JP2010171447A - 露光方法及び装置、並びにデバイス製造方法 - Google Patents

露光方法及び装置、並びにデバイス製造方法 Download PDF

Info

Publication number
JP2010171447A
JP2010171447A JP2010076427A JP2010076427A JP2010171447A JP 2010171447 A JP2010171447 A JP 2010171447A JP 2010076427 A JP2010076427 A JP 2010076427A JP 2010076427 A JP2010076427 A JP 2010076427A JP 2010171447 A JP2010171447 A JP 2010171447A
Authority
JP
Japan
Prior art keywords
light beam
exposure
irradiation
exposure light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010076427A
Other languages
English (en)
Other versions
JP5099933B2 (ja
Inventor
Yusaku Uehara
祐作 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010076427A priority Critical patent/JP5099933B2/ja
Publication of JP2010171447A publication Critical patent/JP2010171447A/ja
Application granted granted Critical
Publication of JP5099933B2 publication Critical patent/JP5099933B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring

Abstract

【課題】レチクル及び投影光学系の少なくとも一部の光学部材を通過する露光光の光量分布が非回転対称になるような場合に、結像特性のうちの非回転対称な成分を効率的に制御する。
【解決手段】転写用のパターンが形成されたレチクルを露光光で照明し、その露光光でレチクル及び投影光学系を介してウエハを露光する露光方法において、その投影光学系のレンズ32の表面の少なくとも一部に、その露光光と異なる波長域の非露光光LBA〜LBHを照射する前にその非露光光の光量をモニタし、該モニタ結果に基づいて、レンズ32の表面の少なくとも一部に対するその非露光光の照射量を制御する。
【選択図】図11

