably cast slabs with excellent surface properties without affecting production, methods to increase the flow rate (consumption) of molten powder into the flow path and reduce the flow rate so far Various methods for making this difficult have been proposed.

例えば、特許文献1には、予め溶解してガラス状とした所要組成のCaO−BaO−SiO−F系組成物基材に、アルカリ金属・アルカリ土類金属の炭酸塩を2〜15重量%、アルカリ金属・アルカリ土類金属の弗化物を2〜30重量%、及び炭素を0.2〜10重量%混合し、必要に応じ、Fe、Mn、及びNiの各金属酸化物の少なくとも1種以上を、内枠量で2〜10重量%混合した複合配合物よりなり、凝固温度が900℃以下で、1300℃における粘度が3ポアズ以下である連続鋳造用モールドパウダーが記載されている。
また、特許文献2には、パウダーの1300℃におけるイニシャル粘性η(poise)、イニシャル表面張力τ(dyn/cm)、パウダー巻き込み性指数P、及び1ストランド単位時間あたりの鋳造量W(トン/時間)が、所定の条件を満足するように鋳造することで、パウダー系内質欠陥のない連鋳々片を製造する方法が記載されている。
For example, Patent Document 1 discloses that a CaO—BaO—SiO 2 —F-based composition base material having a required composition that has been preliminarily melted and glassy, contains 2 to 15 wt% of an alkali metal / alkaline earth metal carbonate. In addition, 2-30 wt% of alkali metal / alkaline earth metal fluoride and 0.2-10 wt% of carbon are mixed, and if necessary, at least one of each metal oxide of Fe, Mn, and Ni There is described a mold powder for continuous casting which is composed of a composite compound in which the above is mixed in an amount of 2 to 10% by weight in an inner frame, has a solidification temperature of 900 ° C. or less and a viscosity at 1300 ° C. of 3 poise or less.
Patent Document 2 discloses that the initial viscosity η (poise) of powder at 1300 ° C., initial surface tension τ (dyn / cm 2 ), powder entrainment index P, and casting amount W (ton / ton) per unit time of one strand. Describes a method for producing continuous cast pieces having no powder-type internal defects by casting so that a predetermined time satisfies a predetermined condition.

そして、特許文献3には、連続鋳造において、鋳型の側壁に埋設した電磁コイルに、交流電流をパルス状に供給して、パウダーの供給を円滑に行うパウダーの供給方法が記載されている。
また、特許文献4には、溶鋼のメニスカス位置から鋳造方向に少なくとも10cmの範囲に、周波数30〜200Hz、磁束密度1000ガウス以上の交流磁場を形成して、鋳型中心軸に向かう電磁気圧を溶融プールに作用させると共に、粘度0.5〜2.0ポアズ(1300℃で)、融点900〜1200℃に調整した連鋳パウダーを使用して、鋼鋳片を連続鋳造する方法が記載されている。
更に、特許文献5には、鋳型内の溶鋼に電磁力を印加し、メニスカス形状を変化させながら行う連続鋳造方法において、パウダーの粘度を16〜200ポアズ、磁束密度の最大値を300〜5000ガウスにして、鋼鋳片を連続鋳造する方法が記載されている。
Patent Document 3 describes a powder supply method for supplying powder smoothly by supplying an alternating current in pulses to an electromagnetic coil embedded in a side wall of a mold in continuous casting.
In Patent Document 4, an AC magnetic field having a frequency of 30 to 200 Hz and a magnetic flux density of 1000 gauss or more is formed in a range of at least 10 cm in the casting direction from the meniscus position of the molten steel, and the electromagnetic pressure toward the mold center axis is set in the molten pool. And a method of continuously casting a steel slab using a continuous casting powder adjusted to have a viscosity of 0.5 to 2.0 poise (at 1300 ° C.) and a melting point of 900 to 1200 ° C.
Furthermore, Patent Document 5 discloses that in a continuous casting method in which electromagnetic force is applied to molten steel in a mold and the meniscus shape is changed, the powder viscosity is 16 to 200 poise and the maximum magnetic flux density is 300 to 5000 gauss. Thus, a method of continuously casting a steel slab is described.

特開昭60−72653号公報JP 60-72653 A 特開昭62−238053号公報JP-A-62-238053 特開昭64−83348号公報JP-A-64-83348 特開平4−319056号公報JP-A-4-3119056 特許第4091777号公報Japanese Patent No. 4091777

しかしながら、前記従来の技術には、未だ解決すべき以下のような問題があった。
特許文献1、2では、溶融パウダーの粘度を調整することで、鋳型の内壁面と凝固シェルとの相互作用を通じて、溶融パウダーの流入性に影響を与えている。しかし、大断面スラブ(例えば、スラブの幅方向の内幅が800mm以上、かつ厚み方向の内幅が150mm以上の鋳型で鋳造される断面積が大きなスラブ)を鋳造する場合、溶融パウダー層が極端に薄くなる局所的な部位においては、溶融パウダーの静圧が小さくなり、溶融パウダーの粘度を変化させても、溶融パウダーの流入部位が制限される。このため、流路への溶融パウダーの流入量の低減を防止することができず、鋳片の表面性状が劣化したり、また操業に支障をきたしたりする場合がある。
However, the conventional technique still has the following problems to be solved.
In Patent Documents 1 and 2, by adjusting the viscosity of the molten powder, the flowability of the molten powder is affected through the interaction between the inner wall surface of the mold and the solidified shell. However, when casting a large-section slab (for example, a slab having a large cross-sectional area cast with a mold having an inner width in the width direction of 800 mm or more and an inner width in the thickness direction of 150 mm or more), the molten powder layer is extremely In a local region where the thickness of the molten powder is reduced, the static pressure of the molten powder becomes small, and even if the viscosity of the molten powder is changed, the inflow site of the molten powder is limited. For this reason, it is not possible to prevent a reduction in the amount of molten powder flowing into the flow path, and the surface properties of the slab may be deteriorated or the operation may be hindered.

また、特許文献3〜5では、鋳型の内壁面と凝固シェルとの間への溶融パウダーの流入が促進されるため、鋳片の表面性状を改善できる。しかし、溶融パウダーの流入量が増加するため、メニスカス上面を覆う溶融パウダー層の厚みが薄くなる。特に、大断面スラブを鋳造する場合、溶融パウダー層が極端に薄くなる局所的な部位において、溶融パウダーの静圧が小さくなり、溶融パウダーの流入部位が制限される。その結果、流路への溶融パウダーの流入量が低減し、鋳片欠陥が発生したり、操業に支障をきたしたりする場合がある。
以上のことから、前記従来の方法では、大断面スラブの鋳造において、鋳片欠陥の発生を防止する点では、有効に作用しなかった。
Moreover, in patent documents 3-5, since inflow of the molten powder between the inner wall face of a casting_mold | template and a solidification shell is accelerated | stimulated, the surface property of slab can be improved. However, since the inflow amount of the molten powder increases, the thickness of the molten powder layer covering the upper surface of the meniscus becomes thin. In particular, when casting a large-section slab, the static pressure of the molten powder is reduced at a local site where the molten powder layer becomes extremely thin, and the inflow site of the molten powder is limited. As a result, the amount of molten powder flowing into the flow path is reduced, and a slab defect may occur or the operation may be hindered.
From the above, the conventional method did not work effectively in preventing the occurrence of slab defects in casting of a large-section slab.

