JP2010194446A - 汚泥の脱水方法 - Google Patents

汚泥の脱水方法 Download PDF

Info

Publication number
JP2010194446A
JP2010194446A JP2009041695A JP2009041695A JP2010194446A JP 2010194446 A JP2010194446 A JP 2010194446A JP 2009041695 A JP2009041695 A JP 2009041695A JP 2009041695 A JP2009041695 A JP 2009041695A JP 2010194446 A JP2010194446 A JP 2010194446A
Authority
JP
Japan
Prior art keywords
water
polymer
soluble
sludge
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041695A
Other languages
English (en)
Other versions
JP5279024B2 (ja
Inventor
Toshiaki Sugiyama
俊明 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2009041695A priority Critical patent/JP5279024B2/ja
Publication of JP2010194446A publication Critical patent/JP2010194446A/ja
Application granted granted Critical
Publication of JP5279024B2 publication Critical patent/JP5279024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】
下水処理場における下水消化汚泥のように繊維分の少ない所謂難脱水汚泥に対し、スクリュープレス型あるいはロータリープレス型脱水機を使用して脱水する場合、どのような物性の水溶性高分子からなる脱水剤を適用すれば良いかを検討し、提供する。
【解決手段】
定義)で表示される電荷内包率50%以上90%以下の水溶性高分子であって、前記水溶性高分子が、特定の構造を有する単量体を必須として含有する単量体と構造改質剤からなる混合物を重合した水溶性高分子を使用することによって達成できる。