Description

本発明は、例えば半導体素子、液晶表示素子、又は薄膜磁気ヘッド等の各種デバイスを製造するためのフォトリソグラフィ工程で使用される結像特性の補正機構を備えた露光装置及びその露光方法に関し、特にいわゆるダイポール照明(2極照明)等の非回転対称な照明条件、又は小σ照明等の半径方向で光量分布が大きく変化するような照明条件のもとでマスクパターンを基板上に露光する際に使用して好適なものである。
半導体素子等を製造する際に、マスクとしてのレチクルのパターンを基板としてのフォトレジストが塗布されたウエハ(又はガラスプレート等)上の各ショット領域に転写するために、ステッパー等の投影露光装置が使用されている。投影露光装置においては、露光光の照射量や周囲の気圧変化等によって、投影光学系の結像特性が次第に変化する。そこで、結像特性を常に所望の状態に維持するために、投影露光装置には、例えば投影光学系を構成する一部の光学部材の位置を制御することによって、その結像特性を補正する結像特性補正機構が備えられている。従来の結像特性補正機構によって補正できる結像特性は、歪曲収差や倍率等の回転対称の低い次数の成分である。
これに対して近年の露光装置では、特定のパターンに対する解像度を高めるために、いわゆる輪帯照明や4極照明(照明光学系の瞳面上の4箇所の領域を2次光源とする照明法)よりなる、照明光学系の瞳面上の光軸を含む領域を露光光が通過しない照明条件が用いられることがある。この場合、投影光学系中の瞳面付近の光学部材は、ほぼ中抜けの状態で露光光に照明されることになる。また、投影光学系を大型化することなく、転写できるパターンの面積を大きくするため、最近ではスキャニングステッパー等の走査露光型の投影露光装置も多用されている。走査露光型の場合、レチクルは走査方向を短辺方向とする長方形状の照明領域で照明されるため、投影光学系中のレチクル及びウエハに近い光学部材は、主に非回転対称な領域が露光光に照明されることになる。
このような露光装置においては、投影光学系の結像特性中の高次の球面収差等の高次成分の変動や非回転対称な収差変動が生じる恐れがある。そこで、このような変動を抑えるようにした投影露光装置が提案されている(例えば、特許文献1、特許文献2参照)。
特開平10−64790号公報 特開平10−50585号公報
最近は、例えば所定のライン・アンド・スペースパターンを主に含むレチクルパターンを転写するような場合に、照明光学系の瞳面上の光軸を挟む2つの領域のみを2次光源とするダイポール照明(2極照明)が用いられることがある。このダイポール照明は4極照明に比べて光量分布が大きく非回転対称になっているため、投影像に非回転対称な収差成分である光軸上での非点収差(以下、「センターアス」と言う)が発生する。また、ダイポール照明によってセンターアス以外の非回転対称な収差変動も生じる。
また、レチクル上の長方形状の照明領域の更に一方の端部の領域のみが露光光で照明される場合、投影光学系のレチクル側及びウエハ側の光学部材において露光光の光量分布が更に大きく非回転対称となるため、非回転対称な収差成分が多く発生する。同様に、レチクルのパターン密度が特定の領域で特に低いような場合にも、投影光学系のレチクル側及びウエハ側の光学部材において露光光の光量分布が大きく非回転対称となるため、非回転
対称な収差成分が発生する。
更に、最近では、小σ照明(照明光学系の瞳面上で光軸付近の領域を2次光源とする照明法)のように、半径方向で露光光の光量分布が大きく変化する照明条件が使用されることがある。この場合にも、例えば高次の球面収差変動のように従来の結像特性補正機構では補正が困難であった結像特性の変動が生じることがあるため、何らかの対策が望まれていた。
本発明は斯かる点に鑑み、結像特性を良好な状態に維持できる露光技術を提供することを目的とする。
また、本発明は、マスク及び投影光学系のうちの少なくとも一部の光学部材を通過する露光光の光量分布が非回転対称になるか、又は半径方向に大きく変動するような場合に、結像特性のうちの非回転対称な成分又は高次の成分を効率的に制御できる露光技術を提供することを目的とする。
更に本発明は、結像特性の変動を抑制できる露光技術を提供することを目的とする。
上記の課題を解決するための本発明は以下の通りである。なお、各要素に付した括弧付き符号は、後述の実施形態の構成に対応するものであるが、その要素の例示に過ぎず、各要素を限定する意図は無い。
本発明の第1の態様によれば、転写用のパターンが形成された第1物体(11)を第1光ビーム(IL)で照明し、その第1光ビームでその第1物体及び投影光学系(14)を介して第2物体(18)を露光する露光方法において、その投影光学系の光学部材(32)の表面の少なくとも一部に、その第1光ビームと異なる波長域の第2光ビーム(LBA〜LBH)を照射する前にその第2光ビームの光量をモニタし、該モニタ結果に基づいて、その光学部材の表面の少なくとも一部に対するその第2光ビームの照射量を制御する露光方法が提供される。
また、本発明の第2の態様によれば、第1光ビーム(IL)で転写用のパターンが形成された第1物体(11)を照明し、その第1光ビームでその第1物体及び投影光学系(14)を介して第2物体(18)を露光する露光装置において、その投影光学系の光学部材(32)の表面の少なくとも一部にその第1光ビームと異なる波長域の第2光ビーム(LBA〜LBH)を照射する照射機構(44A〜44H)と、その光学部材の表面の少なくとも一部にその第2光ビームが照射される前に、その第2光ビームの光量を検出する光電センサ(52A〜52H)と、その光電センサの検出結果に基づいて、その光学部材の表面の少なくとも一部に対するその第2光ビームの照射量を制御する制御装置(41B,24)とを有する露光装置が提供される。
また、本発明の第3の態様によれば、本発明の第1の態様の露光方法又は本発明の第2の態様による露光装置を用いてデバイスのパターンを物体上に転写する工程を含むデバイス製造方法が提供される。
また、本明細書の発明を実施するための形態には、以下の発明(以下、本発明という)も記載されている。即ち、本発明による露光方法は、転写用のパターンが形成された第1物体(11)を第1光ビーム(IL)で照明し、その第1光ビームでその第1物体及び投影光学系(14)を介して第2物体(18)を露光する露光方法において、その第1物体及びその投影光学系の少なくとも一部(32)にその第1光ビームと異なる波長域の第2光ビーム(LBA〜LBH)を照射して、その投影光学系の結像特性を補正するものである。
斯かる本発明によれば、投影光学系の結像特性を良好な状態に維持することが可能となる。また、その第1光ビームが例えばダイポール照明のような非回転対称な照明条件、又
は例えば小σ照明のような照明光学系の瞳面上で半径方向に光量分布が大きく変化する照明条件でその第1物体を照明して、非回転対称な収差又は回転対称な高次の収差が発生する場合にも、その収差を効率的に制御できる。
本発明において、その第1光ビームによってその第1物体及びその投影光学系の少なくとも一部が非回転対称な光量分布で照明されている場合、その第1光ビームの照明により発生するその投影光学系の非回転対称な収差を補正するように、その第2光ビームを照射することが望ましい。これによって、その非回転対称な収差を抑制できる。
この場合、より具体的に、その第1光ビームが、その投影光学系の瞳面付近の所定の光学部材(32)に対して第1方向にほぼ対称な2箇所の領域(34A)に照射されているものとすると、その第2光ビーム(LBC,LBD)は、その光学部材に対してその第1方向に直交する第2方向にほぼ対称な2箇所の領域(63C,63D)に照射されることが望ましい。これによって、その所定の光学部材はほぼ回転対称な光量分布(又は熱量分布)で照明されるため、非回転対称な収差は抑制される。
但し、その第1光ビームによって非回転対称な光量分布で照明される光学部材と、その第2光ビームが照射される光学部材とは互いに異なるものであってもよい。また、その第2光ビームの照射により、非回転対称な収差を回転対称の収差に変換してもよい。そして、その第2光ビームの照射によって発生するその投影光学系の回転対称な収差を補正することが望ましい。通常の回転対称な収差は容易に補正できるため、結像特性の変動を容易に抑制できる。
また、その第1光ビームの照射量に応じてその第2光ビームを照射するようにしてもよい。これは制御が容易である。そして、その第1光ビームの照射量に基づいて非回転対称な収差の発生量を計算し、この計算結果に基づいてその第2光ビームを照射してもよい。また、その第1及び第2光ビームがそれぞれパルス光であるときに、その第1光ビームの発光タイミングに同期してその第2光ビームを照射してもよい。
また、その第1光ビームの照射によって発生する非回転対称な収差の変化を打ち消すように、その第2光ビームを照射してもよい。
また、その第1光ビームの照明によるその第1物体及びその投影光学系の少なくとも一部の部材の温度変化をモニタし、このモニタ結果に基づいてその第2光ビームを照射してもよい。これによっても、簡単な制御で非回転対称な収差等を補正することができる。
また、その投影光学系の非回転対称な収差を計測し、この計測結果に基づいてその第2光ビームを照射してもよい。
また、その第1光ビームによる照明条件を切り換えた際に発生している非回転対称な収差を相殺するように、その第2光ビームを照射してもよい。
また、その第2光ビームを照射しても、非回転対称な収差が残存したときに、より高精度な露光が要求される方向の収差に合わせて露光条件を調整することが望ましい。例えば高精度な露光が要求されるパターンに合わせて露光条件を調整することで、残存収差の影響を軽減できる。
また、その第2光ビームが照射される部分の直前でその第2光ビームの光量をモニタし、このモニタ結果に基づいてその第2光ビームの照射量を制御することが望ましい。これによって、その第2光ビームの照射量をより高精度に制御できる。
また、本発明において、その投影光学系の周囲の気圧又は温度の変動で発生する非回転対称な収差を相殺するように、その投影光学系の調整で残留した静的な非回転対称な収差を相殺するように、又はその第1物体のパターンの密度分布で発生する非回転対称な収差を相殺するように、それぞれその第2光ビームを照射してもよい。
また、その第1光ビームによる照明が行われていない期間に、その第2光ビームの照射を停止することが望ましい。
また、本発明において、一例としてその第2光ビームは所定の光学部材に照射され、その光学部材によって90%以上のエネルギーが吸収される。これによって、その所定の光学部材のみを効率的に加熱することができる。そして、その第2光ビームとしては、一例として炭酸ガスレーザ光が使用できる。
次に、本発明によるデバイス製造方法は、本発明の露光方法を用いてデバイスのパターン(11)を物体(18)上に転写する工程を含むものである。本発明の適用によって、デバイスの微細なパターンを小さい収差で高精度に転写できるため、高集積度のデバイスを高精度に製造できる。
次に、本発明による露光装置は、第1光ビーム(IL)で転写用のパターンが形成された第1物体(11)を照明し、その第1光ビームでその第1物体及び投影光学系(14)を介して第2物体(18)を露光する露光装置において、その第1物体及びその投影光学系の少なくとも一部(32)にその第1光ビームと異なる波長域の第2光ビーム(LBA〜LBH)を照射する照射機構(40)を有するものである。
斯かる本発明によれば、投影光学系の結像特性を良好な状態に維持することが可能となる。また、その第1光ビームの照射によって例えば非回転対称な収差又は回転対称な高次の収差が発生する場合にも、その収差を効率的に制御できる。
また、本発明において、その第1光ビームによってその第1物体及びその投影光学系の少なくとも一部が非回転対称な光量分布で照明されるときに、その第1光ビームの照明により発生するその投影光学系の非回転対称な収差を補正するように、その照射機構を介してその第2光ビームを照射する制御装置(24,41B)を更に有することが望ましい。
また、その第1光ビームは、その投影光学系の瞳面付近の所定の光学部材(32)に対して第1方向にほぼ対称な2箇所の領域(34A)に照射されるときに、その照射機構は、その光学部材のその第1方向に直交する第2方向にほぼ対称な2箇所の領域(63C,63D)にその第2光ビーム(LBC,LBD)を照射することが望ましい。
また、その投影光学系の回転対称な収差を補正するための収差補正機構(16)を更に有し、その制御装置は、その照射機構及びその収差補正機構の動作を制御してその投影光学系の収差を補正することが望ましい。これによって、非回転対称な収差及び回転対称な収差の両方を補正することができる。
また、その第1光ビームの照射量をモニタする第1光電センサ(6,7)を更に有し、その制御装置は、その第1光電センサの検出結果に基づいてその照射機構を介してその第2光ビームの照射量を制御することが望ましい。
また、その第1物体及びその投影光学系の少なくとも一部の部材の温度を計測する温度センサを更に備え、その制御装置は、その温度センサの検出結果に基づいてその照射機構を介してその第2光ビームを照射することが望ましい。
また、その第2光ビームが照射される部分の直前でその第2光ビームの光量をモニタする第2光電センサ(52A〜52H)を更に備え、その制御装置は、その第2光電センサの検出結果に基づいてその第2光ビームの照射量を制御することが望ましい。
また、その投影光学系の周囲の気圧及び温度を含む環境条件を計測する環境センサ(23)を更に備え、その環境センサの計測結果に基づいてその第2光ビームを照射してもよい。
また、その第1光ビームによる照明が行われていない期間に、その第2光ビームの照射を停止する判定装置(24)を備えることが望ましい。
また、その投影光学系を保持する鏡筒は、その第2光ビームを導くための開口部(14Fa,14Fb)を備えることが望ましい。そして、その鏡筒は、その鏡筒を支持するためのフランジ部(14F)を有し、その開口部はそのフランジ部又はその近傍に設けられることが望ましい。更に、その第2光ビームとしては、例えば炭酸ガスレーザ光を使用できる。
また、本発明による別のデバイス製造方法は、本発明の露光装置を用いてデバイスのパターン(11)を物体(18)上に転写する工程を含むものである。
本発明によれば、光学部材の表面の少なくとも一部に照射される第2光ビームの照射量を正確にモニタすることができ、投影光学系の結像特性を良好な状態に維持することができる。
本発明の実施形態の一例の投影露光装置の概略構成を示す一部を切り欠いた図である。 図1中の結像特性補正機構16の構成例を示す一部を切り欠いた図である。 (A)はX方向のL&Sパターンを示す図、(B)はX方向のダイポール照明時の投影光学系の瞳面上での光量分布を示す図である。 (A)はY方向のL&Sパターンを示す図、(B)はY方向のダイポール照明時の投影光学系の瞳面上での光量分布を示す図である。 X方向のダイポール照明時のレンズの温度分布を示す図である。 Y方向のダイポール照明時のレンズの温度分布を示す図である。 X方向のダイポール照明時のレンズの形状変化を示すX軸に沿う側面図である。 X方向のダイポール照明時のレンズの形状変化を示すY軸に沿う側面図である。 投影光学系14のセンターアスの説明図である。 レチクル上に混在するX方向及びY方向のL&Sパターンの一例を示す拡大平面図である。 図1中の非露光光照射機構40の構成例を示す一部を切り欠いた平面図である。 (A)は図11の非露光光照射機構40の投影光学系14内の構成を示す一部を切り欠いた正面図、(B)は図12(A)の変形例を示す図である。 X方向のダイポール照明時のセンターアスの経時変化の一例を示す図である。 本発明の実施形態の一例における、X方向のダイポール照明時のレンズに対する露光光及び非露光光の照射領域を示す平面図である。 図14のレンズの温度上昇による形状変化を示す断面図である。 小σ照明時の投影光学系の瞳面での光量分布の一例を示す図である。 本発明の実施形態の一例における、小σ照明時のレンズに対する露光光及び非露光光の照射領域を示す平面図である。 視野絞りの開口の端部領域のみを使用する場合の開口を示す図である。 図18の開口を使って照明する場合の投影光学系内のレチクルに近いレンズの露光光の照明領域を示す平面図である。 図19のレンズの温度上昇による形状変化を示す断面図である。 本発明の実施形態の一例において、図18の開口を使って照明する場合のレンズ上の非露光光の照射領域を示す平面図である。 図21のレンズの温度上昇による形状変化を示す断面図である。 本発明の実施形態の一例における、非露光光の照射動作の一例を示すフローチャートである。 センターアス及び非露光光の照射量の変化の一例を示す図である。 本発明の実施形態の一例における、非露光光の照射動作の他の例を示すフローチャートである。 本発明の実施形態の一例における、非露光光の照射動作の更に他の例を示すフローチャートである。
以下、本発明の好ましい実施の形態の一例につき図面を参照して説明する。本例は、ステップ・アンド・スキャン方式よりなる走査露光型の投影露光装置に本発明を適用したものである。
