JP2010171041A - Vacuum treatment device - Google Patents

Vacuum treatment device Download PDF

Info

Publication number
JP2010171041A
JP2010171041A JP2009009600A JP2009009600A JP2010171041A JP 2010171041 A JP2010171041 A JP 2010171041A JP 2009009600 A JP2009009600 A JP 2009009600A JP 2009009600 A JP2009009600 A JP 2009009600A JP 2010171041 A JP2010171041 A JP 2010171041A
Authority
JP
Japan
Prior art keywords
vacuum chamber
window
waveguide
vacuum
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009009600A
Other languages
Japanese (ja)
Other versions
JP5075846B2 (en
Inventor
Hideo Takei
日出夫 竹井
Muneyuki Sato
宗之 佐藤
Satoshi Ikeda
智 池田
Kenji Mizuno
健二 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009009600A priority Critical patent/JP5075846B2/en
Publication of JP2010171041A publication Critical patent/JP2010171041A/en
Application granted granted Critical
Publication of JP5075846B2 publication Critical patent/JP5075846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive vacuum treatment device that treats a large-area substrate. <P>SOLUTION: Each window 21 formed with a protective film made of an yttrium-oxide thin-film is arranged in each through-hole 20 of a vacuum tank 10. Plasma of treatment gas containing reaction gas having fluorine atoms in a chemical structure is formed so as to form a texture on the surface of a substrate 14. The yttrium oxide does not react with fluorine, therefore, each window 21 is not etched. The longitudinal direction of each window 21 is directed in a different direction from each other, therefore, there is no radio wave interference in the vacuum tank 10. Consequently, plasma can be stably generated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は真空処理技術に係り、特に、フッ素原子を化学構造中に有する処理ガスをマイクロ波で励起させる真空処理技術に関する。   The present invention relates to a vacuum processing technique, and more particularly to a vacuum processing technique for exciting a processing gas having a fluorine atom in a chemical structure with a microwave.

基板表面にテクスチャ(凹凸)を形成したテクスチャ付き基板は、その凹凸パターンによって屈折率や光学特性を自由に制御することが可能であり、太陽電池基板や反射板等の光学部材に広く用いられている。
テクスチャ付き基板の製造方法としてウェットエッチング法が用いられているが、ウェットエッチング法で0.3〜0.5μmの微細な凹凸パターンを形成するのは困難である。
RIEによって基板をドライエッチングし、テクスチャを形成する方法もあり、RIEでは、シリコン基板のように組成が明確な基板はドライエッチング制御が容易であるが、ガラス基板のように金属成分が多く含まれ、且つ、その組成が不明確なものはエッチング制御が困難である。
特に、アルカリガラスは、アルミナ、MgO、CaO、BaO等の成分を含んでおり、これらの成分はSiO2と比べてエッチング速度が遅いため、RIE法で0.3〜0.5μmエッチングするためには、100〜200分もの長いエッチング時間を必要とする。そのため、エッチング工程中にアルカリガラス基板が高温になり、変形してしまう場合がある。また、アルカリガラス基板が長時間プラズマに曝されるため、プラズマダメージを受ける原因となる。
A textured substrate with a texture (unevenness) formed on the surface of the substrate can freely control the refractive index and optical characteristics by the unevenness pattern, and is widely used for optical members such as solar cell substrates and reflectors. Yes.
A wet etching method is used as a method for manufacturing a textured substrate, but it is difficult to form a fine uneven pattern of 0.3 to 0.5 μm by the wet etching method.
There is also a method of forming a texture by dry etching the substrate by RIE. In RIE, a substrate with a clear composition such as a silicon substrate is easy to control dry etching, but contains many metal components such as a glass substrate. In addition, it is difficult to control etching when the composition is unclear.
In particular, alkali glass contains components such as alumina, MgO, CaO, BaO, etc., and these components have a slower etching rate than SiO 2 , so that etching is performed by 0.3 to 0.5 μm by the RIE method. Requires an etching time as long as 100 to 200 minutes. For this reason, the alkali glass substrate may become hot during the etching process and may be deformed. Further, since the alkali glass substrate is exposed to plasma for a long time, it causes plasma damage.