【選択図】 なし

Description

本発明は、下水消化汚泥あるいは余剰汚泥の脱水方法に関するものであり、詳しくは下水消化汚泥をスクリュープレスあるいはロータリープレスにより脱水処理する場合、定義で表示される電荷内包率50%以上90%以下の水溶性高分子であって、前記水溶性高分子が、特定のカチオン性単量体を必須として含有する単量体混合物を重合した水溶性高分子を使用することを特徴とする下水消化汚泥の脱水方法に関する。
従来、下水、し尿等で生じる有機性汚泥の脱水に対しては、カチオン性高分子凝集剤が広く使用され、その後両性高分子凝集剤が提案されている(特許文献1)。近年では下水処理場が脱水ケーキの含水率低下を要求する傾向が強く、上記の単なるカチオン性あるいは両性高分子では対応ができない状況である。また下水余剰汚泥や下水消化汚泥のように繊維分の少ない所謂難脱水汚泥では、特別の性能を要する凝集剤が必要になる。
汚泥脱水性能を向上させる方法の一つに使用する水溶性高分子に架橋あるいは分岐変性することがある。特許文献1は、重合時添加する多官能性モノマーの量を開示しているが、この架橋変性した水溶性高分子がどのような汚泥に適するかまでは記載がない。特許文献2は、架橋変性した水溶性高分子の架橋に関する物性を、「溶解比」という指標で表わし、この数値が30%以上である水溶性の分岐した陽イオン性重合体凝結剤を開示し、分岐剤含量も規定している。しかしこの分岐変性した陽イオン性重合体凝結剤は、どのような汚泥に適し、どのような脱水機に向いているかは記載がない。特許文献3は、水で希釈せず製品形態のままで汚泥に添加する汚泥脱水方法が開示されているが、重合時「重合体が水溶性を保つモル比で架橋性単量体を添加」したイオン性水溶性重合体を用いることが記載されている。しかしこのイオン性水溶性重合体が、特定された汚泥の脱水に適することまでは記載がない。また架橋変性の度合いが異なる水溶性高分子を配合したもの(特許文献4)、架橋変性していない水溶性高分子と架橋変性したものとの配合物に関しては、特許文献5など出願されているが、いずれも脱水機や汚泥の種類に関して特定されてはない。
特開平7−313999号公報 特開平2−219887号公報 特開2005−177666号公報 特開2005−144346号公報 特開2004−057837号公報
本発明の課題は、下水処理場における下水消化汚泥あるいは余剰汚泥のように繊維分の少ない所謂難脱水汚泥に対し、スクリュープレス型あるいはロータリープレス型脱水機を使用して脱水する場合、どのような物性の水溶性高分子からなる脱水剤を適用すれば良いかを検討し、提供することである。
上記課題を解決するため鋭意検討をした結果、以下に述べる発明に到達した。すなわち請求項1の発明は、下水消化汚泥あるいは余剰汚泥をスクリュープレスあるいはロータリープレスにより脱水処理する場合、下記定義で表示される電荷内包率50%以上90%以下の水溶性高分子であって、前記水溶性高分子が、下記一般式(1)で表わされる単量体を必須として含有する単量体(混合物)を重合した水溶性高分子を使用することを特徴とする汚泥の脱水方法である。
定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
一般式(1)
は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、Xは陰イオンをそれぞれ表わす。
請求項2の発明は、前記水溶性高分子が、一般式(1)で表わされる単量体および架橋性単量体を必須として含有する混合物を分散相とし、水に非混和性の有機液体を連続相となるように界面活性剤により乳化し重合した後、得られる油中水型エマルジョンを乾燥した水溶性高分子の粉末であることを特徴とする請求項1に記載の汚泥の脱水方法である。
請求項3の発明は、前記水溶性高分子を構成する前記一般式(1)で表わされる単量体あるいは前記一般式(2)で表わされる単量体の共重合比が、40〜90モル%であることを特徴とする請求項1あるいは2に記載の汚泥の脱水方法である。
請求項4の発明は、前記水溶性高分子が両性の場合、前記水溶性高分子を0.1質量%以上に溶解した場合の溶解液pHを4以下にする量の酸性物質を混合することを特徴とする請求項1〜3のいずれかに記載の汚泥の脱水方法である。
本発明は、下水消化汚泥あるいは余剰汚泥をスクリュープレスあるいはロータリープレスにより脱水処理する場合、定義で表示される電荷内包率50%以上90%以下の水溶性高分子であって、前記水溶性高分子が、特定のカチオン性単量体を必須として含有する単量体混合物を重合した水溶性高分子を使用することを特徴とする。この水溶性高分子は、下水処理場における下水消化汚泥のように繊維分の少ない所謂難脱水汚泥に対し、脱水ケーキ含水率低下の要求を満足できる。脱水ケーキ含水率低下は、焼却時のオイル消費量を減少させ炭酸ガス発生の抑制に貢献できることを意味する。
本発明の粉末状水溶性高分子の処理対象として推奨される汚泥は、消化汚泥や余剰汚泥など繊維分の少ない汚泥である。これら繊維分の少ない汚泥に対しては、いわゆる直鎖状水溶性高分子は汚泥脱水機に掛かるような強固なフロックを形成しにくい。すなわち直鎖状水溶性高分子は、水中に分子が広がった状態で存在する。重合系のような高分子量のカチオン性水溶性高分子の凝集作用は、いわゆる「架橋吸着作用」による多数懸濁粒子を水溶性高分子の分子鎖による結合作用で起きると考えられている。しかし直鎖状水溶性高分子は伸びた状態にあり、そこに懸濁粒子を吸着させ生成した凝集フロックは、大きいがふわふわして強固になりにくい。強度を増すため添加量を増加していってもフロックの改善はない。その原因は、伸びた状態にあるため生成した凝集フロックとの接触サイトが多く、その凝集フロックにさらに直鎖状水溶性高分子が吸着して、その結果見かけ上の電荷的飽和になりやすい。攪拌強度を増加させ生成フロックを破壊し新しい吸着面を作ればよいが、破壊し小さくしたフロック表面にはまた直鎖状水溶性高分子が吸着して、小さいが強度の弱いことには変わりはない。この時繊維分の多い汚泥では繊維がフロックの補強剤となるが、繊維分の少ない汚泥では、結局強固なフロックは生成しない。
これに対し架橋性水溶性高分子は、架橋することによって水中における分子の広がりが抑制される。そのためにより「密度の詰まった」分子形態として存在し、さらに架橋が進めば水膨潤性の微粒子となる。通常高分子凝集剤として使用されるのは、前記の「密度の詰まった」分子形態である場合が効率的とされる。架橋性水溶性高分子が汚泥中に添加されると懸濁粒子に吸着し、粒子同士の接着剤として作用し結果として粒子の凝集が起こる。この時「密度の詰まった」分子形態であるため粒子表面と多点で結合し、より締った強度の高いフロックを形成すると推定される。多点で結合することは、懸濁粒子への吸着性能が優れ、そのため未吸着の水溶性高分子が少なく、汚泥中に遊離せず汚泥粘性の増加が発生しない。また電荷内包率のところで説明したようにまるまった形態をした分子の内側に存在するカチオン性基は、懸濁粒子の電荷中和には寄与せず、見かけ上カチオン化度の低い分子として作用し、カチオン性飽和による再分散作用は少なくなる。結果として小さなサイズで絞まった強固なフロックが形成され機械脱水時、水切れが良くケーキ含水率が低下すると考えられる。
