JP2010174537A - Booster water supply system - Google Patents

Booster water supply system Download PDF

Info

Publication number
JP2010174537A
JP2010174537A JP2009019337A JP2009019337A JP2010174537A JP 2010174537 A JP2010174537 A JP 2010174537A JP 2009019337 A JP2009019337 A JP 2009019337A JP 2009019337 A JP2009019337 A JP 2009019337A JP 2010174537 A JP2010174537 A JP 2010174537A
Authority
JP
Japan
Prior art keywords
zone
water supply
pressure
water
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009019337A
Other languages
Japanese (ja)
Other versions
JP5022389B2 (en
Inventor
Koichi Sato
幸一 佐藤
Koji Ono
浩二 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2009019337A priority Critical patent/JP5022389B2/en
Publication of JP2010174537A publication Critical patent/JP2010174537A/en
Application granted granted Critical
Publication of JP5022389B2 publication Critical patent/JP5022389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable and highly-reliable booster water supply system by solving anticipated problems such as a decrease in water supply pressure and hunting in a partial zone or local area, and operating water supply sections of respective zones in liaison with one another through the concurrent use of a water receiving tank system and a direct booster system. <P>SOLUTION: This booster water supply system includes a water receiving tank for storing running water, and a booster water supply section which is provided in each layer zone and which supplies the water to each of high-story zones from a low-story zone of a building by pressurizing the water stored in the water receiving tank. The booster water supply system, in which the booster water supply sections of the respective story zones are serially connected together and serially operated, is provided with a control unit which makes an operation signal and a stop one mutually transmitted/received between the booster water supply sections of the respective story zones, and which makes the booster water supply sections of the respective story zones operated/stopped on the basis of the reception of these signals. When the water is used in the high-story zone, the operation signal is transmitted to the low-story zone from the high-story zone, so as to operate the booster water supply section of the low-story zone and operate the booster water supply section of the high-story zone. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、受水槽を介して給水する受水槽式と、水道用配水管に直結して給水を行う増圧直結給水方式とを併用した中高層建物用の増圧給水システムのポンプ直列運転システムに関する。   The present invention relates to a pump series operation system for a boosted water supply system for a medium-to-high-rise building that uses both a water receiving tank type that supplies water via a water receiving tank and a pressure-increasing direct connection water supply system that supplies water directly connected to a water distribution pipe. .

近年、水道用配水管に直結して給水を行う増圧直結給水方式が広く普及してきている。加えて、最近、大都市においてこの給水方式を17階建て以上の中高層建物にも適用していく動向が見られ、具体的な採用検討が開始されている。これらの増圧直結給水方式は日本水道協会規格の適合品である必要があるが、この規格は、口径は〜75mm。水量は〜約800L/min、全揚程は〜75mまでしかカバーしていない。   In recent years, a pressure-increasing direct water supply system that supplies water directly connected to a water distribution pipe has been widely used. In addition, in recent years, there has been a trend to apply this water supply method to medium- and high-rise buildings of 17 stories or more in large cities, and concrete adoption studies have begun. These pressure-increasing direct water supply systems must conform to the standards of the Japan Water Works Association, but this standard has a caliber of ~ 75 mm. The amount of water is up to about 800 L / min, and the total head covers only up to about 75 m.

この17階建て以上の中高層建物に増圧直結給水方式を適用する場合、現行の増圧給水システム(ポンプ)を直列に接続して用いるか、高揚程ポンプを開発して用いる等が考えられる。前者は既に前述のように対応規格があるが、後者は規格化をする等の準備が必要である。このため、前者の増圧給水部(ポンプ)を直列に接続して用いる方式が脚光を浴びている。   When applying the pressure-increasing direct connection water supply system to this 17-story or higher-rise building, it is conceivable to use the current pressure-increasing water supply system (pump) connected in series or to develop and use a high-lift pump. The former already has a corresponding standard as described above, but the latter requires preparations such as standardization. For this reason, the method of connecting the former pressure increase water supply part (pump) in series and attracting attention is attracting attention.

しかし、この17階建て以上の中高層建物規模を考えると、低層ゾーン用増圧給水部が前記日本水道協会規格の範囲を越えて適合品とならないものが出てくる。これに対応するためには、低層ゾーン用は、受水槽を介して給水する受水槽式とし、中層以上を水道用配水管に直結して給水を行う増圧直結給水方式とし、これらを併用する必要がある。   However, when considering the size of medium- and high-rise buildings of 17 stories or more, there are some cases where the high-pressure water supply section for the low-rise zone is not compatible with the Japan Water Works Association standard. In order to cope with this, for the low-rise zone, use a water receiving tank type that supplies water through a water receiving tank, and use a pressure-increasing direct connection water supply system that supplies water by directly connecting the middle layer and above to a water distribution pipe. There is a need.

これらの従来例として特許文献1、特許文献2がある。   As these conventional examples, there are Patent Document 1 and Patent Document 2.

実開昭59−107072号公報Japanese Utility Model Publication No. 59-107072 特開平7−331711号公報JP-A-7-331711

しかしながら、これらのシステムには、例えば低層ゾーン、中層ゾーン、高層ゾーン毎に分けられた給水システム(ポンプ)が独立して作動しているため、一部のゾーンや局所で、短時間に集中した水の使用があった場合、それより低層のゾーンでもポンプを運転させることになるが、高層と低層ゾーンでのポンプの起動タイミング、圧力変動対策、連系運転や全体システムとしての協調性がなく、一部のゾーンや局所において、給水圧力低下等の問題が生じる恐れがある。従って、低層用、中層用、高層用それぞれのゾーンで、始動・停止のハンチング現象が起こる恐れがある。   However, in these systems, for example, the water supply system (pump) divided into the low zone, middle zone, and high zone is operating independently, so it concentrated in a short time in some zones and local areas. If water is used, the pump will be operated even in lower zones, but there is no coordination between the start timing of the pumps in the upper and lower zones, countermeasures for pressure fluctuations, interconnected operation and the overall system. In some zones and regions, problems such as a decrease in feed water pressure may occur. Therefore, there is a possibility that a hunting phenomenon of starting / stopping occurs in each zone for the low layer, the middle layer, and the high layer.

本発明は、上記従来技術の欠点に鑑み、予想される一部のゾーンや局所における、給水圧力の低下や、ハンチング等の問題を解消すると共に、受水槽方式と直結増圧方式を併用して、安定で信頼性の高い増圧給水システムを提供する。   In view of the above disadvantages of the prior art, the present invention solves problems such as a decrease in water supply pressure and hunting in some expected zones and regions, and uses a water receiving tank method and a direct connection pressure increasing method in combination. Providing a stable and reliable pressurized water supply system.

上記課題を解決するため、本発明は、建物の各層ゾーンの設けた各増圧給水部の間で運転信号と停止信号(運転/停止信号)を相互に送受信させることにより、連系(連動)運転及びアンサバック運転ができるように信号の相互送受信を行なう制御装置を設ける。   In order to solve the above-mentioned problem, the present invention is connected (interlocked) by mutually transmitting and receiving an operation signal and a stop signal (operation / stop signal) between each pressure increasing water supply section provided in each layer zone of the building. A control device that performs mutual transmission and reception of signals is provided so that operation and answerback operation can be performed.

上記課題を解決するため、本発明は、水道用配水管からの水を一旦貯水する受水槽と、上記受水槽の貯水を加圧して建物の低位層ゾーンから高位層ゾーンのそれぞれの給水をまかなう各層ゾーンに設けられた増圧給水部を備え、上記各層ゾーンの増圧給水部が直列接続されて直列運転する増圧給水システムにおいて、
上記各層ゾーンの増圧給水部の間で運転信号と停止信号を相互に送受信すると共に、これらの信号の受信に基いて当該ゾーンの増圧給水部を運転/停止する制御装置を設け、
高位層ゾーンで水の使用があったとき、当該ゾーンから低位層ゾーンに運転信号を送信して低位層ゾーンの増圧給水部を運転するとともに、当該高層ゾーンの増圧給水部を運転するように構成したことを特徴とする。
In order to solve the above problems, the present invention provides a water receiving tank that temporarily stores water from a water distribution pipe, and supplies water from the lower zone to the higher zone of the building by pressurizing the water stored in the water receiving tank. In the pressure-increasing water supply system comprising the pressure-increasing water supply part provided in each layer zone, the pressure-increasing water supply part in each of the above-mentioned each layer zone is connected in series,
A control device for operating / stopping the increased pressure water supply section of the zone based on reception of these signals, as well as mutually transmitting and receiving an operation signal and a stop signal between the increased pressure water supply sections of the respective zone zones,
When water is used in the higher zone, the operation signal is transmitted from the zone to the lower zone to operate the booster water supply unit in the lower zone and to operate the booster water supply unit in the higher zone It is characterized by comprising.

また、本発明は、上記に記載の増圧給水システムにおいて、高位層ゾーンで水の使用があったとき、当該ゾーンから低位層ゾーンに運転信号を送信して低位層ゾーンの増圧給水部を先に運転し、次いで当該高層ゾーンの増圧給水部を連係運転するように構成したことを特徴とする。   Further, according to the present invention, in the above-described pressurized water supply system, when water is used in the higher zone, the operation signal is transmitted from the zone to the lower zone, and the boosted water supply unit of the lower zone is set. It is characterized by being configured to operate first, and then to perform linked operation of the pressure increasing water supply section of the high-rise zone.

また、本発明は、上記に記載の増圧給水システムにおいて、上記増圧給水部は、上記受水槽の貯水を加圧して建物の低層ゾーンの給水をまかなう低層ゾーンの増圧給水部と、この増圧給水部に接続して建物の中層ゾーンの給水をまかなう中層ゾーンの増圧給水部と、前記中層ゾーンの増圧給水部に接続して建物の高層ゾーンの給水をまかなう高層ゾーンの増圧給水部からなることを特徴とする。   Further, according to the present invention, in the above-described pressure-increasing water supply system, the pressure-increasing water supply part pressurizes the water stored in the water receiving tank to supply water in the low-rise zone of the building, A booster water supply unit in the middle zone that covers the water supply in the middle zone of the building by connecting to the booster water supply unit, and a booster in the upper zone that covers the water supply in the high zone of the building by connecting to the booster water supply unit in the middle zone It consists of a water supply part.

また、本発明は、上記に記載の増圧給水システムにおいて、上記制御装置は各層ゾーンに設けられ、高位層ゾーンで水の使用があったとき、当該ゾーンの制御装置から低位層ゾーンの制御装置に運転信号を送信して低位層ゾーンの増圧給水部を先に運転し、次いで高位層ゾーンの増圧給水部を連携運転するように構成されたことを特徴とする。   Further, according to the present invention, in the above-described pressurized water supply system, the control device is provided in each zone, and when water is used in the higher zone, the control device in the lower zone is changed from the control device in the zone. The operation signal is transmitted to the booster water supply unit in the lower zone zone first, and then the booster water supply unit in the higher zone zone is operated in cooperation.

また、本発明は、上記に記載の増圧給水システムにおいて、さらに前記高位層ゾーンの増圧給水部が停止したとき、低位層の増圧給水部が停止するように構成されたことを特徴とする。   Further, the present invention is characterized in that, in the above-described boosted water supply system, when the boosted water supply unit of the higher layer zone is stopped, the boosted water supply unit of the lower layer is stopped. To do.

また、本発明は、上記に記載の増圧給水システムにおいて、上記制御装置は前記高位層ゾーンの増圧給水部が停止したとき、当該ゾーンから低位層に停止信号を送信して低位層の増圧給水部が遅れて停止するように構成されたことを特徴とする。   Further, according to the present invention, in the pressure increasing water supply system described above, when the pressure increasing water supply section of the higher layer zone stops, the control device transmits a stop signal from the zone to the lower layer to increase the lower layer. The pressure water supply unit is configured to stop after a delay.

