JP2010160527A - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP2010160527A
JP2010160527A JP2010100428A JP2010100428A JP2010160527A JP 2010160527 A JP2010160527 A JP 2010160527A JP 2010100428 A JP2010100428 A JP 2010100428A JP 2010100428 A JP2010100428 A JP 2010100428A JP 2010160527 A JP2010160527 A JP 2010160527A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
light diffusion
layer
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010100428A
Other languages
Japanese (ja)
Inventor
Motohiro Yamahara
基裕 山原
Akiyoshi Kanemitsu
昭佳 金光
Tsutomu Furuya
勉 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010100428A priority Critical patent/JP2010160527A/en
Publication of JP2010160527A publication Critical patent/JP2010160527A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction

Abstract

<P>PROBLEM TO BE SOLVED: To materialize a display with a wide viewing angle and high color reproducibility in a liquid crystal display. <P>SOLUTION: The first light diffusion layer 3 has a light diffusion plate 31 and a prism sheet 32, and a luminous intensity distribution characteristic thereof is such that a luminance value in the 70° direction with respect to the normal line on a plane of light incidence of the liquid crystal cell is equal to or less than 20% of the luminance value in the normal direction and that emitted light from the first light diffusion layer 3 contains non-parallel light. The second light diffusion layer 5 includes a second polarizing plate 51 and a glare-proof layer 52. The glare-proof layer 52 includes a base film formed by curing a curable resin composition and 10-40 pts.mass of a filler with respect to 100 pts.mass of solids of the curable resin composition. A light diffusion characteristic of the glare-proof layer 52 is such that a light emission angle of laser light emitted from the glare-proof layer 52 having relative intensity of 0.0008% for intensity of laser light with a wavelength of 549 nm incident from the normal direction on the rear surface of the glare-proof layer 52 is 40° or larger with respect to the normal direction on the rear surface of the glare-proof layer 52. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は液晶表示装置に関し、より詳細には、視野角特性に優れた液晶表示装置に関するものである。   The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having excellent viewing angle characteristics.

近年、液晶表示装置は、携帯電話機やPDA(Personal Digital Assistant)等の携帯用小型電子機器から、パーソナルコンピュータやテレビなどの大型電気機器に至るまで広く使用されており、その用途は益々拡大している。   In recent years, liquid crystal display devices are widely used from portable small electronic devices such as mobile phones and PDAs (Personal Digital Assistants) to large electric devices such as personal computers and televisions, and their applications are expanding more and more. Yes.

液晶表示装置は、CRTやPDP(プラズマディスプレイパネル)などの自発光型の表示装置とは異なり、表示素子自体は発光しない。このため、透過型の液晶表示装置では、液晶表示素子の背面側にバックライト装置が設けられており、このバックライト装置からの照明光の透過光量を液晶表示素子が画素ごとに制御することによって画像の表示が行われる。   Unlike a self-luminous display device such as a CRT or PDP (plasma display panel), a liquid crystal display device does not emit light. For this reason, in a transmissive liquid crystal display device, a backlight device is provided on the back side of the liquid crystal display element, and the liquid crystal display element controls the transmitted light amount of illumination light from the backlight device for each pixel. An image is displayed.

液晶表示装置には、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignmen)方式、IPS(In-plane Switching)方式などのさまざまな方式があるが、これらの方式には、液晶分子が位相差値を持つことによる光漏れや、偏光板における斜視時の軸角度のずれなどに起因して、それぞれに視野角の狭い方向(方位角)が存在する。   There are various types of liquid crystal display devices such as a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Vertical Alignmen) method, and an IPS (In-plane Switching) method. A narrow viewing angle direction (azimuth angle) exists due to light leakage due to the liquid crystal molecules having a retardation value, a shift of the axial angle of the polarizing plate when it is oblique, and the like.

そこで、視野角を拡大する方法として、位相差板による、液晶セルや偏光板への光学補償という方法が広く採用されている(例えば、特許文献1及び特許文献2を参照)。   Therefore, as a method of expanding the viewing angle, a method of optical compensation to a liquid crystal cell or a polarizing plate using a retardation plate is widely adopted (see, for example, Patent Document 1 and Patent Document 2).

特開平4-229828号公報JP-A-4-29828 特開平4-258923号公報Japanese Unexamined Patent Publication No. H4-258923

本発明は、広視野角で色再現性の高い表示を実現できる液晶表示装置を提供することを目的とする。   An object of the present invention is to provide a liquid crystal display device capable of realizing a display with a wide viewing angle and high color reproducibility.

また、本発明の目的は、位相差板を用いることなく、すなわち部品点数を増やすことなく視野角の拡大が図れる液晶表示装置を提供することにある。   Another object of the present invention is to provide a liquid crystal display device capable of expanding the viewing angle without using a retardation plate, that is, without increasing the number of components.

本発明による液晶表示装置は、一対の基板の間に液晶層が設けられてなる液晶セルと、液晶セルの背面側に設けられたバックライト装置と、バックライト装置と液晶セルとの間に配置された第1光拡散層と、第1光拡散層と液晶セルとの間に配置された第1偏光板と、液晶セルの前面側に配置された第2光拡散層とを備え、前記第1光拡散層は、光拡散機能と光偏向機能との両機能又はいずれか一方の機能を有し、前記第1光拡散層からの出射光は、(i)前記バックライト装置を光源としたとき、VA方式液晶セルの光入射面の法線に対して70°方向の輝度値が該法線方向の輝度値に対して20%以下である配光特性を有し、且つ、(ii)非平行光を含み、前記第2光拡散層は、第2偏光板と、第2偏光板の前面側に設けられた防眩層とから構成され、該防眩層は、硬化性樹脂組成物を硬化させてなる基材フィルムと、該硬化性樹脂組成物の固形分100質量部に対して10質量部〜40質量部のフィラーとを含み、該防眩層の光拡散特性は、該防眩層の背面の法線方向から入射する波長549nmのレーザ光の強度に対して相対強度が0.0008%となる、該防眩層から出射するレーザ光の、該防眩層の背面の法線方向に対しての光出射角度が40°以上である。なお、本明細書において、液晶表示装置の表示画面となる側を「前面側」と称し、それとは反対側を「背面側」と称するものとする。   A liquid crystal display device according to the present invention includes a liquid crystal cell in which a liquid crystal layer is provided between a pair of substrates, a backlight device provided on the back side of the liquid crystal cell, and the backlight device and the liquid crystal cell. The first light diffusion layer, a first polarizing plate disposed between the first light diffusion layer and the liquid crystal cell, and a second light diffusion layer disposed on the front side of the liquid crystal cell, The one light diffusing layer has both or both of a light diffusing function and a light deflecting function, and the light emitted from the first light diffusing layer is (i) using the backlight device as a light source. And having a light distribution characteristic that the luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the VA liquid crystal cell is 20% or less with respect to the luminance value in the normal direction, and (ii) The second light diffusing layer includes non-parallel light, and the second light diffusing layer includes a second polarizing plate and an antiglare layer provided on the front side of the second polarizing plate. The antiglare layer is composed of a base film formed by curing the curable resin composition, and 10 to 40 parts by mass filler with respect to 100 parts by mass of the solid content of the curable resin composition. The anti-glare layer has a light diffusion characteristic of 0.0008% relative to the intensity of laser light having a wavelength of 549 nm incident from the normal direction of the back surface of the anti-glare layer. The light emission angle of the laser beam emitted from the normal direction of the back surface of the antiglare layer is 40 ° or more. In the present specification, the side to be the display screen of the liquid crystal display device is referred to as “front side”, and the opposite side is referred to as “back side”.

ここで、前記第1光拡散層は、光拡散機能と光偏向機能との両機能を有していてもよい。   Here, the first light diffusion layer may have both a light diffusion function and a light deflection function.

また、前記第1光拡散層は、前記光拡散機能を奏する光拡散板と、前記光偏向機能を奏する光偏向構造板とを有し、前記光拡散板の前面側に前記光偏向構造板が設けられた構成であってもよい。   The first light diffusion layer includes a light diffusion plate that performs the light diffusion function and a light deflection structure plate that performs the light deflection function, and the light deflection structure plate is disposed on the front side of the light diffusion plate. The provided structure may be sufficient.

前記液晶セルとしては、TN方式液晶、IPS方式液晶、VA方式液晶のいずれかであるのが好ましい。   The liquid crystal cell is preferably a TN liquid crystal, an IPS liquid crystal, or a VA liquid crystal.

また、視野角特性及び色再現性のさらなる向上の観点からは、前記液晶セルの背面側及び/又は前面側に位相差板をさらに配置するのが好ましい。   Further, from the viewpoint of further improving viewing angle characteristics and color reproducibility, it is preferable to further dispose a retardation plate on the back side and / or front side of the liquid crystal cell.

一方、部品点数を少なくして、装置の組み立て性を向上させ生産性を上げる観点から、位相差板を具備しないようにしてもよい。   On the other hand, the retardation plate may not be provided from the viewpoint of reducing the number of parts, improving the assembly of the apparatus and increasing the productivity.

そしてまた、前記液晶セルとしてTN方式液晶とし、且つ、位相差板を具備しないようにしてもよい。   The liquid crystal cell may be a TN liquid crystal and may not include a retardation plate.

前記硬化性樹脂組成物としては紫外線硬化性樹脂組成物が好ましい。   The curable resin composition is preferably an ultraviolet curable resin composition.

本発明の液晶表示装置では、広視野角、高表示品位および優れた色再現性が得られる。また、位相差板を用いなくても実使用上支障のない視野角特性が得られる。   In the liquid crystal display device of the present invention, a wide viewing angle, high display quality, and excellent color reproducibility can be obtained. Further, viewing angle characteristics that do not hinder actual use can be obtained without using a retardation plate.

本発明に係る液晶表示装置の一例を示す概説図である。It is a schematic diagram which shows an example of the liquid crystal display device which concerns on this invention. 第1光拡散層の一例を示す概説図である。It is a schematic diagram which shows an example of a 1st light-diffusion layer. 第1光拡散層の他の例を示す概説図である。It is an outline figure showing other examples of the 1st light diffusion layer. 第1光拡散層について、液晶セルの光入射面の法線に対して70°方向の輝度値を測定する方法の一例である。It is an example of the method of measuring the luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell for the first light diffusion layer. 非平行光の定義を説明する図である。It is a figure explaining the definition of non-parallel light. 第2光拡散層の構成例を示す概説図である。It is a schematic diagram which shows the structural example of a 2nd light-diffusion layer. 第2光拡散層におけるレーザ光の入射方向と出射方向とを模式的に表した図である。It is the figure which represented typically the incident direction and emitting direction of the laser beam in a 2nd light-diffusion layer. 防眩層から出射するレーザ光の相対強度を光出射角度に対してプロットしたグラフの一例である。この例では、光出射角度が20°、40°、46°および60°であるとき、防眩層から出射するレーザ光の相対強度は、それぞれ0.01%、0.001%、0.0008%および0.0003%である。It is an example of the graph which plotted the relative intensity | strength of the laser beam radiate | emitted from a glare-proof layer with respect to the light emission angle. In this example, when the light emission angles are 20 °, 40 °, 46 °, and 60 °, the relative intensities of the laser light emitted from the antiglare layer are 0.01%, 0.001%, and 0.0008, respectively. % And 0.0003%. 本発明に係る液晶表示装置の他の例を示す概説図である。It is a schematic diagram which shows the other example of the liquid crystal display device which concerns on this invention.

以下、本発明に係る液晶表示装置について図に基づいて説明するが、本発明はこれらの実施形態に何ら限定されるものではない。   Hereinafter, the liquid crystal display device according to the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments.