本発明の水溶性高分子を使用した場合の推奨の脱水機は、スクリュープレスやロータリープレス(回転式圧縮濾過機)などであるが、これら脱水機は初期の濾過工程において圧搾、せん断などの作用をフロックが受けるため、被処理原水の初期の濾過性が処理状態を決める重要な因子と考えられる。従って架橋性水溶性高分子を添加してより締った強度の高いフロックを形成することは、初期の濾過工程において迅速な濾過性を有し、以後の圧搾、せん断への作用を効率よく行なうことが可能である。フロックが締った強度の高いものが形成されていると言うことは、圧搾、せん断によってフロックが破壊せず脱水されるべき「水の通り道」が確保され、脱水作用が効率よく行なわれることを意味する。
はじめに電荷内包率50%以上90%以下であるカチオン性水溶性高分子(A)に関して説明する。電荷内包率は、以下のように定義される。すなわち
定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性高分子の場合
電荷内包率[%]=(1−α/β)×100
αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
すなわち電荷内包率の高い水溶性高分子は、架橋が高まった水溶性高分子であり、電荷内包率の低い水溶性高分子は、架橋が少ない水溶性高分子であると言える。この理由は、以下の通りに説明される。直鎖状水溶性高分子は、希薄溶液中では、分子はほぼ「伸びきった」形状をしている。一方、架橋性水溶性高分子は、溶液中において粒子状の丸まった形状をしていて、粒子状の内部に存在するイオン性基は、外側には現われにくく、反対電荷との反応も緩慢に起こると考えられる。
以下、上記式のαおよびβの意味に関して簡単に説明する。上記式において滴定量αは、試料である架橋性カチオン性(両性)水溶性高分子に反対電荷を有するポリビニルスルホン酸カリウム水溶液を滴下して行き、水溶性カチオン性(両性)高分子の「表面」(粒子状の表面部)に存在するイオン性基にイオン的静電反応を行わせる操作を意味する。
その後、架橋性カチオン性(両性)水溶性高分子の理論的な電荷量を中和するに十分な量以上の反対電荷を有するポリビニルスルホン酸カリウムを添加し、反応時間を十分取ったその後、余剰のポリビニルスルホン酸カリウムをジアリルジメチルアンモニウムクロライド水溶液により滴定する。また別に架橋性カチオン性(両性)水溶性高分子を添加しないでポリビニルスルホン酸カリウム溶液をジアリルジメチルアンモニウムクロライド水溶液により滴定し、ブランク値を出しておき、ブランク値より架橋性カチオン性(両性)水溶性高分子を添加した場合の滴定量を差し引き、この値がβとなる。β値は、架橋性カチオン性(両性)水溶性高分子の化学組成から計算される理論的な電荷量に相当すると考えられる。すなわち架橋性カチオン性(両性)水溶性高分子に対し、反対電荷が多量に存在するので、表面のカチオン性電荷だけでなく、内部の電荷まで静電的な中和反応が行われると考えられる。架橋度が高ければ、αはβに対し小さくなり、(1−α/β)値は、1に比べ大きくなり電荷内包率は大きい(すなわち架橋の度合いは高くなる)。
本発明では上記のような電荷内包率を有する水溶性カチオン性高分子あるいは水溶性両性高分子を製造するため、高分子の構造改質剤として架橋性単量体を単量体総量に対し0.0005〜0.0050モル%、また好ましくは0.0008〜0.003モル%重合時あるいは重合後存在させる。架橋性単量体の例としては、N,N−メチレンビス(メタ)アクリルアミド、トリアリルアミン、ジメタクリル酸エチレングリコール、ジメタクリル酸ジエチレングリコール、ジメタクリル酸トリエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸―1,3−ブチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール、N−ビニル(メタ)アクリルアミド、N−メチルアリルアクリルアミド、アクリル酸グリシジル、ポリエチレングリコールジグリシジルエーテル、アクロレイン、グリオキザール、ビニルトリメトキシシランなどがあるが、この場合の架橋剤としては、水溶性ポリビニル化合物がより好ましく、最も好ましいのはN,N−メチレンビス(メタ)アクリルアミドである。またギ酸ナトリウム、イソプロピルアルコール等の連鎖移動剤を併用して使用することも架橋性を調節する手法として効果的である。
水溶性両性高分子を製造する場合は、アニオン性単量体を重合時共存させる他は、同様な操作によって目的のものを得ることができる。使用する架橋性単量体は、前述と同様であり、最も好ましいのはN,N−メチレンビス(メタ)アクリルアミドである。連鎖移動剤も併用して使用すると効果的である。
水溶性カチオン性高分子を製造するため使用するカチオン性単量体は、前記一般式(1)で表わされる単量体を必須として含有する単量体あるいは単量体混合物を重合したものである。水溶性両性高分子は、前記一般式(1)で表わされる単量体と前記一般式(2)で表わされる単量体を必須として含有する単量体混合物を重合したものである。カチオン性単量体の例は、(メタ)アクリロイルオキシアルキル4級アンモニウム塩、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウムブロマイドなど(メタ)アクリロイルオキシアルキル3級アミン塩は、(メタ)アクリロイルオキシエチルジメチルアミン硫酸塩、(メタ)アクリロイルオキシプロピルジメチルアミン塩酸塩などである。(メタ)アクリロイルアミノアルキル4級アンモニウム塩としては(メタ)アクリロイルアミノプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルアミノプロピルトリメチルアンモニウムメチルサルフェートなどである。(メタ)アクリロイルアミノ(ヒドロキシ)アルキル3級アミン塩としては、(メタ)アクリロイルアミノエチルジメチルアミン塩酸塩、硫酸塩などである。
水溶性両性高分子を製造するため使用するアニオン性単量体の例は、ビニルスルホン酸、ビニルベンゼンスルホン酸あるいは2−アクリルアミド2−メチルプロパンスルホン酸、メタクリル酸、アクリル酸、イタコン酸、マレイン酸あるいはp−カルボキシスチレンなどである。
水溶性カチオン性高分子あるいは水溶性両性高分子を製造する場合、非イオン性単量体を共重合してもよくその例としては以下のようなものがある。すなわちアクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド、アクリロイルモルホリンなどがあげられる。