また、本発明は、水道用配水管からの水を一旦貯水する受水槽と、上記受水槽の貯水を加圧して建物の低層ゾーンの給水をまかなう低層ゾーンの増圧給水部と、この増圧給水部に接続して建物の中層ゾーンの給水をまかなう中層ゾーンの増圧給水部と、前記中層ゾーンの増圧給水部に接続して建物の高層ゾーンの給水をまかなう高層ゾーンの増圧給水部を備えた増圧給水システムにおいて、
上記各層ゾーンの増圧給水部間で運転信号と停止信号を相互に送受信すると共に、これらの信号の受信に基いて当該ゾーンの増圧給水部を運転/停止する制御装置を各層ゾーンに設け、
高位層ゾーンで水の使用があったとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ順次運転信号を送信し、この低位層ゾーンの増圧給水部は更に低位層の増圧給水部に運転信号を発信して最低位層から高位層ゾーンへと順番に増圧給水部を運転し、
当該高位層ゾーンの増圧給水部が停止したとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ順次停止信号を送信して、最低位層ゾーンの増圧給水部が最後に停止するように高位層から最低位層ゾーンへと順番に増圧給水部の運転を停止するように構成されたことを特徴とする。
The present invention also includes a water receiving tank that temporarily stores water from a water distribution pipe, a pressure-increasing water supply section in a low-rise zone that pressurizes the water stored in the water-receiving tank to supply water in a low-rise zone of a building, A booster water supply unit in the middle zone that connects to the water supply unit to supply water in the middle zone of the building, and a booster water supply unit in the higher zone that connects to the booster water supply unit in the middle zone to supply water in the higher zone of the building In the pressure increase water supply system with
A control device for operating / stopping the increased pressure water supply unit of each zone based on reception of these signals is provided in each layer zone, while mutually transmitting and receiving an operation signal and a stop signal between the increased pressure water supply units of each layer zone,
When water is used in the higher zone, an operation signal is sent sequentially from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the booster water supply unit in this lower zone is further lowered. The operation signal is sent to the booster water supply section of the layer and the booster water supply section is operated in order from the lowest layer to the higher zone,
When the booster water supply unit in the higher zone stops, a stop signal is sequentially transmitted from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the booster water supply unit in the lowest zone Is configured to stop the operation of the pressurized water supply unit in order from the higher layer to the lowest layer zone so as to stop at the end.

また、本発明は、水道用配水管からの水を一旦貯水する受水槽と、上記受水槽の貯水を加圧して建物の低層ゾーンの給水をまかなう低層ゾーンの増圧給水部と、この増圧給水部に接続して建物の中層ゾーンの給水をまかなう中層ゾーンの増圧給水部と、前記中層ゾーンの増圧給水部に接続して建物の高層ゾーンの給水をまかなう高層ゾーンの増圧給水部を備えた増圧給水システムにおいて、
上記各層ゾーンの増圧給水部間で運転信号と停止信号を相互に送受信すると共に、これらの信号の受信に基いて当該ゾーンの増圧給水部を運転/停止する制御装置を各層ゾーンに設け、
高位層ゾーンで水の使用があったとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ運転信号を送信して、当該高位層から最低位層ゾーンの増圧給水部を運転すると共に、当該高層ゾーンの増圧給水部を運転し、
当該高位層ゾーンの増圧給水部が停止したとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ順次停止信号を送信し、最低位層ゾーンの増圧給水部が最後に停止するように高位層から最低位層ゾーンへと順番に増圧給水部の運転を停止するように構成されたとを特徴とする。
The present invention also includes a water receiving tank that temporarily stores water from a water distribution pipe, a pressure-increasing water supply section in a low-rise zone that pressurizes the water stored in the water-receiving tank to supply water in a low-rise zone of a building, A booster water supply unit in the middle zone that connects to the water supply unit to supply water in the middle zone of the building, and a booster water supply unit in the higher zone that connects to the booster water supply unit in the middle zone to supply water in the higher zone of the building In the pressure increase water supply system with
A control device for operating / stopping the increased pressure water supply unit of each zone based on reception of these signals is provided in each layer zone, while mutually transmitting and receiving an operation signal and a stop signal between the increased pressure water supply units of each layer zone,
When water is used in the higher zone, an operating signal is sent from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the boosted water supply in the lowest zone is sent from the higher zone Driving the pressure increasing water supply section of the high-rise zone,
When the booster water supply unit in the higher zone stops, a stop signal is sequentially transmitted from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the booster water supply unit in the lowest zone zone It is characterized by being configured to stop the operation of the pressure increasing water supply unit in order from the higher layer to the lowest layer zone so as to stop at the end.

また、本発明は、上記に記載の増圧給水システムにおいて、上記制御装置は高位層ゾーンで水の使用があったとき、低位層ゾーンの増圧給水部に運転信号を送信する条件を決める圧力ヘッドパラメータ、又はタイマー要素を記憶するメモリを有することを特徴とする。   Further, the present invention is the pressure increasing water supply system described above, wherein the control device determines a condition for transmitting an operation signal to the pressure increasing water supply section of the lower layer zone when water is used in the higher layer zone. It has a memory for storing head parameters or timer elements.

また、本発明は、上記に記載の増圧給水システムにおいて、上記制御装置は、低位層から高位層ゾーンの増圧給水部が同時運転中は、最高位層ゾーンの増圧給水部を使用量変動に伴う可変速運転制御し、これより低位層ゾーンの増圧給水部を高位層ゾーンが運転中は停止制御するように構成されたことを特徴とする。   Further, according to the present invention, in the above-described pressure-increasing water supply system, the control device uses the amount of the pressure-increasing water supply part in the highest layer zone while the pressure-increasing water supply part in the lower to higher zone is operating simultaneously. A variable speed operation control is performed in accordance with the fluctuation, and the pressure increase water supply section of the lower layer zone is controlled to be stopped while the higher layer zone is operating.

本発明によれば、一部のゾーンや局所で短時間に集中した水の使用があった場合でも、建物の各ゾーンの給水部の間で強調して運転するので、給水圧力の変動や、ハンチング等の問題を解消して、安定で信頼性の高い給水を行うことができる。また、受水槽方式と直結増圧方式により、低コストで自由度の高いシステムを実現できる。   According to the present invention, even when there is use of water concentrated in a short time in some zones and locally, because it operates with emphasis between the water supply parts of each zone of the building, The problem such as hunting can be solved, and stable and reliable water supply can be performed. In addition, a low-cost and highly flexible system can be realized by the water tank method and the direct pressure increasing method.

本発明の増圧給水システムの一実施例を示すシステム系統図。The system system figure which shows one Example of the pressure increase water supply system of this invention. 本発明の一実施例を示す低層ゾーンの増圧給水部の内部構成図。The internal block diagram of the pressure increase water supply part of the low-rise zone which shows one Example of this invention. 本発明の一実施例を示す中高層ゾーンの増圧給水部の内部構成図。The internal block diagram of the pressure increase water supply part of the middle-high-rise zone which shows one Example of this invention. 本発明の一実施例を示す制御装置の回路図。1 is a circuit diagram of a control device showing an embodiment of the present invention. 本発明の一実施例を示す低層ゾーン増圧給水部の運転特性図。The operation characteristic figure of the low rise zone pressure increase water supply part which shows one Example of this invention. 本発明の一実施例を示す中層ゾーン増圧給水部の運転特性図。The operation characteristic figure of the middle zone zone pressure increase water supply part which shows one example of the present invention. 本発明の一実施例を示す高層ゾーン増圧給水部の運転特性図。The operation characteristic figure of the high rise zone pressure increase water supply part which shows one Example of this invention.

以下、本発明の一実施例を図1〜図7により説明する。
(実施例)
図1は本発明実施例の中高層建物用の増圧給水システムのシステム系統図を示す。
An embodiment of the present invention will be described below with reference to FIGS.
(Example)
FIG. 1 is a system diagram of a pressure-increasing water supply system for medium- and high-rise buildings according to an embodiment of the present invention.

1は水道配水管、10は吸い込み側を水道配水管枝管2に接続され、量水計3を介して給水を貯水する受水槽10(水道の配水管より給水する例えばボールタップ11注水口に備えている)である。4は送水管5を介して、低層ゾーン需要端(例えば水栓5a、5b、5c)へ給水する低層ゾーンの加圧給水部(以下説明の便宜上、増圧給水部と称する。)である。6は吸い込み側を前記低層ゾーンの増圧給水部4の送水配管5と直結し、送水管7を介して中層ゾーン需要端(例えば水栓7a、7b、7c)へ給水する中層ゾーンの増圧給水部である。8は吸い込み側を前記中層ゾーンの増圧給水部6の送水配管7と直結し、送水管9を介して高層ゾーン需要端(例えば水栓9a、9b、9c)へ給水する高層ゾーンの増圧給水部である。   Reference numeral 1 is a water distribution pipe, 10 is connected to a water supply pipe branch pipe 2 on the suction side, and is provided in a water receiving tank 10 for storing water supply through a water meter 3 (for example, a ball tap 11 inlet for supplying water from a water supply pipe) Is). Reference numeral 4 denotes a pressurized water supply section (hereinafter referred to as an increased pressure water supply section for convenience of description) for supplying water to a low-rise zone demand end (for example, faucets 5a, 5b, 5c) via a water pipe 5. 6 is a pressure increase in the middle zone where the suction side is directly connected to the water supply pipe 5 of the pressure-increasing water supply section 4 in the lower zone, and water is supplied to the middle zone demand end (for example, faucets 7a, 7b, 7c) via the water supply pipe 7. It is a water supply department. 8 is a direct connection between the suction side and the water supply pipe 7 of the pressure-increasing water supply section 6 in the middle zone, and the pressure increase in the high-rise zone supplying water to the high-rise zone demand end (for example, faucets 9a, 9b, 9c) via the water supply pipe 9 It is a water supply department.

上記のように、建物の各層ゾーンの増圧給水部が直列接続され、高層ゾーンに給水される場合に各層ゾーンの増圧給水部が直列運転される。   As described above, the pressure-increasing water supply units in each layer zone of the building are connected in series, and when water is supplied to the high-rise zone, the pressure-increasing water supply units in each layer zone are operated in series.

低層と、中層の増圧給水部4,6の間は、低層増圧給水部4が運転状態を示す運転/停止信号(運転信号と停止信号)S11及びこれのアンサーバック信号S12と、中層増圧給水部6が運転状態を示す運転/停止信号S13及びこれのアンサーバック信号S14の各信号が送受信するように電気的に接続される。   Between the low-rise and middle-layer pressure-increasing water supply units 4 and 6, the low-layer pressure-increasing water supply unit 4 includes an operation / stop signal (operation signal and stop signal) S11 indicating an operating state and an answerback signal S12 thereof, and an intermediate layer increase. The pressure water supply unit 6 is electrically connected so that each signal of the operation / stop signal S13 indicating the operation state and the answerback signal S14 thereof is transmitted and received.

中層と、高層の増圧給水部6,8の間は、中層増圧給水部6が運転している状態を示す運転/停止信号S21及びこれのアンサーバック信号S22と、高層増圧給水部8が運転している状態を示す運転/停止信号S23及びこれのアンサバック信号S24の各信号が送受信するように電気的に接続される。   Between the middle layer and the higher pressure boosting water supply units 6, 8, an operation / stop signal S 21 indicating that the middle layer pressure boosting water supply unit 6 is operating, an answerback signal S 22 thereof, and the higher layer pressure boosting water supply unit 8. Is electrically connected so that each signal of the operation / stop signal S23 indicating the state where the vehicle is operating and the answer back signal S24 thereof are transmitted and received.