図1は、本例の投影露光装置の概略構成を示し、この図1において、露光光源1としてはKrFエキシマレーザ光源(波長247nm)が使用されている。なお、露光光源としては、ArFエキシマレーザ光源(波長193nm)、F2 レーザ光源(波長157nm)、Kr2 レーザ光源(波長146nm)、Ar2 レーザ光源(波長126nm)などの紫外レーザ光源、YAGレーザの高調波発生光源、固体レーザ(半導体レーザなど)の高調波発生装置、又は水銀ランプ(i線等)なども使用することができる。
露光時に露光光源1からパルス発光された第1光ビーム(露光ビーム)としての露光光ILは、不図示のビーム整形光学系等を経て断面形状が所定形状に整形されて、オプティカル・インテグレータ(ユニフォマイザ又はホモジナイザ)としての第1のフライアイレンズ2に入射して、照度分布が均一化される。そして、第1のフライアイレンズ2から射出された露光光ILは、不図示のリレーレンズ及び振動ミラー3を経てオプティカル・インテグレータとしての第2のフライアイレンズ4に入射して、照度分布が更に均一化される。振動ミラー3は、レーザ光である露光光ILのスペックルの低減、及びフライアイレンズによる干渉縞の低減のために使用される。なお、フライアイレンズ2,4の代わりに、回折光学素子(DOE:Diffractive Optical Element) や内面反射型インテグレータ(ロッドレンズ等)等を使用することもできる。
第2のフライアイレンズ4の射出側の焦点面(照明光学系ILSの瞳面)には、露光光の光量分布(2次光源)を小さい円形(小σ照明)、通常の円形、複数の偏心領域(2極及び4極照明)、並びに輪帯状などのうちの何れかに設定して照明条件を決定するための照明系開口絞り部材25が、駆動モータ25aによって回転自在に配置されている。装置全体の動作を統轄制御するコンピュータよりなる主制御系24が、駆動モータ25aを介して照明系開口絞り部材25の回転角を制御することによって照明条件を設定する。図1の状態では、照明系開口絞り部材25の複数の開口絞り(σ絞り)のうちの、光軸を中心として対称に2つの円形開口が形成された第1のダイポール照明(2極照明)用の開口絞り26A、及びこの開口絞り26Aを90°回転した形状の第2のダイポール照明用の開口絞り26Bが現れている。そして、第2のフライアイレンズ4の射出側の焦点面には、第1のダイポール照明用の開口絞り26Aが設置されている。
なお、本例においては、照明系開口絞り部材25を用いて照明光学系ILSの瞳面での光量分布の調整を行っているが、米国特許6,563,567に開示されているような他の光学系を用いて照明光学系ILSの瞳面での光量分布の調整を行ってもよい。なお、本国際出願で指定または選択された国の法令で許容される限りにおいて、それらの開示を援用して本文の記載の一部とする。
照明系開口絞り部材25中の開口絞り26Aを通過した露光光ILは、反射率の小さいビームスプリッタ5に入射し、ビームスプリッタ5で反射された露光光は、集光レンズ(不図示)を介して第1光電センサとしてのインテグレータセンサ6に受光される。インテグレータセンサ6の検出信号は、主制御系24中の露光量制御部及び結像特性演算部に供給され、その露光量制御部は、その検出信号と予め計測されているビームスプリッタ5から基板としてのウエハ18までの光学系の透過率とを用いてウエハ14上での露光エネルギーを間接的に算出する。その露光量制御部は、ウエハ14上での積算露光エネルギーが目標範囲内に収まるように、露光光源1の出力を制御すると共に、必要に応じて不図示の減光機構を用いて露光光ILのパルスエネルギーを段階的に制御する。
そして、ビームスプリッタ5を透過した露光光ILは、不図示のリレーレンズを経て視野絞り8の開口上に入射する。視野絞り8は、実際には固定視野絞り(固定ブラインド)及び可動視野絞り(可動ブラインド)から構成されている。後者の可動視野絞りは、マスクとしてのレチクル11のパターン面(レチクル面)とほぼ共役な面に配置され、前者の固定視野絞りは、そのレチクル面との共役面から僅かにデフォーカスした面に配置されている。固定視野絞りは、レチクル11上の照明領域の形状を規定するために使用される。可動視野絞りは、露光対象の各ショット領域への走査露光の開始時及び終了時に不要な部分への露光が行われないように、その照明領域を走査方向に閉じるために使用される。可動視野絞りは更に、必要に応じて照明領域の非走査方向の中心及び幅を規定するためにも使用される。
視野絞り8の開口を通過した露光光ILは、不図示のコンデンサレンズ、光路折り曲げ用のミラー9、及びコンデンサレンズ10を経て、マスクとしてのレチクル11のパターン面(下面)の照明領域を均一な照度分布で照明する。視野絞り8(ここでは固定視野絞り)の開口の通常の形状は、図18の開口8aで示すように縦横比が1:3から1:4程度の長方形である。そして、その開口8aとほぼ共役なレチクル11上の照明領域の通常の形状も、図19の照明領域8aRで示すように長方形である。
図1に戻り、露光光ILのもとで、レチクル11の照明領域内のパターンは、両側テレセントリックの投影光学系14を介して投影倍率β(βは1/4,1/5等)で、フォトレジストが塗布されたウエハ18上の一つのショット領域上の露光領域に投影される。その露光領域は、投影光学系14に関してレチクル11上の照明領域と共役な長方形の領域である。レチクル11及びウエハ18はそれぞれ本発明の第1物体及び第2物体に対応している。ウエハ18は、例えば半導体(シリコン等)又はSOI(silicon on insulator)等の直径が200〜300mm程度の円板状の基板である。
露光光ILの一部はウエハ18で反射され、その反射光は投影光学系14、レチクル11、コンデンサレンズ10、ミラー9、及び視野絞り8を経てビームスプリッタ5に戻り、ビームスプリッタ5で更に反射された光が集光レンズ(不図示)を介して第1光電センサとしての反射量センサ(反射率モニタ)7で受光される。反射量センサ7の検出信号は主制御系24中の結像特性演算部に供給され、結像特性演算部は、インテグレータセンサ6及び反射量センサ7の検出信号を用いて、レチクル11から投影光学系14に入射する露光光ILの積算エネルギー、及びウエハ18で反射されて投影光学系14に戻る露光光ILの積算エネルギーを算出する。また、その結像特性演算部には、露光中の照明条件(照明系開口絞りの種類)の情報も供給されている。更に、投影光学系14の外部に気圧及び温度を計測するための環境センサ23が配置され、環境センサ23の計測データもその結像特性演算部に供給されている。その主制御系24内の結像特性演算部は、照明条件、露光光ILの積算エネルギー、及び周囲の気圧、温度等の情報を用いて、投影光学系14の結像特性中の回転対称な収差成分及び非回転対称な収差成分の変動量を算出する。主制御系24内には結像特性制御部も設けられており、その収差成分の変動量の算出結果に応じて、その結像特性制御部は、常に所望の結像特性が得られるように結像特性の変動量を抑制する(詳細後述)。
露光光源1、フライアイレンズ2,4、ミラー3,9、照明系開口絞り部材25、視野
絞り8、及びコンデンサレンズ10等から照明光学系ILSが構成されている。照明光学系ILSは更に気密室としての不図示のサブチャンバに覆われている。露光光ILに対する透過率を高く維持するために、そのサブチャンバ内及び投影光学系14の鏡筒内には、不純物を高度に除去したドライエアー(露光光がArFエキシマレーザの場合には窒素ガス、ヘリウムガス等も使用される)が供給されている。
また、本例の投影光学系14は屈折系であり、投影光学系14を構成する複数の光学部材は、光軸AXを中心として回転対称な石英(露光光がArFエキシマレーザの場合には蛍石等も使用される)よりなる複数のレンズ、及び石英よりなる平板状の収差補正板等を含んでいる。そして、投影光学系14の瞳面PP(照明光学系ILSの瞳面と共役な面)には開口絞り15が配置され、その瞳面PPの近傍に所定の光学部材としてのレンズ32が配置されている。レンズ32に露光光ILとは異なる波長域の非回転対称の収差補正用の照明光(第2光ビーム)が照射される(詳細後述)。また、投影光学系14には、回転対称な収差を補正するための結像特性補正機構16が組み込まれており、主制御系24内の結像特性制御部が、制御部17を介して結像特性補正機構16の動作を制御する。
図2は、図1中の結像特性補正機構16(収差補正機構)の一例を示し、この図2において、投影光学系14の鏡筒内で、複数の光学部材中から選択された例えば5枚のレンズL1,L2,L3,L4,L5がそれぞれ3個の光軸方向に独立に伸縮自在の駆動素子27,28,29,30,31を介して保持されている。レンズL1〜L5の前後には固定された不図示のレンズや収差補正板も配置されている。この場合、3個の駆動素子27(図2では2個のみが現れている)は、ほぼ正3角形の頂点となる位置関係で配置されており、同様に他の3個ずつの駆動素子28〜31もそれぞれほぼ正三角形の頂点となる位置関係で配置されている。伸縮自在の駆動素子27〜31としては、例えばピエゾ素子のような圧電素子、磁歪素子、又は電動マイクロメータ等を使用することができる。制御部17が、主制御系24内の結像特性制御部からの制御情報に基づいて3個ずつの駆動素子27〜31の伸縮量を独立に制御することによって、5枚のレンズL1〜L5のそれぞれの光軸方向の位置、及び光軸に垂直な直交する2軸の回りの傾斜角を独立に制御することができる。これによって、投影光学系14の結像特性中の所定の回転対称な収差を補正することができる。
例えば、レチクル又はウエハに近い位置のレンズL1又はL5の光軸方向の位置や傾斜角を制御することによって、例えば歪曲収差(倍率誤差を含む)などを補正することができる。また、例えば投影光学系14の瞳面に近い位置のレンズL3の光軸方向の位置を制御することによって、球面収差などを補正することができる。なお、図2の駆動対象のレンズL3は、図1の投影光学系14内の収差補正用の照明光が照射されるレンズ32と同一であってもよい。このように投影光学系14内のレンズ等を駆動する機構については、例えば特開平4−134813号公報にも開示されている。また、投影光学系14内の光学部材の代わりに、又はその光学部材と共に、図1のレチクル11の光軸方向の位置を制御して、所定の回転対称な収差を補正してもよい。更に、図1の結像特性補正機構16としては、例えば特開昭60−78454号公報に開示されているように、投影光学系14内の所定の2つのレンズ間の密閉された空間内の気体の圧力を制御する機構を用いてもよい。
図1に戻り、以下では投影光学系14の光軸AXに平行にZ軸を取り、Z軸に垂直な平面内で走査露光時のレチクル11及びウエハ18の走査方向にY軸を取り、走査方向に直交する非走査方向にX軸を取って説明する。
先ず、レチクル11はレチクルステージ12上に吸着保持され、レチクルステージ12は不図示のレチクルベース上でY方向に一定速度で移動すると共に、同期誤差を補正するようにX方向、Y方向、回転方向に微動して、レチクル11の走査を行う。レチクルステ
ージ12のX方向、Y方向の位置及び回転角は、この上に設けられた移動鏡(不図示)及びレーザ干渉計(不図示)によって計測され、この計測値が主制御系24内のステージ制御部に供給されている。ステージ制御部は、その計測値及び各種制御情報に基づいてレチクルステージ12の位置及び速度を制御する。投影光学系14の上部側面には、レチクル11のパターン面(レチクル面)に斜めにスリット像を投影し、そのレチクル面からの反射光を受光してそのスリット像を再結像し、そのスリット像の横ずれ量からレチクル面のZ方向への変位を検出する斜入射方式のオートフォーカスセンサ(以下、「レチクル側AFセンサ」と言う)13が配置されている。レチクル側AFセンサ13による検出情報は、主制御系24内のZチルトステージ制御部に供給されている。また、レチクル11の周辺部の上方には、レチクルアライメント用のレチクルアライメント顕微鏡(不図示)が配置されている。
一方、ウエハ18は、ウエハホルダ(不図示)を介してZチルトステージ19上に吸着保持され、Zチルトステージ19はウエハステージ20上に固定され、ウエハステージ20は不図示のウエハベース上でY方向に一定速度で移動すると共に、X方向、Y方向にステップ移動する。また、Zチルトステージ19は、ウエハ18のZ方向の位置、及びX軸、Y軸の回りの傾斜角を制御する。ウエハステージ20のX方向、Y方向の位置及び回転角は、レーザ干渉計(不図示)によって計測され、この計測値が主制御系24内のステージ制御部に供給されている。そのステージ制御部は、その計測値及び各種制御情報に基づいてウエハステージ20の位置及び速度を制御する。投影光学系14の下部側面には、ウエハ18の表面(ウエハ面)に斜めに複数のスリット像を投影し、そのウエハ面からの反射光を受光してそれらのスリット像を再結像し、それらのスリット像の横ずれ量からウエハ面のZ方向への変位(デフォーカス量)及び傾斜角を検出する斜入射方式のオートフォーカスセンサ(以下、「ウエハ側AFセンサ」と言う)22が配置されている。ウエハ側AFセンサ22による検出情報は、主制御系24内のZチルトステージ制御部に供給され、Zチルトステージ制御部は、レチクル側AFセンサ13及びウエハ側AFセンサ22の検出情報に基づいて、常時ウエハ面が投影光学系14の像面に合焦されるように、オートフォーカス方式でZチルトステージ19を駆動する。
また、Zチルトステージ19上のウエハ18の近くには、露光光ILの露光領域の全体を覆う受光面を備えた光電センサよりなる照射量センサ21が固定され、照射量センサ21の検出信号が主制御系24内の露光量制御部に供給されている。露光開始前又は定期的に、照射量センサ21の受光面を投影光学系14の露光領域に移動した状態で露光光ILを照射して、照射量センサ21の検出信号をインテグレータセンサ6の検出信号で除算することによって、その露光量制御部は、ビームスプリッタ5から照射量センサ21(ウエハ18)までの光学系の透過率を算出して記憶する。
更に、ウエハステージ20の上方には、ウエハアライメント用のオフ・アクシス方式のアライメントセンサ(不図示)が配置されており、上記のレチクルアライメント顕微鏡及びそのアライメントセンサの検出結果に基づいて、主制御系24はレチクル11のアライメント及びウエハ18のアライメントを行う。露光時には、レチクル11上の照明領域に露光光ILを照射した状態で、レチクルステージ12及びウエハステージ20を駆動して、レチクル11とウエハ18上の一つのショット領域とをY方向に同期走査する動作と、ウエハステージ20を駆動してウエハ18をX方向、Y方向にステップ移動する動作とが繰り返される。この動作によって、ステップ・アンド・スキャン方式でウエハ18上の各ショット領域にレチクル11のパターン像が露光される。
さて、本例ではダイポール照明を行うため、図1の照明光学系ILSの瞳面には、X方向に対応する方向に離れた2つの開口を持つ開口絞り26Aが配置されている。この場合、レチクル11に形成されている主な転写用のパターンは、一例として図3(A)に拡大して示すように、Y方向に細長いラインパターンをX方向(非走査方向)にほぼ投影光学系14の解像限界に近いピッチで配列してなるX方向のライン・アンド・スペースパターン(以下、「L&Sパターン」と言う)33Vである。この際に、レチクル11上には通常、L&Sパターン33Vよりも大きい配列ピッチで配列方向がX方向及びY方向(走査方向)の別の複数のL&Sパターン等も形成されている。
本例のように開口絞り26Aを用いるX方向のダイポール照明では、レチクルが無いものとすると、図3(B)に示すように、投影光学系14の瞳面PPにおいて、光軸AXを挟んでX方向に対称な2つの円形領域34を露光光ILが照明する。また、露光光ILの光路に種々のレチクルパターンが配置された場合にも、通常は0次光の光量が回折光の光量に比べてかなり大きいと共に、回折角も小さいため、露光光IL(結像光束)の大部分は円形領域34又はその近傍を通過する。また、本例のように、露光光ILの光路中に図3(A)のレチクル11が配置されたときには、解像限界に近いピッチのL&Sパターン33Vからの±1次回折光もほぼ円形領域34又はその近傍を通過するため、そのL&Sパターン33Vの像を高解像度でウエハ上に投影することができる。
この状態では、図1の投影光学系14の瞳面PPの近傍のレンズ32に入射する露光光ILの光量分布もほぼ図3(B)の光量分布になる。従って、露光を継続すると、その瞳面PP近傍のレンズ32の温度分布は、図5に示すように、光軸をX方向に挟む2つの円形領域34Aで最も高くなり、その周辺の領域34Bに向かって次第に低くなる分布となり、この温度分布に応じてレンズ32は熱膨張(熱変形)する。この場合、レンズ32をY方向及びX方向に見て変化を誇張した側面図はそれぞれ図7及び図8のようになる。図7及び図8において、露光光吸収前のレンズ32の面形状を面Aとすると、露光光吸収後の熱膨張した面Bは、X軸に沿った方向(図7)では、広い範囲に亘って光軸を挟む2つの凸部ができるために屈折力が低下して、Y軸に沿った方向(図8)では局所的に中央部に1つの凸部ができるため屈折力が増加する。そのため、図9に示すように、投影光学系14の像面は、X方向に開いた光束に対しては屈折力が低下するために下方の像面36Vとなり、Y方向に開いた光束に対しては屈折力が増加するために上方の像面36Hとなる。従って、光軸上での非点収差であるセンターアスΔZが発生する。