特開平5−308059号公報JP-A-5-308059

本発明は上記要求に応えるために創作されたものであり、広い面積の基板を処理できる安価な真空処理装置を提供することにある。   The present invention has been created to meet the above-described demand, and an object thereof is to provide an inexpensive vacuum processing apparatus capable of processing a substrate having a large area.

上記課題を解決するため、本発明は、真空槽と、前記真空槽に取り付けられた複数の窓と、前記窓に一端が取り付けられた導波管と、前記導波管の他端に取り付けられ、0.3GHz以上3THz以下の周波数の電波であるマイクロ波を放出するマグネトロン発振器と、前記真空槽には、前記真空槽内にフッ素原子を化学構造に含む処理ガスを導入するガス導入系と、前記真空槽内を真空排気する真空排気系が接続され、前記導波管には、前記導波管内部に金属棒を長さ可変に挿入する反射波消去装置が設けられ、前記窓の前記真空槽内に露出する表面には、イットリウム酸化物薄膜が形成された真空処理装置である。
また、本発明は、前記各窓は長方形に形成され、その長手方向は、互いに異なる方向に向くように配置された真空処理装置である。
In order to solve the above problems, the present invention provides a vacuum chamber, a plurality of windows attached to the vacuum chamber, a waveguide having one end attached to the window, and the other end of the waveguide. A magnetron oscillator that emits a microwave having a frequency of 0.3 GHz to 3 THz, a gas introduction system for introducing a processing gas containing fluorine atoms into the vacuum chamber into the vacuum chamber, An evacuation system for evacuating the inside of the vacuum chamber is connected, and the waveguide is provided with a reflected wave erasing device that inserts a metal rod into the waveguide in a variable length, and the vacuum of the window This is a vacuum processing apparatus in which an yttrium oxide thin film is formed on the surface exposed in the tank.
Further, the present invention is the vacuum processing apparatus in which each of the windows is formed in a rectangular shape and the longitudinal directions thereof are arranged in different directions.

処理ガスと反応する石英から成る窓本体表面に、処理ガスと反応しないイットリウム酸化物(Y23)の薄膜が形成されており、処理ガスは窓本体には接触しないようにされているので、低コストの電波導入窓を設けることができる。
同じ形状をした複数の窓が同一面上で異なる方向に向けられているので、真空槽内に各窓から導入されるマイクロ波の振動面の方向が異なっており、マイクロ波同士の相互影響がない。
Since a thin film of yttrium oxide (Y 2 O 3 ) that does not react with the processing gas is formed on the surface of the window body made of quartz that reacts with the processing gas, the processing gas is prevented from contacting the window body. A low-cost radio wave introduction window can be provided.
Since multiple windows with the same shape are oriented in different directions on the same surface, the directions of the vibration surfaces of the microwaves introduced from each window in the vacuum chamber are different, and the mutual influence between microwaves Absent.

本発明の真空処理装置の一例An example of the vacuum processing apparatus of the present invention スタブ構造の説明Description of stub structure 電波導入窓の向きの説明Explanation of direction of radio wave introduction window

図1の符号1は、本発明の真空処理装置を示している。
この真空処理装置1は、真空槽10を有しており、真空槽10内に処理対象物を配置する載置台11が配置されている。
真空槽10の天井には、貫通孔20が複数形成されており、各貫通孔20には、窓21がそれぞれ配置されている。
窓21はマイクロ波が透過可能であり、透明な窓本体と、窓本体の表面に形成された保護膜とで構成されている。ここでは、窓本体は石英で構成されており、保護膜は、窓本体の表面にCVD法によって形成された膜厚1μmのイットリウム酸化物(Y23)薄膜で構成されている。
窓21は保護膜が真空槽10の内部に露出する向きで貫通孔20に固定されており、窓本体が真空槽10の内部雰囲気には接触しないようになっている。
各窓21の真空槽10の外側の位置には、導波管22を介してマグネトロン発振器23がそれぞれ設けられている。
Reference numeral 1 in FIG. 1 indicates a vacuum processing apparatus of the present invention.
This vacuum processing apparatus 1 has a vacuum chamber 10, and a mounting table 11 on which a processing object is disposed is disposed in the vacuum chamber 10.
A plurality of through holes 20 are formed in the ceiling of the vacuum chamber 10, and windows 21 are respectively disposed in the through holes 20.
The window 21 is capable of transmitting microwaves, and includes a transparent window body and a protective film formed on the surface of the window body. Here, the window body is made of quartz, and the protective film is made of a 1 μm-thick yttrium oxide (Y 2 O 3 ) thin film formed on the surface of the window body by the CVD method.
The window 21 is fixed to the through hole 20 in such a direction that the protective film is exposed to the inside of the vacuum chamber 10, so that the window main body does not contact the internal atmosphere of the vacuum chamber 10.
A magnetron oscillator 23 is provided at a position outside the vacuum chamber 10 of each window 21 via a waveguide 22.

各マグネトロン発振器23にはそれぞれ高周波電源26が接続されている。各マグネトロン発振器23は、高周波電源26から電圧を印加されるとマイクロ波(周波数300MHz〜3THzの電波、ここでは、2.45GHz)を発生させ、発生したマイクロ波は導波管22を通って窓21に到達し、窓21から真空槽10内に導入される。
導波管22は断面が長方形であり、その側面には反射波消去装置が設けられている。図2に示すように、この反射波消去装置30は、導波管22の長方形の長辺となる幅広の側面に設けられた複数個の孔29(ここでは3個)と、各孔29にそれぞれ一本ずつ挿入されたネジ24で構成されている。
各ネジ24の先端部分は金属棒であり、導波管22の内部に位置している。ネジ24の先端とは反対側のネジ頭25は導波管22の外部に出されており、ネジ頭25を回転させることで、導波管22の内部に挿入されるネジ24の先端部分の長さを調節できるようにされている(スタブ構造)。
A high frequency power source 26 is connected to each magnetron oscillator 23. Each magnetron oscillator 23 generates a microwave (a radio wave having a frequency of 300 MHz to 3 THz, here, 2.45 GHz) when a voltage is applied from a high-frequency power source 26, and the generated microwave passes through the waveguide 22 and forms a window. 21, and is introduced into the vacuum chamber 10 through the window 21.
The waveguide 22 has a rectangular cross section, and a reflected wave erasing device is provided on a side surface thereof. As shown in FIG. 2, the reflected wave canceling device 30 includes a plurality of holes 29 (three in this case) provided on the wide side surface of the long side of the rectangular shape of the waveguide 22, and the holes 29. Each of the screws 24 is inserted one by one.
A tip portion of each screw 24 is a metal rod and is located inside the waveguide 22. The screw head 25 on the opposite side to the tip of the screw 24 is extended to the outside of the waveguide 22. By rotating the screw head 25, the tip of the screw 24 inserted into the waveguide 22 is rotated. The length can be adjusted (stub structure).

マグネトロン発振器23から放射され、導波管22内部を進行するマイクロ波は、その一部が各ネジ24の先端部分で反射されてスタブ構造の反射波が生成される。他方、マイクロ波のうち、各ネジ24を通過して進行する部分は、導波管22の終端の窓21の位置で、その一部が反射されて導波管22端部での反射波となる。
導波管22端部での反射波がスタブ構造による反射波によって打ち消されるように各ネジ24の挿入長さを調節すると、導波管22端部の反射波による定在波が導波管22内で発生せず、真空槽10内に導入されるマイクロ波のエネルギーが増大する。
A part of the microwave radiated from the magnetron oscillator 23 and traveling inside the waveguide 22 is reflected by the tip portion of each screw 24 to generate a reflected wave having a stub structure. On the other hand, the portion of the microwave that travels through each screw 24 is reflected at the position of the window 21 at the end of the waveguide 22 and is reflected at the end of the waveguide 22. Become.
When the insertion length of each screw 24 is adjusted so that the reflected wave at the end of the waveguide 22 is canceled out by the reflected wave due to the stub structure, the standing wave due to the reflected wave at the end of the waveguide 22 is changed into the waveguide 22. The energy of the microwave that is not generated in the chamber and introduced into the vacuum chamber 10 increases.

真空槽10には真空排気系(真空排気装置)18とガス導入系(ガス導入装置)34が接続されている。ガス導入系34は、処理ガスが配置されたガス源31に接続されており、真空槽10内を真空排気し、真空雰囲気を維持しながら処理対象物を真空槽10内に搬入し、載置台11上に乗せ、ガス導入系34から真空槽10内に処理ガスを導入する。
その状態で各マグネトロン発振器23からマイクロ波を放出させると、各窓21部を透過したマイクロ波が、真空槽10内に導入された処理ガスに照射され、処理ガスのプラズマが生成される。
An evacuation system (evacuation apparatus) 18 and a gas introduction system (gas introduction apparatus) 34 are connected to the vacuum chamber 10. The gas introduction system 34 is connected to a gas source 31 in which a processing gas is arranged, the inside of the vacuum chamber 10 is evacuated, a processing object is carried into the vacuum chamber 10 while maintaining a vacuum atmosphere, and a mounting table. The processing gas is introduced into the vacuum chamber 10 from the gas introduction system 34.
When microwaves are emitted from each magnetron oscillator 23 in this state, the microwaves that have passed through the windows 21 are irradiated to the processing gas introduced into the vacuum chamber 10, and plasma of the processing gas is generated.

各窓21の形状は、導波管22の断面(マイクロ波進行方向に対して直角な面)と同じ形状であり、各窓21は、図3に示すように、長方形に形成されており、その長辺(長手方向)が伸びる方向が互いに異なる方向に向けられている。
例えば、複数の窓21のうち、一つの窓21を基準にした場合、他の窓21は、基準の窓21に対して、5°以上175°以下のそれぞれ異なる角度で配置されている。
このように、窓の長辺が互いに平行にならないように、角度が調整されており、マグネトロン発振器23から導波管22と窓21を介して真空槽10内に導入されるマイクロ波は振動面が重ならないので、干渉が発生せずに均一なプラズマが形成され、また、異常放電が生じないようになっている。
ここでは、処理ガスはフッ素化合物を含むガスであり、例えば、C38ガスとSF6ガスとArガスとで構成され、処理ガス中の少なくとも一種の反応ガスは、化学構造中にフッ素原子を有している。
The shape of each window 21 is the same shape as the cross section of the waveguide 22 (surface perpendicular to the microwave traveling direction), and each window 21 is formed in a rectangular shape as shown in FIG. The directions in which the long sides (longitudinal directions) extend are directed in different directions.
For example, when one window 21 is used as a reference among the plurality of windows 21, the other windows 21 are arranged at different angles of 5 ° or more and 175 ° or less with respect to the reference window 21.
In this way, the angle is adjusted so that the long sides of the windows are not parallel to each other, and the microwave introduced from the magnetron oscillator 23 into the vacuum chamber 10 through the waveguide 22 and the window 21 has a vibration surface. Since they do not overlap, uniform plasma is formed without interference, and abnormal discharge does not occur.
Here, the processing gas is a gas containing a fluorine compound, and is composed of, for example, C 3 F 8 gas, SF 6 gas, and Ar gas, and at least one kind of reaction gas in the processing gas contains fluorine atoms in the chemical structure. have.