これら水溶性高分子におけるカチオン性単量体のモル%は、好ましくは40〜90モル%、最も好ましくは50〜90モル%である。この理由としてカチオン性単量体100モル%よりもアクリルアミドなど非イオン性単量体を共重合したほうが架橋性高分子を製造しやすいからである。またアニオン性単量体のモル%は、好ましくは5〜30モル%、最も好ましくは10〜30モル%である。また分子量は重量平均分子量で500万〜1500万であり、好ましくは500万〜1000万であり、最も好ましくは500〜800モル%である。
本発明における水溶性カチオン性高分子あるいは水溶性両性高分子の製品形態としては、粉末、油中水型エマルジョン、塩水溶液中分散液などどのような形態でも実施可能である。
粉末状の製品は、以下のようにして製造することができる。例えば塩水溶液中あるいは水に非混和性有機液体中にて分散重合した分散液、水溶液重合による粘性液体、あるいは単量体水溶液を高濃度で重合し流動性のない水性ゲル状物を得て、その後乾燥し造粒した粉末とする。すなわち塩水中にて分散重合した分散液の場合は、直接乾燥機に入れ、一定時間乾燥し、塊状物を粉砕する方法がある。また水に非混和性有機液体中にて分散重合した分散液の場合は、非混和性有機液体を分離し、湿潤な重合粒子を乾燥機にて乾燥し粉末状とする。水溶液重合により生成した粘性液体は、水混和性有機液体により重合物を析出させ、それを乾燥し粉砕する。単量体を高濃度で水溶液重合した流動性のない水性ゲル状物の場合は、ミートチョッパーなどでゲル状物をミンチ化し、それを乾燥後、粉砕し粉末とする方法を採る。油中水型エマルジョンは、噴霧乾燥、あるいはエマルジョンを直接乾燥機で乾燥し、その後粉砕し造粒するなどの方法がある。
油中水型エマルジョンの場合は、イオン性単量体、あるいはイオン性単量体、共重合可能な単量体及びこれら単量体に対し生成した重合体が水溶性を保つモル比で添加した架橋性単量体を含有する単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強攪拌し油中水型エマルジョンを形成させ重合することにより合成する。
また分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。含有量としては、油中水型エマルジョン全量に対して20質量%〜50質量%の範囲であり、好ましくは20質量%〜35質量%の範囲である。
油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB1〜8のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレ−ト、ソルビタンモノステアレ−ト、ソルビタンモノパルミテ−トなどがあげられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10質量%であり、好ましくは1〜5質量%の範囲である。
この場合、高HLB界面活性剤により乳化させ油中水型エマルジョンを形成
させ重合したエマルジョンは、このままで水となじむので転相剤を添加する必
用がない。これら界面活性剤のHLBは、9〜20のもの、好ましくは11〜
20のものを使用する。そのような界面活性剤の例としては、カチオン性界面
活性剤やHLB9〜15のノニオン性界面活性剤であり、ポリオキシエチレン
ポリオキシプロピレンアルキルエ−テル系、ポリオキシエチレンアルコールエ
−テル系などである。
低HLBの界面活性剤により乳化、重合した場合は重合後転相剤と呼ばれる親水性界面化成剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9〜15のノニオン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエ−テル系、ポリオキシエチレンアルコールエ−テル系などである。
塩水溶液中分散液の場合は、硫酸アンモニウムのような多価アニオン塩の水溶液を調製し、この中にカチオン性単量体、あるいは非イオン性単量体からなる混合物を仕込み、また、両性水溶性重合体の場合はアニオン性単量体をしこみ、分散剤として該塩水溶液に可溶な高分子分散剤を共存させ攪拌下、分散重合し合成することができる。
高分子分散剤としては、非イオン性あるいはカチオン性高分子のいずれでも使用可能であるが、カチオン性高分子のほうがより好ましい。カチオン性高分子としては、アクリル系カチオン性単量体、たとえば、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドなどの無機酸や有機酸の塩、あるいは塩化メチルや塩化ベンジルによる四級アンモニウム塩とアクリルアミドとの共重合体である。例えば(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物などがあげられ、これら単量体と非イオン性単量体との共重合体でも良い。またジメチルジアリルアンモニウム塩化物重合体などジアリルアミン系重合体でも使用できる。
非イオン性高分子の例としては、上記非イオン性単量体の(共)重合体、ポリビニルアルコ−ル、スチレン/無水マレイン酸共重合物あるいはブテン/無水マレイン酸共重合物の完全アミド化物などである。
上記イオン性高分子の分子量としては、5、000から300万、好ましくは5万から150万である。また、非イオン性高分子分の分子量としては、1,000〜100万であり、好ましくは1,000〜50万である。これら高分子分散剤の単量体に対する添加量は、1/100〜1/10であり、好ましくは2/100〜5/100である。
これら上記の種々重合は、重合は窒素雰囲気下にて、重合開始剤、例えば2、
2’−アゾビス(アミジノプロパン)二塩化水素化物または2、2’−アゾビ
ス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素
化物のような水溶性アゾ系重合開始剤、あるいは過硫酸アンモニウムおよび亜
硫酸水素ナトリウム併用のような水溶性レドックス系重合開始剤を添加し、撹
拌下あるいは無攪拌下ラジカル重合を行う。
本発明の水溶性高分子は、水溶性カチオン性あるいは水溶性両性高分子を使用することができるが、特に水溶性両性高分子の場合は、0.1質量%濃度の水溶液とした時、水溶液pHが通常4.0以下であることが好ましく、さらに好ましくは3.0以下である。水溶液pHが4.0を上回ると十分な性能が得られない。そのため酸性物質を配合する。この理由は二つある。すなわち水溶性両性高分子を配合するため溶液pHが約5〜約9の範囲でイオンコンプレックスを形成し溶液が白濁する。このイオンコンプレックスが生成した状態で汚泥など処理対照に添加すると、性能が低下するためである。またpHが5付近より高い範囲では本発明で使用する水溶性(メタ)アクリル系高分子が加水分解を受け、劣化しやすくなる。0.1質量%濃度というのは、処理対照に添加する場合の下限に近い溶液濃度である。これら現象を防止するため水溶液のpHは4以下にすることが好ましい。
このような酸性物質の例として、無機あるいは有機の酸として塩酸、硫酸、酢酸、スルファミン酸、クエン酸、フマル酸、コハク酸、アジピン酸などである。これら酸性物質の添加量として水溶性高分子の固形分換算として、5〜20質量%であり、好ましくは7〜15質量%であり、0.1質量%濃度に溶解してもpHが4以下を確保できる。
