JP2010153720A - Method of manufacturing laminated ceramic capacitor - Google Patents

Method of manufacturing laminated ceramic capacitor Download PDF

Info

Publication number
JP2010153720A
JP2010153720A JP2008332561A JP2008332561A JP2010153720A JP 2010153720 A JP2010153720 A JP 2010153720A JP 2008332561 A JP2008332561 A JP 2008332561A JP 2008332561 A JP2008332561 A JP 2008332561A JP 2010153720 A JP2010153720 A JP 2010153720A
Authority
JP
Japan
Prior art keywords
paste film
ceramic
metal paste
width
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332561A
Other languages
Japanese (ja)
Other versions
JP5315987B2 (en
Inventor
Yuichi Abe
雄一 阿部
Masafumi Nakayama
雅文 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008332561A priority Critical patent/JP5315987B2/en
Publication of JP2010153720A publication Critical patent/JP2010153720A/en
Application granted granted Critical
Publication of JP5315987B2 publication Critical patent/JP5315987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a laminated ceramic capacitor that obtains an objective capacitance and has no sintered compact structural defect and is superior in a reliable performance. <P>SOLUTION: The method of manufacturing the laminated ceramic capacitor includes a step of obtaining a laminated product by forming ceramic paste films 4, 5 for step absorption in a non-forming portion of metal paste films 3 on ceramic raw sheets 2, while alternately laminating the plural ceramic raw sheets 2 and the plural metal paste films 3. The ceramic paste films 4, 5 for step absorption consist of two sorts of formation patterns with different widths. Since an impact caused by an overlapping of the metal paste films 3 and the ceramic paste films 4, 5 for step absorption decreases by alternately forming in the laminating direction the two sorts in which a width of at least one forming pattern is made wider than a width of the non-forming portion of the metal paste films 3, the laminated ceramic capacitor superior in a reliability can be manufactured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種電子機器に用いられる積層セラミックコンデンサの製造方法に関するものである。   The present invention relates to a method for producing a multilayer ceramic capacitor used in various electronic devices.

近年は、積層セラミックコンデンサの小形化、大容量化が急速に進んでおり、その実現のために、積層セラミックコンデンサにおける一層あたりの誘電体層および内部電極層を薄層化し、これらを高積層化するという方法がとられている。   In recent years, miniaturization and increase in capacity of multilayer ceramic capacitors have been progressing rapidly. To achieve this, the dielectric layers and internal electrode layers per layer in multilayer ceramic capacitors have been thinned and these layers have been increased in thickness. The method of doing is taken.

誘電体層の薄層化および高積層化に伴って、対向する内部電極間の距離が近接することによる積層セラミックコンデンサのショートなどの特性不良が増加する。さらに内部電極の有無による段差が大きくなって焼結体の構造欠陥が発生しやすくなり、積層セラミックコンデンサの信頼性に大きく影響する。このように、誘電体層の薄層化および高積層化における品質保証が極めて重要になってきている。   As the dielectric layer is made thinner and higher stacked, characteristic defects such as short-circuiting of the multilayer ceramic capacitor due to the close distance between the opposing internal electrodes increase. Further, the level difference due to the presence / absence of the internal electrode becomes large and structural defects of the sintered body are likely to occur, which greatly affects the reliability of the multilayer ceramic capacitor. As described above, quality assurance in the thinning and high stacking of dielectric layers has become extremely important.

そして、例えば、特許文献1には、内部電極の有無による段差を解消するために、複数のセラミック生シートと金属ペースト膜とを交互に積層するとともにセラミック生シート上の金属ペースト膜の非形成部分に形成したセラミックペースト膜を積層して積層体を得る製造方法が提案されている。
特開平11−26278号公報
For example, in Patent Document 1, in order to eliminate a step due to the presence / absence of an internal electrode, a plurality of ceramic raw sheets and a metal paste film are alternately laminated, and a non-formation portion of the metal paste film on the ceramic raw sheet A manufacturing method has been proposed in which a ceramic paste film formed in the above is laminated to obtain a laminate.
JP-A-11-26278

しかしながら、特許文献1の方法では、段差吸収用セラミックペースト膜を形成した場合、金属ペースト膜と段差吸収用セラミックペースト膜とを位置合わせして高精度に印刷、積層することは難しく、印刷ずれや積層ずれによって生じる金属ペースト膜と段差吸収用セラミックペースト膜との重なりが大きい部分が複数にわたって連続している場合、重なり部分に積層体プレス時の圧力が集中するので、重なり部分の金属ペースト膜が断裂し不連続になり、積層セラミックコンデンサの容量が低下するという課題があった。また、印刷ずれや積層ずれによって生じる金属ペースト膜と段差吸収用セラミックペースト膜との間の段差吸収用セラミックペースト膜がない部分が、複数層にわたって連続している場合、その部分が空洞となって焼結体のデラミネーションやクラック等の内部構造欠陥となり、信頼性が低下するという課題があった。   However, in the method of Patent Document 1, when the step-absorbing ceramic paste film is formed, it is difficult to print and laminate the metal paste film and the step-absorbing ceramic paste film with high accuracy, and printing misalignment or When a portion where the overlap between the metal paste film generated due to stacking deviation and the ceramic paste film for level difference absorption is continuous over a plurality of portions, the pressure at the time of pressing the laminated body is concentrated on the overlapping portion. There was a problem that the ceramic ceramic capacitor was torn and discontinuous, and the capacity of the multilayer ceramic capacitor was reduced. In addition, when a portion without the step-absorbing ceramic paste film between the metal paste film and the step-absorbing ceramic paste film caused by printing misalignment or stacking misalignment is continuous over a plurality of layers, the portion becomes a cavity. There was a problem that reliability was lowered due to internal structural defects such as delamination and cracks in the sintered body.