この状態で、図10に示すように、仮にレチクル11上にX方向のL&Sパターン33Vの他に、Y方向に所定ピッチ(このピッチは通常はL&Sパターン33Vのピッチよりも大きい)で配列されたY方向のL&Sパターン33HAが形成されているものとすると、X方向のL&Sパターン33Vを通過した露光光はX方向に拡がり、Y方向のL&Sパターン33HAを通過した露光光はY方向に拡がる。従って、X方向のL&Sパターン33Vの像は図9の下方の像面36Vに形成され、Y方向のL&Sパターン33HAの像は図9の上方の像面36Hに形成されるため、仮にウエハ面を像面36Vに合わせ込むと、X方向のL&Sパターン33Vの像は高解像度で転写されるが、Y方向のL&Sパターン33HAの像にはデフォーカスによるぼけが発生してしまう。
図13は、図3(B)のX方向のダイポール照明によって時間と共に変化する投影光学系14の光軸上の像面の位置(フォーカス位置)Fを示し、この図13において、横軸は露光光ILの照射時間t、縦軸は照射時間tが0のときのフォーカス位置(ベストフォーカス位置)を基準としたZ方向のフォーカス位置Fを示している。図13において、次第に低下する曲線61Vは、図10のX方向のL&Sパターン33Vを投影した場合のフォーカス位置Fの変化を示し、次第に増加する曲線61Hは、図10のY方向のL&Sパターン33HAを投影した場合のフォーカス位置Fの変化を示し、中間の曲線62は、2つの曲線61V及び61Hを平均したフォーカス位置Fの変化を示している。図13から分かるように、フォーカス位置Fの変化は照射時間tと共に次第に飽和する。これは、レンズ32の温度が飽和することによる。
一方、図4(A)に拡大して示すように、レチクル11上に主にX方向に細長いラインパターンをY方向(走査方向)にほぼ投影光学系14の解像限界に近いピッチで配列してなるY方向のL&Sパターン33Hが形成されているものとする。この場合には、図1の照明光学系ILSの瞳面には開口絞り26Aを90°回転した形状の開口絞り26Bが設定される。この開口絞り26Bを用いるY方向のダイポール照明では、レチクルが無いものとすると、図4(B)に示すように、投影光学系14の瞳面PPにおいて、光軸AXを挟んでY方向に対称な2つの円形領域35を露光光ILが照明する。この際に、露光光ILの光路に種々のレチクルパターンが配置されても、通常は大部分の露光光IL(結像光束)は円形領域35及びその近傍を通過する。そして、露光光ILの光路中に図4(A)のレチクル11が配置されると、解像限界に近いピッチのL&Sパターン33Hからの±1次回折光もほぼ円形領域35又はその近傍を通過するため、そのL&Sパターン33Hの像は高解像度でウエハ上に投影される。
この場合、図1の投影光学系14の瞳面PPの近傍のレンズ32に入射する露光光ILの光量分布もほぼ図4(B)の光量分布になる。従って、露光を継続すると、そのレンズ32の温度分布は、図6に示すように、光軸をY方向に挟む2つの円形領域35Aで最も高くなり、その周辺の領域35Bに向かって次第に低くなる分布となり、その分布に応じてレンズ32は熱膨張する。そのため、投影光学系14の像面は、図9の場合とはほぼ逆に、X方向に開いた光束に対しては屈折力が増加するために上方の像面36Hの近傍となり、Y方向に開いた光束に対しては屈折力が低下するために下方の像面36Vの近傍となり、図9の場合と逆符号でほぼ同じ大きさのセンターアスが発生する。なお、本例では、レチクル11がX方向(非走査方向)を長手方向とする長方形の照明領域で照明されているため、その照明領域に起因するセンターアスも図9のセンターアスと同じ符号で常に僅かに発生している。これに対して、図4(B)のダイポール照明で発生するセンターアスは、その長方形の照明領域に起因するセンターアスとは符号が逆になり、全体としてのセンターアスは図3(B)のダイポール照明を用いる場合よりも僅かに小さくなる。
これらのセンターアスは、非回転対称な収差であると共に、ダイポール照明によって他の非回転対称な収差(X方向とY方向の倍率差など)も発生するが、これらの非回転対称な収差は、図1の結像特性補正機構16では実質的に補正できない。また、他の非回転対称な照明条件を用いた場合にも、非回転対称な収差が発生する。更に、投影光学系14の開口数と照明光学系ILSの開口数との比を表す照明σ値を、例えば0.4以下に小さくする小σ照明を行う場合のように、照明光学系の瞳面(投影光学系14の瞳面)での露光光ILの光量分布が半径方向に大きく変化する場合には、結像特性補正機構16では良好に補正しきれない高次の球面収差等の高次の回転対称な収差が発生する恐れもある。そこで、本例では、その非回転対称な収差又は高次の回転対称な収差、あるいはその両方を補正するために、図1において、投影光学系14の瞳面PP付近のレンズ32に露光光IL(第1光ビーム)とは異なる波長域の収差補正用の照明光(第2光ビームに対応し、以下、「非露光光」と言う)LBを照射する。以下、その非露光光LBをレンズ32に照射するための非露光光照射機構40(第2光ビームを照射する照射機構)の構成、及びその収差の補正動作につき詳細に説明する。
[非露光光照射機構の説明]
本例では、非露光光LBとして、ウエハ18に塗布されたフォトレジストを殆ど感光しない波長域の光を使用する。そのため、非露光光LBとして、一例として炭酸ガスレーザ(CO2 レーザ)からパルス発光される例えば波長10.6μmの赤外光を使用する。なお、CO2 レーザとして連続光を用いてもよい。この波長10.6μmの赤外光は、石英の吸収性が高く、投影光学系14中の1枚のレンズによってほぼ全て(望ましくは90%以上)吸収されるため、他のレンズに対して影響を与えることなく収差を制御するために
使用し易いという利点がある。また、本例のレンズ32に照射された非露光光LBは、90%以上が吸収されるように設定されており、レンズ32の所望部分を効率的に加熱することができる。なお、非露光光LBとしては、その他にYAGレーザなどの固体レーザ光から射出される波長1μm程度の近赤外光、又は半導体レーザから射出される波長数μm程度の赤外光なども使用することができる。すなわち、非露光光LBを発生する光源は、非露光光LBが照射される光学部材(レンズなど)の材料などに応じて最適なものを採用することができる。
また、図2などにおいて、レンズ32は凸レンズのように描かれているが、凹レンズであってもよい。
図1の非露光光照射機構40において、光源系41から射出された非露光光LBは、ミラー光学系42によって複数(本例では8個)の光路及び光電センサ43に向かう一つの光路に分岐される。光電センサ43で検出される非露光光LBの光量に対応する検出信号は、光源系41にフィードバックされている。また、その複数の光路の内の2つの光路の非露光光LBが、投影光学系14をX方向に挟むように配置された2つの照射機構44A及び44Bを介してそれぞれ非露光光LBA及びLBBとしてレンズ32に照射される。
図11は、非露光光照射機構40の詳細な構成例を示し、この図11において、図1の光源系41は、光源41A及び制御部41Bより構成されている。そして、光源41Aから射出された非露光光LBは、それぞれ非露光光LBの光路を90°折り曲げる状態(閉じた状態)と非露光光LBをそのまま通過させる状態(開いた状態)との何れかに高速に切り換えることができる可動ミラーとしてのガルバノミラー45G,45C,45E,45A,45H,45D,45F,45Bを経て光電センサ43に入射し、光電センサ43の検出信号が制御部41Bに供給されている。ガルバノミラー45A〜45Hが図1のミラー光学系42に対応し、制御部41Bは、主制御系24からの制御情報に応じて光源41Aの発光のタイミング、出力、及びガルバノミラー45A〜45Hの開閉を制御する。
また、8個のガルバノミラー45A〜45Hで順次光路が折り曲げられた非露光光LBは、それぞれ光ファイバー束46A〜46H(又は金属管等も使用できる)を介して照射機構44A〜44Hに導かれている。8個の照射機構44A〜44Hは同一構成であり、その内の照射機構44A及び44Bは、集光レンズ47と、小さい所定の反射率を持つビームスプリッタ48と、光ファイバー束又はリレーレンズ系等からなる光ガイド部49と、集光レンズ51と、集光レンズ47及び光ガイド部49をビームスプリッタ48に固定する保持枠50とを備えている。なお、集光レンズ47の代わりに、発散作用を有するレンズを用いて非露光光LBを広げるようにしてもよい。非露光光LBは、照射機構44A及び44Bからそれぞれ非露光光LBA及びLBBとして投影光学系14内のレンズ32に照射される。この場合、第1の1対の照射機構44A及び44Bと、第2の1対の照射機構44C及び44Dとは、それぞれ投影光学系14をX方向及びY方向に挟むように対向して配置されている。そして、第3の1対の照射機構44E及び44Fと、第4の1対の照射機構44G及び44Hとは、それぞれ照射機構44A及び44Bと照射機構44C及び44Dとを投影光学系14の光軸を中心として時計回りに45°回転した角度で配置されている。そして、非露光光LBは、照射機構44C〜44Hからそれぞれ非露光光LBC〜LBHとして投影光学系14内のレンズ32に照射される。
この場合、1対の非露光光LBA及びLBBがレンズ32上で照射する領域は、ほぼ図3(B)の光軸AXをX方向に挟む対称な円形領域34であり、1対の非露光光LBC及びLBDがレンズ32上で照射する領域は、ほぼ図4(B)の光軸AXをY方向に挟む対称な円形領域35である。そして、非露光光LBE及びLBF、並びに非露光光LBG及びLGHがレンズ32上で照射する領域は、それぞれ図3(B)の対称な円形領域34、及び図4(B)の対称な円形領域35を光軸AXを中心として時計回りに45°回転した
領域である。なお、非露光光LBA〜LBHが照射される光学部材、並びにその光学部材上での非露光光LBA〜LBHの照射領域の形状及びサイズは、実験やシミュレーションによりできるだけ非回転対称な収差が低減されるように決定される。また、非露光光LBA〜LBHが照射される光学部材、並びにその光学部材上での非露光光LBA〜LBHの照射領域の形状及びサイズは、低減すべき収差に応じて決定される。例えば図11において、照射機構44A〜44H内の光学部材の位置を可動とすることによって、非露光光LBA〜LBHの照射領域の形状やサイズを変えることができる。なお、照射機構44A〜44Hそのもの、あるいは照射機構44A〜44H内部の光学部材を可動にして、非露光光LBA〜LBHの照射領域の位置を調整できるように構成することもできる。
また、照射機構44A〜44Hの各ビームスプリッタ48で反射された一部の非露光光をそれぞれ受光する光電センサ52A〜52H(第2光電センサ)が設けられており、8個の光電センサ52A〜52Hの検出信号も制御部41Bに供給されている。制御部41Bは、光電センサ52A〜52Hの検出信号によって、照射機構44A〜44Hから投影光学系14内のレンズ32に照射される直前の非露光光LBA〜LBHの光量を正確にモニタすることができ、このモニタ結果に基づいて非露光光LBA〜LBHの照射量の各々が例えば主制御系24によって指示された値になるようにする。投影光学系14の直前で、光電センサ52A〜52Hによって非露光光LBの照射量を計測することによって、光ファイバー束46A〜46Hの長さ(光路長)が様々であっても、更に光学系等の経時変化の影響を受けることなく、レンズ32に照射される非露光光LBA〜LBHの照射量を正確にモニタできる。
なお、光電センサ52A〜52Hのモニタ結果に基づいて非露光光LBA〜LBHの照射量を制御する場合、光電センサ52A〜52Hの各々が較正されていることが望ましい。例えば、非露光光LBA〜LBHをレンズ32に照射したときのレンズ32の温度分布を計測して、その温度分布が所望状態となるように光電センサ52A〜52Hの各々を較正することができる。あるいは、非露光光LBA〜LBHをレンズ32に照射したときの結像特性(収差)の状態を計測して、その結像特性(収差)が所望状態となるように、光電センサ52A〜52Hの各々を較正することもできる。また、光電センサの較正を行う場合には、非露光光LBA〜LBHのすべてをレンズ32に照射してもよいし、非露光光LBA〜LBHの使用条件に合わせて、その一部(例えば、非露光光LBAとLBB)をレンズ32に照射してもよい。
図12(A)は、図11の投影光学系14の一部を断面とした正面図であり、この図12(A)に示すように、照射機構44A及び44Bは、それぞれ投影光学系14の鏡筒のフランジ部14F内に設けられた開口14Fa及び14Fb内に、レンズ32に向かって僅かに斜め下方に傾斜するように配置されている。そして、照射機構44A及び44Bから射出される非露光光LBA及びLBBは、露光光ILの光路に斜めに交差する方向にレンズ32に入射する。図11の他の照射機構44C〜44Hも同様に、図12(A)のフランジ部14F内の開口に同じ傾斜角で配置されており、それらからの非露光光LBC〜LBHも露光光ILの光路に斜めに交差する方向にレンズ32に入射する。このように、フランジ部14Fに開口を設けているので、照射機構44A〜44Hの射出部を、非露光光LBの照射対象としての投影光学系14の瞳面近傍の光学部材(レンズ32)の近傍に安定して保持することができる。また、非露光光LBA〜LBHのそれぞれが露光光ILの光路と交差するように露光光ILの光軸に向かって照射可能であるため、投影光学系14の一部の光学部材(レンズ32)を、投影光学系14の他の光学部材を介さずに効率的に照射することができる。さらに、非露光光LBA〜LBHのレンズ32内での光路が長くなり、非露光光LBA〜LBHはレンズ32内で殆どが吸収されるため、投影光学系14の他の光学部材への非露光光LBの入射は殆どなく、非露光光LBA〜LBHは、投影光学系14から殆ど射出されなくなる。
また、さらに、投影光学系14の一部の光学部材(レンズ32)のレンズ面、すなわち
露光光ILが入射(あるいは射出)し得る領域に部分的に非露光光LBを照射しているので、レンズ32の温度分布を、さらには投影光学系14の結像特性をより効果的、且つ短時間で調整することが可能である。
なお、図12(B)は図12(A)の変形例であり、この図12(B)に示すように、照射機構44A及び44B(他の照射機構44C〜44Hも同様)を、それぞれ投影光学系14の鏡筒のフランジ部14F内に設けられた開口14Fc及び14Fd内に、レンズ32に向かって僅かに斜め上方に傾斜するように配置して、非露光光LBA及びLBBでレンズ32の底面側を照明してもよい。この場合には、非露光光LBA〜LBHの投影光学系14のウエハ側から漏れ出る量を更に低減することができる。
図11に戻り、光源系41A、制御部1B、ガルバノミラー45A〜45H、光ファイバー束46A〜46H、照射機構44A〜44H、及び光電センサ52A〜52Hから非露光光照射機構40が構成されている。そして、例えば2つのX方向の非露光光LBA及びLBBのみをレンズ32に照射する場合には、ガルバノミラー45A〜45Hを全部開いた状態(非露光光LBを通過させる状態)から、ガルバノミラー45Aを所定時間だけ閉じる動作(非露光光LBを反射する状態)とガルバノミラー45Bを所定時間だけ閉じる動作とを交互に繰り返せばよい。収差への影響が無い十分短い時間(例えば1msec)でガルバノミラーを切り換えることにより、収差への影響を無くすことができる。また、本例の非露光光LBはパルス光であるため、ガルバノミラー45A〜45Hの開閉動作は所定パルス数を単位として行ってもよい。同様に、2つのY方向の非露光光LBC及びLBDのみをレンズ32に照射する場合には、ガルバノミラー45Cを所定時間だけ閉じる動作とガルバノミラー45Dを所定時間だけ閉じる動作とを交互に繰り返せばよい。このようにガルバノミラー45A〜45Hを用いることによって、非露光光LBの光量損失が殆ど無い状態でレンズ32のレンズ面の複数箇所を所望の光量で効率的に照射することができる。
なお、図11の構成例では、レンズ32上の8箇所の領域を非露光光LBで照明できるようにしているが、例えばレンズ32上のX方向及びY方向の4箇所の領域のみを非露光光LBで照明できるようにしても、通常の用途で発生する殆どの収差を補正することができる。また、8箇所以上の領域、例えば16箇所の領域に非露光光LBを照射するようにしてもよい。すなわち、非露光光LBの照射される領域の数や位置(照射機構の数や位置)は、投影光学系14内での露光光ILの光量分布や、非露光光LBで調整される収差の種類や、その収差の許容値などに応じて決めることができる。
また、本実施形態において、ガルバノミラー45A〜45Hを用いる代わりに、例えば固定のミラー及びビームスプリッタを組み合わせて非露光光LBを8個の光束に分岐し、これらの光束をシャッタを用いて開閉してもよい。この構成では、複数箇所を同時に非露光光LBで照射することができる。更に、光源として例えば炭酸ガスレーザ又は半導体レーザを用いる場合には、レンズ32上で必要な照射領域の個数(図11では8個)だけその光源を用意し、それらの光源の発光のオン・オフ若しくはシャッタによってレンズ32上の照射領域を直接制御してもよい。
[非回転対称な照明条件での非露光光の照射方法]
次に、非回転対称な照明条件での非露光光の照射方法について、ダイポール照明の場合に発生するセンターアスを補正する場合を例にとって説明する。本例では、X方向のダイポール照明が行われるため、図3(B)に示すように、投影光学系14の瞳面PP上で光軸AXをX方向に対称に挟む2つの円形領域34に露光光ILが照射される。
図14は、その投影光学系14の瞳面PP近傍のレンズ32を示す平面図であり、この図14において、レンズ32上の光軸AXをX方向に対称に挟む領域34A及びその近傍
の領域に露光光ILが照射される。本例では、ほぼその領域34Aを光軸AXの回りに90°回転した領域である、レンズ32上でほぼ光軸AXをY方向に対称に挟む円形領域63C及び63Dにそれぞれ図11の非露光光LBC及びLBDを照射する。なお、その非露光光LBC及びLBD(他の非露光光も同様)の照射領域の形状やサイズは、例えば図11において、照射機構44C及び44D内でのレンズ51の位置を光軸方向に可動とすることによって、変えることも可能である。また、非露光光LBC、LBDだけでなく、非露光光LBE,LBG,LBH,LBFもレンズ32に照射するようにしてもよい。
露光光ILの照射領域を90°回転した領域を非露光光LBC,LBDで照射することにより、レンズ32の温度分布は領域34A及び領域63C,63Dで高くなり、それから離れるに従って次第に低くなる分布となる。図14において、X軸及びY軸の原点を光軸AXとすると、レンズ32の光軸AX及びX軸を含む面内の非走査方向に沿った断面図、及び光軸AX及びY軸を含む面内の走査方向に沿った断面図は共に図15に誇張して示すようになる。図15に示すように、レンズ32の熱膨張の様子は、非走査方向及び走査方向共にその断面形状がほぼ中央部及びその左右で膨張した形状に近くなり、屈折率分布も中央部及びその左右でそれ以外の領域よりも大きく変化する。この結果、露光光ILのみを照明した場合の図7及び図8の変形と比べて、露光光IL及び非露光光LBC,LBDを照射した本例のレンズ32の変形の状態は、非走査方向及び走査方向で似た状態となるため、X方向及びY方向に開いた光束に対するフォーカス位置は互いにほぼ等しくなり、センターアスは殆ど発生しなくなる。
なお、非露光光を照射するレンズは、本例のレンズ32のように照明光学系ILSの瞳面と共役な投影光学系14の瞳面の近傍のレンズとすると、センターアスの補正効果が大きくなる。このとき、瞳面近傍の複数のレンズに非露光光を照射してもよい。更に、照射対象の光学部材上で、露光光及び非露光光を合わせた照射領域ができるだけ回転対称に近い方が効果的である。但し、投影光学系14中のどの位置の光学部材(レンズ等)に非露光光を照射しても、その照射量を制御することによって、ほぼ所望の範囲でセンターアスの補正効果を得ることができる。また、本例のように露光光と共に非露光光を照射することによって、センターアス以外の非回転対称な収差も減少する。
なお、非露光光の照射個所、照射面積、照射量、及び照射角度等を調整しても、ほぼ完全に(ほぼ通常の誤差範囲内まで)センターアスを減少させることができない場合は有り得る。この場合にも、図13において、X方向及びY方向のL&Sパターンに対するフォーカス位置の変化を示す曲線61V及び61Hは、緩やかに変化してその間隔は狭くなる。従って、レチクル上の主な転写対象のパターンがX方向のL&Sパターン、Y方向のL&Sパターン、又はX方向及びY方向のL&Sパターンが混在するパターンの何れであるのかに応じて、一例としてそれぞれウエハ面を曲線61V、曲線61H、又はそれらの曲線61V及び61Hを平均した曲線62で表されるフォーカス位置に合わせることによって、露光後のデフォーカスの影響を軽減できる。
また、ダイポール照明のような非回転対称な照明によって発生する非回転対称な収差を補正する場合の他に、例えば投影光学系14の瞳面上で半径方向に光量分布が局所的に大きく変動するような照明条件で露光を行うときに、高次の球面収差等の高次の回転対称な収差が発生する場合にも、本例のように非露光光を照射することによって、その高次の回転対称な収差を減少できる。一例として、小σ照明を行う場合には、図16に示すように、投影光学系14の瞳面PPでは、光軸を含む小さい円形領域64及びその近傍の領域を露光光ILが通過するため、光量分布が半径方向に大きく変動する。この場合、本例では図11の非露光光照射機構40を用いて、瞳面PP近傍のレンズ32にX方向の非露光光LBA,LBB及びY方向の非露光光LBC,LBDを照射する。
図17は、その場合のレンズ32上の照射領域を示し、この図17において、光軸を含む円形領域64Aが露光光ILで照射され、それをX方向に囲む2つの円形領域及びY方向に囲む2つの円形領域に図11の非露光光LBA,LBB,LBC,LBDが照射される。この結果、レンズ32上で照射エネルギーの半径方向の光量分布の変動が緩やか(よりレンズ全面の変動)となり、半径方向の変形又は屈折率の変動が緩やかになる。従って、高次の回転対称な収差は例えばより低次の回転対称な収差(例えばフォーカス変動や倍率誤差)になり、高次の回転対称な収差は減少する。そして、新たに発生した低次の回転対称な収差は、図1の結像特性補正機構16によって容易に補正することができる。なお、この場合、非露光光LBA,LBB,LBC,LBDだけでなく、非露光光LBE,LBF,LBG,LBHをレンズ32上に照射して、高次の回転対称な収差を減少させるようにしてもよい。
[非回転対称な照明領域を用いる場合での非露光光の照射方法]
次に、図1において、例えばレチクル11の−X方向の端部のパターンのみを露光する場合には、視野絞り8の本来の開口8aの内で、図18に示すように−X方向に対応する方向の端部の領域66(説明の便宜上、正立像が投影されるものとする)のみが露光光IL用の実際の開口となる。この状態では、図1の投影光学系14のレチクルに近いレンズ及びウエハに近いレンズも、ほぼ−X方向の端部の領域(大きく非回転対称な領域)のみが露光光ILによって照射される。
図19は、そのときの投影光学系14内のレチクルに近いレンズ(レンズL1とする)を示し、この図19において、視野絞り8の本来の開口にほぼ対応する領域8aR内の端部の領域66Rに露光光ILが局所的に照射される。この状態で露光が継続されると、図19のX軸に沿った断面図である図20に示すように、レンズL1の形状は露光前の面Eに対してX方向に沿って非対称な面Fに熱膨張する。そして、この膨張により非回転対称な収差が発生してしまう。これを避けるために本例では、レンズL1の内で露光光ILによって照射されていない領域を非露光光で照射することによって、レンズL1に対する照射エネルギーを回転対称な分布に近付ける。
図21は、レンズL1に図11の非露光光照射機構40と同様の照射機構を用いて非露光光を照射する場合を示し、この図21において、レンズL1の−X方向の端部の領域66Rに露光光ILが照射され、その領域66Rと共にほぼ回転対称の輪帯状の領域を形成する7箇所の領域67E,67C,67G,67B,67F,67D,67Hにそれぞれ非露光光LBE,LBC,LBG,LBB,LBF,LBD,LBHが照射される。これによって、レンズL1は露光光IL及び非露光光LBB〜LBHによってほぼ回転対称な光量分布で照明されるため、露光を継続した後の熱膨張によって、図21のX軸(Y軸も同様)に沿った断面図である図22の変形後の面Gで示すように、ほぼ回転対称に変形する。従って、図20の状態で発生していた非回転対称な収差が回転対称な収差になり、その非回転対称な収差は減少する。
このような視野絞りの非回転対称な開口による非回転対称な熱膨張は、投影光学系14中のレチクルに近い光学部材(レンズ等)及びウエハに近い光学部材で起こるので、非露光光はレチクル若しくはウエハに近い光学部材、又はレチクル及びウエハのそれぞれに近い光学部材に照射することで効果が大きくなる。この他に、本例のように視野絞り8の本来の開口の形状が長方形の場合には、それによって僅かに非回転対称な収差が発生する。この場合、図21では、レンズL1上のほぼ長方形の領域8aRを露光光ILが照明するため、例えば領域8aRを短辺方向に挟む2つの領域67C,67Dに非露光光LBC,LBDを照射することによって、レンズL1に対する入射エネルギーの分布はより回転対称に近付くため、非回転対称な収差は低減される。すなわち、主制御系24は、視野絞り8の設定に応じて、非露光光LBA〜LBHの少なくとも一部を投影光学系14内の最適
な光学部材(レンズ1など)に照射することができる。この場合も、非露光光LBA〜LBHの照射領域の位置、形状、サイズは、実験やシミュレーションによりできるだけ非回転対称な収差が低減されるように、あるいは非回転対称な収差が発生しないように決定される。
また、レチクル11のパターン存在率(密度分布)の違いにより、投影光学系14内の所定のレンズが非回転対称に熱膨張するような場合にも、視野絞り8の開口の形状が非回転対称の場合と同様に、入射エネルギーが全体として回転対称な分布に近付くように非露光光を照射することによって、非回転対称な収差を低減させることができる。また、レチクル11上のパターンによる回折光により所定のレンズが非回転対称な熱分布になる場合も、同様の方法で非回転対称な収差を低減させることができる。すなわち、主制御系24は、パターンの分布、位相シフトパターンの有無やコンタクトホールパターンの有無などのレチクル11のパターンの特徴に合わせて、非露光光LBA〜LBHの少なくとも一部を投影光学系14内の最適な光学部材に照射することができる。この場合も、非露光光が照射される光学部材、非露光光の照射領域の位置、形状、サイズは、実験やシミュレーションによりできるだけ非回転対称な収差が低減されるように、あるいは非回転対称な収差が発生しないように決定される。
[非露光光の照射量の制御方法(1)]
次に、例えば図3(B)に示すX方向のダイポール照明を行う際に、図11の非露光光照射機構40から投影光学系14内のレンズ32に非露光光LBを照射して、非回転対称な収差としてのセンターアスを補正する場合の非露光光LBの照射量の制御方法の一例につき、図23のフローチャートを参照して説明する。先ず、非露光光LBの照射量は以下のようにして決定することができる。
図23のステップ101において、図1の投影露光装置で露光を行い、ステップ102において、時刻(t−Δt)から現在の時刻tまでの露光光ILの照射量PE(t)をインテグレータセンサ6及び反射量センサ7を介して計測し、計測データを主制御系24内の結像特性演算部に取り込む。なお、本実施形態においては、露光光ILの偏光状態が可変の場合にも、露光光ILの投影光学系14への照射量が正確に計測できるものとする。例えば、露光光ILをランダム成分からなる非偏光光から、ほぼS偏光成分から成る直線偏光光に変更した場合にも、投影光学系14への照射量が正確に計測され、主制御系24へ取り込まれる。Δtは任意のサンプリング間隔であり、図23のステップ101〜117までの動作はサンプリング間隔Δt毎に繰り返して実行される。Δtは例えば10〜0.01secである。また、説明の便宜上、ステップ102では照射量PE(t)はP(t)で表してある。この際に、その結像特性演算部は、露光光ILの照射量PE(t)を入力、収差変動(ここではセンターアスの変動量)を出力としたモデル1と、収差変動を入力、非露光光LBの照射量を出力としたモデル2とを予め求めておき、以下のようにして露光光IL及び非露光光LBによる収差変動より、非露光光LBの照射量を決定する。以下では、時刻tでの露光光ILによるセンターアスの変動量の計算値をAE(t)、非露光光LBによるセンターアスの変動量の計算値をAI(t)とする。
先ず、ステップ103においてその結像特性演算部は、露光光ILの照射量PE(t)を入力とする次の式(これがモデル1に相当する)を用いて、時刻tでの露光光ILによるセンターアスの変動量の計算値AE(t)を求める。
Figure 2010171447
但し、各変数の意味は以下のとおりである。
Δt :サンプリング間隔(計算間隔)[sec]
E(t) :時刻tにおける露光光によるセンターアス変動量[m]
En(t):時刻tにおける露光光によるセンターアス変動量[m]
(n=A,B,C成分=X,Y,Z成分)
En :露光光によるセンターアス変動の時定数[sec]
(n=A,B,C成分)
En :露光光よるセンターアス変動の飽和値[m]
(n=A,B,C成分)
E(t) :時刻(t−Δt)〜tの露光光の照射量[W]
次のステップ104において、その結像特性演算部は、(1A)式と同様のモデルを用いて、露光光によるセンターアスの変動値以外の補正対象収差、例えばフォーカスFE(t)、倍率ME(t)、像面湾曲、C字ディストーション、コマ収差、及び球面収差についても同様に計算する。次のステップ105において、全収差の内、非露光光LBの照射により補正する収差(ここではセンターアス)の露光光ILによる変動量AE(t)を特定する。次のステップ106において、露光光ILによるセンターアス変動量の計算値AE(t)と非露光光LBによるセンターアス変動量の計算値AI(t)との差分(=AE(t)−AI(t))を、新たに非露光光LBによって補正するセンターアスの変動量とする。なお、最初はAI(t)は0である。
次にその結像特性演算部は、時刻tの次のサンプリング間隔Δtの間に照射する非露光光LBの照射量PI(t)が、図24に示すようにAI(t+Δt)がAE(t)に達するよう決定する。但し、Δt間の露光光ILによるセンターアス変動量(=ΔAE(t+Δt)−ΔAE(t))は十分小さいものとする。図24において、横軸は露光開始後の経過時間T、上の図の縦軸はセンターアスの量、下の図の縦軸は非露光光LBの照射量IAPC[W]である。そして、図24の上の図の曲線68はAE(t)の変化を、曲線69はAI(t)の変化をそれぞれ示し、下の図の斜線を施した面積70は、時刻t〜(t+Δt)の間の非露光光LBの照射エネルギー量を表している。
この場合、非露光光LBによるセンターアスの変動量AI(t+Δt)がAE(t)に達するとの条件から次式が成立する。
Figure 2010171447
よって、非露光光LBの照射量PI(t)は、次式(モデル2)から計算することができる。
Figure 2010171447
また、非露光光LBが照射される領域(本例では8箇所)をm=A1,A2,…で表し、図14のY方向の2つの領域をm=A1,m=A2で表すと、これらの領域での非露光光LBの照射量PIm(t)(m=A1,A2)は、次のようになる。
IA1(t)=PIA2(t)=PI(t)/2 …(3)
但し、(1)式〜(3)式における各変数の意味は以下のとおりである。
Δt :サンプリング間隔(計算間隔)[sec]
E(t) :時刻tにおける露光光によるセンターアス変動量[m]
I(t) :時刻tにおける非露光光によるセンターアス変動量[m]
In(t):時刻tにおける非露光光によるセンターアス変動量[m]
(n=A,B,C成分)
In :非露光光によるセンターアス変動の時定数[sec]
(n=A,B,C成分)
In :非露光光よるセンターアス変動の飽和値[m/W]
(n=A,B,C成分)
I(t) :時刻t〜t+Δtの非露光光照射量[W]
Im(t):時刻t〜t+Δtの非露光光の各領域への照射量[W]
(m=A1,A2)
具体的にその結像特性演算部は、ステップ107において(2)式(モデル2)を記憶部から読み出し、ステップ108において(2)式から非露光光LBの照射量PI(t)を計算し、(3)式から各領域への非露光光LBの照射量PIm(t)を計算する。計算結果は主制御系24内で結像特性演算部から結像特性制御部に供給される。
次のステップ109において、その結像特性制御部は、図11の非露光光照射機構40を介してレンズ32の各領域に非露光光LBを照射量PIm(t)でサンプリング間隔Δtの間だけ照射させる。次のステップ110(実質的にステップ109と並行に実行されている)において、図11の制御部41Bは光電センサ52A〜52Hを介してその間隔Δtの間の各領域への非露光光LBの実際の照射量PIR(t)を計測し、計測結果を主制御系24内の結像特性演算部に供給する。その結像特性演算部は、非露光光LBの照射量PIR(t)より(1A)式(モデル1)と同様のモデル3を用いて(ステップ111)、非露光光LBの照射による収差変動量を計算する(ステップ112)。非露光光の照射による収差変動の計算に使用する照射量としては、実際に計測された照射量PIR(t)の間隔Δt中の平均値、その間隔Δt中の代表値、又はその照射量の制御目標値PI(t)の何れでもよい。但し、実測した照射量PIR(t)を使用するときには、非露光光LBの目標照射量(収差を補正するのに必要な照射量)と実際の照射量とが違っている場合に、そのずれ量が次の目標照射量に反映されるため、照射量制御精度の収差への影響を低減することができる。また、非露光光LBによる収差変動の計算は、露光光ILで計算している収差と同じ収差に対して行うものとする。即ち、ステップ112において、その結像特性演算部は、非露光光LBの照射によって補正した非回転対称な補正対象収差の変動量(ここではセンターアス変動量AI(t))、及び非露光光LBの照射によって発生した回転対称な
補正対象収差の変動量、例えば、フォーカスFI(t)、倍率MI(t)、像面湾曲、C字ディストーション、コマ収差、及び球面収差を計算する。
続いてその結像特性演算部は、非露光光LBの照射によって補正した非回転対称な補正対象収差の変動量(センターアス変動量AI(t))を分離して(ステップ113)、そのセンターアス変動量AI(t)をステップ106で収差変動を計算する際に使用する。次のステップ114において、その結像特性演算部は、ステップ112で計算した非露光光LBの照射によって発生した回転対称な収差の変動量(フォーカスFI(t)、倍率MI(t)、像面湾曲等)と、ステップ104で計算してあった露光光ILの照射によって発生した回転対称な収差の変動量(フォーカスFE(t)、倍率ME(t)、像面湾曲等)とを加算する。加算後のフォーカスF(t)、倍率M(t)等は以下のようになる。
F(t)=FE(t)+FI(t) …(4A)
M(t)=ME(t)+MI(t) …(4B)
次のステップ115において、主制御系24内の結像特性演算部は、加算後の回転対称な収差の変動量の内で、非露光光LB以外を用いて補正する収差の変動量、即ち図1の結像特性補正機構16を用いて補正する収差の変動量(F(t),M(t)等)の情報を結像特性制御部に供給する。次のステップ116において、その結像特性制御部は、その収差の変動量(F(t),M(t)等)を補正するための結像特性補正機構16の駆動量、即ち本例では図2のレンズL1〜L5の駆動量を従来より知られている方法で算出し、その駆動量の情報を図2の制御部17に供給する。これに応じて、ステップ117で制御部17がレンズL1〜L5を駆動することで、回転対称で補正対象の収差が補正される。但し、この際にセンターアスは、ステップ109における非露光光LBの照射により補正されている。その後、動作はステップ101に戻り、露光が終了するまで、露光及び収差補正の動作が繰り返される。
このように本例によれば、所定のサンプリング間隔Δtで露光光ILの照射量の計測値に基づいて非回転対称な収差の変動量が計算され、それを相殺するような非回転対称な収差を発生するように非露光光LBの照射量が設定されている。従って、非露光光LBの照射量を容易にかつ正確に計算でき、この結果として非回転対称な収差を極めて少なくすることができる。また、非露光光LBの照射によって発生する回転対称な収差は、露光光ILの照射によって発生する回転対称な収差と共に結像特性補正機構16によって補正しているため、収差の変動量は極めて少なくなり、常に良好な結像特性が維持される。
なお、非露光光LBの照射によるセンターアス変動の方が、露光光ILの照射によるセンターアス変動より時定数が遅い場合、例えば図14のレンズ32上のX方向のダイポール照明(露光光IL)によって照明される領域34Aを非露光光で照射することによって、センターアスを補正することも考えられる。
[非露光光の照射量の制御方法(2)]
次に、図23の非露光光の照射量の制御方法の変形例につき図25のフローチャートを参照して説明する。本例でもほぼ図1の投影露光装置と同様の投影露光装置を用いて露光を行うが、本例では非露光光LBが照射されるレンズ32に温度センサ(不図示)を設けておき、レンズ32の側面の例えば8箇所で実際の温度変化を計測する。なお、その温度センサとしては、サーミスタ等の接触型の温度検出素子の他に、例えば赤外線を検出することによってほぼ図11の非露光光LBA〜LBHが照射される領域の温度を非接触で直接計測する赤外線センサ(モニタ)等を用いてもよい。
この変形例では、図25のステップ101の露光に続いて、ステップ102〜104の露光量の計測から収差の変動量の計算までの動作と並行に、ステップ119において、図1の投影光学系14中のレンズ32の温度T(t)を実測し、計測データを主制御系24
内の結像特性演算部に供給する。例えばダイポール照明を行う場合の温度T(t)とは、図14のレンズ32のX軸に沿った領域34Aの外側の側面の温度とY軸に沿った領域63C,63Dの外側の側面の温度との差分である。この場合、予め投影光学系14内のレンズ32の温度T(t)を入力として、非回転対称な収差(ここではセンターアス)の変動量を出力とした新たなモデル2を求めておき、その結像特性演算部は、ステップ119に続くステップ107においてその新たなモデル2を用いてセンターアスの変動量を求める。次のステップ108において、その結像特性演算部は(2)式から非露光光LBの照射量PI(t)を計算する。これ以降のステップ108〜112、及びステップ104及び112に続くステップ114〜117の動作は図23の例と同じである。この図25の変形例では、ステップ119で計測されるレンズ32の温度T(t)には、露光光ILの照射による影響と共に非露光光LBの照射による影響が含まれているため、図23の例のように、ステップ106において、ステップ105で計算した露光光による収差変動とステップ113で計算した非露光光による収差変動との差分を求める必要は無い。従って、複雑な計算を行うことなく、非回転対称な収差を補正することができる。
[非露光光の照射量の制御方法(3)]
次に、図25の非露光光の照射量の制御方法の変形例につき図26のフローチャートを参照して説明する。本例でもほぼ図1の投影露光装置と同様の投影露光装置を用いて露光を行うが、本例では例えばZチルトステージ19上に投影光学系14の像(空間像)を画像処理方式で計測するための空間像センサが設けられる。そして、この変形例では、図26において、図25のステップ119に対応する動作がステップ120で置き換えられている。そのステップ120において、例えばその空間像センサを用いて非露光光LBの照射によって補正する収差(ここではセンターアス)の露光光ILの照射による変動量AE(t)を計測する。このためには、一例として、レチクル11上にX方向及びY方向のL&Sパターンを設けておき、ステップ120において、それらのL&Sパターンを投影光学系14の光軸AX上に移動して、それらの投影像のフォーカス位置を交互に求めればよい。なお、実際にはステップ120の収差変動量の計測は、ステップ101の露光と同時か、又は極めて僅かの遅れ時間(例えば1msec程度)で計測することが望ましい。また、ステップ120に続くステップ107で使用されるモデル2は、収差変動量の実測値を入力、非露光光の照射量を出力としたモデルであり、これを用いてステップ108において、非露光光の照射量が決定される。これ以降の収差補正動作は図25の例と同じである。
なお、上述の空間像センサは、例えば特開2002−14005号(対応米国特許公開2002/0041377号)に開示されているものを用いることができ、本国際出願で指定または選択された国の法令で許容される限りにおいて、その開示を援用して本文の記載の一部とする。
この変形例によれば、補正対象の収差の変動量を実測しているため、非露光光の照射によってその収差を高精度に補正することができる。
[非露光光の照射量の制御方法(4)]
この制御方法では、図1において露光中継続してインテグレータセンサ6及び反射量センサ7を用いて投影光学系14を通過する露光光ILの照射量を計測する。そして、図11の非露光光照射機構40を用いて、単に露光光ILの照射量と同じか、又は所定の比例係数を乗じて得られる照射量だけ非露光光LBを照射する。この際に、照明条件毎に、発生する非回転対称な収差ができるだけ小さくなるように、図11の8個の非露光光LBA〜LBHの照射量の露光光ILの照射量に対する比例係数を求めておけばよい。また、回転対称な収差の補正方法は上記の制御方法と同じである。この制御方法では、非回転対称な収差を完全に補正することはできないが、その収差を低減することはできる。また、照射量の制御方法が簡単である。
なお、上述の非露光光の照射量の制御方法(1)〜(4)は、各種収差の許容値、パタ
ーンの転写精度などに合わせて、複数の制御方法を組み合わせて使用してもよいし、それぞれの制御方法を選択できるようにしてもよい。
[非露光光の照射タイミング、キャリブレーション、非露光光の発光停止]
非露光光の照射タイミングとしては以下のようなタイミングが考えられる。但し、非露光光の照射量は上記の制御方法で決定される。
(1)収差変動に応じて照射する。
(2)露光光の照射と同期して非露光光を照射する。
(3)図1のウエハステージ20のステッピング中に非露光光を照射する。
(4)ウエハ交換中に照射する。
(5)収差変動が閾値以上なった時に照射する。収差変動は実測値又は計算値で閾値と比較する。
(6)照明条件を切換えるときに照射する。
(7)常に照射する。
また、非露光光LBの照射量と収差変動とのモデルを使って収差を補正する場合、光ファイバー、光学系等の経時変化によりそのモデルが変わることが考えられる。その場合、非露光光を照射し、その際の収差変動を計測することにより、新しいモデルを求めることができる。これによって、そのモデルのキャリブレーションを行うことができる。
また、非露光光を導光する光学系に何らかの問題があり、非露光光が投影光学系14のレンズヘ照射されるはずであるのに照射されていない状態が一定時間以上続いた場合、図1の主制御系24(判定装置)は光源系41からの非露光光の照射を停止することが望ましい。例えば、主制御系24は、非露光光LBA〜LBHのレンズ32への照射中に、光電センサ52A〜52Hの少なくとも一つで検出される光量が所定量以下となった場合に、光ファイバー束46A〜46Hの断線や劣化が起きたと判断して、光源系41からの非露光光の照射を停止することができる。この場合、照射機構44A〜44Hの入射側にシャッター部材などを設けておき、非露光光LBA〜LBHの光路を遮断するようにしてもよい。
[非回転対称な収差が残留する場合]
非露光光の照射量不足か、又は非露光光のサンプリング間隔が長すぎる場合等の影響で、非回転対称な収差が残留してしまう場合は、一例としてより高精度な露光が要求されるパターンで収差が少なくなるように、フォーカス位置等を制御してもよい。例えばセンターアスが残留しているときに、X方向のL&Sパターンの収差をY方向のL&Sパターンに比べて高精度に補正する必要がある場合は、ウエハ面のフォーカス位置をX方向のL&Sパターンの像のフォーカス位置に合わせて制御することによって、Y方向のL&Sパターンにはデフォーカスが発生するが、X方向のL&Sパターンの像はベストフォーカス位置で露光できる。
[露光光の照射以外による非回転対称な収差等について]
投影光学系14の周囲の気圧変化、温度変化、並びに投影光学系14の調整誤差等の露光光の照射以外の要因によって発生する非回転対称な収差に対しても、残留している収差より非露光光の照射量を決定することによって、その収差を補正することが可能である。気圧変化や温度変化の場合は、それらの変化と収差変化とのモデルを予め求めておくことで、それらの変化に起因する収差を補正することが可能である。投影光学系14の調整後の残留収差であれば、その収差を計測し、その収差を相殺するように非露光光を常に発光することで補正できる。常に発光するのが危険な場合は、露光動作に移った時点、例えばウエハ搬送中に非露光光の照射を開始し、露光動作中のみ非露光光を照射することとして
もよい。
なお、上述の実施形態において、光ファイバー束46A〜46Hや照射機構44A〜44Hの少なくとも一部は投影光学系14の近傍に配置されているので、投影光学系14に熱的な影響を与えないように、それらを断熱材で覆ったり、温調機構で温度調整するのが望ましい。
また、上述の実施形態においては、非回転対称な収差として、主にセンターアスを補正する場合について説明しているが、投影光学系14の一部の光学部材に非露光光を照射することによって、センターアス以外の非回転対称な収差、例えばX方向とY方向の倍率差や像シフトなども調整することができる。この場合、非露光光LBを照射する光学部材は、投影光学系14の瞳面近傍の光学部材に限らず、調整対象とする非回転対称な収差が効果的、且つ効率的に調整(補正)可能なものを選ぶことが望ましい。
また、X方向とY方向の倍率差などの非回転対称な収差を調整するために、レチクルRに光を照射して、レチクルRの伸縮状態を調整してもよい。
なお、上述の各実施形態において、照射機構44A〜44H内に偏光板を配置して、投影光学系14の一部の光学部材(レンズ32)に照射する非露光光LBを、P偏光成分またはS偏光成分からなる直線偏光光とすることもできる。この場合、偏光板で分離された直線偏光光の一部を光電センサ52A〜52Hに入射させ、その検出結果に基づいて非露光光(直線偏光光)LBの照射量を制御するのが望ましい。このようにすることで、光源系41と照射機構44A〜44Hとの間の光ファイバ束46A〜46Hで非露光光LBA〜LBHの偏光状態が変化したとしても、投影光学系14の一部の光学部材(レンズ32)に照射する非露光光(直線偏光光)LBの照射量を高精度に制御することが可能となる。さらに、非露光光LBとして直線偏光光を用いる場合には、P偏光成分よりなる直線偏光光を用いるのが好ましい。P偏光成分よりなる直線偏光光は入射面(レンズ32のレンズ面)での反射が少ないため、投影光学系14の一部の光学部材(レンズ32)に照射する非露光光LBの照射量をさらに高精度に制御することが可能となる。なお、偏光板としては、偏光プリズムや偏光フィルタも使用することができる。また、偏光板によって分離された使用されない他の偏光成分の光は外部へ排出される。この場合、偏光板によって分離された他の偏光成分の光が投影光学系14などに熱的な悪影響を与えないように銅管などを使って廃熱処理するのが望ましい。
また、上述の実施形態においては、投影光学系14の一部のレンズ32に非露光光LBを照射するようにしているが、投影光学系14として、反射素子と屈折素子とを含む構成の反射屈折型の投影光学系や反射素子で構成された反射型の投影光学系を用いることもできる。この場合、投影光学系の一部の反射素子の露光光ILが入射し得る領域(有効領域)内に非露光光LBを照射するのが望ましい。
また、反射素子と屈折素子とを含む構成の反射屈折型の投影光学系を用いる場合、レチクルRやウエハWに近いレンズでは、一方側の偏った領域を露光光ILが通過するため非回転対称な収差(像シフトなど)が生じやすくなるが、この場合も投影光学系の一部の光学部材に非露光光LBを照射することによって、その非回転対称な収差を調整することができる。
また、非露光光を照射する領域は光学系で拡大若しくは縮小するか、又は視野絞りの開口形状の変更等によってその形状を変えることができる。また、非露光光照射機構の光学系を可動なものとすることも可能である。これらにより様々な照明条件(瞳面近傍での露光光の通過領域)、視野絞りの開口形状、又はレチクルのパターン存在率の違い等に対応できる。
なお、上記の実施の形態の投影露光装置は、複数のレンズから構成される照明光学系、投影光学系を露光装置本体に組み込み光学調整をして、多数の機械部品からなるレチクル
ステージやウエハステージを露光装置本体に取り付けて配線や配管を接続し、更に総合調整(電気調整、動作確認等)をすることにより製造することができる。なお、その露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
また、上記の実施の形態の投影露光装置を用いて半導体デバイスを製造する場合、この半導体デバイスは、デバイスの機能・性能設計を行うステップ、このステップに基づいてレチクルを製造するステップ、シリコン材料からウエハを形成するステップ、上記の実施の形態の投影露光装置によりアライメントを行ってレチクルのパターンをウエハに露光するステップ、エッチング等の回路パターンを形成するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、及び検査ステップ等を経て製造される。
なお、本発明は、走査露光型の投影露光装置のみならず、ステッパー等の一括露光型の投影露光装置で露光を行う場合にも同様に適用することができる。また、反射光学系を屈折光学系とを含む投影光学系を用いる露光装置や、例えば国際公開(WO)第99/49504号などに開示される液浸型露光装置のように液体を介してウエハに露光光を照射する露光装置にも適用できる。また、本発明の露光装置の用途としては半導体デバイス製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。
なお、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。
また、本願は、2003年8月28日に出願された日本国特願2003−209211号に対し優先権を主張するものであり、その内容をここに援用する。
本発明のデバイス製造方法によれば、例えばダイポール照明や小σ照明等を用いても結像特性を常に良好な状態に維持できるため、高集積度のデバイスを高いスループットで製造できる。
1…露光光源、2…第1のフライアイレンズ、3…振動ミラー、4…第2のフライアイレンズ、5…ビームスプリッタ、6…インテグレータセンサ、7…反射量センサ、8…視野絞り、11…レチクル、14…投影光学系、16…結像特性補正機構、17…制御部、18…ウエハ、19…Zチルトステージ、20…ウエハステージ、21…照射量センサ、24…主制御系、25…照明系開口絞り部材、40…非露光光照射機構、41…光源系、45A〜45H…ガルバノミラー、44A〜44H…照射機構、52A〜52H…光電センサ

Claims (25)

  1. 転写用のパターンが形成された第1物体を第1光ビームで照明し、前記第1光ビームで前記第1物体及び投影光学系を介して第2物体を露光する露光方法において、
    前記投影光学系の光学部材の表面の少なくとも一部に、前記第1光ビームと異なる波長域の第2光ビームを照射する前に前記第2光ビームの光量をモニタし、
    該モニタ結果に基づいて、前記光学部材の表面の少なくとも一部に対する前記第2光ビームの照射量を制御することを特徴とする露光方法。
  2. 前記光学部材の表面の少なくとも一部に対する前記第2光ビームの照射領域の位置を変更することを特徴とする請求項1に記載の露光方法。
  3. 前記光学部材の表面の少なくとも一部に対する前記第2光ビームの照射領域の形状を変更することを特徴とする請求項1又は2に記載の露光方法。
  4. 前記光学部材の表面の少なくとも一部に対する前記第2光ビームの照射領域のサイズを変更することを特徴とする請求項1〜3のいずれか一項に記載の露光方法。
  5. 前記光学部材に対する前記第1光ビームの照射量に応じて、前記第2光ビームの照射量を制御することを特徴とする請求項1〜4のいずれか一項に記載の露光方法。
  6. 前記第2光ビームは、前記光学部材の表面のうち、互いに異なる複数個所に照射されることを特徴とする請求項1〜5のいずれか一項に記載の露光方法。
  7. 前記第1光ビームの照射量に基づいて、前記投影光学系の非回転対称な収差の発生量を計算し、
    該計算結果に基づいて前記第2光ビームを照射することを特徴とする請求項1〜6のいずれか一項に記載の露光方法。
  8. 前記第2光ビームの照射により、前記非回転対称な収差を回転対称の収差に変換することを特徴とする請求項7に記載の露光方法。
  9. 前記第1光ビームによる前記第1物体の照明条件に基づいて、前記光学部材の表面の少なくとも一部に対する前記第2ビームの照射量を変更することを特徴とする請求項1〜8のいずれか一項に記載の露光方法。
  10. 前記第1光ビームによる前記第1物体の照明条件に基づいて、前記光学部材の表面の少なくとも一部に対する前記第2ビームの位置を変更することを特徴とする請求項1〜8のいずれか一項に記載の露光方法。
  11. 前記第2光ビームは、前記光学部材に対して、前記投影光学系を構成する他の光学部材を介さずに照射されることを特徴とする請求項1〜10のいずれか一項に記載の露光方法。
  12. 前記第2光ビームは、炭酸ガスレーザ光であることを特徴とする請求項1〜11のいずれか一項に記載の露光方法。
  13. 請求項1〜12のいずれか一項に記載の露光方法を用いてデバイスのパターンを物体上に転写する工程を含むデバイス製造方法。
  14. 第1光ビームで転写用のパターンが形成された第1物体を照明し、前記第1光ビームで前記第1物体及び投影光学系を介して第2物体を露光する露光装置において、
    前記投影光学系の光学部材の表面の少なくとも一部に前記第1光ビームと異なる波長域の第2光ビームを照射する照射機構と、
    前記光学部材の表面の少なくとも一部に前記第2光ビームが照射される前に、前記第2光ビームの光量を検出する光電センサと、
    前記光電センサの検出結果に基づいて、前記光学部材の表面の少なくとも一部に対する前記第2光ビームの照射量を制御する制御装置とを有することを特徴とする露光装置。
  15. 前記照射機構あるいは当該照射機構内の光学部材の位置を動かして、前記光学部材の表面の少なくとも一部に対する前記第2ビームの照射領域の位置を変更することを特徴とする請求項14に記載の露光装置。
  16. 前記照射機構内の光学部材の位置を動かして、前記光学部材の表面の少なくとも一部に対する前記第2ビームの照射領域の形状を変更することを特徴とする請求項14又は15に記載の露光装置。
  17. 前記照射機構内の光学部材の位置を動かして、前記光学部材の表面の少なくとも一部に対する前記第2ビームの照射領域のサイズを変更することを特徴とする請求項14〜16のいずれか一項に記載の露光装置。
  18. 前記制御装置は、前記光学部材に対する前記第1光ビームの照射量に応じて、前記第2光ビームの照射量を制御することを特徴とする請求項14〜17のいずれか一項に記載の露光装置。
  19. 前記制御装置は、前記第1光ビームの照射量に基づいて、前記投影光学系の非回転対称な収差の発生量を計算し、該計算結果に基づいて前記照射機構を制御することを特徴とする請求項14〜18のいずれか一項に記載の露光装置。
  20. 前記投影光学系の回転対称な収差を補正するための収差補正機構を更に有し、
    前記制御装置は、前記照射機構及び前記収差補正機構を制御して前記投影光学系の収差を補正することを特徴とする請求項19に記載の露光装置。
  21. 前記制御装置は、前記第1光ビームによる前記第1物体の照明条件に基づいて、前記光学部材の表面の少なくとも一部に対する前記第2ビームの照射量を調整することを特徴とする請求項14〜20のいずれか一項に記載の露光装置。
  22. 前記制御装置は、前記第1光ビームによる前記第1物体の照明条件に基づいて、前記光学部材の表面の少なくとも一部に対する前記第2ビームの照射領域の位置を調整することを特徴とする請求項14〜20のいずれか一項に記載の露光装置。
  23. 前記第2光ビームは、前記光学部材に対して、前記投影光学系を構成する他の光学部材を介さずに照射されることを特徴とする請求項14〜22のいずれか一項に記載の露光装置。
  24. 前記第2光ビームは、炭酸ガスレーザ光であることを特徴とする請求項14〜23のいずれか一項に記載の露光装置。
  25. 請求項14〜24のいずれか一項に記載の露光装置を用いてデバイスのパターンを物体上に転写する工程を含むデバイス製造方法。
JP2010076427A 2003-08-28 2010-03-29 露光方法及び装置、並びにデバイス製造方法 Active JP5099933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076427A JP5099933B2 (ja) 2003-08-28 2010-03-29 露光方法及び装置、並びにデバイス製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003209211 2003-08-28
JP2003209211 2003-08-28
JP2010076427A JP5099933B2 (ja) 2003-08-28 2010-03-29 露光方法及び装置、並びにデバイス製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005513447A Division JPWO2005022614A1 (ja) 2003-08-28 2004-08-25 露光方法及び装置、並びにデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2010171447A true JP2010171447A (ja) 2010-08-05
JP5099933B2 JP5099933B2 (ja) 2012-12-19