これらの信号を各増圧給水部の間を相互に送受信し連系運転システムを構築する。尚、これらの信号は通信を用いても良いし、無線でも良い。   These signals are transmitted and received between the booster water supply units to construct an interconnected operation system. Note that these signals may use communication or may be wireless.

ここで、図1では建物の各層ゾーンを低層ゾーン、中層ゾーン、高層ゾーンとしているが、高位層ゾーンと低位層ゾーンと表現することができる。すなわち、建物の各ゾーンを高さの相対的表現にしたものであり、図1の低層ゾーンと中層ゾーンの関係では、低層ゾーンが低位層ゾーンで、中層ゾーンが高位層ゾーンとなり、図1の中層ゾーンと高層ゾーンの関係では、中層ゾーンが低位層ゾーンで、高層ゾーンが高位層ゾーンとなる。   Here, although each layer zone of the building is a low-rise zone, a middle-rise zone, and a high-rise zone in FIG. 1, it can be expressed as a high-rise zone and a low-rise zone. That is, each zone of the building is a relative expression of the height. In the relationship between the low-rise zone and the middle-rise zone in FIG. 1, the low-rise zone is the low-rise zone and the middle-rise zone is the high-rise zone. In the relationship between the middle zone and the higher zone, the middle zone is the lower zone and the higher zone is the higher zone.

図2は建物の低層ゾーンに設置される増圧給水部4の内部構成図である。CU1はこの増圧給水部4の制御装置であり、前記各信号S11〜S14を送受信すると共に、上記信号の受信に基いて当該ゾーンの増圧給水部4を運転/停止する。P11、P12はそれぞれ加圧ポンプ1号、2号であり、動力ケーブルS34、S35を介して上記制御装置CU1によって交互に運転と停止がなされる。受水槽10には水位検出手段12を備えており、この信号L1を前記制御装置CU1に取り込み、水位が低下してポンプが運転できない状態の時は、前記両加圧ポンプを停止させて空転保護の機能を有する。   FIG. 2 is an internal configuration diagram of the pressure increasing water supply unit 4 installed in the low-rise zone of the building. CU1 is a control device for the pressure-increasing water supply unit 4 and transmits / receives the signals S11 to S14, and operates / stops the pressure-increasing water supply unit 4 in the zone based on the reception of the signals. P11 and P12 are pressurizing pumps 1 and 2, respectively, and are operated and stopped alternately by the control unit CU1 through power cables S34 and S35. The water receiving tank 10 is provided with a water level detecting means 12, and this signal L1 is taken into the control unit CU1, and when the water level is lowered and the pump cannot be operated, both the pressurizing pumps are stopped to prevent idling. It has the function of.

PS12は吐出圧力ヘッド(送水圧力ヘッド)を検出する圧力センサであり、この検出圧力ヘッドに応じた電気信号S31を制御装置CU1に送信する。FS11、FS12は、それぞれ加圧ポンプP11とP12を流れる水使用の過少水量状態を検出する流量スイッチであり、信号S32、S33で制御装置CU1に送信する。T1は内部に所定圧力で空気を保有する圧力タンクであり、送水配管5の圧力変動防止、及び蓄圧を目的に使用する。10−1〜10−4はそれぞれ加圧ポンプP11とP12の吸込み側と吐出し側に設けられた仕切弁、12,13は吐出し側に設けられた逆止め弁である。   PS12 is a pressure sensor that detects a discharge pressure head (water supply pressure head), and transmits an electric signal S31 corresponding to the detected pressure head to the control unit CU1. FS11 and FS12 are flow rate switches for detecting the amount of water used underflow through the pressurizing pumps P11 and P12, respectively, and are transmitted to the control unit CU1 by signals S32 and S33. T1 is a pressure tank that retains air at a predetermined pressure therein, and is used for the purpose of preventing pressure fluctuation in the water supply pipe 5 and accumulating pressure. 10-1 to 10-4 are gate valves provided on the suction and discharge sides of the pressure pumps P11 and P12, respectively, and 12 and 13 are check valves provided on the discharge side.

図3は建物の中層ゾーンおよび高層ゾーンに設置される増圧給水部6,8の内部構成図である。CU2、CU3はそれぞれ中層ゾーンおよび高層ゾーンに設置される増圧給水部の制御装置である。制御装置CU1とCU2の間では信号S11〜S14が送受信され、制御装置CU2とCU3の間では信号S21〜S24が送受信される。そして上記いずれかの信号の受信に基いて、CU2、CU3はそれぞれ当該ゾーンの増圧給水部6、と増圧給水部8の運転と停止の制御を行う。   FIG. 3 is an internal configuration diagram of the pressure increasing water supply units 6 and 8 installed in the middle zone and the higher zone of the building. CU2 and CU3 are control devices for the pressure increasing water supply unit installed in the middle zone and the higher zone, respectively. Signals S11 to S14 are transmitted and received between the control devices CU1 and CU2, and signals S21 to S24 are transmitted and received between the control devices CU2 and CU3. Based on the reception of any of the above signals, CU2 and CU3 control the operation and stop of the pressure-increasing water supply unit 6 and the pressure-increasing water supply unit 8, respectively.

BP21、BP22はそれぞれ増圧ポンプ1号、2号でありこれらの間は動力ケーブルS34、S35で結線されおり交互に運転する構成となっている。PS21は水道配水管側の圧力ヘッドを検出する圧力センサであり、ここの検出圧力ヘッドに応じた電気信号S30を、制御装置CU2(CU3)に発信する。同様に、PS22は吐出圧力ヘッド(送水圧力ヘッド)を検出する圧力センサであり、ここの検出圧力ヘッドに応じた電気信号S31をそれぞれ制御装置CU2(CU3)に発信する。FS21、FS22はそれぞれ1号及び2号増圧ポンプの吐出側に設置され水使用の過少水量状態を検出する流量スイッチであり、電気信号S32、S33を制御装置CU2(CU3)に発信する。T2(T3)は内部に空気を保有する圧力タンクであり、圧力変動防止及び蓄圧を目的に使用する。又、10−1〜10−4は仕切弁、12,13は逆止め弁である。   BP21 and BP22 are booster pumps No. 1 and No. 2, respectively, and are connected by power cables S34 and S35 so that they are operated alternately. PS21 is a pressure sensor that detects the pressure head on the water distribution pipe side, and transmits an electrical signal S30 corresponding to the detected pressure head to the control unit CU2 (CU3). Similarly, PS22 is a pressure sensor that detects a discharge pressure head (water supply pressure head), and transmits an electric signal S31 corresponding to the detected pressure head to the control unit CU2 (CU3). FS21 and FS22 are flow rate switches that are installed on the discharge side of the No. 1 and No. 2 pressure booster pumps to detect an underwater usage state, and transmit electric signals S32 and S33 to the control unit CU2 (CU3). T2 (T3) is a pressure tank having air inside, and is used for the purpose of preventing pressure fluctuation and accumulating pressure. Further, 10-1 to 10-4 are gate valves, and 12 and 13 are check valves.

図4に制御装置CU1〜CU3の回路図を示す。PWは電源、INV1、INV2はそれぞれ増圧ポンプ1号及び2号を駆動する可変速駆動装置であり、例えばインバータである。このインバータは、運転指令信号STX1、STX2により始動、停止を行い、周波数指令信号fx1、fx2により周波数制御を行い、前記した増圧ポンプ1号及び2号用のモータIM1、IM2に可変周波数、可変電圧を供給する。CONS1、CONS2はそれぞれオペレータ部であり、インバータの加速時間や過電流トリップレベル等のパラメータを設定したり、単独で運転/停止等を指令するものである。ELB1、ELB2はそれぞれ設置されたインバータとモータIM1、IM2の漏電保護を行う漏電遮断器である。   FIG. 4 shows a circuit diagram of the control units CU1 to CU3. PW is a power source, and INV1 and INV2 are variable speed driving devices for driving the pressure-increasing pumps No. 1 and No. 2, respectively. This inverter is started and stopped by the operation command signals STX1 and STX2, and the frequency is controlled by the frequency command signals fx1 and fx2, and the motors IM1 and IM2 for the booster pump No. 1 and No. 2 are variable in frequency and variable. Supply voltage. CONS1 and CONS2 are operator sections, respectively, for setting parameters such as an inverter acceleration time and an overcurrent trip level, and for commanding operation / stop or the like independently. ELB1 and ELB2 are earth leakage circuit breakers that respectively perform leakage protection for the installed inverter and motors IM1 and IM2.

CUは制御部であり、マイクロプロセッサーCPU、入出力ポートPIO−1〜PIO−5、アナログ入出力ポートD/A、メモリーM、安定化電源回路AVRで構成されている。又、増圧給水部が作動するのに必要なプログラム、制御パラメータおよびタイマー要素が前記メモリーMに格納されている。SSは運転/停止スイッチであり、ON状態でAVRを介してCUに電源が供給され、OFF状態で電源断となり運転中であれば停止される。   CU is a control unit, which includes a microprocessor CPU, input / output ports PIO-1 to PIO-5, an analog input / output port D / A, a memory M, and a stabilized power supply circuit AVR. A program, control parameters, and timer elements necessary for the operation of the pressure increasing water supply unit are stored in the memory M. SS is an operation / stop switch, and power is supplied to the CU via the AVR in the ON state, and the power is cut off in the OFF state, and is stopped if the operation is in progress.

Zはリレー駆動手段であり、CPUのソフト処理によりPIO−4よりZにON・OFF信号が出力されてリレーSTX1、STX2、X1、X2を開閉駆動する。リレーSTX1、STX2は前述したインバータの運転/停止信号であり、リレーX1は他の増圧給水部の制御装置に運転信号を出力し、リレーX2はアンサーバック信号を出力する。建物の中層ゾーンの制御装置CU2の場合は、低層ゾーン及び高層ゾーンに発信するため、上記リレーは2組必要となる。又、他の増圧給水部(低層ゾーン)の制御装置CU1からの運転信号S11及び(又は)アンサバック信号S14の受信は、リレ−X3、X4により受信し、これらの信号をPIO−5より入力する。   Z is a relay drive means, and an ON / OFF signal is output from PIO-4 to Z by software processing of the CPU to open and close the relays STX1, STX2, X1, and X2. The relays STX1 and STX2 are the inverter operation / stop signals described above, the relay X1 outputs an operation signal to the control device of the other pressurized water supply unit, and the relay X2 outputs an answerback signal. In the case of the control unit CU2 in the middle zone of the building, two sets of the relays are necessary to transmit to the lower zone and the higher zone. The operation signal S11 and / or the answer back signal S14 from the control unit CU1 of the other pressurized water supply section (low zone) is received by the relays X3 and X4, and these signals are received from the PIO-5. input.

SWは、後述の図5〜図7に示す増圧給水部の動作を制御する各制御パラメータを設定するためのスイッチである。これらの値はPIO−3より取り込みメモリーMに格納処理される。また、前述した水道の配水管側の圧力ヘッドを検出する圧力センサ、及び吐出側圧力ヘッドを検出する圧力センサの信号は、アナログポートA/Dにより取り込まれ、メモリーMに格納処理される(例えば0〜100mに変換)。   SW is a switch for setting each control parameter for controlling the operation of the pressure increasing water supply unit shown in FIGS. These values are fetched from PIO-3 and stored in the memory M. Further, the signals of the pressure sensor for detecting the pressure head on the water distribution pipe side and the pressure sensor for detecting the discharge side pressure head are taken in by the analog port A / D and stored in the memory M (for example, Converted to 0-100 m).