本発明の水溶性高分子は、上記で定義したように比較的高度に架橋した水溶性カチオン性高分子あるいは水溶性両性高分子が使用できる。また本発明の水溶性高分子組成物の処理対象として推奨される汚泥は、消化汚泥や余剰汚泥など繊維分の少ない汚泥である。
以下、汚泥の粒度分布と架橋高分子及び直鎖高分子の配合に関して説明する。すなわち消化汚泥や余剰汚泥のように繊維分が少なく、粒径の小さい粒子が多い場合、多くの粒子はコロイド性粒子であり、アニオン性は高く安定に分散している。ここで本発明では、直鎖高分子による架橋吸着作用によるフロック形成を凝集と呼び、コロイド粒子などの親水性粒子の主に表面電荷の中和作用による微細なフロック形成を凝結と呼んでいる。このような汚泥に対しては、重合系など分子量の高い直鎖高分子による架橋吸着作用によって
は、汚泥の凝集は発現しにくい。つまり粒子が疎水化されず分散したままで、
フロック形成が発現しないと考えられる。
すなわち直鎖高分子は、水中で伸びた形態を採っているため、コロイド粒子同士を架橋吸着作用によって繋ぎ合わせるだけの機能しか有していない。この場合では、長いコロイド粒子などが形成された結果、疎水化したフロックとして形成できない。
一方、架橋高分子は、直鎖高分子に較べ密に詰まった形態をしていると考えられ、粒子状に近い形態をしている。そのため
コロイド粒子を吸着することが可能であり、その結果表面電荷の中和ができ、
コロイド粒子を凝結できる。この時共存している粒径の大きい粒子を核として
フロックを形成していく。その結果、密に締ったフロックを形成するので、攪拌にも抵抗力が高いため脱水機による脱水時にも脱水が効率良く達成される。さらに表面電荷の中和作用の結果、コロイド粒子が疎水化され含水率が下がる条件としては、良好な状態となっている。従って粒径の小さい粒子が多い汚泥には、架橋高分子が適していると考えられる。反対に繊維分や粒径の多き粒子が多い汚泥の場合は、直鎖高分子による架橋吸着作用による凝集が発現しやすい。これは繊維など比較的大きい粒子は、コロイド粒子に較べ疎水的であり、直鎖高分子による架橋吸着作用で凝集し、フロック形成しやすいと考えられる。
ここで下水消化汚泥と余剰汚泥に関し説明を加える。都市の下水は、下水処理場に集められ、初沈槽に集め沈殿させた時に発生する汚泥は生汚泥といい、初沈槽の上澄みを暴気槽において生物処理を行った後、処理水中の懸濁物を沈殿させ、その懸濁物を暴気槽に返送する際、余分な汚泥は処理系から除く際、発生する汚泥は余剰汚泥であり、下水混合生汚泥というのは、生汚泥と余剰汚泥を混合したものをいう。また下水消化汚泥というのは、生汚泥を嫌気性発酵させた時に発生する汚泥をいう。汚泥中の繊維分が多いか少ないかの指標のひとつに200メッシュオン粒子の質量%がある。例えば食品余剰汚泥の200メッシュオン粒子質量%は0.56、下水余剰汚泥は5.4%などのデータがある。下水処理場より発生する混合生汚泥では、200メッシュオン残留物が14.9質量%である場合がある。ただし汚泥の種類や処理施設によって差異があり、食肉処理場より発生する余剰汚泥では、200メッシュオン残留物が29.8質量%である場合もあった。しかし基本的に下水余剰汚泥や下水消化汚泥は繊維分が少なく、このような汚泥に対しては上記で説明したように高度に架橋した水溶性高分子、すなわち本発明でいう電荷内包率50%以上90%以下の水溶性高分子が適当である。
本発明の水溶性高分子は、下水消化汚泥あるいは下水余剰汚泥に通常0.1〜0.2%質量水溶液として添加され、対汚汚泥懸濁分当たり0.3〜2質量%、好ましくは0.7〜1.5質量%添加する。また、本発明の水溶性高分子は、単独で汚泥脱水に使用しても良いが、脱水効果面からより好ましいのは、鉄塩、アルミ塩等の無機多価金属塩と併用する方法である。該無機多価金属塩としては、塩鉄、硫鉄、ポリ鉄、PAC、硫酸バンド、石灰などが挙げられる。また、併用される無機多価金属塩の添加量は、通常汚泥固形分に対し0.2〜0.6質量%である。
(実施例)以下、実施例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
(合成例1)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにソルビタンモノオレート6.0g及びポリリシノ−ル酸/ポリオキシエチレンブロック共重合物0.6gを仕込み溶解させた。別に脱イオン水55.0gとアクリル酸(AACと略記)60%水溶液19.7gを混合し、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液119.1g、メタクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMCと略記)80%水溶液42.6g、アクリルアミド(AAMと略記)50%水溶液116.4g及びメチレンビスアクリルアミド0.1質量%水溶液3.0g(対単量体0.0015質量%)を各々採取し、各々を混合し完全に溶解させた。その後pHを3.95に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。この時の単量体組成は、DMC/DMQ/AAC/AAM=10/30/10/50(モル%、試作−1)である。
得られたエマルジョンにイソプロピルアルコール10質量%水溶液2.0g(対単量体0.1質量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1質量%水溶液2.0g(対単量体0.01質量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル7.5g(対エマルジョン1.5質量%)を添加混合して試験に供する試料(試料−1)とした。得られた試料をミューテック社製PCD滴定装置により電荷内包率を測定し、また光散乱法による重量平均分子量は約670万であった。同様な操作によりDMQ/AAM=80/20(モル%、試作−2)、DMQ/AAM=50/50(モル%、試作−3)からなる油中水型エマルジョンを合成した。結果を表1に示す。