また、大断面スラブの鋳造において、電磁力により、鋳型の内壁面と凝固シェルとの間に形成される溶融パウダーの流路を拡大する技術を適用すると、メニスカスの形状(表面形状)が時間的に変動し、また、メニスカスの形状が波立って不均一になり、局部的に溶融パウダー層が極端に薄くなる部位が発生する。この現象が継続すると、溶融パウダー層が薄くなった部位において、溶融パウダー層による静圧が小さくなり、溶融パウダーの流入部位が制限されるため、流路への溶融パウダーの流入量が低減して、鋳片欠陥が発生したり、また操業に支障をきたしたりする場合がある。 In addition, when casting a large cross-section slab, applying a technology that expands the flow path of the molten powder formed between the inner wall surface of the mold and the solidified shell by electromagnetic force, the shape of the meniscus (surface shape) is temporal. In addition, the meniscus shape is uneven and uneven, and a part where the molten powder layer becomes extremely thin locally occurs. If this phenomenon continues, in the part where the molten powder layer becomes thinner, the static pressure by the molten powder layer becomes smaller and the inflow part of the molten powder is limited, so the amount of molten powder flowing into the flow path is reduced. Slab defects may occur or the operation may be hindered.

本発明はかかる事情に鑑みてなされたもので、断面積が大きなスラブを鋳造するに際し、鋳型の内壁面と凝固シェルとの間の潤滑を改善し、表面性状の優れたスラブを安定に鋳造可能な溶融金属の連続鋳造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and when casting a slab having a large cross-sectional area, the lubrication between the inner wall surface of the mold and the solidified shell can be improved, and a slab having excellent surface properties can be stably cast. An object of the present invention is to provide a continuous molten metal casting method.

前記目的に沿う本発明に係る溶融金属の連続鋳造方法は、鋳造するスラブの幅方向の内幅が800mm以上、かつ厚み方向の内幅が150mm以上の鋳型を取り囲むように配置、又は該鋳型内に埋設されたソレノイド式電磁コイルに、周波数が30Hz以上300Hz以下を満たす交流電流を通電し、前記鋳型内の溶融金属に、メニスカス位置から鋳造方向に少なくとも400mmまでの範囲に形成される磁束密度の最大値が300ガウス以上5000ガウス以下を満たす電磁力を印加しながら鋳造を行う溶融金属の連続鋳造方法において、
前記電磁力の印加時に、溶融金属のメニスカス上面を覆う溶融パウダー層の最小厚みを7mm以上確保しながら連続鋳造を行う。
The molten metal continuous casting method according to the present invention that meets the above-mentioned object is arranged so as to surround a mold having an inner width in the width direction of 800 mm or more and an inner width in the thickness direction of 150 mm or more, or in the mold. A magnetic flux density formed in a range from the meniscus position to at least 400 mm in the casting direction is applied to the molten metal in the mold by passing an alternating current satisfying a frequency of 30 Hz to 300 Hz through the solenoid type electromagnetic coil embedded in In a continuous casting method of molten metal in which casting is performed while applying an electromagnetic force satisfying a maximum value of 300 gauss or more and 5000 gauss or less,
When the electromagnetic force is applied, continuous casting is performed while ensuring a minimum thickness of 7 mm or more for the molten powder layer covering the upper surface of the meniscus of the molten metal.

本発明に係る溶融金属の連続鋳造方法において、溶融金属の鋳造速度を1.2m/分以上にしてもよい。 In the molten metal continuous casting method according to the present invention, the molten metal casting speed may be 1.2 m / min or more.

本発明に係る溶融金属の連続鋳造方法は、電磁力の印加時に、溶融金属のメニスカス上面を覆う溶融パウダー層の最小厚みを7mm以上確保しながら連続鋳造を行うので、溶融パウダー層の静圧を増大させることができる。これにより、溶融パウダー層が局所的に極端に薄くなる部位が発生する条件下においても、鋳型の内壁面と凝固シェルとの間への溶融パウダーの流入量を増加させることができ、スラブの表面性状を改善でき、操業を安定にできる。 The molten metal continuous casting method according to the present invention performs continuous casting while ensuring a minimum thickness of the molten powder layer covering the upper surface of the molten metal meniscus at the time of applying electromagnetic force, so that the static pressure of the molten powder layer is reduced. Can be increased. As a result, the amount of molten powder flowing between the inner wall surface of the mold and the solidified shell can be increased even under conditions where the molten powder layer is locally extremely thin, and the surface of the slab can be increased. The properties can be improved and the operation can be stabilized.

また、溶融金属の鋳造速度を1.2m/分以上にする場合は、スラブの表面性状の改善効果と、操業を安定化できる効果が、より顕著に現れる。
これは、溶融金属の鋳造速度を1.2m/分以上にした場合、1.2m/分未満の場合と比較して、メニスカスの形状変化が大きくなるため、スラブの表面性状と操業性が悪化し易いことによる。
In addition, when the molten metal casting speed is set to 1.2 m / min or more, the effect of improving the surface properties of the slab and the effect of stabilizing the operation appear more remarkably.
This is because, when the molten metal casting speed is 1.2 m / min or more, the meniscus shape change is larger than when the molten metal is less than 1.2 m / min, so the surface properties and operability of the slab are deteriorated. Because it is easy to do.

(A)は電磁力の非印加時における小断面スラブを製造する鋳型の側断面図、(B)は電磁力の印加時における小断面スラブを製造する鋳型の側断面図、(C)は電磁力の非印加時における大断面スラブを製造する鋳型の側断面図、(D)は電磁力の印加時における大断面スラブを製造する鋳型の側断面図である。(A) is a side sectional view of a mold for manufacturing a small-section slab when no electromagnetic force is applied, (B) is a side sectional view of a mold for manufacturing a small-section slab when electromagnetic force is applied, and (C) is an electromagnetic FIG. 4D is a side sectional view of a mold for producing a large-section slab when no force is applied, and FIG. 4D is a side sectional view of a mold for producing a large-section slab when an electromagnetic force is applied. 溶鋼の鋳造速度と溶融パウダー層の最小厚みが操業性と品質に与える影響を示す説明図である。It is explanatory drawing which shows the influence which the casting speed of molten steel and the minimum thickness of a molten powder layer have on operability and quality. 連続鋳造方法の説明図である。It is explanatory drawing of the continuous casting method.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の一実施の形態に係る溶融金属の連続鋳造方法を想到するに至った経緯について説明した後、溶融金属の連続鋳造方法について説明する。
最初に、鋳造するスラブの幅方向の内幅が800mm以上、かつ厚み方向の内幅が150mm以上を満足しない鋳型を使用して、断面積が小さなスラブ(以下、小断面スラブともいう)を連続鋳造する場合について説明する。なお、ここでは、小断面スラブを鋳造する鋳型とは、鋳造するスラブの幅方向の内幅が800mm未満、又は厚み方向の内幅が150mm未満である空間部を有する鋳型を指す。この空間部は、鋳型の内壁面で形成される。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, after explaining the background to the idea of the molten metal continuous casting method according to one embodiment of the present invention, the molten metal continuous casting method will be described.
First, a slab having a small cross-sectional area (hereinafter also referred to as a small cross-section slab) is continuously used by using a mold that does not satisfy an inner width in the width direction of the cast slab of 800 mm or more and an inner width in the thickness direction of 150 mm or more The case of casting will be described. In addition, the casting_mold | template which casts a small cross-section slab here refers to the casting_mold | template which has the space part whose inner width of the width direction of a slab to cast is less than 800 mm, or the inner width of a thickness direction is less than 150 mm. This space is formed by the inner wall surface of the mold.