なお図4では、リレー駆動手段Z、リレーSTX1、STX2、X1〜X4を、制御部CUの外に描いているが、制御部CUの中に含めても良い。   In FIG. 4, the relay driving means Z, the relays STX1, STX2, and X1 to X4 are drawn outside the control unit CU, but may be included in the control unit CU.

図5は、建物の低層ゾーンに設置される増圧給水部BU1の運転を制御するパラメータを示した運転特性図で、増圧ポンプの作動を示すためのポンプ性能曲線と、これと関連付けてパラメータを示しており、縦軸に全揚程H、横軸に吐出し量Q(Q0は使用最大水量に相当)を表す。   FIG. 5 is an operation characteristic diagram showing parameters for controlling the operation of the pressure-increasing water supply unit BU1 installed in the low-rise zone of the building. The pump performance curve for indicating the operation of the pressure-intensifying pump and parameters associated therewith are shown. The vertical axis represents the total head H, and the horizontal axis represents the discharge amount Q (Q0 corresponds to the maximum amount of water used).

曲線Aは、インバータ周波数fmax(100%周波数)でポンプ運転時のポンプQ−H性能曲線である。曲線Fは、低層ゾーン用の増圧給水部BU1の運転により、増圧ポンプを可変速運転してこのゾーンに給水した際の、ポンプ自身や送水配管等の抵抗を含んだ負荷ロード曲線である。又、この低層ゾーンへ給水するのに所望な水量が前述した吐き出し量(使用最大水量)Q0であり、所望な圧力ヘッド全揚程H0である。このQ0、H0は設計値であり、これが前述したポンプQ−H性能曲線Aと抵抗曲線Fとの交点Oに来るよう設計するのが望ましいが、抵抗曲線F上の交点Oより小さくなるよう設計しても良い。   Curve A is a pump QH performance curve during pump operation at inverter frequency fmax (100% frequency). A curve F is a load load curve including the resistance of the pump itself and the water supply pipe when the pressure increasing pump is operated at a variable speed by the operation of the pressure increasing water supply unit BU1 for the low-rise zone and water is supplied to this zone. . Further, the amount of water desired to supply water to the lower zone is the aforementioned discharge amount (maximum amount of water used) Q0, and the desired pressure head total head H0. These Q0 and H0 are design values, and it is desirable to design this so that it comes to the intersection point O between the pump QH performance curve A and the resistance curve F, but it is designed to be smaller than the intersection point O on the resistance curve F. You may do it.

曲線B、Cは、それぞれインバータ周波数をf1、fmin(最低周波数)まで変えてポンプを運転した時のポンプQ−H性能曲線である。インバータ周波数は無段階であり、曲線Aと曲線Cとの間にこれに対応した曲線を引くことが可能であるが、説明の便宜上、代表して曲線B、Cで表している。又、インバータ周波数f1で運転したときは、ポンプのQ−H性能曲線はBで、ポンプ吐き出し量はQ1となり、インバータ周波数fminで運転したときは、ポンプのQ−H性能曲線はCで、ポンプ吐き出し量は0となることを意味している。   Curves B and C are pump QH performance curves when the pump is operated by changing the inverter frequency to f1 and fmin (minimum frequency), respectively. The inverter frequency is stepless, and it is possible to draw a corresponding curve between the curve A and the curve C, but for the sake of convenience of explanation, the curves are representatively represented by the curves B and C. When operating at the inverter frequency f1, the pump QH performance curve is B and the pump discharge rate is Q1. When operating at the inverter frequency fmin, the pump QH performance curve is C. This means that the discharge amount is zero.

そして、使用水量が0〜Q0に変化した場合、増圧ポンプは抵抗曲線F上に沿って、インバータから出力される周波数fmin〜fmaxにより、圧力ヘッドを推定末端圧一定制御と言われる方式により運転制御される。この制御を行う際に、曲線F上に目標圧力として吐出し量0のときに所望な値をH00(インバータ周波数fminに対応)と、吐出し量Qmaxのときに所望な値をH0(インバータ周波数fmaxに対応)とを設ける。なお、、曲線FのH00とH0間は、直線近似、関数として処理、あるいはテーブルとして処理される。   When the amount of water used changes from 0 to Q0, the pressure booster pump operates along the resistance curve F in accordance with a method called constant terminal pressure constant control based on the frequency fmin to fmax output from the inverter. Be controlled. When this control is performed, a desired value on the curve F as a target pressure when the discharge amount is 0 is H00 (corresponding to the inverter frequency fmin), and a desired value is H0 (inverter frequency when the discharge amount is Qmax). corresponding to fmax). In addition, between H00 and H0 of the curve F, it processes as a linear approximation, a function, or a table.

ところで、高位層ゾーンで水が使用されて直列に接続された複数のポンプを連動運転した際、水使用ゾーンの圧力変動抑制のために、高位層ゾーン以外(低位層ゾーン)のポンプを吐き出し圧力一定制御方式で運転したほうが望ましい。そこで、吐き出し量0〜Q0まで、HO−定制御を行った場合の特性は水平線G上となる。この吐き出し量0のときのインバータ周波数をf2とし、ポンプQ−H性能曲線をEとし、H0−定の水平線Gとの交点をD11とする。   By the way, when a plurality of pumps connected in series using water in the upper zone are linked and operated, the pressure of the pumps other than the upper zone (lower zone) is discharged to suppress pressure fluctuations in the water use zone. It is desirable to operate with a constant control method. Therefore, the characteristics when the HO-constant control is performed from the discharge amount 0 to Q0 are on the horizontal line G. When the discharge amount is 0, the inverter frequency is f2, the pump QH performance curve is E, and the intersection of H0 and the constant horizontal line G is D11.

ここで、高位層ゾーンと低位層ゾーンとは、高低を相対的に表現したものであり、例えば、図1に示すように、建物に低層ゾーン、中層ゾーン、高層ゾーンがある場合、中層ゾーンは低層ゾーンに対して高位層ゾーンとなり、高層ゾーンに対して低位層ゾーンとなる。   Here, the high-rise zone and the low-rise zone are expressed relatively in terms of elevation. For example, as shown in FIG. 1, when a building has a low-rise zone, a mid-rise zone, and a high-rise zone, It becomes a higher zone with respect to the lower zone and a lower zone with respect to the higher zone.

図5で、PONは増圧ポンプの始動圧力ヘッド(大体はH00の近くに設定)、POFFは増圧ポンプの停止圧力ヘッド(大体はPONより高く設定)である。Qminは水使用が過少水量の場合に増圧ポンプを停止させるための吐き出し量であり、前述した流量検出手段によって検出する。さらに、この状態を検出して停止させる直前に圧力タンクT1への蓄圧を図るために、インバータ周波数をfoffまで高めて増圧ポンプを運転し停止させる。このとき、増圧ポンプはポンプQ−H性能曲線Dに沿って運転され、停止圧力ヘッドがPOFFに達すると、停止される。尚、圧力タンクT1への蓄圧は圧力センサPS12の検出により検出される。   In FIG. 5, PON is a booster pump start pressure head (generally set near H00), and POFF is a booster pump stop pressure head (generally set higher than PON). Qmin is a discharge amount for stopping the pressure-intensifying pump when the amount of water used is an excessive amount of water, and is detected by the flow rate detecting means described above. Furthermore, in order to accumulate pressure in the pressure tank T1 immediately before detecting and stopping this state, the inverter frequency is increased to foff and the pressure increasing pump is operated and stopped. At this time, the pressure increasing pump is operated along the pump QH performance curve D, and is stopped when the stop pressure head reaches POFF. Note that the pressure accumulation in the pressure tank T1 is detected by the detection of the pressure sensor PS12.

図6は、建物の中層ゾーンに設置する増圧給水部BU2の運転を制御するパラメータを示す運転特性図であり、(a)がポンプの吸い込み側、(b)がポンプの吐き出し側を示す。(a)で縦軸に配水管の圧力ヘッドを示し、SLLは配水管の圧力ヘッドが低下しポンプを停止させるための圧力ヘッドであり、SLは復帰圧力ヘッドを示す。通常の設定例ではSLLが7m、SLが10mである。(b)は図5と同じであるが、設計値のQ0、H0が中層ゾーンに給水するのに必要な値となる。   FIGS. 6A and 6B are operation characteristic diagrams showing parameters for controlling the operation of the pressurized water supply unit BU2 installed in the middle zone of the building. FIG. 6A shows the pump suction side, and FIG. 6B shows the pump discharge side. In (a), the vertical axis represents the pressure head of the water distribution pipe, SLL is a pressure head for lowering the pressure head of the water distribution pipe and stopping the pump, and SL is the return pressure head. In a normal setting example, SLL is 7 m and SL is 10 m. (B) is the same as FIG. 5, but the design values Q0 and H0 are values necessary for supplying water to the middle zone.

図7は、建物の高層ゾーンに設置する増圧給水部BU3の運転を制御するパラメータを示す運転特性図であり、(a)がポンプの吸い込み側、(b)がポンプの吐き出し側を示す。(a)は図6(a)と同じであるが、(b)は図6(b)から、最高位ゾーンでは必要のない吐き出し圧力一定制御時の水平線Gを省いている。すなわち、高層ゾーンではポンプが抵抗曲線F上に沿って運転されるので、水平線Gは不要なためである。なお、設計値のQ0、H0は、高層ゾーンでも給水するのに必要な値となる。   FIG. 7 is an operation characteristic diagram showing parameters for controlling the operation of the pressure-increasing water supply unit BU3 installed in the high-rise zone of the building, where (a) shows the suction side of the pump and (b) shows the discharge side of the pump. 6 (a) is the same as FIG. 6 (a), but FIG. 6 (b) omits the horizontal line G during discharge pressure constant control that is not necessary in the highest zone. That is, since the pump is operated along the resistance curve F in the high-rise zone, the horizontal line G is unnecessary. The design values Q0 and H0 are values necessary for water supply even in the high-rise zone.

以上の構成において、各実施態様について説明する。
(第1の実施態様)
前述したように各増圧給水部の間を運転/停止信号を相互で送受信する。すなわち、低層から中層へは、低層ゾーンより中層ゾーンへ運転/停止信号S11を発信し、そのアンサバック信号S12を受信する。そして、中層より低層へは、運転/停止信号S13を発信し、そのアンサバック信号S14を受信して、相互に信号の送受信を行う。
In the above configuration, each embodiment will be described.
(First embodiment)
As described above, the operation / stop signals are transmitted and received between the pressure-increasing water supply units. That is, from the lower layer to the middle layer, the operation / stop signal S11 is transmitted from the lower layer zone to the middle layer zone, and the answer back signal S12 is received. Then, an operation / stop signal S13 is transmitted from the middle layer to a lower layer, the answer back signal S14 is received, and signals are transmitted / received to / from each other.

低層ゾーンで水の使用があり、中層ゾーンでは水の使用がない場合は、信号S11、S12が発信されて、低層ゾーンの増圧給水部4が前述で説明したように作動し運転する。中層ゾーンで水の使用があり低層ゾーンで水の使用がない場合は、先ず中層ゾーンの増圧給水部6が始動条件が成立してこの増圧ポンプが運転を開始するとともに、低層ゾーンの増圧給水部4の制御装置CU1に運転/停止信号S13を発信する。受信した低層ゾーンの増圧給水部4はアンサバック信号S14を発信すると共に、自身の始動条件の成立如何にかかわらず、運転を開始する。合わせて運転信号S11を発信し、そのアンサバック信号S12を受信する。このように、中層ゾーンの増圧給水部6と低層ゾーンの増圧給水部4は連系(連動)して直列運転を行う。   When water is used in the lower zone and water is not used in the middle zone, signals S11 and S12 are transmitted, and the increased pressure water supply unit 4 in the lower zone operates and operates as described above. When water is used in the middle zone and water is not used in the lower zone, the booster water supply unit 6 in the middle zone first satisfies the start condition, and the booster pump starts operation. An operation / stop signal S13 is transmitted to the control unit CU1 of the pressure water supply unit 4. The received booster water supply unit 4 in the low-rise zone transmits an answer back signal S14 and starts operation regardless of whether or not its own start condition is satisfied. In addition, the operation signal S11 is transmitted and the answer back signal S12 is received. In this way, the pressure-increasing water supply unit 6 in the middle zone and the pressure-increasing water supply unit 4 in the lower zone are connected (interlocked) to perform series operation.