本発明は、上記課題を解決するもので、目標の静電容量を得ることができ、さらには焼結体構造欠陥がなく信頼性の優れた積層セラミックコンデンサの製造方法を提供することを目的とするものである。   An object of the present invention is to solve the above-mentioned problems, and to provide a method for producing a multilayer ceramic capacitor that can obtain a target capacitance and that is excellent in reliability without a sintered body structural defect. To do.

上記目的を達成するため、本発明の積層セラミックコンデンサの製造方法は、複数のセラミック生シートと複数の金属ペースト膜とを交互に積層するとともに、前記セラミック生シート上の前記金属ペースト膜の非形成部分に段差吸収用セラミックペースト膜を形成して積層体を得る工程を備えた積層セラミックコンデンサの製造方法であって、前記段差吸収用セラミックペースト膜は、形成パターンの幅が異なる2種からなり、かつ、少なくとも一方の形成パターンの幅が金属ペースト膜の非形成部分の幅より大とした2種を積層方向に交互に形成するとしたものである。   In order to achieve the above object, a method for manufacturing a multilayer ceramic capacitor according to the present invention includes alternately stacking a plurality of ceramic raw sheets and a plurality of metal paste films, and not forming the metal paste films on the ceramic raw sheets. A method of manufacturing a multilayer ceramic capacitor comprising a step of forming a step-absorbing ceramic paste film on a portion to obtain a laminate, wherein the step-absorbing ceramic paste film comprises two types having different formation patterns, In addition, two types in which the width of at least one of the formation patterns is larger than the width of the non-formation portion of the metal paste film are alternately formed in the stacking direction.

本発明の積層セラミックコンデンサの製造方法によれば、幅の異なる2種の段差吸収用セラミックペースト膜を交互に積層しているので、金属ペースト膜と段差吸収用セラミックペースト膜との重なりが大きい部分が複数層にわたって連続して発生することがなく、そのため、金属ペースト膜と段差吸収用セラミックペースト膜との重なりによる積層体プレス時の圧力集中が緩和され、重なり部分の金属ペースト膜の断裂が抑制されるので、目標の静電容量を得ることができる。   According to the method for manufacturing a multilayer ceramic capacitor of the present invention, since two types of step-absorbing ceramic paste films having different widths are alternately stacked, a portion where the metal paste film and the step-absorbing ceramic paste film are largely overlapped Does not occur continuously over multiple layers, so the pressure concentration during pressing of the laminate due to the overlap between the metal paste film and the step-absorbing ceramic paste film is alleviated, and the metal paste film at the overlapping portion is prevented from being broken. Therefore, the target capacitance can be obtained.

また、段差吸収用セラミックペースト膜の少なくとも一方の形成パターンの幅を金属ペースト膜の非形成部分の幅より大きくしているので、段差吸収用セラミックペースト膜がない部分が複数層にわたって連続して発生することがなく、そのため、金属ペースト膜と段差吸収用セラミックペースト膜との間の空洞発生が抑制されるので、焼結体構造欠陥がなく信頼性の優れた積層セラミックコンデンサを製造することができる。   In addition, since the width of the formation pattern of at least one of the step-absorbing ceramic paste film is larger than the width of the non-formed portion of the metal paste film, a portion without the step-absorbing ceramic paste film is continuously generated across multiple layers. Therefore, the generation of cavities between the metal paste film and the step-absorbing ceramic paste film is suppressed, so that a multilayer ceramic capacitor having no sintered structure defects and excellent in reliability can be manufactured. .

(実施の形態)
以下本発明の積層セラミックコンデンサの製造方法について、図1〜4を用いて、以下に具体的に説明する。
(Embodiment)
Hereinafter, the manufacturing method of the multilayer ceramic capacitor of the present invention will be specifically described with reference to FIGS.

まず、主成分としてチタン酸バリウムを、副成分としてMn、Al、SiO、Mg(OH)、Dyを所定の組成となるよう秤量し、これら秤量した原料粉体をジルコニアボールと純水とともにボールミルに入れ湿式混合した後に、脱水乾燥した。次いで、この乾燥粉末を高純度のアルミナルツボに入れ、空気中で900℃にて2時間仮焼した。その後、この仮焼粉末をジルコニアボールと純水とともにボールミルに入れ湿式粉砕した後に、脱水乾燥し、誘電体粉末を作製した。 First, barium titanate as a main component and Mn 3 O 4 , Al 2 O 3 , SiO 2 , Mg (OH) 2 , and Dy 2 O 3 as weighed components are weighed to have a predetermined composition, and these weighed raw materials The powder was placed in a ball mill together with zirconia balls and pure water, wet mixed, and then dehydrated and dried. Next, this dry powder was put into a high-purity alumina crucible and calcined at 900 ° C. for 2 hours in air. Thereafter, the calcined powder was placed in a ball mill together with zirconia balls and pure water, wet-pulverized, and then dehydrated to produce a dielectric powder.