Family

ID=34263960

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005513447A Pending JPWO2005022614A1 (ja) 2003-08-28 2004-08-25 露光方法及び装置、並びにデバイス製造方法
JP2010076427A Active JP5099933B2 (ja) 2003-08-28 2010-03-29 露光方法及び装置、並びにデバイス製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2005513447A Pending JPWO2005022614A1 (ja) 2003-08-28 2004-08-25 露光方法及び装置、並びにデバイス製造方法

Country Status (6)

Country Link
US (1) US7817249B2 (ja)
EP (1) EP1670041A4 (ja)
JP (2) JPWO2005022614A1 (ja)
KR (1) KR20060120629A (ja)
TW (1) TW200514133A (ja)
WO (1) WO2005022614A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119687A (ja) * 2010-12-02 2012-06-21 Asml Holding Nv パターニングデバイスサポート
JP2012175102A (ja) * 2011-02-18 2012-09-10 Carl Zeiss Smt Gmbh 投影露光装置へ電磁放射を案内する装置
US11656554B2 (en) 2019-10-18 2023-05-23 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and method of manufacturing article

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099877A1 (de) 2003-05-12 2004-11-18 Carl Zeiss Smt Ag Optische messvorrichtung und betriebsverfahren für ein optisches abbildungssystem
WO2005078774A1 (ja) * 2004-02-13 2005-08-25 Nikon Corporation 露光方法及び装置、並びにデバイス製造方法
JP4569237B2 (ja) * 2004-09-16 2010-10-27 コニカミノルタオプト株式会社 光学装置
JP4954615B2 (ja) * 2005-06-13 2012-06-20 オリンパス株式会社 走査型レーザ顕微鏡装置
US20080204682A1 (en) * 2005-06-28 2008-08-28 Nikon Corporation Exposure method and exposure apparatus, and device manufacturing method
JP5069232B2 (ja) 2005-07-25 2012-11-07 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置の投影対物レンズ
DE102005062618B4 (de) * 2005-12-23 2008-05-08 Carl Zeiss Smt Ag Optische Abbildungseinrichtung und Abbildungsverfahren mit Bestimmung von Abbildungsfehlern
US7511799B2 (en) * 2006-01-27 2009-03-31 Asml Netherlands B.V. Lithographic projection apparatus and a device manufacturing method
DE102006045838A1 (de) * 2006-09-27 2008-04-03 Carl Zeiss Sms Gmbh Mikroskop zur Untersuchung von Masken mit unterschiedlicher Dicke
EP1918752A1 (en) * 2006-11-06 2008-05-07 Institut Curie Method and apparatus for measuring optical power of a light beam produced in a microscope
KR101452534B1 (ko) * 2007-01-22 2014-10-21 칼 짜이스 에스엠티 게엠베하 광학 시스템의 결상 특성을 향상시키기 위한 방법 및 광학 시스템
DE102008006687A1 (de) 2007-01-22 2008-07-24 Carl Zeiss Smt Ag Verfahren zum Verbessern von Abbildungseigenschaften eines optischen Systems sowie optisches System
KR100854878B1 (ko) 2007-03-23 2008-08-28 주식회사 하이닉스반도체 반도체 소자의 노광 방법
WO2008116886A1 (de) 2007-03-27 2008-10-02 Carl Zeiss Smt Ag Korrektur optischer elemente mittels flach eingestrahltem korrekturlicht
JP2009010131A (ja) * 2007-06-27 2009-01-15 Canon Inc 露光装置及びデバイス製造方法
EP2048540A1 (en) 2007-10-09 2009-04-15 Carl Zeiss SMT AG Microlithographic projection exposure apparatus
DE102008042356A1 (de) 2008-09-25 2010-04-08 Carl Zeiss Smt Ag Projektionsbelichtungsanlage mit optimierter Justagemöglichkeit
NL2003806A (en) * 2008-12-15 2010-06-16 Asml Netherlands Bv Method for a lithographic apparatus.
US20100290020A1 (en) * 2009-05-15 2010-11-18 Shinichi Mori Optical apparatus, exposure apparatus, exposure method, and method for producing device
CN102428408B (zh) * 2009-05-16 2014-11-05 卡尔蔡司Smt有限责任公司 包括光学校正布置的用于半导体光刻的投射曝光设备
JP5404216B2 (ja) 2009-07-02 2014-01-29 キヤノン株式会社 露光方法、露光装置及びデバイス製造方法
NL2005449A (en) * 2009-11-16 2012-04-05 Asml Netherlands Bv Lithographic method and apparatus.
JP5722074B2 (ja) * 2010-02-25 2015-05-20 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置および方法
SG184008A1 (en) * 2010-03-12 2012-10-30 Cascade Microtech Inc System for testing semiconductors
DE102010029651A1 (de) 2010-06-02 2011-12-08 Carl Zeiss Smt Gmbh Verfahren zum Betrieb einer Projektionsbelichtungsanlage für die Mikrolithographie mit Korrektur von durch rigorose Effekte der Maske induzierten Abbildungsfehlern
JP5661172B2 (ja) 2010-04-23 2015-01-28 カール・ツァイス・エスエムティー・ゲーエムベーハー リソグラフィ系の光学要素の操作を含むリソグラフィ系を作動させる方法
DE102010041298A1 (de) 2010-09-24 2012-03-29 Carl Zeiss Smt Gmbh EUV-Mikrolithographie-Projektionsbelichtungsanlage mit einer Heizlichtquelle
DE102010041528A1 (de) 2010-09-28 2012-03-29 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit optimierter Justagemöglichkeit
JP6012628B2 (ja) 2011-01-20 2016-10-25 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィのための投影露光ツールを作動させる方法
US8625078B2 (en) * 2011-04-06 2014-01-07 Nanya Technology Corp. Illumination design for lens heating mitigation
US8736814B2 (en) * 2011-06-13 2014-05-27 Micron Technology, Inc. Lithography wave-front control system and method
WO2013044936A1 (en) 2011-09-29 2013-04-04 Carl Zeiss Smt Gmbh Projection objective of a microlithographic projection exposure apparatus
DE102012216286A1 (de) 2011-09-30 2013-04-04 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit optimiertem Messsystem
JP5666496B2 (ja) * 2012-01-27 2015-02-12 株式会社目白ゲノッセン 計測装置
DE102012201410B4 (de) 2012-02-01 2013-08-14 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit einer Messvorrichtung zum Vermessen eines optischen Elements
WO2013156041A1 (en) 2012-04-18 2013-10-24 Carl Zeiss Smt Gmbh A microlithographic apparatus and a method of changing an optical wavefront in an objective of such an apparatus
US10133184B2 (en) 2012-04-25 2018-11-20 Nikon Corporation Using customized lens pupil optimization to enhance lithographic imaging in a source-mask optimization scheme
CN110261067B (zh) 2012-05-30 2022-02-22 株式会社尼康 波前测量方法及装置、以及曝光方法及装置
DE102012212758A1 (de) 2012-07-20 2014-01-23 Carl Zeiss Smt Gmbh Systemkorrektur aus langen Zeitskalen
DE102013203032A1 (de) 2013-02-25 2014-02-27 Carl Zeiss Smt Gmbh Optische Anordnung mit einem optischen Element und einem zusätzlichen Wärmeleitelement
DE102013205567A1 (de) * 2013-03-28 2014-03-06 Carl Zeiss Smt Gmbh Mikrolithographische Projektionsbelichtungsanlage mit einem variablen Transmissionsfilter
TWI710866B (zh) 2014-05-30 2020-11-21 日商尼康股份有限公司 用於微影步驟之電腦程式及電腦可讀取記錄媒體
JP2016148829A (ja) * 2015-02-05 2016-08-18 株式会社目白ゲノッセン 観察装置
WO2016125325A1 (ja) * 2015-02-05 2016-08-11 株式会社目白ゲノッセン 観察装置
KR102063229B1 (ko) * 2015-05-29 2020-01-07 에이에스엠엘 네델란즈 비.브이. 소스 방사선의 각도 분포의 다중-샘플링을 사용하는 리소그래피의 시뮬레이션
DE102017204619A1 (de) 2016-04-05 2017-10-05 Carl Zeiss Smt Gmbh Projektionsbelichtungsverfahren, Projektionsobjektiv und Projektionsbelichtungsanlage für die Mikrolithographie
KR102197572B1 (ko) * 2016-07-13 2020-12-31 어플라이드 머티어리얼스, 인코포레이티드 조명 소스로서의 마이크로 led 어레이
DE102016218744A1 (de) 2016-09-28 2018-03-29 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit Flüssigkeitsschicht zur Wellenfrontkorrektur
JP6820717B2 (ja) 2016-10-28 2021-01-27 株式会社日立ハイテク プラズマ処理装置
DE102016221878A1 (de) 2016-11-08 2017-11-09 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage für die Halbleiterlithographie und deren Komponenten sowie Herstellungsverfahren derartiger Komponenten
DE102018202687A1 (de) 2018-02-22 2018-05-03 Carl Zeiss Smt Gmbh Herstellungsverfahren für Komponenten einer Projektionsbelichtungsanlage für die Halbleiterlithographie und Projektionsbelichtungsanlage
JP2020046581A (ja) * 2018-09-20 2020-03-26 株式会社Screenホールディングス 描画装置および描画方法
JP6924235B2 (ja) * 2019-09-19 2021-08-25 キヤノン株式会社 露光方法、露光装置、物品製造方法、および半導体デバイスの製造方法
WO2021192210A1 (ja) 2020-03-27 2021-09-30 株式会社日立ハイテク 半導体製造方法
DE102020207752A1 (de) * 2020-06-23 2021-12-23 Carl Zeiss Smt Gmbh Heizanordnung und Verfahren zum Heizen eines optischen Elements
US11287751B2 (en) * 2020-07-29 2022-03-29 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for lens heating control
DE102021206203A1 (de) 2021-06-17 2022-12-22 Carl Zeiss Smt Gmbh Heizanordnung und Verfahren zum Heizen eines optischen Elements
CN117321747A (zh) * 2022-03-16 2023-12-29 株式会社日立高新技术 温度检测装置以及半导体处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251299A (ja) * 1992-03-04 1993-09-28 Nikon Corp 投影露光装置
JPH088178A (ja) * 1994-04-22 1996-01-12 Canon Inc 投影露光装置及びデバイスの製造方法
JPH1050585A (ja) * 1996-08-07 1998-02-20 Nikon Corp 投影露光装置
JPH10256150A (ja) * 1997-03-14 1998-09-25 Nikon Corp 走査露光方法及び走査型露光装置
JP2000021722A (ja) * 1998-06-30 2000-01-21 Canon Inc 露光方法及び露光装置
JP2001196305A (ja) * 2000-01-05 2001-07-19 Carl Zeiss:Fa 光学装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441215A (en) * 1987-08-06 1989-02-13 Sharp Kk X-ray aligner
JP3238737B2 (ja) * 1992-01-13 2001-12-17 キヤノン株式会社 被照明部材の温度制御方法およびその装置
EP0532236B1 (en) * 1991-09-07 1997-07-16 Canon Kabushiki Kaisha System for stabilizing the shapes of optical elements, exposure apparatus using this system and method of manufacturing semiconductor devices
JP3463335B2 (ja) * 1994-02-17 2003-11-05 株式会社ニコン 投影露光装置
US5995263A (en) 1993-11-12 1999-11-30 Nikon Corporation Projection exposure apparatus
JPH0845827A (ja) 1994-07-28 1996-02-16 Canon Inc 投影露光装置及びそれを用いた半導体デバイスの製造方法
JPH09232213A (ja) * 1996-02-26 1997-09-05 Nikon Corp 投影露光装置
JP3646757B2 (ja) 1996-08-22 2005-05-11 株式会社ニコン 投影露光方法及び装置
EP0823662A2 (en) 1996-08-07 1998-02-11 Nikon Corporation Projection exposure apparatus
US5852490A (en) * 1996-09-30 1998-12-22 Nikon Corporation Projection exposure method and apparatus
US7274430B2 (en) 1998-02-20 2007-09-25 Carl Zeiss Smt Ag Optical arrangement and projection exposure system for microlithography with passive thermal compensation
US7112772B2 (en) * 1998-05-29 2006-09-26 Carl Zeiss Smt Ag Catadioptric projection objective with adaptive mirror and projection exposure method
DE19827602A1 (de) 1998-06-20 1999-12-23 Zeiss Carl Fa Verfahren zur Korrektur nicht-rotationssymmetrischer Bildfehler
DE19827603A1 (de) 1998-06-20 1999-12-23 Zeiss Carl Fa Optisches System, insbesondere Projektions-Belichtungsanlage der Mikrolithographie
DE19859634A1 (de) 1998-12-23 2000-06-29 Zeiss Carl Fa Optisches System, insbesondere Projektionsbelichtungsanlage der Mikrolithographie
JP3548464B2 (ja) 1999-09-01 2004-07-28 キヤノン株式会社 露光方法及び走査型露光装置
DE19956354B4 (de) 1999-11-24 2004-02-19 Carl Zeiss Verfahren zum Ausgleich von nicht rotationssymmetrischen Abbildungsfehlern in einem optischen System
DE19956353C1 (de) 1999-11-24 2001-08-09 Zeiss Carl Optische Anordnung
DE19963587B4 (de) 1999-12-29 2007-10-04 Carl Zeiss Smt Ag Projektions-Belichtungsanlage
DE19963588C2 (de) 1999-12-29 2002-01-10 Zeiss Carl Optische Anordnung
DE10000193B4 (de) 2000-01-05 2007-05-03 Carl Zeiss Smt Ag Optisches System
DE10140208C2 (de) * 2001-08-16 2003-11-06 Zeiss Carl Optische Anordnung
US20050099611A1 (en) * 2002-06-20 2005-05-12 Nikon Corporation Minimizing thermal distortion effects on EUV mirror
US20030235682A1 (en) * 2002-06-21 2003-12-25 Sogard Michael R. Method and device for controlling thermal distortion in elements of a lithography system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251299A (ja) * 1992-03-04 1993-09-28 Nikon Corp 投影露光装置
JPH088178A (ja) * 1994-04-22 1996-01-12 Canon Inc 投影露光装置及びデバイスの製造方法
JPH1050585A (ja) * 1996-08-07 1998-02-20 Nikon Corp 投影露光装置
JPH10256150A (ja) * 1997-03-14 1998-09-25 Nikon Corp 走査露光方法及び走査型露光装置
JP2000021722A (ja) * 1998-06-30 2000-01-21 Canon Inc 露光方法及び露光装置
JP2001196305A (ja) * 2000-01-05 2001-07-19 Carl Zeiss:Fa 光学装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119687A (ja) * 2010-12-02 2012-06-21 Asml Holding Nv パターニングデバイスサポート
US9298105B2 (en) 2010-12-02 2016-03-29 Asml Holding N.V. Patterning device support
KR101937290B1 (ko) * 2010-12-02 2019-01-10 에이에스엠엘 홀딩 엔.브이. 패터닝 디바이스 지지체
JP2012175102A (ja) * 2011-02-18 2012-09-10 Carl Zeiss Smt Gmbh 投影露光装置へ電磁放射を案内する装置
US9310701B2 (en) 2011-02-18 2016-04-12 Carl Zeiss Smt Gmbh Device for guiding electromagnetic radiation into a projection exposure apparatus
US11656554B2 (en) 2019-10-18 2023-05-23 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and method of manufacturing article
JP7378265B2 (ja) 2019-10-18 2023-11-13 キヤノン株式会社 露光装置、露光方法及び物品の製造方法

Also Published As

Publication number Publication date
JPWO2005022614A1 (ja) 2007-11-01
WO2005022614A1 (ja) 2005-03-10
EP1670041A1 (en) 2006-06-14
US20060244940A1 (en) 2006-11-02
EP1670041A4 (en) 2007-10-17
TWI352832B (ja) 2011-11-21
US7817249B2 (en) 2010-10-19
JP5099933B2 (ja) 2012-12-19
TW200514133A (en) 2005-04-16
KR20060120629A (ko) 2006-11-27

Similar Documents

Publication Publication Date Title
JP5099933B2 (ja) 露光方法及び装置、並びにデバイス製造方法
JP4692753B2 (ja) 露光方法及び装置、並びにデバイス製造方法
US6975387B2 (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing micro device
JP5266641B2 (ja) 露光装置及びデバイス製造方法
JP2003092253A (ja) 照明光学系、露光装置、及びマイクロデバイスの製造方法
JPWO2007000984A1 (ja) 露光方法及び露光装置、並びにデバイス製造方法
JPWO2002063664A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO1999060361A1 (fr) Instrument et procede de mesure d'aberrations, appareil et procede de sensibilisation par projection incorporant cet instrument, et procede de fabrication de dispositifs associe
JP2010267966A (ja) 光学装置、露光方法及び装置、並びにデバイス製造方法
US9513564B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2006073584A (ja) 露光装置及び方法並びにデバイス製造方法
JP4655332B2 (ja) 露光装置、露光装置の調整方法、およびマイクロデバイスの製造方法
JP2003297726A (ja) 露光装置
WO2002042728A1 (fr) Procede et dispositif permettant de mesurer les aberrations d'un systeme optique de projection et procede et dispositif d'exposition
JP4147574B2 (ja) 波面収差計測方法、投影光学系の調整方法及び露光方法、並びに露光装置の製造方法
JP3958261B2 (ja) 光学系の調整方法
WO2013094733A1 (ja) 計測方法、メンテナンス方法及びその装置
JP2010067866A (ja) 露光方法及び装置、並びにデバイス製造方法
JP2003045795A (ja) 光学特性計測方法、投影光学系の調整方法及び露光方法、並びに露光装置の製造方法
JP2003100612A (ja) 面位置検出装置、合焦装置の調整方法、面位置検出方法、露光装置及びデバイスの製造方法
JP2003045794A (ja) 光学特性計測方法、投影光学系の調整方法、露光方法、及び露光装置の製造方法、並びにマスク検査方法
JPH09213619A (ja) 露光方法及び露光装置
JP2009206274A (ja) 光学特性調整方法、露光方法、及びデバイス製造方法
JP2003031494A (ja) 光学特性計測用マスク、光学特性計測方法、投影光学系の調整方法、及び露光装置の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110928

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250