中層と高層に関しては次の通りである。中層から高層へは、中層ゾーンより高層ゾーンへ運転/停止信号S21を発信し、そのアンサバック信号S22を受信する。そして、高層より中層へは、運転/停止信号S23を発信し、そのアンサバック信号S24を受信して、相互に信号の送受信を行う。   The middle layer and high layer are as follows. From the middle layer to the higher layer, an operation / stop signal S21 is transmitted from the middle layer zone to the higher layer zone, and the answer back signal S22 is received. Then, an operation / stop signal S23 is transmitted from the upper floor to the middle floor, the answerback signal S24 is received, and signals are transmitted / received to / from each other.

中層ゾーンで水の使用があり、高層ゾーンでは水の使用がない場合は、信号S21、S22が発信されて、中層ゾーンの増圧給水部6が前述で説明したように作動し運転する。高層ゾーンで水の使用があり中層ゾーンで水の使用がない場合は、先ず高層ゾーンの増圧給水部8が始動条件が成立してこの増圧ポンプが運転を開始するとともに、中層ゾーンの増圧給水部6の制御装置CU2に運転/停止信号S23を発信する。受信した中層ゾーンの増圧給水部6はアンサバック信号S24を発信すると共に、自身の始動条件の成立如何にかかわらず、運転を開始する。合わせて運転信号S21を発信し、そのアンサバック信号S22を受信する。このように、高層ゾーンの増圧給水部8と中層ゾーンの増圧給水部6は連系(連動)して直列運転を行う。   When water is used in the middle zone and water is not used in the higher zone, signals S21 and S22 are transmitted, and the boosted water supply unit 6 in the middle zone operates and operates as described above. When water is used in the high zone and water is not used in the middle zone, first, the boosting water supply unit 8 in the high zone is satisfied and the booster pump starts operation. An operation / stop signal S23 is transmitted to the control unit CU2 of the pressure water supply unit 6. The received booster water supply unit 6 in the middle zone transmits an answer back signal S24 and starts operation regardless of whether or not its own start condition is satisfied. In addition, the operation signal S21 is transmitted and the answer back signal S22 is received. In this way, the pressure-increasing water supply unit 8 in the high zone and the pressure-increasing water supply unit 6 in the middle zone are connected (interlocked) to perform series operation.

(第2の実施態様)
本実施態様は第1の実施態様に連動継続機能を付加したものである。第1の実施態様と同じ内容のものは記載を省く。中層ゾーンで水の使用があり低層ゾーンでは水の使用がない場合は、先ず中層ゾーンの増圧給水部6の始動条件が成立して、これの増圧ポンプは運転を開始するとともに、低層ゾーンの増圧給水部4に運転/停止信号S13を発信する。受信した低層ゾーンの増圧給水部4はアンサバック信号S14を発信すると共に、自身の始動条件の成立如何にかかわらず、運転を開始する。合わせて運転信号S11を発信し、そのアンサバック信号S12を受信する。この後、低層ゾーンで水の使用がなくここの増圧給水部4の停止条件が成立していても、中層ゾーンの増圧給水部6から運転/停止信号のS13を受信しているときは、低層ゾーンの増圧給水部4は運転を継続するようにしたものである。
(Second Embodiment)
In this embodiment, an interlocking continuation function is added to the first embodiment. The description of the same content as the first embodiment is omitted. When water is used in the middle zone and water is not used in the lower zone, first, the starting condition of the booster water supply unit 6 in the middle zone is established, and the booster pump starts operation, and the lower zone The operation / stop signal S13 is transmitted to the pressure-increasing water supply unit 4. The received booster water supply unit 4 in the low-rise zone transmits an answer back signal S14 and starts operation regardless of whether or not its own start condition is satisfied. In addition, the operation signal S11 is transmitted and the answer back signal S12 is received. After this, even when the stop condition of the pressure-increasing water supply unit 4 is established without water in the low-rise zone, when the operation / stop signal S13 is received from the pressure-increasing water supply unit 6 in the middle zone The pressure-increasing water supply section 4 in the low-rise zone is configured to continue operation.

中層と高層に関しても、高層ゾーンで水の使用があり中層ゾーンで水の使用がない場合は、上記と同様に中層ゾーンで水の使用がなくここの増圧給水部6の停止条件が成立していても、高層用増圧給水部8から運転/停止信号のS23を受信しているときは、中層ゾーンの増圧給水部6は運転を継続するようにしたものである。   As for the middle layer and the upper layer, when water is used in the high zone and water is not used in the middle zone, water is not used in the middle zone and the stop condition of the pressure increasing water supply unit 6 is established as described above. However, when the operation / stop signal S23 is received from the high-rise pressure increase water supply section 8, the middle-zone zone pressure increase water supply section 6 continues to operate.

(第3の実施態様)
本実施態様は第1の実施態様に当該層の始動の前に当該層より低位層を先に始動させるようにしたものである。第1の実施態様と同じ内容のものは記載を省く。中層ゾーンで水の使用があり、低層ゾーンでは水の使用がない場合は、先ず中層ゾーンの増圧給水部6は始動条件が成立すると、低層ゾーンの増圧給水部4に運転/停止信号S13を発信する。受信した低層ゾーンの増圧給水部4はアンサバック信号S14を発信すると共に、自身の始動条件の成立如何にかかわらず、運転を先に開始する。合わせて運転信号S11を発信する。中層ゾーンの増圧給水部6は、この運転信号S11を受信したら遅れて運転を開始しそのアンサバック信号S12を低層ゾーンの増圧給水部に返信する。
(Third embodiment)
In this embodiment, the lower layer is started before the layer before starting the layer in the first embodiment. The description of the same content as the first embodiment is omitted. When water is used in the middle zone and water is not used in the lower zone, first, when the start-up condition is established, the booster water supply unit 6 in the middle zone has an operation / stop signal S13 to the booster water supply unit 4 in the lower zone. To send. The received booster water supply unit 4 in the low-rise zone transmits an answer back signal S14 and starts operation first regardless of whether or not its own start condition is satisfied. In addition, an operation signal S11 is transmitted. When receiving the operation signal S11, the booster water supply unit 6 in the middle zone starts operation with a delay, and returns an answer back signal S12 to the booster water supply unit in the lower zone.

中層と高層に関しても同様であり、高層ゾーンで水の使用があり中層ゾーンで水の使用がない場合は、上記と同様に中層ゾーンで先に運転を開始し、送れて高層ゾーンで運転を開始するようにしたものである。このように高位層ゾーンより低位層ゾーンが先に運転開始する制御によれば、低位層ゾーンの圧力が先に確立するため、この圧力をベースにしてその高位の層では安定して圧力を確立させることができる。   The same applies to the middle and high floors. If water is used in the high zone and water is not used in the middle zone, start the operation first in the middle zone and start the operation in the high zone as described above. It is what you do. Thus, according to the control in which the lower layer zone starts operation earlier than the higher layer zone, the pressure in the lower layer zone is established first. Therefore, the pressure is stably established in the higher layer based on this pressure. Can be made.

(第4の実施態様)
本実施態様は、第2の実施態様に低層及び中層の増圧給水部の両方が運転している際に、低層で水の使用がなくても、中層で水使用があれば低層も運転を継続し、中層が、水使用がなく停止したら続いて低層も停止するようにしたものである。
(Fourth embodiment)
In this embodiment, when both the low-rise and middle-pressure boosting water supply units are operating in the second embodiment, even if there is no use of water in the low-rise, the low-rise operation is also possible if water is used in the mid-rise. Continuing, if the middle layer stops without water use, the lower layer will also stop.

すなわち、中層ゾーンで水の使用があり、低層ゾーンでは水の使用がない場合は、先ず中層ゾーンの増圧給水部6の始動条件が成立して、これの増圧ポンプは運転を開始するとともに、低層ゾーンの増圧給水部4に運転/停止信号S13を発信する。受信した低層ゾーンの増圧給水部4はアンサバック信号S14を発信すると共に、自身の始動条件の成立如何にかかわらず、運転を開始する。合わせて運転信号S11を発信し、そのアンサバック信号を受信する。この後、低層ゾーンで水の使用がなくここの増圧給水部4の停止条件が成立していても、中層ゾーンの増圧給水部6から運転/停止信号のS13を受信しているときは、低層ゾーンの増圧給水部4は運転を継続し、前記中層ゾーンの増圧給水部6は、水使用がなく停止条件が成立したら停止して運転/停止信号のS13を解除する。これによって、低層ゾーンの増圧給水部4は運転を停止する。   That is, when water is used in the middle zone and water is not used in the lower zone, the starting condition of the booster water supply unit 6 in the middle zone is first established, and the booster pump starts operation. The operation / stop signal S13 is transmitted to the pressure increase water supply unit 4 in the lower zone. The received booster water supply unit 4 in the low-rise zone transmits an answer back signal S14 and starts operation regardless of whether or not its own start condition is satisfied. In addition, the operation signal S11 is transmitted and the answer back signal is received. After this, even when the stop condition of the pressure-increasing water supply unit 4 is established without water in the low-rise zone, when the operation / stop signal S13 is received from the pressure-increasing water supply unit 6 in the middle zone The booster water supply unit 4 in the lower zone continues to operate, and the booster water supply unit 6 in the middle zone stops when there is no water use and the stop condition is satisfied, and cancels the operation / stop signal S13. Thereby, the pressure increase water supply part 4 of a low-rise zone stops an operation | movement.

中層と高層に関しても同様であり、高層ゾーンで水の使用があり中層ゾーンで水の使用がない場合で、その後高層ゾーンで水使用がなく増圧給水部8で停止条件が成立したら停止して運転/停止信号のS23を解除する。これによって、はじめて中層ゾーンの増圧給水部6は運転を停止する。   The same applies to the middle layer and the upper layer. When water is used in the upper zone and water is not used in the middle zone, water is not used in the higher zone, and if the stop condition is satisfied in the pressure increasing water supply section 8, stop. Cancel S23 of the run / stop signal. As a result, the pressure-increasing water supply section 6 in the middle zone stops operating for the first time.

(第5の実施態様)
本実施態様は第1と第2の実施態様を組み合わせたものである。
低層(低位層)ゾーンで水の使用があり、中層(高位層)ゾーンでは水の使用がない場合は信号S11、S12が発信されて、低層ゾーンの増圧給水部4が前述で説明したように作動し運転する。中層ゾーンで水の使用があり、低層ゾーンでは水の使用がない場合は、先ず中層ゾーンの増圧給水部6の始動条件が成立して、これの増圧ポンプは運転を開始するとともに、低層ゾーンの増圧給水部4に運転/停止信号S13を発信する。受信した低層ゾーンの増圧給水部4はアンサバック信号S14を発信すると共に、自身の始動条件の成立如何にかかわらず運転を開始する。合わせて運転信号S11を発信し、そのアンサバック信号を受信する。
(Fifth embodiment)
This embodiment is a combination of the first and second embodiments.
When water is used in the lower layer (lower layer) and water is not used in the middle layer (higher layer), signals S11 and S12 are transmitted, and the pressure increasing water supply unit 4 in the lower layer is as described above. Operate and drive. When water is used in the middle zone and water is not used in the lower zone, the start condition of the booster water supply unit 6 in the middle zone is first established, and the booster pump starts operation and the lower zone An operation / stop signal S13 is transmitted to the increased pressure water supply unit 4 of the zone. The received booster water supply unit 4 in the lower zone transmits an answer back signal S14 and starts operation regardless of whether or not its own start condition is satisfied. In addition, the operation signal S11 is transmitted and the answer back signal is received.