図1に、本発明に係る液晶表示装置の一実施形態を示す概説図を示す。図1の液晶表示装置はノーマリホワイトモードのTN方式の液晶表示装置であって、一対の透明基板11a,11bの間に液晶層12が設けられてなる液晶セル1と、液晶セル1の背面側に設けられた、複数本の冷陰極管21が所定間隔で平行に設置されてなる直下型のバックライト装置2と備える。バックライト装置2と液晶セル1との間には、バックライト装置側から順に第1光拡散層3、第1偏光板4が配置され、液晶セル1の前側面には第2光拡散層5が配置されている。第1光拡散層3は、光拡散機能を奏する光拡散板31と、光拡散板31の前側面に設けられた、光偏向機能を奏するプリズムシート(光偏向構造板)32とから構成される。また第2光拡散層5は、第2偏光板51と、第2偏光板51の前側面に設けられた防眩層52とから構成される。   FIG. 1 is a schematic view showing an embodiment of a liquid crystal display device according to the present invention. The liquid crystal display device of FIG. 1 is a normally white mode TN liquid crystal display device, and includes a liquid crystal cell 1 in which a liquid crystal layer 12 is provided between a pair of transparent substrates 11a and 11b, and a back surface of the liquid crystal cell 1. A direct-type backlight device 2 provided with a plurality of cold-cathode tubes 21 provided in parallel at predetermined intervals is provided. A first light diffusion layer 3 and a first polarizing plate 4 are disposed between the backlight device 2 and the liquid crystal cell 1 in this order from the backlight device side, and a second light diffusion layer 5 is disposed on the front side surface of the liquid crystal cell 1. Is arranged. The first light diffusing layer 3 includes a light diffusing plate 31 having a light diffusing function, and a prism sheet (light deflecting structure plate) 32 having a light deflecting function provided on the front side surface of the light diffusing plate 31. . The second light diffusion layer 5 includes a second polarizing plate 51 and an antiglare layer 52 provided on the front side surface of the second polarizing plate 51.

このような構成の液晶表示装置において、バックライト装置2から放射された光は、第1光拡散層3の光拡散板31によって拡散された後、プリズムシート32によって液晶セル1の光入射面の法線方向に対する所定の指向性が付与される。この法線方向に対する指向性は従来の装置よりも低い設定とされている。そして、所定の指向性が付与された光は、第1偏光板4によって円偏光から直線偏光とされて液晶セル1に入射する。液晶セル1に入射した光は、電場によって制御された液晶層12の配向によって画素ごとに偏光面が制御されて液晶セル1から出射する。そして、液晶セル1から出射した光は、第2光拡散層5によって画像化されると共に拡散される。   In the liquid crystal display device having such a configuration, the light emitted from the backlight device 2 is diffused by the light diffusion plate 31 of the first light diffusion layer 3, and then the light incident surface of the liquid crystal cell 1 by the prism sheet 32. Predetermined directivity with respect to the normal direction is given. The directivity with respect to the normal direction is set to be lower than that of the conventional apparatus. The light imparted with a predetermined directivity is changed from circularly polarized light to linearly polarized light by the first polarizing plate 4 and enters the liquid crystal cell 1. The light incident on the liquid crystal cell 1 is emitted from the liquid crystal cell 1 with its polarization plane controlled for each pixel by the orientation of the liquid crystal layer 12 controlled by the electric field. The light emitted from the liquid crystal cell 1 is imaged and diffused by the second light diffusion layer 5.

このように、本発明の液晶表示装置では、第1光拡散層3における、液晶セル1に入射する光の法線方向への指向性を従来よりも低くする、すなわち液晶セル1への入射光を従来よりも拡散されたものとするとともに、液晶セル1からの出射光を第2光拡散層5によってさらに拡散させる。これによって、従来の装置に比べて広視野角および優れた色再現性が得られるようになる。   Thus, in the liquid crystal display device of the present invention, the directivity in the normal direction of the light incident on the liquid crystal cell 1 in the first light diffusion layer 3 is made lower than that in the conventional case, that is, the incident light on the liquid crystal cell 1. The light emitted from the liquid crystal cell 1 is further diffused by the second light diffusion layer 5. As a result, a wide viewing angle and excellent color reproducibility can be obtained as compared with the conventional apparatus.

以下、本発明の液晶表示装置の各部材について説明する。まず、本発明で使用する液晶セル1は、不図示のスペーサにより所定距離を隔てて対向配置された一対の透明基板11a,11bと、この一対の透明基板11a,11bの間に液晶を封入されてなる液晶層12とを備える。この図では図示していないが、一対の透明基板11a,11bには、それぞれ透明電極や配向膜が積層形成されており、透明電極間に表示データに基づいた電圧が印加されることによって液晶が配向する。液晶セル1の表示方式はここではTN方式であるが、IPS方式、VA方式などの表示方式を採用しても構わない。   Hereinafter, each member of the liquid crystal display device of the present invention will be described. First, in the liquid crystal cell 1 used in the present invention, a liquid crystal is sealed between a pair of transparent substrates 11a and 11b arranged to face each other at a predetermined distance by a spacer (not shown), and the pair of transparent substrates 11a and 11b. The liquid crystal layer 12 is provided. Although not shown in the figure, a transparent electrode and an alignment film are laminated on each of the pair of transparent substrates 11a and 11b, and the liquid crystal is formed by applying a voltage based on display data between the transparent electrodes. Orient. Here, the display method of the liquid crystal cell 1 is the TN method, but a display method such as an IPS method or a VA method may be adopted.

本発明で使用するバックライト装置2は、図1に示す直下型のものに限定されるものではなく、導光板の側面に線状光源又は点状光源を配置したサイドライド型、あるいは光源自体が平面状の平面光源型など従来公知のものを使用できる。   The backlight device 2 used in the present invention is not limited to the direct type shown in FIG. 1, but is a side-ride type in which a linear light source or a point light source is arranged on the side surface of the light guide plate, or a light source itself. Conventionally known ones such as a planar light source type can be used.

第1光拡散層3は、光拡散板31とプリズムシート32とを有する。具体的には、図2に示すように、第1光拡散層3は光拡散板31の前面側にプリズムシート32が設けられた構成である。光拡散板31の基材311としては、ポリカーボネート、メタクリル樹脂、メタクリル酸メチル−スチレン共重合体樹脂、アクリロニトリル−スチレン共重合体樹脂、メタクリル酸−スチレン共重合体樹脂、ポリスチレン、ポリ塩化ビニル、ポリプロピレン、ポリメチルペンテン等のポリオレフィン、環状ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリアミド系樹脂、ポリアリレート、ポリイミド等が使用できる。また、基材311に混合分散させる拡散剤312は、基材311となる材料と屈折率が異なる物質からなる微粒子であって、具体例には、基材の材料とは異なる種類のアクリル樹脂、メラミン樹脂、ポリエチレン、ポリスチレン、有機シリコーン樹脂、アクリル−スチレン共重合体等の有機微粒子、及び炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等の無機微粒子等が挙げられ、これらの中の1種又は2種類以上を混合して使用する。また、有機重合体のバルーンやガラス中空ビーズも拡散剤312として使用できる。拡散剤312の平均粒径は0.5μm〜30μmの範囲が好適である。また、拡散剤312の形状としては、球状のみならず偏平状、板状、針状であってもよい。   The first light diffusion layer 3 includes a light diffusion plate 31 and a prism sheet 32. Specifically, as shown in FIG. 2, the first light diffusion layer 3 has a configuration in which a prism sheet 32 is provided on the front side of the light diffusion plate 31. As the base material 311 of the light diffusion plate 31, polycarbonate, methacrylic resin, methyl methacrylate-styrene copolymer resin, acrylonitrile-styrene copolymer resin, methacrylic acid-styrene copolymer resin, polystyrene, polyvinyl chloride, polypropylene Polyolefins such as polymethylpentene, cyclic polyolefins, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamide resins, polyarylate, polyimide, and the like can be used. Further, the diffusing agent 312 mixed and dispersed in the base material 311 is fine particles made of a substance having a refractive index different from that of the material to be the base material 311, and specific examples include acrylic resin of a type different from the base material, Organic fine particles such as melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, and inorganic fine particles such as calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc. One or more of these are mixed and used. Organic polymer balloons and glass hollow beads can also be used as the diffusing agent 312. The average particle diameter of the diffusing agent 312 is preferably in the range of 0.5 μm to 30 μm. Further, the shape of the diffusing agent 312 may be not only spherical but also flat, plate-shaped, and needle-shaped.

一方、プリズムシート32は、光入射面が平坦面で、光出射面は、V字状の直線溝が平行に配列形成してなるプリズム面となっている。プリズムシート32の材料としては、例えば、ポリカーボネート樹脂やABS樹脂、メタクリル樹脂、メタクリル酸メチル−スチレン共重合体樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂などが挙げられる。プリズムシート32の作製方法としては、通常の熱可塑性樹脂の成型法を用いることができ、例えば、金型を用いた熱プレス成形によって作製すればよい。プリズムシート32に光拡散剤を分散してもよい。プリズムシート32の厚みとしては、通常は0.1〜15mmであり、好ましくは0.5〜10mmである。   On the other hand, the prism sheet 32 has a flat light incident surface, and the light output surface is a prism surface formed by arranging V-shaped linear grooves in parallel. Examples of the material of the prism sheet 32 include polycarbonate resin, ABS resin, methacrylic resin, methyl methacrylate-styrene copolymer resin, polystyrene resin, acrylonitrile-styrene copolymer resin, polyolefin resin such as polyethylene and polypropylene. It is done. As a manufacturing method of the prism sheet 32, a normal thermoplastic resin molding method can be used. For example, the prism sheet 32 may be manufactured by hot press molding using a mold. A light diffusing agent may be dispersed in the prism sheet 32. The thickness of the prism sheet 32 is usually 0.1 to 15 mm, preferably 0.5 to 10 mm.

光拡散板31とプリズムシート32とは一体に成形してもよいし、別体で作製した後接合してもよい。また、別体として作製し接合する場合、光拡散板31とプリズムシート32との間に空気層を介して接触させてもよい。   The light diffusing plate 31 and the prism sheet 32 may be integrally formed, or may be joined after being manufactured separately. Moreover, when producing and joining as a different body, you may make it contact between the light-diffusion plate 31 and the prism sheet 32 via an air layer.

第1光拡散層3の異なる実施態様としては、図3に示すように、光偏向機能を奏するプリズムシート32に拡散剤312を分散混合させて、光拡散機能をも奏させるようにしたものであってもよい。   As a different embodiment of the first light diffusing layer 3, as shown in FIG. 3, a diffusing agent 312 is dispersed and mixed in a prism sheet 32 having a light deflecting function so as to have a light diffusing function. There may be.

第1光拡散層3を通過した光の配光特性は、液晶セル1の光入射面の法線に対して70°方向の輝度値が、正面輝度値、すなわち、液晶セル1の光入射面の法線方向の輝度値に対して20%以下であり、且つ、前記第1光拡散層からの出射光は非平行光を含むものである。より好ましい配光特性は、液晶セル1の光入射面の法線に対して60°を超える光がないようにすることである。通常、図1に示すように、第1光拡散層3の背面と、液晶セル1の光入射面とは平行に配置されるので、液晶セル1の光入射面の法線に対して70°方向の輝度値とは、例えば、図4に示すように、第1光拡散層3の長手方向をx方向とし、第1光拡散層3の背面に平行な面をxy面としたときに、このxy面に対する法線であるz軸に対して70°方向の輝度値となり、好ましくは、xz面上においてz軸となす角が70°となる方向の輝度値である。このような配光特性とするには、例えば、プリズムシート32の断面三角形のプリズム部分の形状を調整すればよい。断面三角形のプリズム部分の頂角θ(図2に図示)は、60〜120°の範囲が好ましく、三角形の形状は、等辺、不等辺は任意であるが、液晶セル1の法線方向に集光しようとすると二等辺三角形が好ましく、頂角に相対した底辺に隣接して隣の二等辺三角形を順次配置し、頂角の列が長軸となり互いにほぼ平行になるように配列した構造とするのが好ましい。この場合、集光能力が著しく減退しない限り、頂角及び底角が曲率を持ってもよい。頂角間の距離d(図2に図示)は、通常、10μm〜500μmの範囲であり、好ましくは、30μm〜200μmの範囲である。ここで、非平行光とは、図5に示すように、第1光拡散層3の入射面における直径1cmの円内から出射された光を、該出射面の法線方向に1m離れた、該出射面に平行な観察面における投影像として観察したとき、その投影像の面内輝度分布の最小半値幅が30cm以上であるような出射特性を有する光である。   The light distribution characteristic of the light that has passed through the first light diffusion layer 3 is that the luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell 1 is the front luminance value, that is, the light incident surface of the liquid crystal cell 1. The emission light from the first light diffusion layer includes non-parallel light. A more preferable light distribution characteristic is to prevent light exceeding 60 ° from the normal line of the light incident surface of the liquid crystal cell 1. Normally, as shown in FIG. 1, the back surface of the first light diffusion layer 3 and the light incident surface of the liquid crystal cell 1 are arranged in parallel, so that it is 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell 1. The luminance value in the direction is, for example, as shown in FIG. 4, when the longitudinal direction of the first light diffusion layer 3 is the x direction and the plane parallel to the back surface of the first light diffusion layer 3 is the xy plane. The luminance value is in the direction of 70 ° with respect to the z axis, which is a normal line to the xy plane, and preferably the luminance value in the direction in which the angle formed with the z axis on the xz plane is 70 °. In order to obtain such a light distribution characteristic, for example, the shape of the prism portion having a triangular cross section of the prism sheet 32 may be adjusted. The apex angle θ (shown in FIG. 2) of the prism portion having a triangular cross section is preferably in the range of 60 to 120 °, and the triangular shape may be any of the equal side and the unequal side, but is concentrated in the normal direction of the liquid crystal cell 1. An isosceles triangle is preferable when trying to illuminate, and adjacent isosceles triangles are sequentially arranged adjacent to the base opposite to the apex angle, and the apex angle column is a major axis and arranged in parallel with each other. Is preferred. In this case, the apex angle and the base angle may have curvature unless the light collecting ability is significantly reduced. The distance d between the apex angles (shown in FIG. 2) is usually in the range of 10 μm to 500 μm, and preferably in the range of 30 μm to 200 μm. Here, as shown in FIG. 5, the non-parallel light means that light emitted from a circle having a diameter of 1 cm on the incident surface of the first light diffusion layer 3 is separated by 1 m in the normal direction of the emitting surface. When observed as a projection image on an observation surface parallel to the emission surface, the light has emission characteristics such that the minimum half-value width of the in-plane luminance distribution of the projection image is 30 cm or more.

本発明で使用する第1偏光板4としては、通常は、偏光子の両面に支持フィルムを貼り合わせたものが使用される。偏光子としては、例えば、ポリビニルアルコール系の樹脂、ポリ酢酸ビニル樹脂、エチレン/酢酸ビニル(EVA)樹脂、ポリアミド樹脂、ポリエステル樹脂等の偏光子基板に、二色性染料又はヨウ素を吸着配向させたもの、分子的に配向したポリビニルアルコールフィルム中に、ポリビニルアルコールの二色性脱水生成物(ポリビニレン)の配向した分子鎖を含有するポリビニルアルコール/ポリビニレンコポリマーなどが挙げられる。特に、ポリビニルアルコール系樹脂の偏光子基板に二色性染料又はヨウ素を吸着配向させたものが偏光子として好適に使用される。偏光子の厚さに特に限定はないが、一般には偏光板の薄型化等を目的に、100μm以下が好ましく、より好ましくは10〜50μmの範囲、さらに好ましくは25〜35μmの範囲である。   As the 1st polarizing plate 4 used by this invention, what bonded the support film to the both surfaces of a polarizer normally is used. As the polarizer, for example, a dichroic dye or iodine is adsorbed and oriented on a polarizer substrate such as a polyvinyl alcohol resin, polyvinyl acetate resin, ethylene / vinyl acetate (EVA) resin, polyamide resin, or polyester resin. And a polyvinyl alcohol / polyvinylene copolymer containing a molecular chain oriented with a dichroic dehydrated product of polyvinyl alcohol (polyvinylene) in a molecularly oriented polyvinyl alcohol film. In particular, a polarizer substrate made of polyvinyl alcohol resin obtained by adsorbing and orienting a dichroic dye or iodine is preferably used as the polarizer. The thickness of the polarizer is not particularly limited, but is generally preferably 100 μm or less, more preferably in the range of 10 to 50 μm, and still more preferably in the range of 25 to 35 μm for the purpose of reducing the thickness of the polarizing plate.

偏光子を支持・保護する支持フィルムとしては、低複屈折性で、透明性や機械的強度、熱安定性や水分遮蔽性などに優れるポリマーからなるフィルムが好ましい。このようなフィルムとしては、例えば、TAC(トリアセチルセルロース)などのセルロースアセテート系樹脂やアクリル系樹脂、四フッ化エチレン/六フッ化プロピレン系共重合体のようなフッ素系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリオレフィン樹脂もしくはポリアミド系樹脂等の樹脂をフィルム状に成形加工したものが挙げられる。これらの中でも、偏光特性や耐久性などの点から、表面をアルカリなどでケン化処理したトリアセチルセルロースフィルムやノルボルネン系熱可塑性樹脂フィルムが好ましく使用できる。ノルボルネン系熱可塑性樹脂フィルムは、フィルムが熱や湿熱からの良好なバリアーとなるので偏光板4の耐久性が大幅に向上するとともに、吸湿率が少ないため寸法安定性が大幅に向上し、特に好適に使用できる。フィルム状への成形加工は、キャスティング法、カレンダー法、押出し法の従来公知の方法を用いることができる。支持フィルムの厚さに限定はないが、偏光板4の薄型化等の観点から、通常は、500μm以下が好ましく、より好ましくは5〜300μmの範囲、さらに好ましくは5〜150μmの範囲である。   As the support film for supporting and protecting the polarizer, a film made of a polymer having low birefringence and excellent in transparency, mechanical strength, thermal stability, moisture shielding property and the like is preferable. Examples of such films include cellulose acetate resins such as TAC (triacetylcellulose), acrylic resins, fluorine resins such as tetrafluoroethylene / hexafluoropropylene copolymers, polycarbonate resins, and polyethylene. Polyester resin such as terephthalate, polyimide resin, polysulfone resin, polyethersulfone resin, polystyrene resin, polyvinyl alcohol resin, polyvinyl chloride resin, polyolefin resin or polyamide resin, etc. are formed into a film. What was processed is mentioned. Among these, a triacetyl cellulose film or a norbornene-based thermoplastic resin film whose surface is saponified with an alkali or the like can be preferably used from the viewpoints of polarization characteristics and durability. The norbornene-based thermoplastic resin film is particularly suitable because the film becomes a good barrier from heat and wet heat, so that the durability of the polarizing plate 4 is greatly improved and the dimensional stability is greatly improved because of its low moisture absorption rate. Can be used for For forming into a film, a conventionally known method such as a casting method, a calendar method, or an extrusion method can be used. Although there is no limitation in the thickness of a support film, from a viewpoint of thickness reduction etc. of the polarizing plate 4, normally, 500 micrometers or less are preferable, More preferably, it is the range of 5-300 micrometers, More preferably, it is the range of 5-150 micrometers.

第2光拡散層5は、第2偏光板51と、第2偏光板51の前側面に設けられた防眩層52とから構成される。ここで使用される第2偏光板51は、液晶セル1の背面側に配置された第1偏光板4と対となるものであって、第1偏光板4で例示したものがここでも好適に使用できる。ただし、第2偏光板51は、その偏光面が、第1偏光板4の偏光面と直交するように配置されている。液晶表示装置をノーマリーブラックとする場合には、第1偏光板と第2偏光板の偏光面が平行になるように設置すればよい。   The second light diffusion layer 5 includes a second polarizing plate 51 and an antiglare layer 52 provided on the front side surface of the second polarizing plate 51. The second polarizing plate 51 used here is a pair with the first polarizing plate 4 disposed on the back side of the liquid crystal cell 1, and the one exemplified by the first polarizing plate 4 is also suitable here. Can be used. However, the second polarizing plate 51 is arranged so that the polarization plane thereof is orthogonal to the polarization plane of the first polarizing plate 4. When the liquid crystal display device is normally black, the polarizing plates of the first polarizing plate and the second polarizing plate may be installed in parallel.

図6に、第2光拡散層5の概説図を示す。図6(a)の第2光拡散層5は、図1の液晶表示装置に配置されているものであって、微小なフィラー522を分散させた樹脂溶液521を、第2偏光板51上に塗布し、塗布膜厚を調整してフィラー522が塗布膜表面に現れるようにして、微細な凹凸を基材表面に形成したものである。この場合、フィラー522の分散は等方分散が好ましい。防眩層52の表面には、通常、細かな凹凸があるが、細かな凹凸はなくてもよい。即ち、防眩層52は、内部拡散(内部ヘイズ)だけによる光拡散でもよいし、内部拡散(内部ヘイズ)と表面拡散(外部ヘイズ・凹凸)との両方による光拡散でもよいし、表面拡散(外部ヘイズ・凹凸)だけによる光拡散でもよい。   FIG. 6 shows a schematic diagram of the second light diffusion layer 5. The second light diffusion layer 5 in FIG. 6A is arranged in the liquid crystal display device in FIG. 1, and a resin solution 521 in which minute fillers 522 are dispersed is placed on the second polarizing plate 51. Coating is performed, and the coating film thickness is adjusted so that the filler 522 appears on the surface of the coating film, and fine irregularities are formed on the surface of the substrate. In this case, the dispersion of the filler 522 is preferably isotropic dispersion. The surface of the antiglare layer 52 usually has fine irregularities, but there may be no fine irregularities. That is, the antiglare layer 52 may be light diffusion only by internal diffusion (internal haze), light diffusion by both internal diffusion (internal haze) and surface diffusion (external haze / unevenness), or surface diffusion ( Light diffusion only by external haze and unevenness may be used.

図6(b)は、フィラーを用いずに、防眩層52としての基材フィルム523の表面に微細な凹凸を形成したものである。基材フィルム523の表面に微細な凹凸を形成するには、サンドブラスト,エンボス賦形加工等によって基材フィルム523を表面加工する方法や、凹凸を反転させた金型面を有する鋳型やエンボスロールを用いて、基材フィルムの作製工程において微細な凹凸を形成する方法等を用いればよい。防眩層52としての基材フィルム523を作製した場合には、基材フィルム523と第2偏光板51とを貼り合わせて第2光拡散層5とする。基材フィルム523と第2偏光板51との貼り合わせは、接着剤層を介さずに直接接触させるのが好ましい。   FIG. 6B shows a case where fine irregularities are formed on the surface of the base film 523 as the antiglare layer 52 without using a filler. In order to form fine irregularities on the surface of the base film 523, a method of surface-treating the base film 523 by sandblasting, embossing or the like, or a mold or embossing roll having a mold surface with the irregularities reversed. And a method of forming fine irregularities in the production process of the base film may be used. When the base film 523 as the antiglare layer 52 is produced, the base film 523 and the second polarizing plate 51 are bonded to form the second light diffusion layer 5. It is preferable that the base film 523 and the second polarizing plate 51 are directly brought into contact with each other without using an adhesive layer.

また、防眩層52の構造は、例えば図6(c)、(d)、(e)に示すように、フィラー522を基材フィルム523中に分散混合させると共に、基材フィルム523の表面に微細な凹凸を形成した構造としてもよい。図6(c)の防眩層52は、フィラー522を分散混合した基材フィルム523の表面に、サンドブラスト等によって微細な凹凸を形成したものである。図6(d)の防眩層52は、フィラー522を分散混合した基材フィルム523aに、表面に微細な凹凸が形成された基材フィルム523bを接合したものである。図6(e)の防眩層52は、フィラー522を分散混合し、且つその表面に微細な凹凸が形成された基材フィルム523bを、基材フィルム523aに接合したものである。なお、第2偏光板51としては、通常は、偏光子の両面に支持フィルムを貼り合わせたものが使用されるので、図6(e)の基材フィルム523aとして、偏光子の支持フィルムを用いるようにしても構わない。   The antiglare layer 52 has a structure in which, for example, as shown in FIGS. 6C, 6 </ b> D, and 6 </ b> E, the filler 522 is dispersed and mixed in the base film 523 and is formed on the surface of the base film 523. A structure in which fine irregularities are formed may be used. The antiglare layer 52 in FIG. 6C is formed by forming fine irregularities on the surface of the base film 523 in which the filler 522 is dispersed and mixed by sandblasting or the like. The anti-glare layer 52 in FIG. 6D is obtained by bonding a base film 523b having fine irregularities formed on the surface to a base film 523a in which a filler 522 is dispersed and mixed. The anti-glare layer 52 in FIG. 6 (e) is obtained by bonding a base film 523b, in which filler 522 is dispersed and mixed, and fine irregularities are formed on the surface thereof, to the base film 523a. In addition, as the 2nd polarizing plate 51, what laminated | stacked the support film on both surfaces of a polarizer is normally used, Therefore The support film of a polarizer is used as the base film 523a of FIG.6 (e). It doesn't matter if you do.

このような構成の防眩層52は、その光拡散特性が、防眩層52の背面の法線方向から入射する波長549nmのレーザ光の強度に対して相対強度が0.0008%となる、防眩層52から出射するレーザ光の、防眩層52の背面の法線方向に対しての光出射角度(以下、防眩層の光出射角度と呼ぶことがある)が40°以上であることが重要である。これにより、液晶セル1から前面側に透過する光が前方散乱され、正面方向の透過光の画像の鮮明性が高く維持されたまま、斜め方向から見た際の画像の着色が抑えられ視野角が広くなる。防眩層52の光拡散特性をこのように制御するには、例えば、フィラー522を分散混合した場合には、フィラー522の形状・粒径・添加量、そしてフィラー522と防眩層の基材フィルム523との屈折率差などを調整すればよい。フィラー522を用いない場合は、防眩層52の材質や表面の凹凸の形状などを調整すればよい。通常、液晶セル1の光出射面と、防眩層の背面とは平行に配置される。   The antiglare layer 52 having such a structure has a light diffusion property of 0.0008% relative to the intensity of laser light having a wavelength of 549 nm incident from the normal direction of the back surface of the antiglare layer 52. The light emission angle of the laser light emitted from the antiglare layer 52 with respect to the normal direction of the back surface of the antiglare layer 52 (hereinafter sometimes referred to as the light emission angle of the antiglare layer) is 40 ° or more. This is very important. Thereby, the light transmitted from the liquid crystal cell 1 to the front side is scattered forward, and the viewing angle is suppressed while coloring of the image viewed from an oblique direction is suppressed while maintaining the sharpness of the image of the transmitted light in the front direction. Becomes wider. In order to control the light diffusion characteristics of the antiglare layer 52 in this way, for example, when the filler 522 is dispersed and mixed, the shape, particle size, and addition amount of the filler 522, and the base material of the filler 522 and the antiglare layer A difference in refractive index with the film 523 may be adjusted. In the case where the filler 522 is not used, the material of the antiglare layer 52 and the shape of the surface irregularities may be adjusted. Usually, the light emission surface of the liquid crystal cell 1 and the back surface of the antiglare layer are arranged in parallel.

防眩層52の基材フィルム523としては、例えば、TAC(トリアセチルセルロース)などのセルロースアセテート系樹脂やアクリル系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等が挙げられる。フィラー522としては、基材フィルム523と屈折率が異なる材質からなる微粒子であって、例えば、アクリル樹脂、メラミン樹脂、ポリエチレン、ポリスチレン、有機シリコーン樹脂、アクリル−スチレン共重合体等の有機微粒子、及び炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等の無機微粒子等が挙げられ、これらの中の1種又は2種類以上を混合して使用する。また、有機重合体のバルーンやガラス中空ビーズも使用できる。フィラー522の平均粒径は1μm〜25μmの範囲が好適である。フィラー522の形状は、球状、偏平状、板状、針状等いずれであってもよいが、特に球状が望ましい。   Examples of the base film 523 of the antiglare layer 52 include cellulose acetate resins such as TAC (triacetyl cellulose), polyester resins such as acrylic resins, polycarbonate resins, and polyethylene terephthalate. As the filler 522, fine particles made of a material having a refractive index different from that of the base film 523, for example, organic fine particles such as acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, and the like Examples thereof include inorganic fine particles such as calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, and glass, and one or more of these are used in combination. Organic polymer balloons and glass hollow beads can also be used. The average particle size of the filler 522 is preferably in the range of 1 μm to 25 μm. The filler 522 may have any shape such as a spherical shape, a flat shape, a plate shape, or a needle shape, but a spherical shape is particularly desirable.

以下、防眩層52の背面の法線方向からレーザ光が入射したときの、防眩層52から出射するレーザ光の相対強度の測定方法について説明する。なお、「防眩層52の背面の法線方向」とは、防眩層52の平坦な背面に対する法線方向をいい、防眩層52が図6の(b)〜(e)のように基材フィルム523、523a、523bを有する場合には、基材フィルム523の法線と重なる方向をいう。   Hereinafter, a method for measuring the relative intensity of the laser light emitted from the antiglare layer 52 when the laser light enters from the normal direction of the back surface of the antiglare layer 52 will be described. The “normal direction of the back surface of the antiglare layer 52” refers to the normal direction with respect to the flat back surface of the antiglare layer 52, and the antiglare layer 52 is as shown in FIGS. 6B to 6E. In the case where the base films 523, 523a, and 523b are included, the direction overlaps with the normal line of the base film 523.

図7は、防眩層52の背面の法線方向からレーザ光が入射し、防眩層から出射するレーザ光の相対強度を測定するときの、レーザ光の入射方向と出射方向とを模式的に示した斜視図である。図7において、防眩層91の背面側(防眩層91の下方側)からその法線方向92に入射したレーザ光93に対し、この法線方向92から角度θの方向に出射するレーザ光94の強度を測定する。それぞれの角度での測定強度を入射したレーザ光の強度で割ったものが相対強度となる。なお、出射光94と、法線方向92と、防眩層52の背面側から入射した光93とは、全て同一平面(図7における平面95)上となるように測定される。   FIG. 7 schematically shows the incident direction and the emission direction of the laser beam when the laser beam is incident from the normal direction of the back surface of the anti-glare layer 52 and the relative intensity of the laser beam emitted from the anti-glare layer is measured. It is the perspective view shown in. In FIG. 7, with respect to the laser beam 93 incident in the normal direction 92 from the back side of the anti-glare layer 91 (below the anti-glare layer 91), the laser beam emitted from the normal direction 92 in the direction of angle θ. Measure the strength of 94. The relative intensity is obtained by dividing the measured intensity at each angle by the intensity of the incident laser beam. The emitted light 94, the normal direction 92, and the light 93 incident from the back side of the antiglare layer 52 are all measured so as to be on the same plane (plane 95 in FIG. 7).

次に、このようにして測定される相対強度を角度に対してプロットすることによって、法線方向92から入射した光の強度に対する相対強度が0.0008%となる光出射角度を求める。図8は、防眩層52から出射するレーザ光の相対強度を光出射角度に対してプロットしたグラフの一例である。このグラフに示した如く、相対強度は光出射角度が0゜すなわち防眩層52の背面の法線方向92がピークであり、この法線方向92から角度がずれるほど相対強度は低下する傾向にある。図8に示す例では、相対強度が0.0008%となるのは光出射角度46°のときであることがわかる。   Next, by plotting the relative intensity measured in this manner against the angle, the light emission angle at which the relative intensity with respect to the intensity of the light incident from the normal direction 92 becomes 0.0008% is obtained. FIG. 8 is an example of a graph in which the relative intensity of the laser light emitted from the antiglare layer 52 is plotted against the light emission angle. As shown in this graph, the relative intensity has a peak in the light emission angle of 0 °, that is, the normal direction 92 on the back surface of the antiglare layer 52, and the relative intensity tends to decrease as the angle deviates from the normal direction 92. is there. In the example shown in FIG. 8, it can be seen that the relative intensity is 0.0008% when the light emission angle is 46 °.

図9に、本発明の液晶表示装置の他の実施形態を示す。図9の液晶表示装置が、図1の液晶表示装置と異なる点は、第1偏光板4と液晶セル1との間に位相差板6を配置した点である。この位相差板6は、液晶セル1の表面に対して垂直な方向に位相差がほぼゼロのものであり、真正面からは何ら光学的な作用を及ぼさず、斜めから見たときに位相差が発現し、液晶セル1で生じる位相差を補償しようというものである。これによって、より広い視野角が得られ、より優れた表示品位及び色再現性が得られるようになる。位相差板6は、第1偏光板4と液晶セル1との間及び第2光拡散層5と液晶セル1との間の一方又は両方に配置することができる。   FIG. 9 shows another embodiment of the liquid crystal display device of the present invention. The liquid crystal display device of FIG. 9 is different from the liquid crystal display device of FIG. 1 in that a phase difference plate 6 is disposed between the first polarizing plate 4 and the liquid crystal cell 1. This phase difference plate 6 has a phase difference of almost zero in a direction perpendicular to the surface of the liquid crystal cell 1, has no optical effect from the front, and has a phase difference when viewed from an oblique direction. It is intended to compensate for the phase difference that occurs and occurs in the liquid crystal cell 1. As a result, a wider viewing angle can be obtained, and better display quality and color reproducibility can be obtained. The retardation film 6 can be disposed between the first polarizing plate 4 and the liquid crystal cell 1 and at one or both of the second light diffusion layer 5 and the liquid crystal cell 1.

位相差板6としては、例えば、ポリカーボネート樹脂や環状オレフィン系重合体樹脂をフィルムにし、このフィルムを更に二軸延伸したものや、液晶性モノマーを光重合反応で分子配列を固定化したもの等が挙げられる。位相差板6は、液晶の配列を光学的に補償するものであるから、液晶配列と逆の屈折率特性のものを用いる。具体的にはTNモードの液晶表示セルには、例えば「WVフィルム」(富士フィルム社製)、STNモードの液晶表示セルには、例えば「LCフィルム」(新日本石油社製)、IPSモードの液晶セルには、例えば二軸性位相差フィルム、VAモードの液晶セルには、例えばAプレートおよびC−プレートを組み合わせた位相差板、二軸性位相差フィルム、πセルモードの液晶セルには例えば「OCB用WVフィルム」(富士フィルム社製)などが好適に使用できる。   As the phase difference plate 6, for example, a polycarbonate resin or a cyclic olefin polymer resin is used as a film and the film is further biaxially stretched, or a liquid crystal monomer is fixed in a molecular arrangement by a photopolymerization reaction. Can be mentioned. Since the phase difference plate 6 optically compensates for the alignment of the liquid crystal, one having a refractive index characteristic opposite to that of the liquid crystal alignment is used. Specifically, for a TN mode liquid crystal display cell, for example, “WV film” (manufactured by Fuji Film), for an STN mode liquid crystal display cell, for example, “LC film” (manufactured by Nippon Oil Corporation), IPS mode For a liquid crystal cell, for example, a biaxial retardation film, for a VA mode liquid crystal cell, for example, for a retardation plate combined with an A plate and a C-plate, a biaxial retardation film, for a π cell mode liquid crystal cell For example, “OCB WV film” (manufactured by Fuji Film Co., Ltd.) can be suitably used.

[第1光拡散層の製造例]
(1)光拡散板の作製
スチレン−メタクリル酸メチル共重合体樹脂(屈折率1.57)74.5質量部、架橋ポリメタクリル酸メチル樹脂粒子(屈折率1.49、重量平均粒子径30μm)を25質量部、ベンゾトリアゾール系紫外線吸収剤(住友化学株式会社製の「スミソーブ200」)0.5質量部、ヒンダードフェノール系酸化防止剤(熱安定剤)(チバ・スペシャリティー・ケミカルズ株式会社製の「IRGANOX1010」)0.2質量部をヘンシェルミキサーで混合した後、第2押出機で溶融混練して、フィードブロックに供給した。
一方、スチレン樹脂(屈折率1.59)99.5質量部、ベンゾトリアゾール系紫外線吸収剤(住友化学株式会社製の「スミソーブ200」)0.07質量部、光安定剤(チバ・スペシャリティー・ケミカルズ株式会社製の「チヌビン770」)0.13質量部をヘンシェルミキサーで混合した後、架橋シロキサン系樹脂粒子(東レダウコーニングシリコーン株式会社製の「トレフィルDY33−719」、屈折率1.42、重量平均粒子径2μm)と共に、第1押出機で溶融混練して、フィードブロックに供給した。架橋シロキサン系樹脂粒子の添加量を調節することで、拡散板の全光線透過率Ttを調節し、全光線透過率Ttが65%の光拡散板を作製した。
なお、前記光拡散板は、前記第1押出機からフィードブロックに供給される樹脂が中間層(基層)となり、前記第2押出機からフィードブロックに供給される樹脂が表層(両面)となるように共押出成形を行い、厚さ2mm(中間層1.90mm、表層0.05mm×2)の3層からなる積層板となっている。また、全光線透過率TtはJIS K 7361に準拠して、ヘイズ透過率計(村上色彩技術研究所製HR−100)を用いて測定した。
[Example of production of first light diffusion layer]
(1) Production of light diffusion plate 74.5 parts by mass of styrene-methyl methacrylate copolymer resin (refractive index 1.57), crosslinked polymethyl methacrylate resin particles (refractive index 1.49, weight average particle diameter 30 μm) 25 parts by weight, 0.5 parts by weight of a benzotriazole-based UV absorber (“SUMISOB 200” manufactured by Sumitomo Chemical Co., Ltd.), hindered phenol-based antioxidant (thermal stabilizer) (Ciba Specialty Chemicals Co., Ltd.) After 0.2 parts by mass of “IRGANOX 1010” manufactured by Henschel mixer was mixed, the mixture was melt-kneaded by a second extruder and supplied to a feed block.
On the other hand, 99.5 parts by mass of a styrene resin (refractive index 1.59), 0.07 parts by mass of a benzotriazole-based ultraviolet absorber (“Sumisorb 200” manufactured by Sumitomo Chemical Co., Ltd.), a light stabilizer (Ciba Specialty) After mixing 0.13 parts by mass of “Chinubin 770” manufactured by Chemicals Co., Ltd. with a Henschel mixer, crosslinked siloxane-based resin particles (“Trefill DY33-719” manufactured by Toray Dow Corning Silicone Co., Ltd., refractive index of 1.42, Together with a weight average particle diameter of 2 μm), the mixture was melt kneaded by a first extruder and supplied to a feed block. By adjusting the addition amount of the crosslinked siloxane-based resin particles, the total light transmittance Tt of the diffusion plate was adjusted, and a light diffusion plate having a total light transmittance Tt of 65% was produced.
In the light diffusing plate, the resin supplied from the first extruder to the feed block becomes an intermediate layer (base layer), and the resin supplied from the second extruder to the feed block becomes a surface layer (both sides). The laminate is made of three layers having a thickness of 2 mm (intermediate layer 1.90 mm, surface layer 0.05 mm × 2). The total light transmittance Tt was measured using a haze transmittance meter (HR-100, manufactured by Murakami Color Research Laboratory) in accordance with JIS K 7361.

(2)プリズムシート(光偏向構造板)の作製
スチレン樹脂(屈折率1.59)をプレス成形することで厚さ1mmの平板を作製した。さらに断面が頂角θ、頂角間の距離が50μmの二等辺三角形であるV字状の直線溝が平行に配列形成されている金属製金型を用いて、前記スチレン樹脂板を再プレス成形することにより、プリズムシートを作製した。尚、頂角θは、後述する実施例に用いられる液晶表示装置に第1光拡散層が組み込まれる際に、第1光拡散層からの出射光における、液晶セルの光出射面の法線方向の輝度値に対する、液晶セルの光入射面の法線に対して70°方向の輝度値がそれぞれ0%、10%、20%となるように調整された。
(2) Production of prism sheet (light deflection structure plate) A styrene resin (refractive index 1.59) was press-molded to produce a 1 mm thick flat plate. Further, the styrene resin plate is re-press-molded using a metal mold in which V-shaped linear grooves having a cross section of an apex angle θ and a distance between apex angles of 50 μm are isosceles triangles are arranged in parallel. This produced a prism sheet. Note that the apex angle θ is the normal direction of the light emitting surface of the liquid crystal cell in the light emitted from the first light diffusing layer when the first light diffusing layer is incorporated in the liquid crystal display device used in the examples described later. The brightness values in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell were adjusted to 0%, 10%, and 20%, respectively.

(3)第1光拡散層を有する液晶表示装置の作製
後述する実施例に用いられる液晶表示装置のバックライトに、前記光拡散板とプリズムシートとが図1の配置のように積層した。この際、プリズムシートの直線溝とバックライトの冷陰極管が平行となるように積層した。
(3) Production of Liquid Crystal Display Device Having First Light Diffusing Layer The light diffusing plate and the prism sheet were laminated as shown in FIG. 1 on the backlight of the liquid crystal display device used in Examples described later. In this case, the prism sheet was laminated so that the linear groove of the prism sheet and the cold cathode tube of the backlight were parallel to each other.

[第2光拡散層用の防眩層の製造例1]
(1)エンボス用金型の作製
直径200mmの鉄ロール(JISによるSTKM13A)の表面に銅バラードめっきが施されたものを用意した。銅バラードめっきは、銅めっき層/薄い銀めっき層/表面銅めっき層からなるものであり、めっき層全体の厚みは、約200μmであった。その銅めっき表面を鏡面研磨し、さらにその研磨面に、ブラスト装置((株)不二製作所製)を用いて、第一の微粒子としてジルコニアビーズTZ−B125(東ソー(株)製、平均粒径:125μm)を、ブラスト圧力0.05MPa(ゲージ圧、以下同じ)、微粒子使用量16g/cm(ロールの表面積1cmあたりの使用量、以下同じ)でブラストし、表面に凹凸を形成した。その凹凸面に、ブラスト装置((株)不二製作所製)を用いて、第二の微粒子としてジルコニアビーズTZ−SX−17(東ソー(株)製、平均粒径:20μm)を、ブラスト圧力0.1MPa、微粒子使用量4g/cmでブラストし、表面凹凸を微調整した。得られた凹凸つき銅めっき鉄ロールに対し、塩化第二銅液でエッチング処理を行った。その際のエッチング量は3μmとなるように設定した。その後、クロムめっき加工を行い、金型を作製した。このとき、クロムめっき厚みが4μmとなるように設定した。得られた金型のクロムめっき面のビッカース硬度は1000であった。なお、ビッカース硬度は、超音波硬度計MIC10(Krautkramer社製)を用い、JIS Z 2244に準拠して測定した(以下の例においてもビッカース硬度の測定法は同じ)。
[Production Example 1 of Antiglare Layer for Second Light Diffusion Layer]
(1) Production of Embossing Die A surface of a 200 mm diameter iron roll (STKM13A according to JIS) with copper ballad plating was prepared. Copper ballad plating consists of a copper plating layer / thin silver plating layer / surface copper plating layer, and the thickness of the entire plating layer was about 200 μm. The copper-plated surface is mirror-polished, and a blasting device (manufactured by Fuji Seisakusho) is used on the polished surface, and zirconia beads TZ-B125 (manufactured by Tosoh Corp., average particle diameter) are used as the first fine particles. : 125 μm) was blasted at a blast pressure of 0.05 MPa (gauge pressure, the same applies hereinafter) and a fine particle usage of 16 g / cm 2 (a used amount per 1 cm 2 of surface area of the roll, the same applies hereinafter) to form irregularities on the surface. A blasting device (manufactured by Fuji Seisakusho Co., Ltd.) is used on the uneven surface, and zirconia beads TZ-SX-17 (manufactured by Tosoh Corp., average particle size: 20 μm) are used as the second fine particles, with a blast pressure of 0. The surface unevenness was finely adjusted by blasting at 1 MPa and a fine particle usage amount of 4 g / cm 2 . The resulting copper-plated iron roll with unevenness was etched with a cupric chloride solution. The etching amount at that time was set to 3 μm. Thereafter, chromium plating was performed to produce a mold. At this time, the chromium plating thickness was set to 4 μm. The Vickers hardness of the chromium plating surface of the obtained mold was 1000. The Vickers hardness was measured according to JIS Z 2244 using an ultrasonic hardness tester MIC10 (manufactured by Krautkramer) (the measurement method for Vickers hardness is the same in the following examples).

(2)微細凹凸を有する層と基材フィルムとからなる防眩層の調製
ペンタエリスリトールトリアクリレート(60質量部)及び多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物、40質量部)を酢酸エチル溶液に混合し、固形分濃度60%となるように調整して紫外線硬化性樹脂組成物を得た。尚、該組成物から酢酸エチルを除去して紫外線硬化した後の硬化物の屈折率は1.53であった。
次に、前記紫外線硬化性樹脂組成物の固形分100質量部に対して、フィラーとしてポリスチレン系粒子「XX−282K」(積水化成品工業株式会社製、重量平均粒子径2.0μm)を40質量部、光重合開始剤である「ルシリン TPO」(BASF社製、化学名:2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド)を5質量部添加し、固形分率が50%になるように酢酸エチルで希釈して塗布液を調製した。
この塗布液を、厚さ80μmのトリアセチルセルロース(TAC)フィルム(基材フィルム)上に、乾燥後の塗布厚みが12.6μmとなるように塗布し、80℃に設定した乾燥機中で1分間乾燥させた。乾燥後の基材フィルムを、前記(1)で作製した金型の凹凸面に、紫外線硬化性樹脂組成物層が金型側となるようにゴムロールで押し付けて密着させた。この状態で基材フィルム側より、強度20mW/cmの高圧水銀灯からの光をh線換算光量で300mJ/cmとなるように照射して、紫外線硬化性樹脂組成物層を硬化させ、表面に凹凸を有する層(厚み12.6μm)と基材フィルムとからなる、図6(e)に示す構造の防眩層を得た。
(2) Preparation of an antiglare layer comprising a layer having fine irregularities and a base film Pentaerythritol triacrylate (60 parts by mass) and polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate, 40 (Part by mass) was mixed with an ethyl acetate solution and adjusted to a solid content concentration of 60% to obtain an ultraviolet curable resin composition. The refractive index of the cured product after removing ethyl acetate from the composition and curing with ultraviolet rays was 1.53.
Next, 40 mass of polystyrene particles “XX-282K” (manufactured by Sekisui Plastics Co., Ltd., weight average particle diameter of 2.0 μm) as a filler with respect to 100 mass parts of the solid content of the ultraviolet curable resin composition. 5 parts by mass of “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) as a photopolymerization initiator, so that the solid content is 50% A coating solution was prepared by diluting with ethyl acetate.
This coating solution was applied onto a triacetyl cellulose (TAC) film (base film) having a thickness of 80 μm so that the coating thickness after drying was 12.6 μm, and 1 in a dryer set at 80 ° C. Let dry for minutes. The base film after drying was brought into close contact with the uneven surface of the mold produced in (1) by pressing with a rubber roll so that the ultraviolet curable resin composition layer was on the mold side. In this state, the ultraviolet ray curable resin composition layer is cured by irradiating light from a high-pressure mercury lamp with an intensity of 20 mW / cm 2 so as to be 300 mJ / cm 2 in terms of the amount of h-ray converted from the base film side, An antiglare layer having a structure shown in FIG. 6 (e), comprising a layer having an unevenness (thickness: 12.6 μm) and a base film was obtained.

(3)防眩層の光拡散特性の測定
(2)で得られた防眩層の基材フィルムとガラス基板とを貼合し、防眩層のガラス面側で基材フィルムの背面の法線の方向から、549nmのHe−Neレーザーからの平行光を照射し、防眩層の表面に凹凸を有する層から出射した光について上記法線方向から0°〜90°の所定の角度のレーザー光強度を測定した。結果を図8に示す。
尚、測定には、横河電機(株)製の「3292 03 オプティカルパワーセンサー」及び「3292 オプティカルパワーメーター」を用いた。光出射角度が46°のとき、法線方向から入射した光の強度に対する相対強度が0.0008%となる距離に「3292 03 オプティカルパワーセンサー」を設定した。
(3) Measurement of light diffusion characteristics of antiglare layer The base film of the antiglare layer obtained in (2) and a glass substrate are bonded together, and the method of the back surface of the base film on the glass surface side of the antiglare layer A laser having a predetermined angle of 0 ° to 90 ° from the normal direction with respect to light emitted from a layer having unevenness on the surface of the antiglare layer by irradiating parallel light from a 549 nm He—Ne laser from the direction of the line The light intensity was measured. The results are shown in FIG.
For measurement, “3292 03 optical power sensor” and “3292 optical power meter” manufactured by Yokogawa Electric Corporation were used. When the light emission angle was 46 °, “3292 03 optical power sensor” was set at a distance where the relative intensity with respect to the intensity of light incident from the normal direction was 0.0008%.

[第2光拡散層用の防眩層の製造例2]
紫外線硬化性樹脂組成物の固形分100重量部に対して、シリコーン系粒子「トスパール120」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社社製、重量平均粒子径2.0μm)を10重量部、表面に凹凸を有する層の厚みを8.4μmとしたこと以外は、実施例1と同様にして防眩層を作製した。得られた防眩層の光拡散特性の測定は、[第2光拡散層の製造例1]と同様に行い、結果を表1にまとめた。
[Production Example 2 of Antiglare Layer for Second Light Diffusion Layer]
10 parts by weight of silicone-based particles “Tospearl 120” (Momentive Performance Materials Japan Godo Kaisha, Ltd., weight average particle diameter 2.0 μm) with respect to 100 parts by weight of the solid content of the ultraviolet curable resin composition, An antiglare layer was produced in the same manner as in Example 1 except that the thickness of the layer having irregularities on the surface was 8.4 μm. The light diffusion characteristics of the obtained antiglare layer were measured in the same manner as in [Production Example 1 of second light diffusion layer]. The results are summarized in Table 1.

[第2光拡散層用の防眩層の製造例3]
紫外線硬化性樹脂組成物の固形分100重量部に対して、シリコーン系粒子「トスパール145」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社社製、重量平均粒子径4.5μm)を35重量部、表面に凹凸を有する層の厚みを9.9μmとしたこと以外は、実施例1と同様にして防眩層を作製した。得られた防眩層の光拡散特性の測定は、[第2光拡散層の製造例1]と同様に行い、結果を表1にまとめた。
[Production Example 3 of Antiglare Layer for Second Light Diffusion Layer]
35 parts by weight of silicone-based particles “Tospearl 145” (Momentive Performance Materials Japan Godo Kaisha, Ltd., weight average particle size 4.5 μm) with respect to 100 parts by weight of the solid content of the ultraviolet curable resin composition, An antiglare layer was produced in the same manner as in Example 1 except that the thickness of the layer having irregularities on the surface was 9.9 μm. The light diffusion characteristics of the obtained antiglare layer were measured in the same manner as in [Production Example 1 of second light diffusion layer]. The results are summarized in Table 1.

*1:紫外線硬化性樹脂組成物の固形分100質量部に対する使用量(質量部) * 1: Use amount (parts by mass) with respect to 100 parts by mass of the solid content of the ultraviolet curable resin composition.

(実施例1)
第1光拡散層を有する液晶表示装置として、VAモードのSHARP社製32型液晶テレビLC−32D10−Bのバックライトに、第1光拡散層からの出射光における、液晶セルの光入射面の法線の輝度値に対する、液晶セルの光入射面の法線に対して70°方向の輝度値が10%である第1光拡散層を有する液晶表示装置を用いた。次に、上記液晶表示装置の液晶セルにある両面の偏光板及び位相差板を剥がして、住友化学社製沃素系通常偏光板TRW842AP7を表裏にクロスニコルとなるように貼合し、偏光板の吸収軸が液晶セルの短辺と長辺に平行となるように貼合した。最後に、法線方向から入射した光の強度に対する相対強度が0.0008%となる法線方向に対しての光出射角度が46°である防眩層を第2偏光板の表面に貼合し、表面から、第2光拡散層(防眩層、第2偏光板)、液晶セル、第1偏光板、第2光拡散層(プリズムシート、光拡散板)バックライト装置を有する(図1の構成)液晶表示装置を作製し、目視評価を行った。
視野角が0°(正面)から60°まで、階調の反転、階調の潰れ、色調、黒表示の白浮き及び輝度変化に異常は全く認められず、いずれも良好であった。結果を表2に示す。
Example 1
As a liquid crystal display device having the first light diffusion layer, the light incident surface of the liquid crystal cell in the light emitted from the first light diffusion layer is applied to the backlight of the 32-type liquid crystal television LC-32D10-B manufactured by SHARP in VA mode. A liquid crystal display device having a first light diffusion layer having a luminance value of 10% in a 70 ° direction with respect to the normal line of the light incident surface of the liquid crystal cell with respect to the normal line luminance value was used. Next, the polarizing plate and the retardation plate on both sides of the liquid crystal cell of the liquid crystal display device are peeled off, and the iodine-based normal polarizing plate TRW842AP7 manufactured by Sumitomo Chemical Co., Ltd. is bonded to the front and back so as to be crossed Nicol, Bonding was performed so that the absorption axis was parallel to the short side and the long side of the liquid crystal cell. Finally, an antiglare layer having a light emission angle of 46 ° with respect to the normal direction where the relative intensity to the intensity of light incident from the normal direction is 0.0008% is bonded to the surface of the second polarizing plate. From the surface, a second light diffusing layer (antiglare layer, second polarizing plate), a liquid crystal cell, a first polarizing plate, a second light diffusing layer (prism sheet, light diffusing plate) and a backlight device are provided (FIG. 1). Configuration) A liquid crystal display device was prepared and visually evaluated.
From a viewing angle of 0 ° (front) to 60 °, no inversion was observed in gradation reversal, gradation collapse, color tone, white floating of black display, and luminance change, and all were good. The results are shown in Table 2.

(実施例2及び3)
第1光拡散層からの出射光における、液晶セルの光入射面の法線の輝度値に対する、液晶セルの光入射面の法線に対して70°方向の輝度値がそれぞれ0%及び20%であること以外は実施例1と同様に行った。結果を表2に示す。
(Examples 2 and 3)
In the light emitted from the first light diffusion layer, the luminance values in the direction of 70 ° with respect to the normal value of the light incident surface of the liquid crystal cell are 0% and 20% with respect to the normal value of the light incident surface of the liquid crystal cell, respectively. Except that, it was carried out in the same manner as in Example 1. The results are shown in Table 2.

(実施例4及び5)
防眩層の光出射角度がそれぞれ42°及び58°であること以外は実施例1と同様に行った。結果を表2に示す。
(Examples 4 and 5)
The same procedure as in Example 1 was performed except that the light emission angles of the antiglare layer were 42 ° and 58 °, respectively. The results are shown in Table 2.

*1:第1光拡散層からの出射光における、液晶セルの光入射面の法線の輝度値に対する、この法線に対して70°方向の輝度値
*2:防眩層の背面の法線方向から入射する波長549nmのレーザ光の強度に対して相対強度が0.0008%となる、防眩層から出射するレーザ光の、防眩層の背面の法線方向に対しての光出射角度
なお、*1、*2は表3及び表4も同様である。
◎:異常が全く認められない。
○:異常がほとんど認められない。
×:異常が認められる。
* 1: Luminance value in the direction of 70 ° with respect to the normal value of the light incident surface of the liquid crystal cell in the emitted light from the first light diffusion layer * 2: Method of the back side of the antiglare layer Light emission from the anti-glare layer with respect to the normal direction of the back surface of the anti-glare layer, the relative intensity of which is 0.0008% with respect to the intensity of the laser light having a wavelength of 549 nm incident from the linear direction. Angle Note that * 1 and * 2 are the same in Table 3 and Table 4.
A: No abnormality is observed.
○: Almost no abnormality is observed.
X: Abnormality is observed.

(実施例6〜10)
液晶表示装置として、液晶セルにある表面側の偏光板を剥がした後、住友化学社製のヨウ素系偏光板「TRW842AP7」を貼合した液晶表示装置、すなわち、表面から、第2光拡散層(防眩層、第2偏光板)、液晶セル、位相差板、第1偏光板、第1光拡散層(プリズムシート、光拡散板)及びバックライト装置を有する(図9の構成)液晶表示装置を用い、第1光拡散層からの出射光における、液晶セルの光入射面の法線の輝度値に対する液晶セルの光入射面の法線に対して70°方向の輝度値、防眩層の光出射角度が表3に記載の値を示すものを用いる以外は実施例1と同様に行った。結果を表3に示す。
(Examples 6 to 10)
As the liquid crystal display device, after peeling off the polarizing plate on the surface side in the liquid crystal cell, the liquid crystal display device to which the iodine-based polarizing plate “TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd. was bonded, that is, from the surface, the second light diffusion layer ( Anti-glare layer, second polarizing plate), liquid crystal cell, retardation plate, first polarizing plate, first light diffusing layer (prism sheet, light diffusing plate) and backlight device (configuration of FIG. 9) liquid crystal display device In the light emitted from the first light diffusion layer, the brightness value in the direction of 70 ° with respect to the normal value of the light incident surface of the liquid crystal cell with respect to the normal value of the light incident surface of the liquid crystal cell, The same procedure as in Example 1 was performed except that a light emission angle having a value shown in Table 3 was used. The results are shown in Table 3.

◎:異常が全く認められない。
○:異常がほとんど認められない。
×:異常が認められる。
A: No abnormality is observed.
○: Almost no abnormality is observed.
X: Abnormality is observed.

(実施例11)
第1光拡散層を有する液晶表示装置として、TNモードのTECO社製26型液晶テレビTL2686TWのバックライトに、第1光拡散層からの出射光における、液晶セルの光入射面の法線の輝度値に対する液晶セルの光入射面の法線に対して70°方向の輝度値が10%である第1光拡散層を有する液晶表示装置を用いた。次に、上記液晶表示装置の液晶セルにある両面の偏光板及び位相差板を剥がして、住友化学社製沃素系通常偏光板TRW842AP7を表裏にクロスニコルとなるように貼合し、偏光板の吸収軸が液晶セルの短辺と長辺に平行となるように貼合した。最後に、相対強度が0.0008%となる法線方向に対しての出射角が46°である防眩層を第2偏光板の表面に貼合し、表面から、第2光拡散層(防眩層、第2偏光板)、液晶セル、第1偏光板、第2光拡散層(プリズムシート、光拡散板)バックライト装置を有する(図1の構成)液晶表示装置を作製し、目視評価を行った。
視野角が0°(正面)から60°まで、階調の反転、階調の潰れ、色調、黒表示の白浮き及び輝度変化に異常は全く認められず、いずれも良好であった。結果を表4に示す。
(Example 11)
As a liquid crystal display device having a first light diffusion layer, the backlight of a TN mode TECO 26-inch liquid crystal television TL2686TW has a normal luminance of the light incident surface of the liquid crystal cell in the light emitted from the first light diffusion layer. A liquid crystal display device having a first light diffusion layer whose luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell with respect to the value is 10% was used. Next, the polarizing plate and the retardation plate on both sides of the liquid crystal cell of the liquid crystal display device are peeled off, and the iodine-based normal polarizing plate TRW842AP7 manufactured by Sumitomo Chemical Co., Ltd. is bonded to the front and back so as to be crossed Nicol, Bonding was performed so that the absorption axis was parallel to the short side and the long side of the liquid crystal cell. Finally, an antiglare layer having an output angle of 46 ° with respect to the normal direction with a relative intensity of 0.0008% is bonded to the surface of the second polarizing plate, and the second light diffusion layer ( A liquid crystal display device having an antiglare layer, a second polarizing plate), a liquid crystal cell, a first polarizing plate, a second light diffusion layer (prism sheet, light diffusion plate) and a backlight device (configuration in FIG. 1) is prepared and visually observed. Evaluation was performed.
From a viewing angle of 0 ° (front) to 60 °, no inversion was observed in gradation reversal, gradation collapse, color tone, white floating of black display, and luminance change, and all were good. The results are shown in Table 4.

(実施例12及び13)
第1光拡散層からの出射光における、液晶セルの光入射面の法線の輝度値に対する液晶セルの光入射面の法線に対して70°方向の輝度値がそれぞれ0%及び20%であること以外は実施例1と同様に行った。結果を表4に示す。
(Examples 12 and 13)
Luminance values in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell in the light emitted from the first light diffusion layer are 0% and 20% with respect to the normal value of the light incident surface of the liquid crystal cell, respectively. The procedure was the same as in Example 1 except that there was. The results are shown in Table 4.

(実施例14及び15)
防眩層の光出射角度がそれぞれ42°及び58°であること以外は実施例1と同様に行った。結果を表4に示した。
(Examples 14 and 15)
The same procedure as in Example 1 was performed except that the light emission angles of the antiglare layer were 42 ° and 58 °, respectively. The results are shown in Table 4.

◎:異常が全く認められない。
○:異常がほとんど認められない。
×:異常が認められる。
A: No abnormality is observed.
○: Almost no abnormality is observed.
X: Abnormality is observed.

本発明の液晶表示装置では、広視野角、高表示品位および優れた色再現性が得られる。また、位相差板を用いなくても視野角の拡大が図れ、部品点数を減らすことができる。   In the liquid crystal display device of the present invention, a wide viewing angle, high display quality, and excellent color reproducibility can be obtained. Further, the viewing angle can be expanded without using a retardation plate, and the number of parts can be reduced.

1 液晶セル
2 バックライト装置
3 第1光拡散層
4 第1偏光板
5 第2光拡散層
6 位相差板
31 光拡散板
32 プリズムシート(光偏向構造板)
51 第2偏光板
52 防眩層
522 フィラー
DESCRIPTION OF SYMBOLS 1 Liquid crystal cell 2 Backlight apparatus 3 1st light-diffusion layer 4 1st polarizing plate 5 2nd light-diffusion layer 6 Phase difference plate 31 Light-diffusion plate 32 Prism sheet (light-deflection structure board)
51 Second polarizing plate 52 Antiglare layer 522 Filler

Claims (8)

一対の基板の間に液晶層が設けられてなる液晶セルと、液晶セルの背面側に設けられたバックライト装置と、バックライト装置と液晶セルとの間に配置された第1光拡散層と、第1光拡散層と液晶セルとの間に配置された第1偏光板と、液晶セルの前面側に配置された第2光拡散層とを備え、
前記第1光拡散層は、光拡散機能と光偏向機能との両機能又はいずれか一方の機能を有し、前記第1光拡散層からの出射光は、(i)前記バックライト装置を光源としたとき、VA方式液晶セルの光入射面の法線に対して70°方向の輝度値が該法線方向の輝度値に対して20%以下である配光特性を有し、且つ、(ii)非平行光を含み、
前記第2光拡散層は、第2偏光板と、第2偏光板の前面側に設けられた防眩層とから構成され、該防眩層は、硬化性樹脂組成物を硬化させてなる基材フィルムと、該硬化性樹脂組成物の固形分100質量部に対して10質量部〜40質量部のフィラーとを含み、該防眩層の光拡散特性は、該防眩層の背面の法線方向から入射する波長549nmのレーザ光の強度に対して相対強度が0.0008%となる、該防眩層から出射するレーザ光の、該防眩層の背面の法線方向に対しての光出射角度が40°以上であることを特徴とする液晶表示装置。
A liquid crystal cell in which a liquid crystal layer is provided between a pair of substrates, a backlight device provided on the back side of the liquid crystal cell, and a first light diffusion layer disposed between the backlight device and the liquid crystal cell; A first polarizing plate disposed between the first light diffusion layer and the liquid crystal cell, and a second light diffusion layer disposed on the front side of the liquid crystal cell,
The first light diffusion layer has a light diffusion function and / or a light deflection function, and light emitted from the first light diffusion layer is (i) a light source for the backlight device. And having a light distribution characteristic that the luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the VA liquid crystal cell is 20% or less with respect to the luminance value in the normal direction, and ( ii) includes non-parallel light;
The second light diffusion layer is composed of a second polarizing plate and an antiglare layer provided on the front side of the second polarizing plate, and the antiglare layer is a group obtained by curing a curable resin composition. A light-diffusing property of the antiglare layer is determined by the method of the back side of the antiglare layer. The relative intensity of the laser light having a wavelength of 549 nm incident from the linear direction is 0.0008% relative to the intensity of the laser light emitted from the antiglare layer with respect to the normal direction of the back surface of the antiglare layer. A liquid crystal display device having a light emission angle of 40 ° or more.
前記第1光拡散層が、光拡散機能と光偏向機能との両機能を有することを特徴とする請求項1記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the first light diffusion layer has both a light diffusion function and a light deflection function. 前記第1光拡散層は、前記光拡散機能を奏する光拡散板と、前記光偏向機能を奏する光偏向構造板とを有し、前記光拡散板の前面側に前記光偏向構造板が設けられた構成であることを特徴とする請求項2記載の液晶表示装置。   The first light diffusion layer includes a light diffusion plate that performs the light diffusion function and a light deflection structure plate that performs the light deflection function, and the light deflection structure plate is provided on a front side of the light diffusion plate. The liquid crystal display device according to claim 2, wherein the liquid crystal display device is configured as described above. 前記液晶セルが、TN方式液晶、IPS方式液晶、及び、VA方式液晶のいずれかであることを特徴とする請求項1〜3のいずれか記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the liquid crystal cell is any one of a TN liquid crystal, an IPS liquid crystal, and a VA liquid crystal. 前記液晶セルの背面側及び/又は前面側に位相差板がさらに配置されたことを特徴とする請求項1〜4のいずれか記載の液晶表示装置。   5. The liquid crystal display device according to claim 1, further comprising a retardation plate disposed on a back side and / or a front side of the liquid crystal cell. 位相差板を具備しない請求項1〜4のいずれか記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the liquid crystal display device does not include a retardation plate. 前記液晶セルがTN方式液晶であり、且つ、位相差板を具備しない請求項1〜3のいずれか記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the liquid crystal cell is a TN liquid crystal and does not include a retardation plate. 前記硬化性樹脂組成物が紫外線硬化性樹脂組成物である請求項1〜7のいずれか記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the curable resin composition is an ultraviolet curable resin composition.
JP2010100428A 2008-04-03 2010-04-24 Liquid crystal display Pending JP2010160527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100428A JP2010160527A (en) 2008-04-03 2010-04-24 Liquid crystal display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008097004 2008-04-03
JP2008124457 2008-05-12
JP2010100428A JP2010160527A (en) 2008-04-03 2010-04-24 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009089712A Division JP2009301014A (en) 2008-04-03 2009-04-02 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2010160527A true JP2010160527A (en) 2010-07-22

Family

ID=41135488

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2009089712A Withdrawn JP2009301014A (en) 2008-04-03 2009-04-02 Liquid crystal display device
JP2010100427A Pending JP2010170153A (en) 2008-04-03 2010-04-24 Liquid crystal display device
JP2010100428A Pending JP2010160527A (en) 2008-04-03 2010-04-24 Liquid crystal display
JP2010100426A Pending JP2010170152A (en) 2008-04-03 2010-04-24 Liquid crystal display device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2009089712A Withdrawn JP2009301014A (en) 2008-04-03 2009-04-02 Liquid crystal display device
JP2010100427A Pending JP2010170153A (en) 2008-04-03 2010-04-24 Liquid crystal display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010100426A Pending JP2010170152A (en) 2008-04-03 2010-04-24 Liquid crystal display device

Country Status (5)

Country Link
JP (4) JP2009301014A (en)
KR (1) KR20110009093A (en)
CN (1) CN101983352A (en)
TW (1) TWI584027B (en)
WO (1) WO2009123114A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057806A1 (en) * 2010-02-25 2013-03-07 Sumitomo Chemical Company, Limited Liquid crystal display device
CN104321686A (en) * 2012-05-18 2015-01-28 瑞尔D股份有限公司 Controlling light sources of a directional backlight
US9436015B2 (en) 2012-12-21 2016-09-06 Reald Inc. Superlens component for directional display
US9541766B2 (en) 2012-05-18 2017-01-10 Reald Spark, Llc Directional display apparatus
US9551825B2 (en) 2013-11-15 2017-01-24 Reald Spark, Llc Directional backlights with light emitting element packages
US9678267B2 (en) 2012-05-18 2017-06-13 Reald Spark, Llc Wide angle imaging directional backlights
US9709723B2 (en) 2012-05-18 2017-07-18 Reald Spark, Llc Directional backlight
US9740034B2 (en) 2013-10-14 2017-08-22 Reald Spark, Llc Control of directional display
US9739928B2 (en) 2013-10-14 2017-08-22 Reald Spark, Llc Light input for directional backlight
US9835792B2 (en) 2014-10-08 2017-12-05 Reald Spark, Llc Directional backlight
US9872007B2 (en) 2013-06-17 2018-01-16 Reald Spark, Llc Controlling light sources of a directional backlight
US9910207B2 (en) 2012-05-18 2018-03-06 Reald Spark, Llc Polarization recovery in a directional display device
US10054732B2 (en) 2013-02-22 2018-08-21 Reald Spark, Llc Directional backlight having a rear reflector
US10228505B2 (en) 2015-05-27 2019-03-12 Reald Spark, Llc Wide angle imaging directional backlights
US10321123B2 (en) 2016-01-05 2019-06-11 Reald Spark, Llc Gaze correction of multi-view images
US10330843B2 (en) 2015-11-13 2019-06-25 Reald Spark, Llc Wide angle imaging directional backlights
US10356383B2 (en) 2014-12-24 2019-07-16 Reald Spark, Llc Adjustment of perceived roundness in stereoscopic image of a head
US10359561B2 (en) 2015-11-13 2019-07-23 Reald Spark, Llc Waveguide comprising surface relief feature and directional backlight, directional display device, and directional display apparatus comprising said waveguide
US10359560B2 (en) 2015-04-13 2019-07-23 Reald Spark, Llc Wide angle imaging directional backlights
US10365426B2 (en) 2012-05-18 2019-07-30 Reald Spark, Llc Directional backlight
US10401638B2 (en) 2017-01-04 2019-09-03 Reald Spark, Llc Optical stack for imaging directional backlights
US10408992B2 (en) 2017-04-03 2019-09-10 Reald Spark, Llc Segmented imaging directional backlights
US10425635B2 (en) 2016-05-23 2019-09-24 Reald Spark, Llc Wide angle imaging directional backlights
US10459321B2 (en) 2015-11-10 2019-10-29 Reald Inc. Distortion matching polarization conversion systems and methods thereof
US10475418B2 (en) 2015-10-26 2019-11-12 Reald Spark, Llc Intelligent privacy system, apparatus, and method thereof
US10740985B2 (en) 2017-08-08 2020-08-11 Reald Spark, Llc Adjusting a digital representation of a head region
US10802356B2 (en) 2018-01-25 2020-10-13 Reald Spark, Llc Touch screen for privacy display
US11067736B2 (en) 2014-06-26 2021-07-20 Reald Spark, Llc Directional privacy display
US11079619B2 (en) 2016-05-19 2021-08-03 Reald Spark, Llc Wide angle imaging directional backlights
US11115647B2 (en) 2017-11-06 2021-09-07 Reald Spark, Llc Privacy display apparatus
US11821602B2 (en) 2020-09-16 2023-11-21 Reald Spark, Llc Vehicle external illumination device
US11908241B2 (en) 2015-03-20 2024-02-20 Skolkovo Institute Of Science And Technology Method for correction of the eyes image using machine learning and method for machine learning

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449543A (en) * 2009-03-30 2012-05-09 住友化学株式会社 Liquid crystal display device
JP2011197656A (en) * 2010-02-25 2011-10-06 Sumitomo Chemical Co Ltd Liquid crystal display device
JP5827811B2 (en) * 2010-03-29 2015-12-02 住友化学株式会社 Liquid crystal display
JP2012008333A (en) * 2010-06-24 2012-01-12 Sumitomo Chemical Co Ltd Light-diffusing polarizing plate and liquid crystal display device
WO2011162133A1 (en) * 2010-06-24 2011-12-29 住友化学株式会社 Light-diffusing polarization plate and liquid-crystal display device
JP2012008332A (en) * 2010-06-24 2012-01-12 Sumitomo Chemical Co Ltd Light-diffusing polarizing plate and liquid crystal display device
WO2011162132A1 (en) * 2010-06-24 2011-12-29 住友化学株式会社 Light-diffusing polarization plate and liquid-crystal display device
WO2012005284A1 (en) * 2010-07-07 2012-01-12 シャープ株式会社 Liquid-crystal display device
JP2012078420A (en) * 2010-09-30 2012-04-19 Sumitomo Chemical Co Ltd Light diffusing polarizer plate, and liquid crystal display device
JP6038428B2 (en) * 2010-11-12 2016-12-07 大日本印刷株式会社 Surface light source device, video source module, and liquid crystal display device
JP2012103470A (en) * 2010-11-10 2012-05-31 Dainippon Printing Co Ltd Polarizing plate, liquid crystal display panel and display device
CN102741713B (en) * 2010-11-02 2015-06-10 大日本印刷株式会社 Optical module and display device
CN103354916A (en) * 2011-02-16 2013-10-16 住友化学株式会社 Liquid crystal panel and liquid crystal display device using same
JP6230840B2 (en) * 2013-07-26 2017-11-15 日立オムロンターミナルソリューションズ株式会社 Automatic transaction apparatus, automatic transaction system, and banknote exchange transaction method
JP2019053167A (en) * 2017-09-14 2019-04-04 日東電工株式会社 Optical laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313156A (en) * 1992-05-14 1993-11-26 Sony Corp Thin liquid crystal display device
JPH0618707A (en) * 1992-06-30 1994-01-28 Dainippon Printing Co Ltd Lenticular lens, surface light source and liquid crystal display device
JP2001188230A (en) * 1999-12-28 2001-07-10 Fuji Photo Film Co Ltd Liquid crystal display device
JP2002109925A (en) * 2000-09-29 2002-04-12 Sharp Corp Lighting device, and liquid crystal display device equipped with the same
JP2003270409A (en) * 2002-03-13 2003-09-25 Fuji Photo Film Co Ltd Light diffusing film, antireflection film, polarizing plate and image display device
JP2005010509A (en) * 2003-06-19 2005-01-13 Fuji Photo Film Co Ltd Light diffusing film, polarizing plate, and liquid crystal display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047283A (en) * 1994-05-18 2005-02-24 Dainippon Printing Co Ltd Glare proofing film
JP3288318B2 (en) * 1998-12-14 2002-06-04 日本電気株式会社 Liquid crystal display
DE60227975D1 (en) * 2001-10-11 2008-09-11 Fujifilm Corp DIFFUSION FILM WITH A TRANSPARENT SUBSTRATE AND DIFFUSION LAYER
JP2004133356A (en) * 2002-10-15 2004-04-30 Nitto Denko Corp Polarizing plate, optical element and image display device
JP2004133355A (en) * 2002-10-15 2004-04-30 Nitto Denko Corp Polarizing plate, optical element and picture display device
JP2005044744A (en) * 2003-07-25 2005-02-17 Clariant Internatl Ltd Surface light source device
JP2006133385A (en) * 2004-11-04 2006-05-25 Nitto Denko Corp Light collimating system, condensing backlight system, and liquid crystal display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313156A (en) * 1992-05-14 1993-11-26 Sony Corp Thin liquid crystal display device
JPH0618707A (en) * 1992-06-30 1994-01-28 Dainippon Printing Co Ltd Lenticular lens, surface light source and liquid crystal display device
JP2001188230A (en) * 1999-12-28 2001-07-10 Fuji Photo Film Co Ltd Liquid crystal display device
JP2002109925A (en) * 2000-09-29 2002-04-12 Sharp Corp Lighting device, and liquid crystal display device equipped with the same
JP2003270409A (en) * 2002-03-13 2003-09-25 Fuji Photo Film Co Ltd Light diffusing film, antireflection film, polarizing plate and image display device
JP2005010509A (en) * 2003-06-19 2005-01-13 Fuji Photo Film Co Ltd Light diffusing film, polarizing plate, and liquid crystal display

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130057806A1 (en) * 2010-02-25 2013-03-07 Sumitomo Chemical Company, Limited Liquid crystal display device
US9910207B2 (en) 2012-05-18 2018-03-06 Reald Spark, Llc Polarization recovery in a directional display device
CN104321686B (en) * 2012-05-18 2017-04-12 瑞尔D斯帕克有限责任公司 Controlling light sources of a directional backlight
US10712582B2 (en) 2012-05-18 2020-07-14 Reald Spark, Llc Directional display apparatus
US10902821B2 (en) 2012-05-18 2021-01-26 Reald Spark, Llc Controlling light sources of a directional backlight
US10062357B2 (en) 2012-05-18 2018-08-28 Reald Spark, Llc Controlling light sources of a directional backlight
US9678267B2 (en) 2012-05-18 2017-06-13 Reald Spark, Llc Wide angle imaging directional backlights
US9709723B2 (en) 2012-05-18 2017-07-18 Reald Spark, Llc Directional backlight
US10175418B2 (en) 2012-05-18 2019-01-08 Reald Spark, Llc Wide angle imaging directional backlights
US10365426B2 (en) 2012-05-18 2019-07-30 Reald Spark, Llc Directional backlight
CN104321686A (en) * 2012-05-18 2015-01-28 瑞尔D股份有限公司 Controlling light sources of a directional backlight
US11287878B2 (en) 2012-05-18 2022-03-29 ReaID Spark, LLC Controlling light sources of a directional backlight
US11681359B2 (en) 2012-05-18 2023-06-20 Reald Spark, Llc Controlling light sources of a directional backlight
US9541766B2 (en) 2012-05-18 2017-01-10 Reald Spark, Llc Directional display apparatus
US9436015B2 (en) 2012-12-21 2016-09-06 Reald Inc. Superlens component for directional display
US10054732B2 (en) 2013-02-22 2018-08-21 Reald Spark, Llc Directional backlight having a rear reflector
US9872007B2 (en) 2013-06-17 2018-01-16 Reald Spark, Llc Controlling light sources of a directional backlight
US9740034B2 (en) 2013-10-14 2017-08-22 Reald Spark, Llc Control of directional display
US10488578B2 (en) 2013-10-14 2019-11-26 Reald Spark, Llc Light input for directional backlight
US9739928B2 (en) 2013-10-14 2017-08-22 Reald Spark, Llc Light input for directional backlight
US10185076B2 (en) 2013-11-15 2019-01-22 Reald Spark, Llc Directional backlights with light emitting element packages
US9551825B2 (en) 2013-11-15 2017-01-24 Reald Spark, Llc Directional backlights with light emitting element packages
US11067736B2 (en) 2014-06-26 2021-07-20 Reald Spark, Llc Directional privacy display
US9835792B2 (en) 2014-10-08 2017-12-05 Reald Spark, Llc Directional backlight
US10356383B2 (en) 2014-12-24 2019-07-16 Reald Spark, Llc Adjustment of perceived roundness in stereoscopic image of a head
US11908241B2 (en) 2015-03-20 2024-02-20 Skolkovo Institute Of Science And Technology Method for correction of the eyes image using machine learning and method for machine learning
US11061181B2 (en) 2015-04-13 2021-07-13 Reald Spark, Llc Wide angle imaging directional backlights
US10459152B2 (en) 2015-04-13 2019-10-29 Reald Spark, Llc Wide angle imaging directional backlights
US10634840B2 (en) 2015-04-13 2020-04-28 Reald Spark, Llc Wide angle imaging directional backlights
US10359560B2 (en) 2015-04-13 2019-07-23 Reald Spark, Llc Wide angle imaging directional backlights
US10228505B2 (en) 2015-05-27 2019-03-12 Reald Spark, Llc Wide angle imaging directional backlights
US11030981B2 (en) 2015-10-26 2021-06-08 Reald Spark, Llc Intelligent privacy system, apparatus, and method thereof
US10475418B2 (en) 2015-10-26 2019-11-12 Reald Spark, Llc Intelligent privacy system, apparatus, and method thereof
US10459321B2 (en) 2015-11-10 2019-10-29 Reald Inc. Distortion matching polarization conversion systems and methods thereof
US10330843B2 (en) 2015-11-13 2019-06-25 Reald Spark, Llc Wide angle imaging directional backlights
US10712490B2 (en) 2015-11-13 2020-07-14 Reald Spark, Llc Backlight having a waveguide with a plurality of extraction facets, array of light sources, a rear reflector having reflective facets and a transmissive sheet disposed between the waveguide and reflector
US10359561B2 (en) 2015-11-13 2019-07-23 Reald Spark, Llc Waveguide comprising surface relief feature and directional backlight, directional display device, and directional display apparatus comprising said waveguide
US11067738B2 (en) 2015-11-13 2021-07-20 Reald Spark, Llc Surface features for imaging directional backlights
US11854243B2 (en) 2016-01-05 2023-12-26 Reald Spark, Llc Gaze correction of multi-view images
US10750160B2 (en) 2016-01-05 2020-08-18 Reald Spark, Llc Gaze correction of multi-view images
US10321123B2 (en) 2016-01-05 2019-06-11 Reald Spark, Llc Gaze correction of multi-view images
US11079619B2 (en) 2016-05-19 2021-08-03 Reald Spark, Llc Wide angle imaging directional backlights
US10425635B2 (en) 2016-05-23 2019-09-24 Reald Spark, Llc Wide angle imaging directional backlights
US10401638B2 (en) 2017-01-04 2019-09-03 Reald Spark, Llc Optical stack for imaging directional backlights
US10408992B2 (en) 2017-04-03 2019-09-10 Reald Spark, Llc Segmented imaging directional backlights
US11232647B2 (en) 2017-08-08 2022-01-25 Reald Spark, Llc Adjusting a digital representation of a head region
US11836880B2 (en) 2017-08-08 2023-12-05 Reald Spark, Llc Adjusting a digital representation of a head region
US10740985B2 (en) 2017-08-08 2020-08-11 Reald Spark, Llc Adjusting a digital representation of a head region
US11431960B2 (en) 2017-11-06 2022-08-30 Reald Spark, Llc Privacy display apparatus
US11115647B2 (en) 2017-11-06 2021-09-07 Reald Spark, Llc Privacy display apparatus
US10802356B2 (en) 2018-01-25 2020-10-13 Reald Spark, Llc Touch screen for privacy display
US11821602B2 (en) 2020-09-16 2023-11-21 Reald Spark, Llc Vehicle external illumination device

Also Published As

Publication number Publication date
JP2009301014A (en) 2009-12-24
WO2009123114A1 (en) 2009-10-08
TW200947054A (en) 2009-11-16
JP2010170152A (en) 2010-08-05
JP2010170153A (en) 2010-08-05
CN101983352A (en) 2011-03-02
TWI584027B (en) 2017-05-21
KR20110009093A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2009123114A1 (en) Liquid crystal display device
TWI507740B (en) A light diffusion film and a liquid crystal display device including the same
WO2010073985A1 (en) Optical film and liquid crystal display device comprising same
WO2011105459A1 (en) Liquid crystal display device
WO2010018812A1 (en) Optical path unit and liquid crystal display device
JP2011209675A (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
JP2011209676A (en) Light-diffusing film, method for manufacturing the same, light diffusing polarizing plate, and liquid crystal display device
US20130057806A1 (en) Liquid crystal display device
WO2010073997A1 (en) Optical film and liquid crystal display device comprising same
WO2010113873A1 (en) Liquid crystal display device
WO2011004906A1 (en) Liquid crystal display device and light diffusion film
WO2010113879A1 (en) Liquid crystal display device
WO2013099708A1 (en) Liquid crystal display device
JP5827811B2 (en) Liquid crystal display
CN111176033A (en) Substrate with transparent electrode layer, light-adjusting film and liquid crystal display device
CN111176032A (en) Substrate with transparent electrode layer, light-adjusting film and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401