次に、上記の誘電体粉末に、有機溶剤としてn−酢酸ブチル、有機バインダとしてポリビニルブチラール樹脂、可塑剤としてBBP(ブチルベンジルフタレート)を加え、ジルコニアボールとともにボールミルにて混合して第1のセラミックスラリーを作製した。この第1のセラミックスラリーをポリエチレンテレフタレートフィルム上にドクターブレード法により塗布乾燥して、図1、3の厚さ1.6μmのセラミック生シート2を作製した。   Next, n-butyl acetate as an organic solvent, polyvinyl butyral resin as an organic binder, and BBP (butyl benzyl phthalate) as a plasticizer are added to the above dielectric powder, and mixed with a zirconia ball in a ball mill to form a first ceramic. A rally was made. The first ceramic slurry was applied and dried on a polyethylene terephthalate film by a doctor blade method to produce a raw ceramic sheet 2 having a thickness of 1.6 μm shown in FIGS.

一方、セラミック生シート2とは別に、図2に示すようにニッケルを主成分とするペーストをグラビア印刷法によりポリエチレンテレフタレートフィルム6上に印刷して乾燥し、厚さ1.3μmの内部電極となる金属ペースト膜3を作製した。金属ペースト膜3の寸法は3.70mm×0.79mmとした。   On the other hand, apart from the ceramic raw sheet 2, as shown in FIG. 2, a paste containing nickel as a main component is printed on the polyethylene terephthalate film 6 by a gravure printing method and dried to form an internal electrode having a thickness of 1.3 μm. A metal paste film 3 was produced. The size of the metal paste film 3 was 3.70 mm × 0.79 mm.

他方、図1、3の段差吸収用セラミックペースト膜4,5を得るため、上記の誘電体粉末に、有機溶剤としてn−酢酸ブチル、有機バインダとしてポリビニルブチラール樹脂、可塑剤としてBBP(ブチルベンジルフタレート)を加え、ジルコニアボールとともにボールミルにて混合して第2のセラミックスラリーを作製した。なお、第2のセラミックスラリーは、グラビア印刷に適したスラリーとするため、第1のセラミックスラリーに比べ可塑剤量と有機溶剤量を変化させた。   On the other hand, in order to obtain the step absorbing ceramic paste films 4 and 5 of FIGS. 1 and 3, n-butyl acetate as an organic solvent, polyvinyl butyral resin as an organic binder, and BBP (butylbenzyl phthalate as a plasticizer). ) And mixed with a zirconia ball in a ball mill to prepare a second ceramic slurry. In addition, in order to make the 2nd ceramic slurry into a slurry suitable for gravure printing, the amount of plasticizers and the amount of organic solvents were changed compared with the 1st ceramic slurry.

この第2のセラミックスラリーを用いて、図3に示すように前記セラミック生シート2上に交互に幅が異なるセラミックペースト膜4,5を金属ペースト膜3と同等の高さとなるようにグラビア印刷法により形成した。この時、第2のセラミックスラリーを印刷するグラビア版のパターンの幅を変えることで2種類の幅を持つ段差吸収用セラミックペースト膜4,5を形成した。具体的な幅の説明は後述する。なお、図3は、説明のためにモデル的に示したために、実際の段差吸収用セラミックペースト膜4,5の幅寸法とは異なる。   Using this second ceramic slurry, a gravure printing method is used so that the ceramic paste films 4 and 5 having different widths alternately on the ceramic raw sheet 2 have the same height as the metal paste film 3 as shown in FIG. Formed by. At this time, the step-absorbing ceramic paste films 4 and 5 having two types of widths were formed by changing the width of the pattern of the gravure plate on which the second ceramic slurry was printed. The specific width will be described later. Since FIG. 3 is shown as a model for explanation, it differs from the actual width dimension of the step-absorbing ceramic paste films 4 and 5.

次に、支持体としての金属板の上に段差吸収用セラミックペースト膜が形成されていないセラミック生シートを加圧転写し、ポリエチレンテレフタレートフィルムを除去するという工程を複数回繰り返して、下側の保護層を形成した。   Next, the process of pressure transferring a ceramic raw sheet on which a step absorbing ceramic paste film is not formed on a metal plate as a support and removing the polyethylene terephthalate film is repeated a plurality of times to protect the lower side. A layer was formed.

続いて、保護層の上に図2のポリエチレンテレフタレートフィルム6上に形成した内部電極となる金属ペースト膜3を加圧転写し、ポリエチレンテレフタレートフィルム6を除去した。   Subsequently, the metal paste film 3 serving as an internal electrode formed on the polyethylene terephthalate film 6 of FIG. 2 was pressure-transferred onto the protective layer, and the polyethylene terephthalate film 6 was removed.

さらに、この上に上記図3の段差吸収用セラミックペースト膜4,5を形成したセラミック生シート2を図4のような位置関係となるように加圧転写し、ポリエチレンテレフタレートフィルムを除去した。その後このセラミック生シート上に上記図2のポリエチレンテレフタレートフィルム6上に形成した内部電極となる金属ペースト膜3を、先に加圧転写した金属ペースト膜3に対して一定寸法ずらして加圧転写し、ポリエチレンテレフタレートフィルム6を除去した。   Further, the ceramic raw sheet 2 on which the step-absorbing ceramic paste films 4 and 5 of FIG. 3 are formed is pressure-transferred so as to have the positional relationship as shown in FIG. 4, and the polyethylene terephthalate film is removed. Thereafter, the metal paste film 3 serving as an internal electrode formed on the polyethylene terephthalate film 6 in FIG. 2 is pressure-transferred on the ceramic raw sheet while shifting by a certain dimension with respect to the metal paste film 3 previously pressure-transferred. The polyethylene terephthalate film 6 was removed.

さらに、この上に上記図3の段差吸収用セラミックペースト膜4,5を形成したセラミック生シート2を、積層方向において先に形成した段差吸収用セラミックペースト膜4,5と異なる幅の段差吸収用セラミックペースト膜4,5が形成されるように一定寸法ずらして加圧転写し、ポリエチレンテレフタレートフィルムを除去した。この金属ペースト膜3と段差吸収用セラミックペースト膜4,5を形成したセラミック生シート2の加圧転写とをそれぞれ複数回繰り返した後、上側の保護層として段差吸収用セラミックペースト膜が形成されていないセラミック生シートの加圧転写を複数回繰り返して、図1に示すように段差吸収用セラミックペースト膜の幅を一層毎に異なる幅で交互に構成した積層体1を得た。なお、図1、4は、説明のためにモデル的に示したために、実際の段差吸収用セラミックペースト膜4,5の幅寸法とは異なる。   Furthermore, the ceramic raw sheet 2 on which the step-absorbing ceramic paste films 4 and 5 of FIG. 3 are formed is applied to the step-absorbing step having a width different from that of the step-absorbing ceramic paste films 4 and 5 previously formed in the stacking direction. The polyethylene terephthalate film was removed by pressure transfer while shifting a certain dimension so that the ceramic paste films 4 and 5 were formed. After the metal paste film 3 and the pressure transfer of the ceramic raw sheet 2 on which the step absorbing ceramic paste films 4 and 5 are formed are repeated a plurality of times, a step absorbing ceramic paste film is formed as an upper protective layer. The press transfer of the ceramic raw sheet without a plurality of times was repeated a plurality of times to obtain a laminated body 1 in which the step-absorbing ceramic paste films were alternately configured with different widths for each layer as shown in FIG. 1 and 4 are modeled for explanation, they are different from the actual width dimensions of the step-absorbing ceramic paste films 4 and 5.

ここで、上記で形成した段差吸収用セラミックペースト膜4,5の幅について説明する。試料No.1は、一方の段差吸収用セラミックペースト膜4が金属ペースト膜3の非形成部分の幅よりも大きく、もう一方の段差吸収用セラミックペースト膜5が金属ペースト膜3の非形成部分の幅よりも大きくかつ一方の段差吸収用セラミックペースト膜4よりも小さくなるようにして交互に形成した。試料No.2は、一方の段差吸収用セラミックペースト膜4が金属ペースト膜3の非形成部分の幅よりも大きく、もう一方の段差吸収用セラミックペースト膜5が金属ペースト膜3の非形成部分の幅と同じになるようにして交互に形成した。試料No.3は、一方の段差吸収用セラミックペースト膜4が金属ペースト膜3の非形成部分の幅よりも大きく、もう一方の段差吸収用セラミックペースト膜5が金属ペースト膜3の非形成部分の幅よりも小さくなるようにして交互に形成した。このようにして、金属ペースト膜3の短辺方向の長さに対する金属ペースト膜3と段差吸収用セラミックペースト膜4との重なり部の長さの割合が5.1%とし、金属ペースト膜3の短辺方向の長さに対する金属ペースト膜3と段差吸収用セラミックペースト膜5との重なり部の長さの割合が−2.5〜2.5%となるように構成した。   Here, the width of the step-absorbing ceramic paste films 4 and 5 formed above will be described. Sample No. 1, one step-absorbing ceramic paste film 4 is larger than the width of the non-formed portion of the metal paste film 3, and the other step-absorbing ceramic paste film 5 is wider than the width of the non-formed portion of the metal paste film 3. They were alternately formed so as to be larger and smaller than one of the step-absorbing ceramic paste films 4. Sample No. 2, one step absorbing ceramic paste film 4 is larger than the width of the non-formed portion of the metal paste film 3, and the other step absorbing ceramic paste film 5 is the same as the width of the non-formed portion of the metal paste film 3. Were formed alternately. Sample No. 3, one step absorbing ceramic paste film 4 is larger than the width of the non-formed portion of the metal paste film 3, and the other step absorbing ceramic paste film 5 is wider than the width of the non-formed portion of the metal paste film 3. It formed alternately so that it might become small. In this way, the ratio of the length of the overlapping portion of the metal paste film 3 and the step absorbing ceramic paste film 4 to the length in the short side direction of the metal paste film 3 is set to 5.1%. The length ratio of the overlapping portion of the metal paste film 3 and the step-absorbing ceramic paste film 5 with respect to the length in the short side direction is configured to be −2.5 to 2.5%.

これに対し、比較例の積層セラミックコンデンサの積層体は、同じ幅で形成した段差吸収用セラミックペースト膜4を用いて作製した。段差吸収用セラミックペースト膜4の幅が本発明と異なる以外は本発明の積層体と同様の製造方法で作製した。試料No.4は金属ペースト膜3の非形成部分の幅よりも段差吸収用セラミックペースト膜4の幅が大きくなるように形成し、試料No.5は金属ペースト膜3の非形成部分の幅と段差吸収用セラミックペースト膜4の幅が同じになるように形成し、試料No.6は金属ペースト膜3の非形成部分の幅よりも段差吸収用セラミックペースト膜4の幅が小さくなるように形成し、金属ペースト膜3の短辺方向の長さに対する金属ペースト膜3と段差吸収用セラミックペースト膜4との重なり部の長さの割合が−5.1〜5.1%となるように構成した。図5に試料No.5の加圧転写による積層時の金属ペースト膜3と段差吸収用セラミックペースト膜4との位置関係を示した。   On the other hand, the laminated body of the multilayer ceramic capacitor of the comparative example was produced using the step absorbing ceramic paste film 4 formed with the same width. The step-absorbing ceramic paste film 4 was manufactured by the same manufacturing method as that of the laminate of the present invention except that the width of the ceramic paste film 4 was different from that of the present invention. Sample No. 4 is formed such that the width of the step-absorbing ceramic paste film 4 is larger than the width of the non-formed portion of the metal paste film 3. 5 is formed so that the width of the non-formed portion of the metal paste film 3 and the width of the step-absorbing ceramic paste film 4 are the same. 6 is formed such that the width of the step-absorbing ceramic paste film 4 is smaller than the width of the non-formation portion of the metal paste film 3, and absorbs the step difference between the metal paste film 3 and the length in the short side direction. The ratio of the length of the overlapping portion with the ceramic paste film 4 for use was -5.1 to 5.1%. In FIG. 5 shows the positional relationship between the metal paste film 3 and the step-absorbing ceramic paste film 4 during lamination by pressure transfer.

次に、これら6種類の積層体を所定の寸法で切断して個片の積層セラミックコンデンサのグリーンチップとした後、以下のように6種類の積層セラミックコンデンサを作製した。   Next, these six types of multilayer bodies were cut to a predetermined size to form individual multilayer ceramic capacitor green chips, and then six types of multilayer ceramic capacitors were produced as follows.

まず、グリーンチップをジルコニア質サヤに入れ、工業用窒素ガス雰囲気中で最高温度450℃で2時間処理し、脱バインダした。その後、脱バインダ処理した積層体を、工業用窒素ガスと窒素と水素との混合ガスを用いて1200℃で2時間処理し、焼成して焼結体とした。   First, the green chip was put into a zirconia-based sheath and treated for 2 hours at a maximum temperature of 450 ° C. in an industrial nitrogen gas atmosphere to remove the binder. Thereafter, the laminate after the binder removal treatment was treated at 1200 ° C. for 2 hours using a mixed gas of industrial nitrogen gas and nitrogen and hydrogen, and fired to obtain a sintered body.

次に、得られた焼結体の両端面に銅ペーストを塗布し、工業用窒素雰囲気中で900℃にて焼付けを行い、その後、NiめっきおよびSnめっき処理を施し外部電極を形成して、外形寸法が、長さ1.6mm、幅0.8mm、厚さ0.8mmで、目標の静電容量が10μFの積層セラミックコンデンサを6種類作製した。   Next, a copper paste is applied to both end faces of the obtained sintered body, and baked at 900 ° C. in an industrial nitrogen atmosphere. Thereafter, Ni plating and Sn plating are performed to form external electrodes, Six types of multilayer ceramic capacitors having outer dimensions of 1.6 mm in length, 0.8 mm in width, 0.8 mm in thickness, and a target capacitance of 10 μF were produced.

以上のようにして作製した6種類の積層セラミックコンデンサについて、初期電気特性、信頼性および焼結体構造欠陥の有無を評価した。初期電気特性は、1kHz、1Vrmsでの静電容量を測定し、試料各50個の平均値を求め評価した。また、10Ω以下となったものをショートとして評価した。信頼性は、試料各50個について、85℃にて定格電圧の1倍の直流電圧を1000時間連続印加する高温負荷試験後の絶縁抵抗の劣化を評価した。絶縁抵抗値が1MΩ未満を絶縁抵抗劣化とし、絶縁抵抗の劣化のない場合は○とし、1個でも劣化がある場合は×とした。焼結体構造欠陥は、試料各100個について外観および断面観察により焼結体のデラミネーションやクラック等の有無を調べた。構造欠陥がない場合は○とし、1個でも構造欠陥がある場合は×とした。評価結果を(表1)に示す。なお、(表1)の重なり部Aは金属ペースト膜と一方の段差吸収用セラミックペースト膜との重なり部であり、重なり部Bは金属ペースト膜ともう一方の段差吸収用セラミックペースト膜との重なり部である。また、(表1)の割合は金属ペースト膜の短辺方向の長さに対する重なり部の長さの割合である。 The six types of multilayer ceramic capacitors produced as described above were evaluated for initial electrical characteristics, reliability, and presence or absence of sintered body structural defects. The initial electrical characteristics were evaluated by measuring the capacitance at 1 kHz and 1 Vrms, and calculating the average value of 50 samples. Moreover, what became 10 < 3 > ohm or less was evaluated as a short circuit. Reliability was evaluated for deterioration of insulation resistance after a high-temperature load test in which a DC voltage that was one time the rated voltage was applied at 85 ° C. for 1000 hours for each of 50 samples. When the insulation resistance value is less than 1 MΩ, the insulation resistance is deteriorated, and when there is no deterioration of the insulation resistance, it is evaluated as “◯”. The sintered body structural defect was examined for the presence or absence of delamination, cracks, etc. of the sintered body by appearance and cross-sectional observation for each of 100 samples. When there was no structural defect, it was marked with ◯, and when there was even one structural defect, it was marked with x. The evaluation results are shown in (Table 1). In Table 1, the overlapping portion A is an overlapping portion between the metal paste film and one step-absorbing ceramic paste film, and the overlapping portion B is an overlapping portion between the metal paste film and the other step-absorbing ceramic paste film. Part. Further, the ratio of (Table 1) is the ratio of the length of the overlapping portion to the length in the short side direction of the metal paste film.

Figure 2010153720
Figure 2010153720

(表1)に示すように、試料No.4〜6は、段差吸収用セラミックペースト膜4の幅を変えずに毎層同じ幅とした比較例の製造方法による積層セラミックコンデンサであり、試料No.4のように段差吸収用セラミックペースト膜4の幅が金属ペースト膜3の非形成部分の幅よりも大きくなるとプレスによるセラミック生シートの薄膜化が抑制されてショート率は低いものの、印刷ずれや積層ずれによって生じる金属ペースト膜と段差吸収用セラミックペースト膜との重なりが大きい部分が複数にわたって連続しているため、重なり部分に積層体プレス時の圧力が集中するので、重なり部分の金属ペースト膜が断裂し不連続になり、目標の静電容量が得られなくなった。また、試料No.5、6のように段差吸収用セラミックペースト膜4の幅が小さくなると、目標の静電容量は得られるが、印刷ずれや積層ずれによって生じる金属ペースト膜と段差吸収用セラミックペースト膜との間の段差吸収用セラミックペースト膜のない部分が、複数層にわたって連続しているため、その部分が空洞となって焼結体のデラミネーションやクラック等の内部構造欠陥となり、信頼性が低下した。   As shown in Table 1, Sample No. Nos. 4 to 6 are multilayer ceramic capacitors produced by a comparative manufacturing method in which the width of the step-absorbing ceramic paste film 4 is the same without changing the width. When the width of the step-absorbing ceramic paste film 4 becomes larger than the width of the non-formed portion of the metal paste film 3 as shown in FIG. Since the portion where the overlap between the metal paste film and the step-absorbing ceramic paste film generated due to the shift is continuous over a plurality, the pressure at the time of stack pressing concentrates on the overlapping portion, so the metal paste film at the overlapping portion is torn Then, it became discontinuous and the target capacitance could not be obtained. Sample No. When the width of the step-absorbing ceramic paste film 4 is reduced as in 5 and 6, the target capacitance can be obtained, but the gap between the metal paste film and the step-absorbing ceramic paste film caused by printing misalignment or stacking misalignment is obtained. Since the portion without the step-absorbing ceramic paste film is continuous over a plurality of layers, the portion becomes a cavity, resulting in internal structural defects such as delamination and cracks in the sintered body, and reliability is reduced.

これに対して、試料No.1〜3は、本発明の実施例の製造方法による積層セラミックコンデンサであり、段差吸収用セラミックペースト膜4,5の幅を一層毎に異なる幅で交互に構成したものである。   In contrast, sample no. Reference numerals 1 to 3 denote multilayer ceramic capacitors produced by the manufacturing method according to the embodiment of the present invention, wherein the step-absorbing ceramic paste films 4 and 5 are alternately formed with different widths for each layer.

そして、(表1)に示した結果から明らかなように、これら試料No.1〜3の本発明の実施例の製造方法による積層セラミックコンデンサは、幅の異なる2種の段差吸収用セラミックペースト膜を交互に積層しているので、金属ペースト膜と段差吸収用セラミックペースト膜との重なりが大きい部分が複数層にわたって連続して発生することがなく、そのため、金属ペースト膜と段差吸収用セラミックペースト膜との重なりによる積層体プレス時の圧力集中が緩和され、重なり部分の金属ペースト膜の断裂が抑制されるので、目標の静電容量を得ることができる。   As apparent from the results shown in (Table 1), these sample Nos. Since the multilayer ceramic capacitors according to the manufacturing methods of the first to third embodiments of the present invention alternately laminate two types of step-absorbing ceramic paste films having different widths, a metal paste film and a step-absorbing ceramic paste film The part where the overlap is large does not occur continuously over multiple layers, so the pressure concentration during the pressing of the laminate due to the overlap between the metal paste film and the step-absorbing ceramic paste film is alleviated, and the metal paste in the overlap part Since tearing of the film is suppressed, a target capacitance can be obtained.

また、段差吸収用セラミックペースト膜の少なくとも一方の形成パターンの幅を金属ペースト膜の非形成部分の幅より大きくしているので、段差吸収用セラミックペースト膜がない部分が複数層にわたって連続して発生することがなく、そのため、金属ペースト膜と段差吸収用セラミックペースト膜との間の空洞発生が抑制されるので、焼結体構造欠陥がなく信頼性の優れた積層セラミックコンデンサを得ることができる。   In addition, since the width of the formation pattern of at least one of the step-absorbing ceramic paste film is larger than the width of the non-formed portion of the metal paste film, a portion without the step-absorbing ceramic paste film is continuously generated across multiple layers. For this reason, the generation of cavities between the metal paste film and the step-absorbing ceramic paste film is suppressed, so that a multilayer ceramic capacitor having no sintered structure defects and excellent in reliability can be obtained.

さらに、試料No.2および3は、一方の段差吸収用セラミックペースト膜5の幅をさらに狭くすることで、金属ペースト膜の断裂がより減少するため、より高い静電容量を得ることができた。   Furthermore, sample no. In Nos. 2 and 3, by further reducing the width of one of the step-absorbing ceramic paste films 5, tearing of the metal paste film was further reduced, so that a higher capacitance could be obtained.

以上説明したように、本発明の積層セラミックコンデンサの製造方法は、段差吸収用セラミックペースト膜が、形成パターンの幅が異なる2種からなり、かつ、少なくとも一方の形成パターンの幅が金属ペースト膜の非形成部分の幅より大とした2種を積層方向に交互に形成しているので、目標の静電容量を得ることができ、かつ、焼結体構造欠陥がなく、信頼性の優れた積層セラミックコンデンサを得ることができる。   As described above, in the method for manufacturing a multilayer ceramic capacitor according to the present invention, the step-absorbing ceramic paste film is composed of two types having different formation pattern widths, and at least one of the formation patterns has a width of the metal paste film. Since two types larger than the width of the non-formed part are alternately formed in the stacking direction, the target capacitance can be obtained, and there is no sintered body structural defect, and the stacking has excellent reliability. A ceramic capacitor can be obtained.

なお、上記本実施の形態では、段差吸収用セラミックペースト膜作製用のグラビア版に異なる幅の印刷パターンを形成し、1枚のセラミック生シート2上に金属ペースト膜3と段差吸収用セラミックペースト膜4,5との重なりが異なるように2種類の段差吸収用セラミックペースト膜4,5を形成したが、金属ペースト膜と段差吸収用セラミックペースト膜との重なりが異なるように2種類の段差吸収用セラミックペースト膜を作製して一層毎に交互に積層しても良い。   In the present embodiment, printing patterns having different widths are formed on a gravure plate for producing a step-absorbing ceramic paste film, and a metal paste film 3 and a step-absorbing ceramic paste film are formed on one ceramic raw sheet 2. Although two types of step-absorbing ceramic paste films 4 and 5 are formed so that the overlap with 4 and 5 is different, two types of step-absorbing ceramic paste films 4 and 5 are used so that the overlap between the metal paste film and the step-absorbing ceramic paste film is different. Ceramic paste films may be produced and alternately laminated for each layer.

また、金属ペースト膜3と段差吸収用セラミックペースト膜4,5とが形成された印刷体を一層ごとに180度回転させて積層することで本実施の形態と同様に一層おきに段差吸収用セラミックペースト膜4,5を構成することができ、同様の効果が得られる。   Further, the printed body on which the metal paste film 3 and the step-absorbing ceramic paste films 4 and 5 are formed is rotated by 180 degrees for each layer and laminated, so that the step-absorbing ceramic is formed every other layer as in the present embodiment. The paste films 4 and 5 can be configured, and the same effect can be obtained.

また、上記実施の形態においては、金属ペースト膜をポリエチレンテレフタレートフィルム上に形成したが、セラミック生シート上に形成しても同様の効果が得られる。   Moreover, in the said embodiment, although the metal paste film | membrane was formed on the polyethylene terephthalate film, the same effect is acquired even if it forms on a ceramic raw sheet.

また、本実施の形態では積層セラミックコンデンサの幅方向の金属ペースト膜3の非形成部分にセラミックペースト膜4,5を構成したものであるが、積層セラミックコンデンサの長手方向の金属ペースト膜の非形成部分にセラミックペースト膜を構成しても同様の効果が得られる。   In this embodiment, the ceramic paste films 4 and 5 are formed in the non-formation portion of the metal paste film 3 in the width direction of the multilayer ceramic capacitor. However, the metal paste film in the longitudinal direction of the multilayer ceramic capacitor is not formed. Even if a ceramic paste film is formed in the portion, the same effect can be obtained.

本発明にかかる積層セラミックコンデンサの製造方法によれば、焼結体構造欠陥の発生や信頼性低下を起こすことなく、目標の静電容量を得ることが可能になるので、誘電体層の薄膜化が必要な小形で高容量の積層セラミックコンデンサの製造に特に有用である。   According to the method for manufacturing a multilayer ceramic capacitor according to the present invention, it is possible to obtain a target capacitance without causing a sintered body structural defect and a decrease in reliability. Is particularly useful in the production of small and high-capacity monolithic ceramic capacitors.

本発明の実施形態における積層体の概略断面図Schematic cross-sectional view of a laminate in an embodiment of the present invention 本発明の実施形態における積層セラミックコンデンサの金属ペースト膜の形成状態を示す図The figure which shows the formation state of the metal paste film | membrane of the multilayer ceramic capacitor in embodiment of this invention 本発明の実施形態における積層セラミックコンデンサの段差吸収用セラミックペースト膜の形成状態を示す図The figure which shows the formation state of the ceramic paste film | membrane for level | step difference absorption of the multilayer ceramic capacitor in embodiment of this invention 本発明の実施形態における積層セラミックコンデンサの金属ペースト膜と段差吸収用セラミックペースト膜との関係を示す図The figure which shows the relationship between the metal paste film of the multilayer ceramic capacitor in embodiment of this invention, and the ceramic paste film for level | step absorptions 比較例の積層セラミックコンデンサの金属ペースト膜と段差吸収用セラミックペースト膜との関係を示す図The figure which shows the relationship between the metal paste film of the multilayer ceramic capacitor of a comparative example, and the ceramic paste film for level | step difference absorption

符号の説明Explanation of symbols

1 積層体
2 セラミック生シート
3 金属ペースト膜
4 段差吸収用セラミックペースト膜
5 段差吸収用セラミックペースト膜
6 ポリエチレンテレフタレートフィルム
DESCRIPTION OF SYMBOLS 1 Laminated body 2 Ceramic raw sheet 3 Metal paste film | membrane 4 Ceramic paste film | membrane for level | step difference absorption 5 Ceramic paste film | membrane for level | step difference absorption 6 Polyethylene terephthalate film

Claims (1)

複数のセラミック生シートと複数の金属ペースト膜とを交互に積層するとともに、前記セラミック生シート上の前記金属ペースト膜の非形成部分に段差吸収用セラミックペースト膜を形成して積層体を得る工程を備えた積層セラミックコンデンサの製造方法であって、前記段差吸収用セラミックペースト膜は、形成パターンの幅が異なる2種からなり、かつ、少なくとも一方の形成パターンの幅が金属ペースト膜の非形成部分の幅より大とした2種を積層方向に交互に形成することを特徴とする積層セラミックコンデンサの製造方法。 A step of alternately laminating a plurality of ceramic raw sheets and a plurality of metal paste films, and forming a step absorption ceramic paste film on a non-formation portion of the metal paste film on the ceramic raw sheets to obtain a laminate. The step-absorbing ceramic paste film comprises two types having different formation pattern widths, and at least one of the formation pattern widths is a non-formation portion of the metal paste film. A method of manufacturing a multilayer ceramic capacitor, wherein two types larger than the width are alternately formed in the stacking direction.
JP2008332561A 2008-12-26 2008-12-26 Manufacturing method of multilayer ceramic capacitor Active JP5315987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332561A JP5315987B2 (en) 2008-12-26 2008-12-26 Manufacturing method of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332561A JP5315987B2 (en) 2008-12-26 2008-12-26 Manufacturing method of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2010153720A true JP2010153720A (en) 2010-07-08
JP5315987B2 JP5315987B2 (en) 2013-10-16

Family

ID=42572471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332561A Active JP5315987B2 (en) 2008-12-26 2008-12-26 Manufacturing method of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP5315987B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508915B2 (en) 2010-12-13 2013-08-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic condenser and method of manufacturing the same
US8879237B2 (en) 2011-12-22 2014-11-04 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
US9159494B2 (en) 2010-12-13 2015-10-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic condenser and method of manufacturing the same
JP2019102524A (en) * 2017-11-29 2019-06-24 Tdk株式会社 Manufacturing method of laminated coil component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014668A (en) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd Manufacturing method of laminated ceramic electronic part
JP2004103655A (en) * 2002-09-05 2004-04-02 Ngk Spark Plug Co Ltd Method of manufacturing laminated ceramic electronic component and ceramic sheet laminating device
JP2004179436A (en) * 2002-11-27 2004-06-24 Kyocera Corp Laminated ceramic capacitor
JP2004179348A (en) * 2002-11-26 2004-06-24 Kyocera Corp Method for manufacturing ceramic laminated body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014668A (en) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd Manufacturing method of laminated ceramic electronic part
JP2004103655A (en) * 2002-09-05 2004-04-02 Ngk Spark Plug Co Ltd Method of manufacturing laminated ceramic electronic component and ceramic sheet laminating device
JP2004179348A (en) * 2002-11-26 2004-06-24 Kyocera Corp Method for manufacturing ceramic laminated body
JP2004179436A (en) * 2002-11-27 2004-06-24 Kyocera Corp Laminated ceramic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508915B2 (en) 2010-12-13 2013-08-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic condenser and method of manufacturing the same
US9159494B2 (en) 2010-12-13 2015-10-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic condenser and method of manufacturing the same
US9595392B2 (en) 2010-12-13 2017-03-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic condenser and method of manufacturing the same
US8879237B2 (en) 2011-12-22 2014-11-04 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
JP2019102524A (en) * 2017-11-29 2019-06-24 Tdk株式会社 Manufacturing method of laminated coil component
JP7047349B2 (en) 2017-11-29 2022-04-05 Tdk株式会社 Manufacturing method of laminated coil parts

Also Published As

Publication number Publication date
JP5315987B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP6812477B2 (en) Multilayer ceramic capacitors, manufacturing methods for multilayer ceramic capacitors, and mounting boards for multilayer ceramic capacitors
JP4362079B2 (en) Multilayer chip capacitor and manufacturing method thereof
JP2018037492A (en) Multilayer ceramic capacitor and manufacturing method of the same
JP3785966B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JP5423977B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4586831B2 (en) CERAMIC GREEN SHEET STRUCTURE AND METHOD FOR PRODUCING MULTILAYER CERAMIC ELECTRONIC COMPONENT
JP5315987B2 (en) Manufacturing method of multilayer ceramic capacitor
JP5414940B1 (en) Multilayer ceramic capacitor
JP3940421B2 (en) Multilayer ceramic component and manufacturing method thereof
KR20140032293A (en) Multilayer ceramic capacitor and method of manufacturing the same
JP2008085041A (en) Multilayer ceramic capacitor and its manufacturing method
JP2005033070A (en) Multilayer ceramic condenser and its manufacturing method
JP2019161235A (en) Multilayer ceramic capacitor and manufacturing method of the same
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP2003115416A (en) Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP4702972B2 (en) Multilayer electronic component and manufacturing method thereof
JP2008198655A (en) Multilayer ceramic electronic component and its manufacturing process
WO2006109466A1 (en) Method for forming internal electrode pattern and method for manufacturing multilayer ceramic electronic component using same
WO2013190718A1 (en) Laminated ceramic capacitor
JP4882778B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2005303029A (en) Method of manufacturing laminated ceramic electronic part
JP4506755B2 (en) Green sheet, green sheet manufacturing method, and electronic component manufacturing method
JP6117557B2 (en) Multilayer electronic components
JP6193778B2 (en) Capacitor
JP2003249416A (en) Manufacturing method of laminated ceramic capacitor and laminated ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5315987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150