この後、低層で水の使用がなくこの増圧給水部4の停止条件が成立していても、中層ゾーンの増圧給水部から運転/停止信号のS13を受信しているときは、低層ゾーンの増圧給水部は運転を継続し、前記中層ゾーンの増圧給水システは、水使用がなく停止条件が成立したら停止して運転/停止信号のS13を解除する。これによって、低層ゾーンの増圧給水部は運転を停止する。   After this, even when the stop condition of the booster water supply unit 4 is satisfied because no water is used in the lower zone, when the operation / stop signal S13 is received from the booster water supply unit of the middle zone, The pressure-increasing water supply section continues to operate, and the pressure-increasing water supply system in the middle zone stops when there is no water use and the stop condition is satisfied, and stops S13 of the operation / stop signal. As a result, the increased pressure water supply section in the lower zone stops operation.

中層と高層の関係についても同様であり、上記説明で低層を中層(低位層)に、中層を高層(高位層)にそれぞれ読替えて説明することができる。   The same applies to the relationship between the middle layer and the higher layer. In the above description, the lower layer can be replaced with the middle layer (lower layer), and the middle layer can be replaced with the higher layer (higher layer).

(第6の実施態様)
本実施態様は第3と第4の実施態様を組み合わせたものである。
中層ゾーンで水の使用があり、低層ゾーンでは水の使用がない場合は、先ず中層ゾーンの増圧給水部6は始動条件が成立すると、低層ゾーンの増圧給水部4に運転/停止信号S13を発信する。受信した低層ゾーンの増圧給水部4はアンサバック信号S14を発信すると共に、自身の始動条件の成立如何にかかわらず、先に運転を開始する。合わせて運転信号S11を発信する。中層ゾーンの増圧給水部6は、この運転信号S11を受信したら遅れて運転を開始し、そのアンサバック信号を低層ゾーンの増圧給水部に返信する。
(Sixth embodiment)
This embodiment is a combination of the third and fourth embodiments.
When water is used in the middle zone and water is not used in the lower zone, first, when the start-up condition is established, the booster water supply unit 6 in the middle zone has an operation / stop signal S13 to the booster water supply unit 4 in the lower zone. To send. The received booster water supply unit 4 in the low-rise zone transmits an answer back signal S14 and starts operation first regardless of whether or not its own start condition is satisfied. In addition, an operation signal S11 is transmitted. The pressure increase water supply unit 6 in the middle zone starts operation with a delay when the operation signal S11 is received, and returns the answer back signal to the pressure increase water supply unit in the lower zone.

この後、低層ゾーンで水の使用がなくここの増圧給水部4の停止条件が成立していても、中層ゾーンの増圧給水部6から運転/停止信号のS13を受信しているときは、低層ゾーンの増圧給水部4は運転を継続し、前記中層ゾーンの増圧給水部6は水使用がなく停止条件が成立したら停止して運転/停止信号のS13を解除する。これによって、低層ゾーンの増圧給水部4ははじめて運転を停止する。   After this, even when the stop condition of the pressure-increasing water supply unit 4 is established without water in the low-rise zone, when the operation / stop signal S13 is received from the pressure-increasing water supply unit 6 in the middle zone The booster water supply unit 4 in the lower zone continues to operate, and the booster water supply unit 6 in the middle zone stops when there is no water use and the stop condition is satisfied, and the operation / stop signal S13 is released. Thereby, the pressure increase water supply part 4 of a low-rise zone stops an operation for the first time.

中層と高層の関係についても同様であり、上記で低層を中層に、中層を高層にそれぞれ読替えることができる。   The same applies to the relationship between the middle layer and the upper layer. In the above description, the lower layer can be read as the middle layer, and the middle layer can be read as the higher layer.

(第7の実施態様)
高層ゾーンで水の使用がある場合、中層及び低層ゾーンでの水の使用如何にかかわらず、先ず高層ゾーンの増圧給水部8は始動条件が成立すると、給水部8から中層ゾーンの増圧給水部6に運転/停止信号S23を発信する。受信した中層ゾーンの増圧給水部6はアンサバック信号S24を発信すると共に、低層ゾーンの増圧給水部4に運転/停止信号S13を発信する。
(Seventh embodiment)
When water is used in the high zone, regardless of whether water is used in the middle zone or the low zone, the booster water supply unit 8 in the high zone first starts from the water supply unit 8 to the booster water supply in the middle zone when the start condition is satisfied. An operation / stop signal S23 is transmitted to the unit 6. The received booster water supply unit 6 in the middle zone sends an answer back signal S24 and sends an operation / stop signal S13 to the booster water supply unit 4 in the lower zone.

受信した低層ゾーンの増圧給水部4はアンサバック信号S14を発信すると共に、自身の始動条件の成立如何にかかわらず、運転を開始する。合わせて運転信号S11を中層ゾーンの増圧給水部6に発信する。中層ゾーンの増圧給水部6は、この運転信号S11を受信したら始動条件の成立如何にかかわらず運転を開始し、そのアンサバック信号S12を低層ゾーンの増圧給水部に返信し、運転/停止信号S21を高層ゾーンの増圧給水部8に発信する。高層ゾーンの増圧給水部は、運転/停止信号S21を受信したら運転を開始すると共にアンサーバック信号S22を発信する。この後も継続して高層に水使用があってここの増圧給水部8が運転しているときは、中層、低層に水の使用がなく停止条件の成立如何にかかわらず運転を継続する。   The received booster water supply unit 4 in the low-rise zone transmits an answer back signal S14 and starts operation regardless of whether or not its own start condition is satisfied. At the same time, the operation signal S11 is transmitted to the pressure increasing water supply section 6 in the middle zone. When receiving the operation signal S11, the middle zone zone pressure boosting water supply unit 6 starts the operation regardless of whether the start condition is satisfied, returns the answer back signal S12 to the lower zone zone pressure boosting water supply unit, and operates / stops. Signal S21 is transmitted to the pressure increase water supply part 8 of a high-rise zone. When receiving the operation / stop signal S21, the pressure-increasing water supply unit in the high-rise zone starts operation and transmits an answerback signal S22. After that, when water is continuously used in the high layer and the pressure increasing water supply unit 8 is in operation, the operation is continued regardless of whether the stop condition is satisfied because water is not used in the middle layer and the low layer.

(第8の実施態様)
高層ゾーンで水の使用がある場合、中及び低層ゾーンでの水の使用如何にかかわらず、先ず高層ゾーンの増圧給水部8は始動条件が成立すると、中層ゾーンの増圧給水部6に運転/停止信号S23を発信する。受信した中層ゾーンの増圧給水部6は、アンサバック信号S24を発信すると共に低層ゾーンの増圧給水部4に運転/停止信号S13を発信する。
(Eighth embodiment)
When water is used in the upper zone, regardless of whether water is used in the middle or lower zone, the booster water supply unit 8 in the higher zone first operates when the start condition is satisfied. / Send stop signal S23. The received booster water supply unit 6 in the middle zone sends an answer back signal S24 and sends an operation / stop signal S13 to the booster water supply unit 4 in the lower zone.

受信した低層ゾーンの増圧給水部4は、アンサバック信号S14を発信すると共に自身の始動条件の成立如何にかかわらず運転を開始し、合わせて運転信号S11を発信する。中層ゾーンの増圧給水部6は、この運転信号S11を受信したら始動条件の成立如何にかかわらず運転を開始し、そのアンサバック信号S12を低層ゾーンの増圧給水部4に返信し、運転/停止信号S21を高層ゾーンの増圧給水部8に発信する。高層ゾーンの増圧給水部は、運転/停止信号S21を受信したら運転を開始すると共にアンサーバック信号S22を発信する。この後も高層に継続して水使用があって、ここの増圧給水部8が運転しているときは、中層、低層に水の使用がなく停止条件の成立如何にかかわらず運転を継続する。   The received booster water supply unit 4 in the lower zone transmits an answer back signal S14, starts operation regardless of whether its own start condition is satisfied, and transmits an operation signal S11. Upon receiving this operation signal S11, the middle zone zone pressure boosting water supply unit 6 starts the operation regardless of whether the start condition is satisfied, and returns the answer back signal S12 to the lower zone zone pressure boosting water supply unit 4 to operate / A stop signal S21 is transmitted to the increased pressure water supply unit 8 in the high-rise zone. When receiving the operation / stop signal S21, the pressure-increasing water supply unit in the high-rise zone starts operation and transmits an answerback signal S22. After this, when water continues to be used at the high level and the pressurized water supply unit 8 is operating, the operation is continued regardless of whether or not the stop condition is satisfied because there is no use of water at the middle level and the low level. .

高層ゾーンで水の使用がなくなり停止条件が成立したら、高層ゾーンの増圧給水部8は停止し、停止と共に運転/停止信号S23を解除する。このとき、低層は水の使用がなく停止条件成立如何にかかわらず、中層からの運転/停止信号S13が発信されていれば運転を継続する。中層ゾーンで水の使用がなくなり停止条件が成立したら、中層ゾーンの増圧給水部は停止し、停止と共に運転/停止信号S13を解除する。低層ゾーンの増圧給水部はこの運転/停止信号S13の解除により、停止条件が成立したら停止する。   When water stops being used in the high zone and the stop condition is established, the pressure increasing water supply unit 8 in the high zone stops, and the operation / stop signal S23 is canceled together with the stop. At this time, the lower layer continues to operate if the operation / stop signal S13 is transmitted from the middle layer regardless of whether or not the stop condition is satisfied without using water. When water is not used in the middle zone and the stop condition is satisfied, the pressure increasing water supply section in the middle zone is stopped, and the operation / stop signal S13 is canceled together with the stop. The increased pressure water supply section in the low-rise zone stops when the stop condition is satisfied by releasing the operation / stop signal S13.

(第9の実施態様)
自身が最低層ゾーンの増圧給水部ではない場合、自身の始動条件より先に成立する低位層ゾーンの増圧給水部のメモリMに始動指令を発信する圧力ヘッドパラメータを設けたものである。
(Ninth Embodiment)
In the case where it is not the booster water supply section of the lowest zone zone, a pressure head parameter for transmitting a start command to the memory M of the booster water supply section of the lower zone zone established prior to its own start condition is provided.

例えば、中層ゾーンにおいては、図6(b)の吐出し側ポンプ運転特性図において、中層の増圧給水部6の増圧ポンプ始動圧力ヘッドPONより数m高く、低層の増圧給水部4の増圧ポンプ始動圧力ヘッドPONHを設ける。この設定により、中層用の給水圧力ヘッドが低下傾向において始動条件(PON)となる前に、低層用の始動条件(PONH)となる。したがって、この始動条件で中層より低層に運転/停止信号S13を発信され、これを受信した低層用はアンサバック信号S14を返信すると共に、自己の始動条件成立の如何によらず運転を開始し、運転/停止信号S12を発信する。   For example, in the middle zone, in the discharge-side pump operation characteristic diagram of FIG. 6B, the pressure of the booster water supply unit 4 of the lower layer is several meters higher than the booster pump starting pressure head PON of the booster water supply unit 6 of the middle layer. A booster pump starting pressure head PONH is provided. With this setting, the start condition (PONH) for the lower layer is set before the supply pressure head for the middle layer is set to the start condition (PON) in a downward trend. Accordingly, the operation / stop signal S13 is transmitted from the middle layer to the lower layer under this starting condition, and the lower layer receiving the signal returns the answer back signal S14 and starts the operation regardless of whether the own starting condition is satisfied, An operation / stop signal S12 is transmitted.