真空槽10内は、C38ガスを250SCCM、SF6ガスを350SCCM、Arガスを300SCCMを導入し、60Pa程度の圧力になるように真空排気されている。
反応性ガスであるCF4のイオンやラジカルは、フッ素原子を含むため水晶やガラス等のSiO2成分と反応し、SiO2成分を気化させ、真空排気によって除去するが、Y23やAlNとは反応せず、除去されない。AlNの場合は、窓21全体をAlNで構成するためコストが高いが、本発明は、窓本体は石英で構成し、真空槽10の内側にY23膜の保護膜を配置し、窓本体と処理ガスとが接触しないようにしているので、窓21は反応性ガスとは反応しない。
真空槽10内部の、窓21及び処理ガスの導入位置と、載置台11の間には、真空槽10と共に接地電位に置かれた網37が配置されている。処理ガスのプラズマは、網37と天井の間で生成され、プラズマ中で発生した処理ガスのイオンやラジカルは、網37を通って載置台11方向に移動する。
The inside of the vacuum chamber 10 is evacuated to a pressure of about 60 Pa by introducing 250 SCCM of C 3 F 8 gas, 350 SCCM of SF 6 gas, and 300 SCCM of Ar gas.
CF 4 ions and radicals, which are reactive gases, contain fluorine atoms and react with SiO 2 components such as crystal and glass to vaporize the SiO 2 components and remove them by evacuation, but Y 2 O 3 and AlN Does not react and is not removed. In the case of AlN, since the entire window 21 is made of AlN, the cost is high. However, in the present invention, the window body is made of quartz, and a protective film of Y 2 O 3 film is arranged inside the vacuum chamber 10. Since the main body and the processing gas are not in contact with each other, the window 21 does not react with the reactive gas.
Between the window 21 and the introduction position of the processing gas inside the vacuum chamber 10 and the mounting table 11, a net 37 placed at the ground potential together with the vacuum chamber 10 is disposed. The plasma of the processing gas is generated between the net 37 and the ceiling, and the ions and radicals of the processing gas generated in the plasma move in the direction of the mounting table 11 through the net 37.

載置台11は、電極12と、電極12上に配置された絶縁板13とを有しており、絶縁板13上には処理対象物である基板14が配置されている。
この基板14は300mm×280mmの大きさのアルカリガラスの基板である。
電極12は交流電源27に接続されており、電極12に13.56MHz程度の交流電圧を印加し、イオン入射を促進するように構成されている。
アルカリガラスの成分は、シリカ(Si)、及びその酸化物、CaO、アルミナ、Na2O、K2O、MgOであるが、基板14中のSiやSiO2がエッチングされると、残渣のCa、Al23、Mg等がマスク剤となり、膜厚方向にある程度エッチングされると、エッチングの進行は停止する。
The mounting table 11 includes an electrode 12 and an insulating plate 13 disposed on the electrode 12, and a substrate 14 that is a processing object is disposed on the insulating plate 13.
The substrate 14 is an alkali glass substrate having a size of 300 mm × 280 mm.
The electrode 12 is connected to an AC power supply 27, and is configured to apply an AC voltage of about 13.56 MHz to the electrode 12 to promote ion incidence.
The components of the alkali glass are silica (Si) and oxides thereof, CaO, alumina, Na 2 O, K 2 O, and MgO, but when Si or SiO 2 in the substrate 14 is etched, residual Ca When Al 2 O 3 , Mg or the like becomes a mask agent and is etched to some extent in the film thickness direction, the progress of etching stops.

本発明では、Arで残渣物がスパッタリングされて除去される。また、負性ガスの作用により、クーロン力によるマスク材の集塵によりテクスチャーの形成が行われる。
つまり、C38ガスとSF6ガスが解離し、生成されたFマイナスイオンからの電荷移動により、一部脱離したアルミニウム原子の負チャージと、その他の正にチャージされたマスク材が集塵し、新たなマスク材を形成するが、マスク材が希薄になった部分は直ぐにエッチングされ、他方、マスク材自体も僅かにエッチングされ、このマスク材のスパッタエッチングレートとSiO2のエッチングレートの選択比により、テクスチャー形状はコントロールされ、微細凹凸パターン付きの基板14を作成することができる。
In the present invention, residues are removed by sputtering with Ar. Further, the texture is formed by the dust collection of the mask material by the Coulomb force by the action of the negative gas.
That is, the C 3 F 8 gas and the SF 6 gas are dissociated, and the negative charge of the partially desorbed aluminum atoms and other positively charged mask materials are collected by the charge transfer from the generated F negative ions. Dust forms a new mask material, but the portion where the mask material is diluted is immediately etched, while the mask material itself is also slightly etched, and the sputter etching rate of this mask material and the etching rate of SiO 2 The texture shape is controlled by the selection ratio, and the substrate 14 with a fine uneven pattern can be created.

基板14と反応ガスが反応して生成されたガスは、真空排気によって除去される。
基板14表面にテクスチャーが形成された後、基板14は真空槽10の外部に搬出される。
なお、上記実施例では基板14はアルカリガラスであったが、本発明装置には、無アルカリガラス、石英基板、Si基板を使用してテクスチャーを形成することもできる。処理ガスの組成を変えることで、形成される微細凹凸パターンの屈折率を変化させることができる。
また、基板14表面に形成された有機薄膜等のアッシングにももちいることができる。
The gas generated by the reaction between the substrate 14 and the reaction gas is removed by evacuation.
After the texture is formed on the surface of the substrate 14, the substrate 14 is carried out of the vacuum chamber 10.
In the above embodiment, the substrate 14 is alkali glass. However, a texture can be formed by using an alkali-free glass, a quartz substrate, or a Si substrate in the apparatus of the present invention. By changing the composition of the processing gas, the refractive index of the fine concavo-convex pattern to be formed can be changed.
It can also be used for ashing of an organic thin film formed on the surface of the substrate 14.

装置について説明したが、本発明は、部分的に露出した薄膜を除去するエッチング装置であってもよい。   Although the apparatus has been described, the present invention may be an etching apparatus that removes a partially exposed thin film.

1……真空処理装置
10……真空槽
21……窓
22……導波管
23……マグネトロン発振器
30……反射波消去装置
DESCRIPTION OF SYMBOLS 1 ... Vacuum processing apparatus 10 ... Vacuum chamber 21 ... Window 22 ... Waveguide 23 ... Magnetron oscillator 30 ... Reflected wave elimination apparatus

Claims (2)

真空槽と、
前記真空槽に取り付けられた複数の窓と、
前記窓に一端が取り付けられた導波管と、
前記導波管の他端に取り付けられ、0.3GHz以上3THz以下の周波数の電波であるマイクロ波を放出するマグネトロン発振器と、
前記真空槽には、前記真空槽内にフッ素原子を化学構造に含む処理ガスを導入するガス導入系と、前記真空槽内を真空排気する真空排気系が接続され、
前記導波管には、前記導波管内部に金属棒を長さ可変に挿入する反射波消去装置が設けられ、
前記窓の前記真空槽内に露出する表面には、イットリウム酸化物薄膜が形成された真空処理装置。
A vacuum chamber;
A plurality of windows attached to the vacuum chamber;
A waveguide having one end attached to the window;
A magnetron oscillator that is attached to the other end of the waveguide and emits microwaves having a frequency of 0.3 GHz or more and 3 THz or less;
The vacuum chamber is connected to a gas introduction system for introducing a processing gas containing a fluorine atom in the chemical structure into the vacuum chamber, and a vacuum exhaust system for evacuating the vacuum chamber.
The waveguide is provided with a reflected wave erasing device for inserting a metal rod into the waveguide in a variable length.
A vacuum processing apparatus in which an yttrium oxide thin film is formed on a surface of the window exposed in the vacuum chamber.
前記各窓は長方形に形成され、その長手方向は、互いに異なる方向に向くように配置された請求項1記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein each of the windows is formed in a rectangular shape, and the longitudinal directions thereof are arranged in different directions.
JP2009009600A 2009-01-20 2009-01-20 Vacuum processing equipment Active JP5075846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009009600A JP5075846B2 (en) 2009-01-20 2009-01-20 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009009600A JP5075846B2 (en) 2009-01-20 2009-01-20 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2010171041A true JP2010171041A (en) 2010-08-05
JP5075846B2 JP5075846B2 (en) 2012-11-21

Family

ID=42702921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009009600A Active JP5075846B2 (en) 2009-01-20 2009-01-20 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP5075846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680493B1 (en) 2012-07-25 2016-11-28 도쿄엘렉트론가부시키가이샤 Film forming apparatus
JP2019153789A (en) * 2018-03-02 2019-09-12 ラム リサーチ コーポレーションLam Research Corporation Quartz part with protective coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216073A (en) * 1993-01-13 1994-08-05 Kobe Steel Ltd Plasma processing apparatus
JP2003142460A (en) * 2001-11-05 2003-05-16 Shibaura Mechatronics Corp Plasma treatment apparatus
JP2003188103A (en) * 2001-12-14 2003-07-04 Tokyo Electron Ltd Plasma processor
JP2004273618A (en) * 2003-03-06 2004-09-30 Toshiba Ceramics Co Ltd Plasma-resistant member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216073A (en) * 1993-01-13 1994-08-05 Kobe Steel Ltd Plasma processing apparatus
JP2003142460A (en) * 2001-11-05 2003-05-16 Shibaura Mechatronics Corp Plasma treatment apparatus
JP2003188103A (en) * 2001-12-14 2003-07-04 Tokyo Electron Ltd Plasma processor
JP2004273618A (en) * 2003-03-06 2004-09-30 Toshiba Ceramics Co Ltd Plasma-resistant member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680493B1 (en) 2012-07-25 2016-11-28 도쿄엘렉트론가부시키가이샤 Film forming apparatus
JP2019153789A (en) * 2018-03-02 2019-09-12 ラム リサーチ コーポレーションLam Research Corporation Quartz part with protective coating

Also Published As

Publication number Publication date
JP5075846B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
TWI688312B (en) Particle generation suppressor by dc bias modulation
JP2007059403A (en) Microwave resonance plasma generator, plasma processing system equipped with above generator and generating method of microwave resonance plasma of plasma processing system
JP2011515582A (en) Coaxial microwave assisted deposition and etching system
JP2006128000A (en) Plasma treatment device
JP2021502688A (en) Radiofrequency plasma ion source of linearized energy
JP2002280196A (en) Plasma generating device using microwave
WO2012114856A1 (en) Silicon nitride film deposition method, organic electronic device manufacturing method, and silicon nitride film deposition device
TWI384086B (en) Film forming apparatus and thin film forming method
JP5075846B2 (en) Vacuum processing equipment
US20090311145A1 (en) Reaction chamber structural parts with thermal spray ceramic coating and method for forming the ceramic coating thereof
CN104282518A (en) Cleaning method for plasma treatment device
JPH03191074A (en) Microwave plasma treating device
JPH1050666A (en) Plasma-treating apparatus
JP5075805B2 (en) Method for manufacturing textured substrate
JP2005044822A (en) Plasma processing system
JP2008098474A (en) Plasma processing equipment, its operation method, plasma processing method and manufacturing method of electronic device
JP2004281081A (en) Manufacturing method of protective film for fpd, protective film, and fpd using it
JP3651564B2 (en) Surface wave plasma etching equipment
JP2004305918A (en) Plasma treatment method and plasma treatment apparatus used therefor
KR100387900B1 (en) cleanning method of thin layer process device and this layer process device adopting the same
TWI722330B (en) Semiconductor manufacturing apparatus
JP2002275633A (en) Carbon thin film-forming apparatus
NL9401790A (en) Method and device for etching thin layers, preferably of indium tin oxide layers.
JP2006278498A (en) Plasma etching method and apparatus therefor
JP3373466B2 (en) Plasma processing apparatus and plasma processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent or registration of utility model

Ref document number: 5075846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250