図1(A)、(B)に示すように、鋳型10に設けられたソレノイド式電磁コイル(図示しない)に、周波数fが30Hz以上300Hz以下を満たす交流電流を通電し、鋳型10内の溶鋼(溶融金属の一例)11に、メニスカス位置12から鋳造方向に少なくとも400mmまでの範囲に形成される磁束密度の最大値Bmaxが300ガウス以上5000ガウス以下を満たす電磁力を印加しながら鋳造を行う。 As shown in FIGS. 1A and 1B, a solenoid type electromagnetic coil (not shown) provided in the mold 10 is supplied with an alternating current satisfying a frequency f of 30 Hz to 300 Hz, and the molten steel in the mold 10 is supplied. (Example of molten metal) Casting is performed while applying an electromagnetic force satisfying a maximum value B max of magnetic flux density B max of 300 gauss to 5000 gauss formed in the range from meniscus position 12 to at least 400 mm in the casting direction. .

このとき、電磁力により、図1(A)に示す溶鋼11のメニスカスの平坦形状が、図1(B)に示すように、鋳型10の幅方向中央部が上に凸の形状に変化する。なお、溶鋼のメニスカスには、10〜20mm程度の高低差が生じる。
また、電磁力により、溶鋼11のメニスカス近傍において、形成される凝固シェルが電磁力により鋳型10の内壁面から遠ざかり、鋳型10の内壁面と凝固シェルとの間に形成される溶融パウダー13の流路、即ち図3に示す流路91の幅(パウダーフィルムの厚みに相当)が拡大する。このため、溶融パウダー13の静圧による自然落下(自重によりメニスカス表面に働く力での流入)と、鋳型10の内壁面と凝固シェルとの相互作用により、流路91への溶融パウダー13の流入が促進される。
At this time, due to electromagnetic force, the flat shape of the meniscus of the molten steel 11 shown in FIG. 1 (A) changes to a shape in which the central portion in the width direction of the mold 10 is convex upward as shown in FIG. 1 (B). Note that a difference in height of about 10 to 20 mm occurs in the meniscus of the molten steel.
Further, the solidified shell formed is moved away from the inner wall surface of the mold 10 by the electromagnetic force in the vicinity of the meniscus of the molten steel 11 due to electromagnetic force, and the flow of the molten powder 13 formed between the inner wall surface of the mold 10 and the solidified shell. The width of the channel, that is, the channel 91 shown in FIG. 3 (corresponding to the thickness of the powder film) is enlarged. For this reason, the molten powder 13 flows into the flow channel 91 due to the natural fall of the molten powder 13 due to the static pressure (inflow by the force acting on the meniscus surface by its own weight) and the interaction between the inner wall surface of the mold 10 and the solidified shell. Is promoted.

このように、流路91への溶融パウダー13の流入が促進した結果、メニスカス表面の溶融パウダー13層の厚みが若干減少し、溶融パウダー13層の静圧も減少するが、上記した流路拡大の影響が大きいため、溶融パウダー13の流入は阻害されない。従って、鋳片の表面性状が改善し、操業が安定になる(操業に支障をきたすブリードやブレークアウトの頻度が減少する)。
また、電磁力の印加と非印加を、短周期で繰返すパターンを用いると、電磁力によって誘起される溶鋼流動を抑制することができ、鋳片の表面性状と操業性が更に改善する。
As described above, the flow of the molten powder 13 into the flow channel 91 is promoted. As a result, the thickness of the molten powder 13 layer on the meniscus surface is slightly reduced and the static pressure of the molten powder 13 layer is also reduced. Therefore, the inflow of the molten powder 13 is not hindered. Therefore, the surface properties of the slab are improved, and the operation is stabilized (the frequency of bleeding and breakout that hinders the operation is reduced).
Moreover, when the pattern which repeats application and non-application of electromagnetic force with a short period is used, the molten steel flow induced by electromagnetic force can be suppressed and the surface property and operability of a slab improve further.

ここで、周波数fが30Hz未満の場合、発生する電磁力が小さ過ぎて、溶鋼のメニスカスの形状変化が小さくなり、凝固シェルが鋳型の内壁面から遠ざからないため、鋳片の表面性状と操業性が改善されない。
一方、周波数fが300Hzを超える場合、長辺と短辺からなる通常の一体型の組立て鋳型では、電磁力が鋳型で遮断されて溶鋼に印加されない。このため、溶鋼のメニスカスの形状変化が小さくなり、凝固シェルが鋳型の内壁面から遠ざからず、鋳片の表面性状と操業性が改善されない。
このため、周波数fを30Hz以上300Hz以下としたが、下限を50Hz、上限を250Hzとするのがよい。
Here, when the frequency f is less than 30 Hz, the generated electromagnetic force is too small, the shape change of the meniscus of the molten steel is small, and the solidified shell does not move away from the inner wall surface of the mold. Sex is not improved.
On the other hand, when the frequency f exceeds 300 Hz, the electromagnetic force is blocked by the mold and is not applied to the molten steel in a normal integrated mold having a long side and a short side. For this reason, the shape change of the meniscus of molten steel becomes small, the solidified shell does not move away from the inner wall surface of the mold, and the surface properties and operability of the slab are not improved.
For this reason, although the frequency f was 30 Hz or more and 300 Hz or less, it is preferable that the lower limit is 50 Hz and the upper limit is 250 Hz.

また、溶鋼のメニスカスから少なくとも400mm以内に形成される磁束密度の最大値Bmaxが300ガウス未満の場合、電磁力が小さ過ぎて、溶鋼のメニスカスの形状変化が小さくなり、凝固シェルが鋳型の内壁面から遠ざからないため、鋳片の表面性状と操業性が改善されない。
一方、磁束密度の最大値Bmaxが5000ガウスを超える場合、電磁力が大き過ぎて、溶鋼のメニスカスの幅方向中央部の形状が、上に凸の形状に過大に変化し、また、電磁力によって誘起される溶鋼流速が過大となる。このため、メニスカスの形状が時間的に変動し、また、その形状が波立って不均一になり、凝固シェルと鋳型壁面との間の溶融パウダーが流入する流路の幅、つまり、パウダーフィルムの厚みが時間的に変動し、また、その厚みが鋳型の内壁面の周方向全体的に渡って不均一な部分が生じる。その結果、溶融パウダーの流入量が局所的に低減して、鋳片の表面性状と操業性が改善されない。
このため、磁束密度の最大値Bmaxを300ガウス以上5000ガウス以下としたが、下限を700ガウス、上限を3000ガウスとするのがよい。
Further, when the maximum value B max of the magnetic flux density formed within at least 400 mm from the meniscus of the molten steel is less than 300 gauss, the electromagnetic force is too small, the shape change of the meniscus of the molten steel is small, and the solidified shell is within the mold. Since it is not far from the wall surface, the surface properties and operability of the slab are not improved.
On the other hand, when the maximum value B max of the magnetic flux density exceeds 5000 gauss, the electromagnetic force is too large, the shape of the central portion in the width direction of the meniscus of the molten steel changes excessively into a convex shape, and the electromagnetic force The molten steel flow velocity induced by is excessive. For this reason, the shape of the meniscus fluctuates with time, and the shape of the meniscus becomes undulating and non-uniform, and the width of the flow path through which the molten powder flows between the solidified shell and the mold wall surface, that is, the powder film The thickness fluctuates with time, and a portion where the thickness is not uniform over the entire circumferential direction of the inner wall surface of the mold is generated. As a result, the inflow of molten powder is locally reduced, and the surface properties and operability of the slab are not improved.
For this reason, the maximum value B max of the magnetic flux density is set to 300 gauss or more and 5000 gauss or less, but the lower limit is preferably 700 gauss and the upper limit is 3000 gauss.

しかしながら、鋳造試験の結果、図1(C)、(D)に示すように、電磁力を印加しても、鋳造するスラブ(鋳片の一例)の幅方向の内幅が800mm以上(上限は、例えば、2500mm程度)、かつ厚み方向の内幅が150mm以上(上限は、例えば、700mm程度)の鋳型15を用いて、断面積が大きなスラブ(以下、大断面スラブともいう)を連続鋳造した場合、スラブの表面性状が悪化し、操業が不安定になることが分かった。ここでは、大断面スラブを鋳造する鋳型とは、鋳造するスラブの幅方向の内幅が800mm以上、かつ厚み方向の内幅が150mm以上である空間部を有する鋳型を指す。なお、上記した空間部の断面積が、120000mm(=800mm×150mm)を超えて大きくなればなるほど、操業が不安定になる。
なお、この現象は、ソレノイド式電磁コイルが、鋳型を取り囲むように配置された場合、また鋳型内に埋設された場合のいずれについても、同様に起こる。
However, as a result of the casting test, as shown in FIGS. 1C and 1D, the inner width in the width direction of the slab to be cast (an example of a slab) is 800 mm or more even when electromagnetic force is applied (the upper limit is For example, a slab having a large cross-sectional area (hereinafter also referred to as a large cross-section slab) was continuously cast using a mold 15 having an inner width in the thickness direction of 150 mm or more (upper limit is, for example, about 700 mm). In this case, it was found that the surface properties of the slab deteriorated and the operation became unstable. Here, the casting mold for casting a large-section slab refers to a casting mold having a space portion whose inner width in the width direction is 800 mm or more and whose inner width in the thickness direction is 150 mm or more. In addition, operation becomes unstable, so that the cross-sectional area of the above-mentioned space part becomes large exceeding 120,000 mm < 2 > (= 800 mm x 150 mm).
This phenomenon occurs similarly when the solenoid type electromagnetic coil is arranged so as to surround the mold and when it is embedded in the mold.

そこで、鋳造試験とメニスカス表面の溶融パウダー層の厚みの実測に基づいた検討を行うことで、以下の知見を得た。
図1(C)に示すように、大断面スラブを鋳造する鋳型15を用いた連続鋳造において、鋳型15に設けられたソレノイド式電磁コイルに、周波数fが30Hz以上300Hz以下を満たす交流電流を通電し、鋳型15内の溶鋼(溶融金属の一例)16に、メニスカス17位置から鋳造方向に少なくとも400mmまでの範囲に形成される磁束密度の最大値Bmaxが300ガウス以上5000ガウス以下を満たす電磁力を印加した場合、メニスカス17表面の面積も大きくなるため、メニスカスの形状が時間的に変動し、また、空間的に不均一になり易く、更に、共振現象が起こる場合もある。このため、電磁力の作用と相まって、図1(C)に示すメニスカス17には、図1(D)に示すように、局所的に15〜25mm程度の高低差が生じる。また、図3に示す流路91が広がり、この流路91への溶融パウダー90の流入が促進した結果、溶融パウダー90の層厚が減少し易い。
Therefore, the following knowledge was obtained by conducting a study based on the casting test and the actual measurement of the thickness of the molten powder layer on the meniscus surface.
As shown in FIG. 1C, in a continuous casting using a mold 15 for casting a large-section slab, an alternating current satisfying a frequency f of 30 Hz to 300 Hz is applied to a solenoid type electromagnetic coil provided on the mold 15. Electromagnetic force satisfying the maximum value B max of magnetic flux density formed in the range from the position of the meniscus 17 to at least 400 mm in the casting direction on the molten steel (an example of molten metal) 16 in the mold 15 is 300 gauss or more and 5000 gauss or less. Is applied, the area of the meniscus 17 surface also increases, so that the shape of the meniscus fluctuates with time, tends to be spatially non-uniform, and a resonance phenomenon may occur. For this reason, coupled with the action of electromagnetic force, the meniscus 17 shown in FIG. 1 (C) locally has a height difference of about 15 to 25 mm as shown in FIG. 1 (D). Moreover, as a result of the flow channel 91 shown in FIG. 3 expanding and the inflow of the molten powder 90 into the flow channel 91 being promoted, the layer thickness of the molten powder 90 tends to decrease.

そのため、局所的に盛り上がったメニスカス部において、溶融パウダー18層の最小厚みTが極端に薄くなり、溶融パウダー18層の最小厚みが0mm(即ち、溶鋼16が粉末状のパウダーや大気と接触する状態)、又は溶融パウダー18層の最小厚みが0mmを超え7mm未満になることがある。
これにより、当該部位における鋳型15の内壁面と凝固シェルとの間の流路への、溶融パウダー18の静圧による自然落下が阻害され、鋳片の表面性状が悪化し、操業が不安定になることが分かった。
Therefore, in the locally raised meniscus portion, the minimum thickness T of the molten powder 18 layer is extremely thin, and the minimum thickness of the molten powder 18 layer is 0 mm (that is, the molten steel 16 is in contact with the powdery powder or the atmosphere) ), Or the minimum thickness of the molten powder 18 layer may be more than 0 mm and less than 7 mm.
Thereby, the natural fall by the static pressure of the molten powder 18 to the flow path between the inner wall surface of the mold 15 and the solidified shell in the part is inhibited, the surface property of the slab deteriorates, and the operation becomes unstable. I found out that

そこで、意図的に、溶融パウダー18層の最小厚みTを変化させた鋳造試験を行った結果、本発明の一実施の形態に係る溶鋼金属の連続鋳造方法に着想した。
即ち、本発明の一実施の形態に係る溶鋼金属の連続鋳造方法は、電磁力の印加時に、溶鋼のメニスカス上面を覆う溶融パウダー層の最小厚みTを7mm以上確保しながら連続鋳造を行う方法である。
これにより、大断面スラブを鋳造する鋳型を用いた連続鋳造において、前記した電磁力を印加した場合でも、溶融パウダー層の静圧の増大により、溶融パウダーの流路への流入量の低減を防止して、鋳片の表面性状を改善でき、操業が安定になることが分かった。
Therefore, as a result of intentionally performing a casting test in which the minimum thickness T of the molten powder 18 layer was changed, the inventors conceived the continuous casting method of molten steel metal according to an embodiment of the present invention.
That is, the continuous casting method of molten steel metal according to an embodiment of the present invention is a method of performing continuous casting while ensuring a minimum thickness T of a molten powder layer covering the upper surface of the meniscus of molten steel at least 7 mm when electromagnetic force is applied. is there.
This prevents a decrease in the amount of molten powder flowing into the flow path by increasing the static pressure of the molten powder layer even when the electromagnetic force is applied in continuous casting using a mold that casts a large-section slab. Thus, it was found that the surface properties of the slab can be improved and the operation becomes stable.

なお、溶融パウダー層は、その厚みが厚くなるに伴って、静圧が増大する効果が得られるため特に限定していないが、最も厚いところTBでも、80mm以下にすることが望ましい。これは、電磁力が印加されていない条件での鋳造中においては、通常、鋳型の上端から溶鋼のメニスカス位置までの距離が80〜150mm程度であり、溶融パウダー層が厚くなり過ぎて、パウダーが鋳型上端から流出する等の操業性の悪化が起こることによる。
このように、溶融パウダーがメニスカス上面を覆う方法としては、最小厚みTが7mm以上を確保できるならば、いずれの方法を用いてもよいが、例えば、以下の方法がある。
The molten powder layer is not particularly limited because the effect of increasing the static pressure is obtained as the thickness of the molten powder layer is increased. This is because during casting under a condition where no electromagnetic force is applied, the distance from the upper end of the mold to the meniscus position of the molten steel is usually about 80 to 150 mm, the molten powder layer becomes too thick, This is due to deterioration in operability such as outflow from the upper end of the mold.
As described above, as a method of covering the upper surface of the meniscus with the molten powder, any method may be used as long as the minimum thickness T can ensure 7 mm or more, for example, the following method.

(1)粉末状のパウダー中の高融点成分や低融点成分の比率、又は低融点成分の粒度を調整し、粘度と凝固温度を変えることなく、その滓化速度(溶融速度)を従来よりも1〜3倍程度上昇させる方法。
(2)粉末状のパウダー中の炭素量を上げて発熱性を高め、その滓化速度を上昇させる方法。
(3)粉末状のパウダーの直上にヒータ等の熱源を設置して、その滓化速度を上昇させる方法。
(4)メニスカス上面への粉末状のパウダーの投入量を増加させる方法。
(1) Adjust the ratio of the high melting point component and low melting point component in the powdered powder, or the particle size of the low melting point component, and the hatching rate (melting rate) is higher than before without changing the viscosity and solidification temperature. A method of raising about 1 to 3 times.
(2) A method in which the amount of carbon in the powdery powder is increased to increase the heat build-up and the hatching rate is increased.
(3) A method of increasing the hatching speed by installing a heat source such as a heater directly above the powdery powder.
(4) A method of increasing the amount of powdery powder charged onto the upper surface of the meniscus.

また、溶融パウダー層の最小厚みの測定は、例えば、幅200mm、厚み1mmの鉄板を、鋳型上方から、粉末パウダー、溶融パウダー、及び溶鋼に差込み、1秒程度浸漬した後に引上げ、鉄板に付着した溶融スラグの厚みを評価することにより行う(図3参照)。
なお、本実施の形態では、この方法を採用しているが、他の測定方法を用いてもよい。
例えば、直径1mmの鋼線を複数本、鋳型上部から、粉末パウダー、溶融パウダー、及び溶鋼に差込み、1秒程度浸漬した後に引上げ、鋼線に付着した溶融スラグの厚みを評価することにより行うこともできる。
また、2本の耐被覆電極を、鋳型上方から、粉末パウダー、溶融パウダー、及び溶鋼に浸漬させ、電極間の抵抗の変化から測定してもよい。
The minimum thickness of the molten powder layer is measured, for example, by inserting an iron plate having a width of 200 mm and a thickness of 1 mm into the powder powder, molten powder, and molten steel from above the mold, dipping for about 1 second, and then pulling up and adhering to the iron plate. This is done by evaluating the thickness of the molten slag (see FIG. 3).
In this embodiment, this method is adopted, but other measurement methods may be used.
For example, by inserting multiple steel wires with a diameter of 1 mm into the powder powder, molten powder, and molten steel from the upper part of the mold, immersing them for about 1 second, pulling them up, and evaluating the thickness of the molten slag adhered to the steel wires You can also.
Alternatively, two coating-resistant electrodes may be immersed in powder powder, molten powder, and molten steel from above the mold, and measured from the change in resistance between the electrodes.

更に、溶融パウダー層の最小厚みTが7mm未満の条件において、溶鋼の鋳造速度が1.2m/分未満の場合に比べて、溶鋼の鋳造速度を1.2m/分以上まで上昇させた場合は、鋳片の表面性状と操業性が極端に悪化することが分かった。
つまり、溶融パウダー層の最小厚みTを7mm以上確保することによる鋳片の表面性状と操業性の改善代は、溶鋼の鋳造速度が1.2m/分未満の場合に比べて、1.2m/分以上にした場合の方が大きいことが分かった。なお、溶鋼の鋳造速度が速くなるに伴って、本発明による溶融パウダー層の厚みの効果が顕著に現れるため、上限値については規定していないが、現状では、溶鋼の鋳造速度を2.4m/分にして行った場合もある。
上記したように、溶鋼の鋳造速度が上昇するに伴い、鋳片の表面性状と操業性の改善代が大きくなるのは、溶鋼の鋳造速度が大きい方が、溶鋼のメニスカス高さの変動幅が大きく、また溶融パウダーの流路への流入量が変動し易いことによる。
Furthermore, when the molten steel casting speed is increased to 1.2 m / min or more compared to the case where the molten steel casting speed is less than 1.2 m / min under the condition that the minimum thickness T of the molten powder layer is less than 7 mm, It has been found that the surface properties and operability of the slab are extremely deteriorated.
That is, the margin for improving the surface properties and operability of the slab by ensuring a minimum thickness T of the molten powder layer of 7 mm or more is 1.2 m / min compared with the case where the casting speed of the molten steel is less than 1.2 m / min. It turned out that it is larger when the time is more than minutes. In addition, since the effect of the thickness of the molten powder layer according to the present invention appears remarkably as the casting speed of molten steel increases, the upper limit value is not specified, but at present, the casting speed of molten steel is 2.4 m. In some cases, it was done at a minute.
As described above, as the casting speed of molten steel increases, the margin for improving the surface properties and operability of the slab increases. The larger the casting speed of molten steel, the greater the fluctuation width of the meniscus height of the molten steel. It is large and the amount of molten powder flowing into the flow path is likely to fluctuate.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、各種寸法の鋳型(400mm×100mm、800mm×100mm、800mm×150mm、1200mm×250mm、1000mm×400mm)を用い、低炭素アルミキルド鋼(液相線温度:1535℃、タンディッシュ内での温度:1565℃)を、0.6〜1.7m/分の鋳造速度で鋳造した結果について説明する。
なお、鋳造に使用した鋳型には、高さ100mmの電磁コイルが、そのコイル上端位置を溶鋼のメニスカス位置とし、鋳型を20ターン取囲んだ状態で配置されている。
また、使用した連続鋳造用ノズル(浸漬ノズル)は、その下端部の両側に1個ずつ(合計2個)の溶鋼吐出孔が設けられ、その軸心を、水平方向に対して下向きに35度傾斜させたものである。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, molds of various dimensions (400 mm × 100 mm, 800 mm × 100 mm, 800 mm × 150 mm, 1200 mm × 250 mm, 1000 mm × 400 mm) are used, and low carbon aluminum killed steel (liquidus temperature: 1535 ° C., temperature in the tundish : 1565 ° C.) at a casting speed of 0.6 to 1.7 m / min.
The casting mold used for casting has an electromagnetic coil having a height of 100 mm, with the upper end position of the coil as the meniscus position of the molten steel and surrounding the casting mold for 20 turns.
In addition, the continuous casting nozzle (immersion nozzle) used is provided with one (two in total) molten steel discharge holes on both sides of the lower end thereof, and its axis is 35 degrees downward with respect to the horizontal direction. It is slanted.

上記した鋳型を使用して、スラブを鋳造するに際しては、鋳型に設けられたソレノイド式電磁コイルに、周波数fが60Hzの交流電流を通電し、メニスカス位置から鋳造方向に少なくとも400mmまでの範囲に形成される磁束密度の最大値Bmaxを1500ガウスとし、電磁力の印加パターンを、0.05秒の印加と0.05秒の非印加の繰返しとした。なお、鋳型の振幅(オシレーション)は、基準位置に対して±2〜6mm(振幅距離:4〜12mm)、振動数を90〜300サイクル/分とした。
また、粉末状のパウダーには、C−Ca−SiO−Al系に、NaOを1.5〜8質量%添加し、粘度を4ポアズ(1300℃)に調整したものを使用して、メニスカス上面を覆う溶融パウダー層の最小厚みを、0mm、又は0mmを超え22mm以下の間で変化させ、鋳造作業の操業性と製造したスラブの品質について評価した。
この試験条件と試験結果を、表1、表2に示す。
When casting the slab using the above-mentioned mold, an alternating current having a frequency f of 60 Hz is applied to the solenoid type electromagnetic coil provided in the mold, and the slab is formed in a range from the meniscus position to at least 400 mm in the casting direction. The maximum magnetic flux density value B max was 1500 gauss, and the application pattern of electromagnetic force was a repetition of 0.05 second application and 0.05 second non-application. The mold amplitude (oscillation) was ± 2 to 6 mm (amplitude distance: 4 to 12 mm) with respect to the reference position, and the frequency was 90 to 300 cycles / minute.
The powdery powder is prepared by adding 1.5 to 8% by mass of Na 2 O to the C—Ca—SiO 2 —Al 2 O 3 system and adjusting the viscosity to 4 poise (1300 ° C.). The minimum thickness of the molten powder layer covering the upper surface of the meniscus was changed between 0 mm or more than 0 mm and 22 mm or less, and the operability of the casting operation and the quality of the manufactured slab were evaluated.
The test conditions and test results are shown in Tables 1 and 2.

Figure 2010207843
Figure 2010207843

Figure 2010207843
Figure 2010207843

なお、表1、表2に示す操業性の評価は、スラブ5mあたりに検出されたブリードの個数が0.1個未満の場合を「○」、0.1個以上0.5個未満の場合を「△」、0.5個以上の場合を「×」とした。
また、品質の評価は、製造したスラブを熱間圧延した後に酸洗し、冷間圧延して厚みが0.9mmの鋼板を製造し、この鋼板の単位長さあたりの疵(ヘゲ、スリバー)の個数を、参照例と比較して行った。このとき、参照例の疵の個数を1とし、0.2未満の場合を「○」、0.2以上0.5以下の場合を「△」、0.5より大きい場合を「×」とした。
なお、参照例は、寸法:1200mm×250mmの鋳型を使用し、鋳造速度1.6m/分、溶融パウダー層の最小厚みを25mmにして、電磁力を印可することなく鋳造を行った結果である。
In addition, the operability evaluation shown in Tables 1 and 2 is “◯” when the number of bleeds detected per 5 m of slab is less than 0.1, and when it is 0.1 or more and less than 0.5. Is “Δ”, and the case of 0.5 or more is “×”.
In addition, the quality is evaluated by hot rolling the manufactured slab and then pickling and cold rolling to produce a steel sheet having a thickness of 0.9 mm. ) Was compared with the reference example. At this time, the number of wrinkles in the reference example is 1, and a case of less than 0.2 is “◯”, a case of 0.2 to 0.5 is “Δ”, and a case of more than 0.5 is “×”. did.
The reference example is a result of casting without applying electromagnetic force, using a mold of dimensions: 1200 mm × 250 mm, casting speed 1.6 m / min, and minimum thickness of the molten powder layer 25 mm. .

表1の参考例1〜5は、鋳型の一方側の内幅寸法が150mm未満の鋳型であり、大断面スラブを製造する鋳型でなく、前記したような課題が発生しなかった。なお、寸法:800mm×150mmの鋳型の断面積を1とすると、参考例1、2の断面積は0.33(=40000/120000)、参考例3〜5の断面積は0.67(=80000/120000)である。
このため、参考例1〜5については、操業性の評価が「○」であり、特に参考例3〜5については、鋳片品質の評価も「○」であった。なお、参考例1、2については、圧延をしていないため、品質の評価は行っていない。
Reference Examples 1 to 5 in Table 1 are molds having an inner width dimension of less than 150 mm on one side of the mold, and are not molds for producing a large-section slab, and the above-described problems did not occur. When the cross-sectional area of a mold having dimensions of 800 mm × 150 mm is 1, the cross-sectional area of Reference Examples 1 and 2 is 0.33 (= 40000 / 120,000), and the cross-sectional area of Reference Examples 3 to 5 is 0.67 (= 80,000 / 120,000).
For this reason, for Reference Examples 1 to 5, the operability evaluation was “◯”, and for Reference Examples 3 to 5, the slab quality evaluation was also “◯”. In addition, since the reference examples 1 and 2 are not rolled, quality evaluation is not performed.

一方、表1に示す寸法:800mm×150mmの鋳型は、大断面スラブを鋳造する鋳型であるが、実施例1〜9に示すように、溶融パウダー層の最小厚みを7mm以上確保することで、操業性と品質のいずれの評価も「○」であった。
しかし、比較例1〜9は、溶融パウダー層の最小厚みが7mm未満であったため、操業性と品質の評価はいずれも「△」又は「×」であった。
ここで、溶鋼の鋳造速度の影響について、比較例1、2、5、6、9と、実施例1〜3、6、7を用いて比較した結果を、図2を参照しながら説明する。
図2から明らかなように、溶融パウダー層の最小厚みを7mm以上(7mm)にする(実施例1〜3、6、7)ことで、操業性と品質の評価はいずれも「○」であった。しかし、溶融パウダー層の最小厚みが7mm未満(6mm)の場合、溶鋼の鋳造速度が1.2m/分未満で遅ければ(比較例1、2)、操業性と品質の評価はいずれも不合格ではあったが「△」であった。
従って、溶融パウダー層の最小厚みを7mm以上にする場合については、溶鋼の鋳造速度を1.2m/分以上とすることで、操業性と品質の改善効果を更に高めることができる。
On the other hand, the dimension shown in Table 1 is a mold of 800 mm × 150 mm, which is a mold for casting a large-section slab, but as shown in Examples 1 to 9, by ensuring a minimum thickness of the molten powder layer of 7 mm or more, Both evaluations of operability and quality were “◯”.
However, in Comparative Examples 1 to 9, since the minimum thickness of the molten powder layer was less than 7 mm, the operability and quality evaluation were both “Δ” or “×”.
Here, the effect of the casting speed of the molten steel will be described with reference to FIG. 2, comparing the results of Comparative Examples 1, 2, 5, 6, 9 and Examples 1 to 3, 6, and 7.
As is clear from FIG. 2, the minimum thickness of the molten powder layer was set to 7 mm or more (7 mm) (Examples 1 to 3, 6, and 7). It was. However, when the minimum thickness of the molten powder layer is less than 7 mm (6 mm), if the casting speed of the molten steel is less than 1.2 m / min (Comparative Examples 1 and 2), both the operability and quality evaluation are rejected. However, it was “△”.
Therefore, when the minimum thickness of the molten powder layer is 7 mm or more, the operability and quality improvement effects can be further enhanced by setting the casting speed of the molten steel to 1.2 m / min or more.

また、表2に示す寸法:1200mm×250mmの鋳型は、大断面スラブを鋳造する鋳型であるが、実施例10〜14に示すように、溶融パウダー層の最小厚みを7mm以上確保することで、操業性と品質のいずれの評価も「○」であった。
一方、比較例10〜13は、溶融パウダー層の最小厚みが7mm未満であったため、操業性と品質の評価はいずれも「×」であった。
なお、寸法:800mm×150mmの鋳型の断面積を1とすると、実施例10〜14と比較例10〜13の各断面積は、2.5(=300000/120000)である。
Moreover, although the dimension shown in Table 2 is a mold of 1200 mm × 250 mm, which is a mold for casting a large-section slab, as shown in Examples 10 to 14, by ensuring a minimum thickness of the molten powder layer of 7 mm or more, Both evaluations of operability and quality were “◯”.
On the other hand, in Comparative Examples 10 to 13, since the minimum thickness of the molten powder layer was less than 7 mm, the operability and the quality evaluation were both “x”.
In addition, if the cross-sectional area of the mold of dimension: 800 mm x 150 mm is 1, each cross-sectional area of Examples 10-14 and Comparative Examples 10-13 is 2.5 (= 300000 / 120,000).

そして、表2に示す寸法:1000mm×400mmの鋳型は、大断面スラブを鋳造する鋳型であるが、実施例15〜17に示すように、溶融パウダー層の最小厚みを7mm以上確保することで、操業性の評価は「○」であった。
一方、比較例14は、溶融パウダー層の最小厚みが7mm未満であったため、操業性の評価は「×」であった。
ここでは、参考例1、2と同様、圧延をしていないため、品質の評価は行っていない。
なお、寸法:800mm×150mmの鋳型の断面積を1とすると、実施例15〜17と比較例14の各断面積は、3.33(=400000/120000)である。
And the dimension shown in Table 2: 1000 mm x 400 mm mold is a mold for casting a large cross-section slab, but as shown in Examples 15 to 17, by ensuring a minimum thickness of the molten powder layer of 7 mm or more, The evaluation of operability was “◯”.
On the other hand, in Comparative Example 14, since the minimum thickness of the molten powder layer was less than 7 mm, the operability evaluation was “x”.
Here, as in Reference Examples 1 and 2, since the rolling is not performed, the quality is not evaluated.
In addition, when the cross-sectional area of the mold having dimensions of 800 mm × 150 mm is 1, the cross-sectional areas of Examples 15 to 17 and Comparative Example 14 are 3.33 (= 400000 / 120,000).

以上のことから、本発明の溶鋼金属の連続鋳造方法を使用することで、断面積が大きなスラブを鋳造するに際し、鋳型の内壁面と凝固シェルとの間の潤滑を改善し、表面性状の優れたスラブを安定に鋳造できることを確認できた。
なお、前記した従来技術にもあるように、溶融パウダーの粘度も、鋳型の内壁面と凝固シェルとの相互作用を通じて、溶融パウダーの流入性に影響を与える。そこで、鋳造試験において、溶融パウダーの粘度のみを変更した条件についても検討したが、大断面スラブを鋳造する鋳型を用いて電磁力を印加した場合、鋳片の表面性状と操業性を改善できなかった。
これは、溶融パウダー層が極端に薄くなった局所的な部位においては、溶融パウダーの粘度を変化させても、溶融パウダーの流入量の低減を防止することができないためだと考えられる。
From the above, by using the molten steel continuous casting method of the present invention, when casting a slab having a large cross-sectional area, the lubrication between the inner wall surface of the mold and the solidified shell is improved, and the surface property is excellent. It was confirmed that stable slabs could be cast stably.
As in the prior art described above, the viscosity of the molten powder also affects the flowability of the molten powder through the interaction between the inner wall surface of the mold and the solidified shell. Therefore, in the casting test, we examined the conditions for changing only the viscosity of the molten powder. However, when electromagnetic force was applied using a mold that casts a large-section slab, the surface properties and operability of the slab could not be improved. It was.
This is considered to be because, in a local region where the molten powder layer is extremely thin, even if the viscosity of the molten powder is changed, it is not possible to prevent a reduction in the inflow amount of the molten powder.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の溶融金属の連続鋳造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、溶融金属として溶鋼を使用した場合について説明したが、ソレノイド式電磁コイルが設けられた鋳型を使用して連続鋳造を行う溶融金属であれば、これに限定されない。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the molten metal continuous casting method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, although the case where molten steel was used as a molten metal was demonstrated in the said embodiment, if it is the molten metal which performs continuous casting using the casting_mold | template with which the solenoid type electromagnetic coil was provided, it will not be limited to this.

10:鋳型、11:溶鋼(溶融金属)、12:メニスカス位置、13:溶融パウダー、15:鋳型、16:溶鋼(溶融金属)、17:メニスカス、18:溶融パウダー 10: mold, 11: molten steel (molten metal), 12: meniscus position, 13: molten powder, 15: mold, 16: molten steel (molten metal), 17: meniscus, 18: molten powder

Claims (2)

鋳造するスラブの幅方向の内幅が800mm以上、かつ厚み方向の内幅が150mm以上の鋳型を取り囲むように配置、又は該鋳型内に埋設されたソレノイド式電磁コイルに、周波数が30Hz以上300Hz以下を満たす交流電流を通電し、前記鋳型内の溶融金属に、メニスカス位置から鋳造方向に少なくとも400mmまでの範囲に形成される磁束密度の最大値が300ガウス以上5000ガウス以下を満たす電磁力を印加しながら鋳造を行う溶融金属の連続鋳造方法において、
前記電磁力の印加時に、溶融金属のメニスカス上面を覆う溶融パウダー層の最小厚みを7mm以上確保しながら連続鋳造を行うことを特徴とする溶融金属の連続鋳造方法。
The frequency is 30 Hz or more and 300 Hz or less in a solenoid type electromagnetic coil arranged so as to surround a mold having an inner width in the width direction of the cast slab of 800 mm or more and an inner width in the thickness direction of 150 mm or more, or embedded in the mold. An electromagnetic current satisfying a maximum value of a magnetic flux density formed in a range from the meniscus position to at least 400 mm in the casting direction is applied to the molten metal in the mold satisfying 300 gauss to 5000 gauss. In the continuous casting method of molten metal that is cast while
A continuous casting method of molten metal, wherein continuous casting is performed while ensuring a minimum thickness of a molten powder layer covering the upper surface of the meniscus of the molten metal of 7 mm or more when the electromagnetic force is applied.
請求項1記載の溶融金属の連続鋳造方法において、溶融金属の鋳造速度を1.2m/分以上にすることを特徴とする溶融金属の連続鋳造方法。 2. The molten metal continuous casting method according to claim 1, wherein a molten metal casting speed is set to 1.2 m / min or more.
JP2009055501A 2009-03-09 2009-03-09 Method for continuous casting of molten metal Active JP5073698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009055501A JP5073698B2 (en) 2009-03-09 2009-03-09 Method for continuous casting of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009055501A JP5073698B2 (en) 2009-03-09 2009-03-09 Method for continuous casting of molten metal

Publications (2)

Publication Number Publication Date
JP2010207843A true JP2010207843A (en) 2010-09-24
JP5073698B2 JP5073698B2 (en) 2012-11-14

Family

ID=42968604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009055501A Active JP5073698B2 (en) 2009-03-09 2009-03-09 Method for continuous casting of molten metal

Country Status (1)

Country Link
JP (1) JP5073698B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211153A (en) * 2011-05-17 2011-10-12 中南大学 Electromagnetic field casting-rolling method of magnesium alloy strips
CN104646643A (en) * 2015-02-15 2015-05-27 东北大学 Electromagnetic control method for directly restricting and controlling liquid level fluctuation of conducting metal fluid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138843A (en) * 1990-09-29 1992-05-13 Sumitomo Metal Ind Ltd Device and method for continuously casting metal
JPH0775863A (en) * 1993-09-07 1995-03-20 Nkk Corp Automatic detecting device for shortage of powder in mold mouth
JP2003260548A (en) * 2002-03-06 2003-09-16 Nippon Steel Corp Continuously casting method for steel cast slab
JP2007021529A (en) * 2005-07-15 2007-02-01 Jfe Steel Kk Multi-frequency vortex type thickness measuring method for molten mold powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138843A (en) * 1990-09-29 1992-05-13 Sumitomo Metal Ind Ltd Device and method for continuously casting metal
JPH0775863A (en) * 1993-09-07 1995-03-20 Nkk Corp Automatic detecting device for shortage of powder in mold mouth
JP2003260548A (en) * 2002-03-06 2003-09-16 Nippon Steel Corp Continuously casting method for steel cast slab
JP2007021529A (en) * 2005-07-15 2007-02-01 Jfe Steel Kk Multi-frequency vortex type thickness measuring method for molten mold powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211153A (en) * 2011-05-17 2011-10-12 中南大学 Electromagnetic field casting-rolling method of magnesium alloy strips
CN104646643A (en) * 2015-02-15 2015-05-27 东北大学 Electromagnetic control method for directly restricting and controlling liquid level fluctuation of conducting metal fluid

Also Published As

Publication number Publication date
JP5073698B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5692451B2 (en) Continuous casting mold and steel continuous casting method
JP6256627B2 (en) Continuous casting mold and steel continuous casting method
JP5073698B2 (en) Method for continuous casting of molten metal
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP2015051443A (en) Continuous casting mold and continuous casting method for steel
WO2018055799A1 (en) Continuous steel casting method
JP2015107522A (en) Casting mold for continuous casting and continuous casting method of steel
JP2015062948A (en) Scum weir and method and apparatus for production of thin slab
JP6787359B2 (en) Continuous steel casting method
JP2017024079A (en) Continuous casting method for steel
KR102245013B1 (en) Continuous casting method of molds and steels for continuous casting
JP2012210647A (en) Immersion nozzle for continuous casting and continuous casting method using the same
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
JP2018149602A (en) Method for continuously casting steel
JP6701379B2 (en) Mold flux and casting method using the same
JP4091777B2 (en) Continuous casting method for steel slabs
JP2016168610A (en) Steel continuous casting method
JP5283881B2 (en) Method for continuous casting of steel characterized by raising and lowering the surface level
JP3610871B2 (en) Continuous casting method of steel
JP2008246534A (en) Continuous casting method for steel
JP2002210546A (en) Method for producing continuously cast product
JP6725250B2 (en) Front powder design method and front powder manufacturing method
JP5626438B2 (en) Continuous casting method
JP5423715B2 (en) Continuous casting method
JP5397213B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R151 Written notification of patent or utility model registration

Ref document number: 5073698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350