同様に、図7(b)吐出し側ポンプ運転特性図において、高層ゾーンの増圧給水部8の増圧ポンプ始動圧力ヘッドPONより数m高く、中層ゾーンの増圧給水部6の増圧ポンプ始動圧力ヘッドPONHを設ける。この設定により、高層用の給水圧力ヘッドが始動条件(PON)となる前に、中層用の始動条件(PONH)となる。したがって、この始動条件で高層より中層に運転/停止信号S23を発信すされ、これを受信した中層用はアンサバック信号S24を返信すると共に、自己の始動条件成立の如何によらず運転を開始し、運転/停止信号S22を発信する。   Similarly, in FIG. 7B, in the discharge-side pump operation characteristic diagram, the booster pump of the booster water supply unit 6 in the middle zone is several meters higher than the booster pump start pressure head PON of the booster water supply unit 8 in the higher zone. A starting pressure head PONH is provided. By this setting, the start condition (PONH) for the middle layer is set before the feed water pressure head for the high layer becomes the start condition (PON). Therefore, the driving / stop signal S23 is transmitted from the high layer to the middle layer under this starting condition, and the middle layer receiving the signal returns the answer back signal S24 and starts operation regardless of whether the starting condition is established. The operation / stop signal S22 is transmitted.

別の実施例として、メモリMにタイマーを設ける。たとえば始動条件が成立したらこのタイマーを計時開始し、タイムアップで増圧ポンプを始動するようにする。低層及び中層で水の使用がなく高層で水の使用があり、高層の始動条件が成立したら、高層の増圧給水部8はタイマーの計時を開始すると共に、中層に運転/停止信号S23を発信する。これを受信した中層は始動条件成立如何にかかわらず始動するために、自身のメモリMのタイマーの計時を開始すると共に、低層に運転/停止信号S13を発信する。これを受信した低層用は始動条件成立如何にかかわらず始動するために、自身のメモリMのタイマーの計時を開始する。これらのタイマーを例えば、高層を5秒、中層を3秒、低層を0秒と設定しておくと、低層が運転開始し、3秒後に中層、5秒後に高層というように順番に運転を開始していく。   As another example, a timer is provided in the memory M. For example, when the start condition is satisfied, the timer is started to time and the booster pump is started when the time is up. If there is no use of water in the lower and middle layers and water is used in the higher layers, and the high-rise start-up condition is satisfied, the high-pressure boosting water supply unit 8 starts the timer and sends an operation / stop signal S23 to the middle layer To do. The middle layer that has received this signal starts the timer of its own memory M and sends an operation / stop signal S13 to the lower layer in order to start regardless of whether the start condition is satisfied. In response to this, the lower layer starts to count the timer of its own memory M in order to start regardless of whether the start condition is satisfied. For example, if these timers are set to 5 seconds for the high layer, 3 seconds for the middle layer, and 0 seconds for the low layer, the low layer starts operation, the middle layer after 3 seconds, and the high layer after 5 seconds. I will do it.

(第10の実施態様)
本実施態様では低層ゾーンから高層ゾーンの増圧給水部までが複数運転中は、運転中の最高位の増圧給水部は使用量変動に伴う可変速運転を行い、これより低位の増圧給水部は最高速固定運転を行うようにしたものである。
(Tenth embodiment)
In the present embodiment, during a plurality of operations from the low-rise zone to the high-pressure zone booster water supply unit, the highest pressure booster water supply unit in operation performs variable speed operation accompanying fluctuations in the amount of use, and lower pressure booster water supply The section is designed to perform the fastest fixed operation.

例えば、低層及び中層で水の使用がなく高層で水の使用がある場合、ここの始動条件が成立しても、高層の増圧給水部は高位からの運転/停止信号がないので、図7に示す圧力制御運転を行い、中層に運転/停止信号S23を発信する。これを受信した中層は始動条件成立如何にかかわらず、低層に運転/停止信号S13を発信する。これを受信した低層用は始動条件成立如何にかかわらず、インバータによる最高速度で運転し、中層に運転/停止信号S12を発信する。これを受信した中層はインバータによる最高速度で運転し、高層に運転/停止信号S22を発信する。これを受信した高層はインバータによる使用量変動に伴う可変速運転を行う。   For example, when water is not used in the lower and middle layers and water is used in the higher layers, even if the start condition here is satisfied, the high pressure boosting water supply section does not have an operation / stop signal from the higher position. Is performed, and an operation / stop signal S23 is transmitted to the middle layer. The middle layer that has received this transmits an operation / stop signal S13 to the lower layer regardless of whether the start condition is satisfied. The low layer receiving this is operated at the maximum speed by the inverter regardless of whether the start condition is satisfied, and transmits an operation / stop signal S12 to the middle layer. The middle layer that has received this operates at the maximum speed by the inverter, and transmits an operation / stop signal S22 to the higher layer. The high class that has received this performs variable speed operation in accordance with fluctuations in usage by the inverter.

本実施態様によれば、高位層ゾーンより低位層ゾーンが先に最高速度で運転開始するので、低位層ゾーンの圧力の確保が確実となり、高位層の運転では圧力変動が少なくなるので、使用量変動に応じた可変速運転で省エネを図ることができる。   According to this embodiment, since the lower layer zone starts operation at the maximum speed earlier than the higher layer zone, it is ensured that the pressure in the lower layer zone is ensured, and the pressure fluctuation is reduced in the operation of the higher layer. Energy saving can be achieved by variable speed operation according to fluctuations.

また、上記実施態様で高位層ゾーンより低位層ゾーンが先に運転開始する制御によれば、低位層ゾーンの圧力が先に確立するため、この圧力をベースにしてその高位の層では運転により圧力を安定して確立させることができる。   Further, according to the control in which the lower layer zone starts operating earlier than the higher layer zone in the above embodiment, the pressure in the lower layer zone is established first. Can be established stably.

(第11の実施態様)
第1から第10までの実施態様に、始動、停止の条件として次ものを付加することができる。
低層ゾーン用増圧給水部:
始動条件:圧力センサの検出圧力がPON以下、または高位層からの運転信号あり
停止条件:高位層からの運転信号がなく、かつ流量スイッチがON(Qmin以下)
中層ゾーン用増圧給水部:
始動条件:圧力センサの検出圧力がPON以下、または高位層からの運転信号あり
停止条件:高位層からの運転信号がなく、かつ流量スイッチがON(Qmin以下)
高層ゾーン用増圧給水部:
始動条件:圧力センサの検出圧力がPON以下
停止条件:流量スイッチがON(Qmin以下)
(Eleventh embodiment)
The following can be added to the first to tenth embodiments as conditions for starting and stopping.
Increased pressure water supply for low-rise zone:
Start condition: Pressure sensor detected pressure is less than PON or operation signal from higher layer Stop condition: No operation signal from higher layer and flow rate switch is ON (Qmin or less)
Increased pressure water supply for the middle zone:
Start condition: Pressure sensor detected pressure is less than PON or operation signal from higher layer Stop condition: No operation signal from higher layer and flow rate switch is ON (Qmin or less)
Increased pressure water supply section for high-rise zone:
Start condition: Pressure sensor detected pressure is PON or less Stop condition: Flow rate switch is ON (Qmin or less)

1、2…水道用配水管、10…受水槽、11〜14…逆流防止弁、15…バイパス管、BU1…低層ゾーンの増圧給水部、BU2…中層ゾーンの増圧給水部、BU3…高層ゾーンの増圧給水部、CU…制御部、CU1〜CU3…制御装置、S11〜S24…運転信号、停止信号(運転/停止信号)、アンサーバック信号。   DESCRIPTION OF SYMBOLS 1, 2 ... Distribution pipe for water supply, 10 ... Receiving tank, 11-14 ... Backflow prevention valve, 15 ... Bypass pipe, BU1 ... Increased pressure water supply part of low zone, BU2 ... Increased water supply part of middle zone, BU3 ... High layer Zone pressure increase water supply unit, CU ... control unit, CU1-CU3 ... control device, S11-S24 ... operation signal, stop signal (operation / stop signal), answerback signal.

Claims (10)