(合成例2)塩水溶液中分散両性水溶性高分子の調製;撹拌器、温度計、還流冷却器、窒素導入管を備えた五つ口セパラブルフラスコに、イオン交換水204.4g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合物(20%水溶液、重量分子量120万)、30g(対単量体8.0%)、硫酸アンモニウム125.0g、アクリル酸(AACと略記)60%水溶液7.4gを混合し、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液44.7g、メタクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMCと略記)80%水溶液16.0g、アクリルアミド(AAMと略記)50%水溶液43.7g、及びメチレンビスアクリルアミド0.1質量%水溶液0.4g(対単量体0.0005質量%)を各々仕込み完全に溶解させた。この時の単量体組成は、DMC/DMQ/AAC/AAM=10/30/10/50(モル%、試作−4)である。内温を33〜35℃に保ち、30分間窒素置換後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1%水溶液0.4g(対単量体0.05質量%)を加え重合を開始させた。開始2.5時間後、反応物はやや粘度の上昇が観測され、25分間その状態が継続したが、その後すぐに収まり分散液に移行した。開始8時間後、前記開始剤溶液を0.2g追加しさらに8時間重合を行った。得られた分散液のしこみ単量体濃度は15質量%であり、ポリマー粒径は1μm以下、分散液の粘度はB型粘度計により25℃において測定した結果840mPa・sであった。得られた試料をミューテック社製PCD滴定装置により電荷内包率を測定し、また光散乱法による重量平均分子量は600万であった。同様な操作によりDMQ/AAM=80/20(モル%、試作−5)を合成した。結果を表1に示す。
油中水型エマルジョン試作−1〜試作−3に関し、転相剤のポリオキシエチレントリデシルエ−テルを添加してないものを用い、噴霧乾燥機を用いてスプレードライ製粉末を作成した。乾燥後の試作名を試作−6〜試作−8とする。
また油中水型エマルジョン試作−1〜試作−3および塩水溶液中分散型水溶性高分子試作−4〜試作−5を分散液の状態で乾燥機に入れ、乾燥物にした後、粉砕し粉末製品を作成した。乾燥後の試作名を試作−9〜試作−13とする。以上の結果をまとめて表1に示す。
(比較合成例1)攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gにソルビタンモノオレート6.0g及びポリリシノ−ル酸/ポリオキシエチレンブロック共重合物0.6gを仕込み溶解させた。別に脱イオン水55.0gとアクリル酸(AACと略記)60%水溶液19.7gを混合し、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液119.1g、メタクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMCと略記)80%水溶液42.6g、アクリルアミド(AAMと略記)50%水溶液116.4g及びメチレンビスアクリルアミド0.1質量%水溶液1.0g(対単量体0.0004質量%)を各々採取し、各々を混合し完全に溶解させた。その後pHを3.95に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで15分間攪拌乳化した。この時の単量体組成は、DMC/DMQ/AAC/AAM=10/30/10/50(モル%、比較試料−1)である。
得られたエマルジョンにイソプロピルアルコール10質量%水溶液2.0g(対単量体0.1質量%)を加え、単量体溶液の温度を30〜33℃に保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1質量%水溶液2.0g(対単量体0.01質量%)を加え、重合反応を開始させた。反応温度を32±2℃で12時間重合させ反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル7.5g(対エマルジョン1.5質量%)を添加混合して試験に供する試料とした。得られた試料をミューテック社製PCD滴定装置により電荷内包率を測定し、また光散乱法による重量平均分子量は約670万であった。同様な操作によりDMQ/AAM=80/20(モル%、比較試料−2)を合成した。同様な操作によりDMQ/AAM=80/20(モル%、比較試料−2)、DMQ/AAM=50/50(モル%、比較試料−3)からなる油中水型エマルジョンを合成した。
油中水型エマルジョン比較試料−1〜比較試料−3に関し、転相剤のポリオキシエチレントリデシルエ−テルを添加してないものを用い、噴霧乾燥機を用いてスプレードライ製粉末を作成した。乾燥後の試作名を比較試料−4〜比較試料−6とする。以上の結果をまとめて表1に示す。
(表1)
DMC;メタクリロイルオキシエチルトリメチルアンモニウム塩化物、
DMQ;アクリロイルオキシエチルトリメチルアンモニウム塩化物
AAC;アクリル酸、AAM;アクリルアミド、電荷内包率;%、
製品形態;EM;油中水型エマルジョン、DI;塩水溶液中分散液、
SDP;噴霧乾燥品、DDP;ドライヤー乾燥品
下水余剰汚泥(pH6.40、ss分16,700mg/L)を用い、本発明の水溶性高分子を用い汚泥脱水試験を実施した。200mLをポリビ−カ−に採取し、表1の試料−1〜試料−5をそれぞれ対汚泥SS分1.20%(懸濁粒子質量%)加え、ビ−カ−移し替え攪拌20回行った後、T−1179Lの濾布(ナイロン製)により濾過し、10秒後の濾液量の測定、及びフロック強度(大きさ)を目視により測定した。その後50秒間濾過した汚泥をプレス圧3Kg/m2で1分間脱水する。その後、フロック大きさを目視により測定し、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表2に示す。
(比較試験1)実施例1と同様な操作により、比較試料−1〜比較試料−3に関して試験を実施した。結果を表2に示す。
本発明で使用する電荷内包率が50%以上、90%以下の水溶性高分子試料−1〜試料−5は、何れも良好な脱水性能を示しているが、比較試料−1〜比較試料−3では、十分な凝集性能を発現せず、フロック大きさ含水率を見て分かるように、脱水が行われていないことが理解される。
(表2)
ケーキ含水率:質量%、50秒間濾液量:mL、フロック大きさ:mm
下水消化汚泥(pH7.82、ss分24,000mg/L)を用い、本発明の水溶性高分子を用い汚泥脱水試験を実施した。200mLをポリビ−カ−に採取し、表1の試料−6〜試料−13をそれぞれ対汚泥SS分1.05%(懸濁粒子質量%)加え、ビ−カ−移し替え攪拌20回行った後、T−1179Lの濾布(ナイロン製)により濾過し、10秒後の濾液量の測定、及びフロック強度(大きさ)を目視により測定した。その後50秒間濾過した汚泥をプレス圧3Kg/m2で1分間脱水する。その後、フロック大きさを目視により測定し、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表3に示す。
(比較試験2)実施例3と同様な操作により、比較試料−4および比較試料−6に関して試験を実施した。結果を表3に示す。
本発明で使用する電荷内包率が50%以上、90%以下の水溶性高分子試料−6〜試料−13は、何れも良好な脱水性能を示しているが、比較試料−4〜比較試料−6では、十分な凝集性能を発現せず、フロック大きさ含水率を見て分かるように、脱水が行われていないことが理解される。
(表3)
ケーキ含水率:質量%、50秒間濾液量:mL、フロック大きさ:mm

Claims (4)

  1. 下水消化汚泥あるいは余剰汚泥をスクリュープレスあるいはロータリープレスにより脱水処理する場合、下記定義で表示される電荷内包率50%以上90%以下の水溶性高分子であって、前記水溶性高分子が、下記一般式(1)で表わされる単量体および架橋性単量体を必須として含有する単量体(混合物)を重合した水溶性高分子を使用することを特徴とする汚泥の脱水方法。
    定義)水溶性カチオン性高分子および両性でかつカチオン性単量体とアニオン性単量体共重合率の差が正である水溶性両性高分子の場合
    電荷内包率[%]=(1−α/β)×100
    αは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液をポリビニルスルホン酸カリウム水溶液にて滴定した滴定量。βは酢酸にてpH4.0に調整した水溶性カチオン性高分子あるいは両性水溶性高分子水溶液にポリビニルスルホン酸カリウム水溶液を前記水溶性カチオン性高分子あるいは両性水溶性高分子の電荷の中和を行うに十分な量加え、その後ポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量をブランク値から差し引いた滴定量。ここでブランク値とは、水溶性カチオン性高分子あるいは両性水溶性高分子水溶液無添加時にポリビニルスルホン酸カリウム水溶液をポリジアリルジメチルアンモニウムクロライド水溶液にて滴定した滴定量である。
    一般式(1)
    は水素又はメチル基、R、Rは炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、Rは水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、Xは陰イオンをそれぞれ表わす。
  2. 前記水溶性高分子が、一般式(1)で表わされる単量体および架橋性単量体を必須として含有する混合物を分散相とし、水に非混和性の有機液体を連続相となるように界面活性剤により乳化し重合した後、得られる油中水型エマルジョンを乾燥した水溶性高分子の粉末であることを特徴とする請求項1に記載の汚泥の脱水方法。
  3. 前記水溶性高分子を構成する前記一般式(1)で表わされる単量体の共重合率が、40〜90モル%であることを特徴とする請求項1あるいは2に記載の汚泥の脱水方法。
  4. 前記水溶性高分子が両性の場合、水溶性両性高分子を0.1質量%以上に溶解した場合、溶解液pHを4以下にする量の酸性物質を混合することを特徴とする請求項1〜3のいずれかに記載の汚泥の脱水方法。
JP2009041695A 2009-02-25 2009-02-25 汚泥の脱水方法 Active JP5279024B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041695A JP5279024B2 (ja) 2009-02-25 2009-02-25 汚泥の脱水方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041695A JP5279024B2 (ja) 2009-02-25 2009-02-25 汚泥の脱水方法

Publications (2)

Publication Number Publication Date
JP2010194446A true JP2010194446A (ja) 2010-09-09
JP5279024B2 JP5279024B2 (ja) 2013-09-04

Family

ID=42819744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041695A Active JP5279024B2 (ja) 2009-02-25 2009-02-25 汚泥の脱水方法

Country Status (1)

Country Link
JP (1) JP5279024B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214341A (ja) * 2009-03-19 2010-09-30 Hymo Corp 汚泥の脱水方法
JP2012170945A (ja) * 2011-02-24 2012-09-10 Hymo Corp 汚泥脱水剤および汚泥脱水処理方法
JP2012170943A (ja) * 2011-02-24 2012-09-10 Hymo Corp 汚泥脱水剤および汚泥脱水処理方法
JP2017000914A (ja) * 2015-06-04 2017-01-05 Mtアクアポリマー株式会社 高分子凝集剤及びその製造方法並びにそれを用いる汚泥脱水方法
JP2017100111A (ja) * 2015-12-04 2017-06-08 Mtアクアポリマー株式会社 架橋型高分子凝集剤及びその製造方法並びにそれを用いる廃水処理方法
JP2020025939A (ja) * 2018-08-16 2020-02-20 栗田工業株式会社 汚泥脱水方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347600A (ja) * 1999-05-21 1999-12-21 Sanyo Chem Ind Ltd 汚泥の脱水方法
JP2002233708A (ja) * 2000-12-11 2002-08-20 Hymo Corp 汚泥脱水剤及び汚泥脱水方法
JP2002249503A (ja) * 2000-12-18 2002-09-06 Hymo Corp 両性水溶性高分子分散液
JP2004000918A (ja) * 2002-03-22 2004-01-08 Sanyo Chem Ind Ltd 高分子凝集剤及びその製造方法
JP2004025094A (ja) * 2002-06-27 2004-01-29 Hymo Corp 架橋性イオン性水溶性高分子からなる凝集処理剤及びその使用方法
JP2004057837A (ja) * 2002-07-24 2004-02-26 Hymo Corp 凝集処理剤及びその使用方法
JP2004059719A (ja) * 2002-07-29 2004-02-26 Hymo Corp 架橋性イオン性水溶性高分子粉末、その製造方法及びその使用方法
JP2005144346A (ja) * 2003-11-17 2005-06-09 Hymo Corp 凝集処理剤及びその使用方法
JP2005177666A (ja) * 2003-12-22 2005-07-07 Hymo Corp 有機汚泥の脱水方法
JP2006000759A (ja) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd 回転式圧縮濾過機用汚泥脱水剤およびそれを用いた汚泥脱水方法
JP2008080256A (ja) * 2006-09-28 2008-04-10 Hymo Corp 安定なエマルジョン組成物および汚泥脱水方法
JP2008080185A (ja) * 2006-09-26 2008-04-10 Hymo Corp 汚泥の脱水方法
JP2008221172A (ja) * 2007-03-15 2008-09-25 Hymo Corp 汚泥脱水剤および汚泥脱水方法
JP2008221171A (ja) * 2007-03-15 2008-09-25 Hymo Corp 有機汚泥の脱水方法
JP2009039653A (ja) * 2007-08-09 2009-02-26 Hymo Corp 汚泥脱水方法
JP2009039650A (ja) * 2007-08-09 2009-02-26 Hymo Corp 汚泥脱水剤および汚泥脱水方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347600A (ja) * 1999-05-21 1999-12-21 Sanyo Chem Ind Ltd 汚泥の脱水方法
JP2002233708A (ja) * 2000-12-11 2002-08-20 Hymo Corp 汚泥脱水剤及び汚泥脱水方法
JP2002249503A (ja) * 2000-12-18 2002-09-06 Hymo Corp 両性水溶性高分子分散液
JP2004000918A (ja) * 2002-03-22 2004-01-08 Sanyo Chem Ind Ltd 高分子凝集剤及びその製造方法
JP2004025094A (ja) * 2002-06-27 2004-01-29 Hymo Corp 架橋性イオン性水溶性高分子からなる凝集処理剤及びその使用方法
JP2004057837A (ja) * 2002-07-24 2004-02-26 Hymo Corp 凝集処理剤及びその使用方法
JP2004059719A (ja) * 2002-07-29 2004-02-26 Hymo Corp 架橋性イオン性水溶性高分子粉末、その製造方法及びその使用方法
JP2005144346A (ja) * 2003-11-17 2005-06-09 Hymo Corp 凝集処理剤及びその使用方法
JP2005177666A (ja) * 2003-12-22 2005-07-07 Hymo Corp 有機汚泥の脱水方法
JP2006000759A (ja) * 2004-06-17 2006-01-05 Tomoe Engineering Co Ltd 回転式圧縮濾過機用汚泥脱水剤およびそれを用いた汚泥脱水方法
JP2008080185A (ja) * 2006-09-26 2008-04-10 Hymo Corp 汚泥の脱水方法
JP2008080256A (ja) * 2006-09-28 2008-04-10 Hymo Corp 安定なエマルジョン組成物および汚泥脱水方法
JP2008221172A (ja) * 2007-03-15 2008-09-25 Hymo Corp 汚泥脱水剤および汚泥脱水方法
JP2008221171A (ja) * 2007-03-15 2008-09-25 Hymo Corp 有機汚泥の脱水方法
JP2009039653A (ja) * 2007-08-09 2009-02-26 Hymo Corp 汚泥脱水方法
JP2009039650A (ja) * 2007-08-09 2009-02-26 Hymo Corp 汚泥脱水剤および汚泥脱水方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214341A (ja) * 2009-03-19 2010-09-30 Hymo Corp 汚泥の脱水方法
JP2012170945A (ja) * 2011-02-24 2012-09-10 Hymo Corp 汚泥脱水剤および汚泥脱水処理方法
JP2012170943A (ja) * 2011-02-24 2012-09-10 Hymo Corp 汚泥脱水剤および汚泥脱水処理方法
JP2017000914A (ja) * 2015-06-04 2017-01-05 Mtアクアポリマー株式会社 高分子凝集剤及びその製造方法並びにそれを用いる汚泥脱水方法
JP2017100111A (ja) * 2015-12-04 2017-06-08 Mtアクアポリマー株式会社 架橋型高分子凝集剤及びその製造方法並びにそれを用いる廃水処理方法
JP2020025939A (ja) * 2018-08-16 2020-02-20 栗田工業株式会社 汚泥脱水方法

Also Published As

Publication number Publication date
JP5279024B2 (ja) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4167969B2 (ja) 凝集処理剤及びその使用方法
JP5279024B2 (ja) 汚泥の脱水方法
JP2012254430A (ja) 凝集処理剤およびそれを用いた汚泥脱水方法
JP5622263B2 (ja) 汚泥の脱水方法
JP2007023146A (ja) イオン性微粒子およびその用途
JP6257079B2 (ja) 凝集処理剤及びそれを用いた汚泥の脱水方法
JP2010222505A (ja) 水溶性高分子組成物
JP3886098B2 (ja) 汚泥脱水剤及び汚泥脱水方法
JP2012206024A (ja) 凝集処理剤およびそれを用いた汚泥脱水方法
JP5305443B2 (ja) 水溶性高分子組成物
JP2009039653A (ja) 汚泥脱水方法
JP5692911B2 (ja) 凝集処理剤およびそれを用いた汚泥脱水方法
JP4897523B2 (ja) 汚泥脱水剤および汚泥脱水方法
JP5692910B2 (ja) 汚泥脱水剤および汚泥脱水処理方法
JP5601704B2 (ja) 汚泥脱水剤および汚泥脱水方法
JP2010195915A (ja) 粉末状水溶性高分子
JP5967705B2 (ja) 凝集処理剤およびそれを用いた汚泥脱水方法
JP5995534B2 (ja) 凝集処理剤および排水処理方法
JP2010158660A (ja) 汚泥の脱水方法
JP5258647B2 (ja) 汚泥の脱水方法
JP2011062634A (ja) 上水用凝集剤及び上水用原水の処理方法
JP2003145200A (ja) 汚泥脱水方法
JP2005125215A (ja) 含油有機汚泥の脱水方法
JP2008221171A (ja) 有機汚泥の脱水方法
JP5946166B2 (ja) 汚泥脱水方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250