水道用配水管からの水を一旦貯水する受水槽と、上記受水槽の貯水を加圧して建物の低位層ゾーンから高位層ゾーンのそれぞれの給水をまかなう各層ゾーンに設けられた増圧給水部を備え、上記各層ゾーンの増圧給水部が直列接続されて直列運転する増圧給水システムにおいて、
上記各層ゾーンの増圧給水部の間で運転信号と停止信号を相互に送受信すると共に、これらの信号の受信に基いて当該ゾーンの増圧給水部を運転、停止する制御装置を設け、
高位層ゾーンで水の使用があったとき、当該ゾーンから低位層ゾーンに運転信号を送信して低位層ゾーンの増圧給水部を運転するとともに、当該高層ゾーンの増圧給水部を運転するように構成したことを特徴とする増圧給水システム。
A water receiving tank that temporarily stores water from the water distribution pipe, and a pressure increasing water supply section provided in each layer zone that pressurizes the water stored in the water receiving tank and supplies water from the lower zone to the higher zone of the building. In the pressure-increasing water supply system in which the pressure-increasing water supply parts of the above-mentioned respective zone zones are connected in series and operated in series,
A control device for operating and stopping the pressure-increasing water supply unit of the zone based on reception of these signals is provided, while transmitting and receiving an operation signal and a stop signal between the pressure-increasing water supply units of the respective zone zones,
When water is used in the higher zone, the operation signal is transmitted from the zone to the lower zone to operate the booster water supply unit in the lower zone and to operate the booster water supply unit in the higher zone An increased pressure water supply system characterized by comprising
請求項1に記載の増圧給水システムにおいて、高位層ゾーンで水の使用があったとき、当該ゾーンから低位層ゾーンに運転信号を送信して低位層ゾーンの増圧給水部を先に運転し、次いで当該高位層ゾーンの増圧給水部を連係運転するように構成したことを特徴とする増圧給水システム。   In the pressure-increasing water supply system according to claim 1, when water is used in the higher zone, an operation signal is transmitted from the zone to the lower zone to operate the pressure-increasing water supply unit in the lower zone first. Then, the pressure-increasing water supply system is configured to perform linked operation of the pressure-increasing water supply unit in the higher zone. 請求項1または2に記載の増圧給水システムにおいて、上記増圧給水部は、上記受水槽の貯水を加圧して建物の低層ゾーンの給水をまかなう低層ゾーンの増圧給水部と、この増圧給水部に接続して建物の中層ゾーンの給水をまかなう中層ゾーンの増圧給水部と、前記中層ゾーンの増圧給水部に接続して建物の高層ゾーンの給水をまかなう高層ゾーンの増圧給水部からなることを特徴とする増圧給水システム。   The pressure-increasing water supply system according to claim 1 or 2, wherein the pressure-increasing water supply unit pressurizes water stored in the water receiving tank to supply water in a low-rise zone of a building, and the pressure-increasing water supply unit. A booster water supply unit in the middle zone that connects to the water supply unit to supply water in the middle zone of the building, and a booster water supply unit in the higher zone that connects to the booster water supply unit in the middle zone to supply water in the higher zone of the building An increased pressure water supply system characterized by comprising: 請求項2に記載の増圧給水システムにおいて、上記制御装置は各層ゾーンに設けられ、高位層ゾーンで水の使用があったとき、当該ゾーンの制御装置から低位層ゾーンの制御装置に運転信号を送信して低位層ゾーンの増圧給水部を先に運転し、次いで高位層ゾーンの増圧給水部を連携運転するように構成されたことを特徴とする増圧給水システム。   3. The pressurized water supply system according to claim 2, wherein the control device is provided in each layer zone, and when water is used in the higher layer zone, an operation signal is sent from the control device in the zone to the control device in the lower layer zone. A pressure-increasing water supply system configured to transmit and operate the pressure-increasing water supply unit in the lower zone first, and then operate in cooperation with the pressure-increasing water supply unit in the higher zone. 請求項1〜4のいずれかに記載の増圧給水システムにおいて、さらに前記高位層ゾーンの増圧給水部が停止したとき、低位層の増圧給水部が停止するように構成されたことを特徴とする増圧給水システム。   In the pressure increase water supply system in any one of Claims 1-4, when the pressure increase water supply part of the said higher layer zone stopped further, it was comprised so that the pressure increase water supply part of a low level layer might stop. Increased pressure water supply system. 請求項5に記載の増圧給水システムにおいて、上記制御装置は前記高位層ゾーンの増圧給水部が停止したとき、当該ゾーンから低位層に停止信号を送信して低位層の増圧給水部が遅れて停止するように構成されたことを特徴とする増圧給水システム。   6. The pressure-increasing water supply system according to claim 5, wherein when the pressure-increasing water supply unit in the higher layer zone stops, the control device transmits a stop signal from the zone to the lower layer, A pressurized water supply system characterized by being configured to stop after a delay. 水道用配水管からの水を一旦貯水する受水槽と、上記受水槽の貯水を加圧して建物の低層ゾーンの給水をまかなう低層ゾーンの増圧給水部と、この増圧給水部に接続して建物の中層ゾーンの給水をまかなう中層ゾーンの増圧給水部と、前記中層ゾーンの増圧給水部に接続して建物の高層ゾーンの給水をまかなう高層ゾーンの増圧給水部を備えた増圧給水システムにおいて、
上記各層ゾーンの増圧給水部間で運転信号と停止信号を相互に送受信すると共に、これらの信号の受信に基いて当該ゾーンの増圧給水部を運転、停止する制御装置を各層ゾーンに設け、
高位層ゾーンで水の使用があったとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ順次運転信号を送信し、この低位層ゾーンの増圧給水部は更に低位層の増圧給水部に運転信号を発信して最低位層から高位層ゾーンへと順番に増圧給水部を運転し、
当該高位層ゾーンの増圧給水部が停止したとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ順次停止信号を送信して、最低位層ゾーンの増圧給水部が最後に停止するように高位層から最低位層ゾーンへと順番に増圧給水部の運転を停止するように構成されたことを特徴とする増圧給水システム。
A water receiving tank that temporarily stores water from the water distribution pipe, a pressure increasing water supply section in the low rise zone that pressurizes the water stored in the water receiving tank to supply water in the low rise zone of the building, and a connection to the pressure increasing water supply section. Boosted water supply with a booster water supply section in the middle zone that supplies water in the middle zone of the building, and a booster water supply section in the higher zone that connects to the booster water supply section in the middle zone and covers the water in the higher zone of the building In the system,
An operation signal and a stop signal are mutually transmitted and received between the booster water supply units of each layer zone, and a control device for operating and stopping the booster water supply unit of the zone based on reception of these signals is provided in each layer zone.
When water is used in the higher zone, an operation signal is sent sequentially from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the booster water supply unit in this lower zone is further lowered. The operation signal is sent to the booster water supply section of the layer and the booster water supply section is operated in order from the lowest layer to the higher zone,
When the booster water supply unit in the higher zone stops, a stop signal is sequentially transmitted from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the booster water supply unit in the lowest zone The pressure-increasing water supply system is configured to stop the operation of the pressure-increasing water supply unit in order from the higher layer to the lowest layer zone so that the fuel cell stops last.
水道用配水管からの水を一旦貯水する受水槽と、上記受水槽の貯水を加圧して建物の低層ゾーンの給水をまかなう低層ゾーンの増圧給水部と、この増圧給水部に接続して建物の中層ゾーンの給水をまかなう中層ゾーンの増圧給水部と、前記中層ゾーンの増圧給水部に接続して建物の高層ゾーンの給水をまかなう高層ゾーンの増圧給水部を備えた増圧給水システムにおいて、
上記各層ゾーンの増圧給水部間で運転信号と停止信号を相互に送受信すると共に、これらの信号の受信に基いて当該ゾーンの増圧給水部を運転、停止する制御装置を各層ゾーンに設け、
高位層ゾーンで水の使用があったとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ運転信号を送信して、当該高位層から最低位層ゾーンの増圧給水部を運転すると共に、当該高層ゾーンの増圧給水部を運転し、
当該高位層ゾーンの増圧給水部が停止したとき、当該高位層ゾーンの増圧給水部から低位層ゾーンの増圧給水部へ順次停止信号を送信し、最低位層ゾーンの増圧給水部が最後に停止するように高位層から最低位層ゾーンへと順番に増圧給水部の運転を停止するように構成されたとを特徴とする増圧給水システム。
A water receiving tank that temporarily stores water from the water distribution pipe, a pressure increasing water supply section in the low rise zone that pressurizes the water stored in the water receiving tank to supply water in the low rise zone of the building, and a connection to the pressure increasing water supply section. Boosted water supply with a booster water supply section in the middle zone that supplies water in the middle zone of the building, and a booster water supply section in the higher zone that connects to the booster water supply section in the middle zone and covers the water in the higher zone of the building In the system,
An operation signal and a stop signal are mutually transmitted and received between the booster water supply units of each layer zone, and a control device for operating and stopping the booster water supply unit of the zone based on reception of these signals is provided in each layer zone.
When water is used in the higher zone, an operating signal is sent from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the boosted water supply in the lowest zone is sent from the higher zone Driving the pressure increasing water supply section of the high-rise zone,
When the booster water supply unit in the higher zone stops, a stop signal is sequentially transmitted from the booster water supply unit in the higher zone to the booster water supply unit in the lower zone, and the booster water supply unit in the lowest zone zone A pressure-increasing water supply system configured to stop the operation of the pressure-increasing water supply unit in order from the highest layer to the lowest layer zone so as to stop at the end.
請求項1〜8のいずれかに記載の増圧給水システムにおいて、上記制御装置は高位層ゾーンで水の使用があったとき、低位層ゾーンの増圧給水部に運転信号を送信する条件を決める圧力ヘッドパラメータ、又はタイマー要素を記憶するメモリを有することを特徴とする増圧給水システム。   The pressure increase water supply system in any one of Claims 1-8 WHEREIN: The said control apparatus determines the conditions which transmit an operation signal to the pressure increase water supply part of a low level zone when there is use of water in a high level zone. A pressure increasing water supply system having a memory for storing pressure head parameters or timer elements. 請求項1〜9のいずれかに記載の増圧給水システムにおいて、上記制御装置は、低位層から高位層ゾーンの増圧給水部が同時運転中は、最高位層ゾーンの増圧給水部を使用量変動に伴う可変速運転制御し、これより低位層ゾーンの増圧給水部を高位層ゾーンが運転中は停止制御するように構成されたことを特徴とする増圧給水システム。   In the pressure increase water supply system in any one of Claims 1-9, the said control apparatus uses the pressure increase water supply part of a highest layer zone while the pressure increase water supply part of a lower layer to a higher layer zone is operating simultaneously. A pressure-increasing water supply system configured to perform variable speed operation control in accordance with a change in volume and to stop and control a pressure-increasing water supply unit in a lower layer zone while the higher layer zone is operating.
JP2009019337A 2009-01-30 2009-01-30 Booster water supply system Expired - Fee Related JP5022389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019337A JP5022389B2 (en) 2009-01-30 2009-01-30 Booster water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019337A JP5022389B2 (en) 2009-01-30 2009-01-30 Booster water supply system

Publications (2)

Publication Number Publication Date
JP2010174537A true JP2010174537A (en) 2010-08-12
JP5022389B2 JP5022389B2 (en) 2012-09-12

Family

ID=42705763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019337A Expired - Fee Related JP5022389B2 (en) 2009-01-30 2009-01-30 Booster water supply system

Country Status (1)

Country Link
JP (1) JP5022389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104176A (en) * 2012-11-28 2014-06-09 Hitachi Industrial Equipment Systems Co Ltd Fire-extinguishing system
CN114892763A (en) * 2022-05-09 2022-08-12 天津中怡建筑规划设计有限公司 Water supply equipment concentrates super high-rise building high pressure water supply system who locates low-order pump house
CN115262702A (en) * 2022-07-29 2022-11-01 上海昊岳泵业制造有限公司 Non-negative pressure water supply device with water backflow preventing function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303515A (en) * 1994-06-14 2000-10-31 Hitachi Ltd Pressure-boosting feed water system for mid-to-high-rise building
JP2008240276A (en) * 2007-03-26 2008-10-09 Teral Inc Booster water supply system for mid-to-high-rise building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303515A (en) * 1994-06-14 2000-10-31 Hitachi Ltd Pressure-boosting feed water system for mid-to-high-rise building
JP2008240276A (en) * 2007-03-26 2008-10-09 Teral Inc Booster water supply system for mid-to-high-rise building

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104176A (en) * 2012-11-28 2014-06-09 Hitachi Industrial Equipment Systems Co Ltd Fire-extinguishing system
CN114892763A (en) * 2022-05-09 2022-08-12 天津中怡建筑规划设计有限公司 Water supply equipment concentrates super high-rise building high pressure water supply system who locates low-order pump house
CN115262702A (en) * 2022-07-29 2022-11-01 上海昊岳泵业制造有限公司 Non-negative pressure water supply device with water backflow preventing function

Also Published As

Publication number Publication date
JP5022389B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
CN102229328B (en) Vehicle mechanical energy-saving hydraulic system with multi-pump confluence
US9217446B2 (en) Hydraulic controller
JP5914365B2 (en) Water supply equipment
CN202733127U (en) Marine hydraulic valve on-off control hydraulic system
JP5149827B2 (en) Booster water supply system
JP5147748B2 (en) Booster water supply system
JP2010275688A (en) Boost water supply system for high-rise building
JP5022389B2 (en) Booster water supply system
JP4996953B2 (en) Increased pressure water supply system for medium to high-rise buildings
CN104695504B (en) Supercharging water supply system
JP5587386B2 (en) Booster water supply system
CN103031957B (en) Control system and method for concrete machine
CN202324069U (en) Intelligent pipe network laminated pressure (zero negative pressure) stabilized-flow water supply equipment
JP3287528B2 (en) Water supply device
JP2013231347A (en) Boost water supply system
JP3649897B2 (en) Direct water supply system
CN203770261U (en) Fire truck and getting-on and getting-off switching system thereof
JP2015010406A (en) Booster water supply system
JP5202363B2 (en) Increased pressure water supply system for medium to high-rise buildings
JP2010174522A (en) Pressure-intensifying water supply system for mid-to-high-rise building
JP5202364B2 (en) Increased pressure water supply system for medium to high-rise buildings
AU2009100173A4 (en) Rainwater Harvesting
KR200462937Y1 (en) Auto-control device for a pressurizing machine
JP5455384B2 (en) Increased pressure water supply system for medium to high-rise buildings
JP2014091018A (en) Fire hydrant pump system and method for controlling fire hydrant pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5022389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees